
Containment of Fast Scanning Computer
Network Worms

Muhammad Aminu Ahmad and Steve Woodhead

Faculty of Engineering and Science, University of Greenwich, UK
{m.ahmad,s.r.woodhead}@gre.ac.uk

Abstract This paper presents a mechanism for detecting and containing
fast scanning computer network worms. The countermeasure mechanism,
termed NEDAC, uses a behavioural detection technique that observes the
absence of DNS resolution in newly initiated outgoing connections. Upon
detection of abnormal behaviour by a host, based on the absence of DNS
resolution, the detection system then invokes a data link containment
system to block traffic from the host. The concept has been demon-
strated using a developed prototype and tested in a virtualised network
environment. An empirical analysis of network worm propagation has
been conducted based on the characteristics of reported contemporary
vulnerabilities to test the capabilities of the countermeasure mechanism.
The results show that the developed mechanism is sensitive in detecting
and blocking fast scanning worm infection at an early stage.

Keyword: worm detection, malware, cyber defence, network security

1 Introduction

Malicious software (malware) [1] is a generic term for any software that enters
a computer system without the authorisation of the user to perform unwanted
actions. Such software is a significant risk to the security of computer systems,
with those connected to the Internet being at particular risk. Self-propagating
malware (termed a worm) is a particular class of software which is rare, but
particularly dangerous, because of its highly virulent nature. Fast scanning com-
puter network worms are a particularly dangerous sub-class of such software.

The Internet has experienced a number of notable worm outbreaks (e.g. Slam-
mer, Code Red and Witty [2]) that caused disruption of services and significant
financial losses to government, transportation and other institutions [3]. How-
ever, the number of computer network worm outbreaks reduced significantly
until the return of similar characteristics in the Stuxnet [4] outbreak that tar-
geted industrial control systems in order to cause damage [5], which led to the
release of other variants such as Duqu , Flame and Gauss for cyber espionage
[4]. Vulnerabilities that can be exploited by a worm continue to be published by
system vendors including the Microsoft RDP vulnerability (CVE-2012-0002) of
2012, and the ShellShock (CVE-2014-6271) and Drupal (CVE-2014-3704) vul-
nerabilities of 2014. The present threat of such an event therefore remains clear.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Greenwich Academic Literature Archive

https://core.ac.uk/display/42391466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Previously reported research work used behavioural detection and suppres-
sion techniques at the host [6], local network and network perimeter [7] levels
to counter the propagation of fast scanning computer network worms. However,
there are limitations and shortcomings in the reported techniques. These limita-
tions and shortcomings involve ineffectiveness in detecting worms, resource con-
sumption, delay in deployment and detection, management overhead and compu-
tational complexity, and in most cases the techniques only slow, rather than stop
worm infections [2],[8]. The previously reported research work can be categorized
into signature-based and anomaly-based detection systems. The signature-based
detection system maintains a database of signatures for previously known at-
tacks and raises an alarm if a datagram in the network matches a signature in
the database. Anomaly-based detection systems examine network traffic in order
to build a profile of the normal behaviour and then raise an alarm for events
that deviate from the normal profile. In contrast to signature-based systems,
anomaly-based systems can detect new attacks. Anomaly-based detection sys-
tems look for deviations from the normal profile, based on the datagram-header
information, payload information or both [9]. Datagram-header based anomaly
detection systems use datagram header information to detect worm propagation.
The focus of this paper is to develop an anomaly-based detection scheme using
datagram-header information.

This paper presents a mechanism that uses two approaches for detecting and
containing fast scanning computer network worms (abbreviated as fast scanning
worms hereafter), which we have termed NEDAC (NEtwork and DAta link layer
Countermeasure). NEDAC uses detection and containment techniques to defend
against fast scanning worm attacks, which operate at the network level and data
link level respectively. The detection part of the mechanism observes DNS activ-
ities to detect absence of DNS lookup in newly initiated outgoing connections.
The containment part of the mechanism blocks outgoing traffic from a host that
has been identified as infected, using data link access control.

The remainder of the paper is presented as follows. Section 2 presents re-
lated work on worm detection and containment systems. Section 3 presents
an overview of wormable vulnerabilities. Section 4 presents the description of
the developed countermeasure mechanism. Section 5 presents the experimental
evaluation of the reported mechanism using a developed prototype. Section 6
concludes the paper and discusses possible future work.

2 Related Work

Significant research efforts have been devoted to the development of anomaly-
based network intrusion detection systems, which have led to the existence of
numerous approaches [8]. A number of these approaches [9] use datagram header
information to identify the presence of computer network worms. Among these
approaches are those that monitor source and destination IP addresses of da-
tagrams, such as the work reported by Williamson [6]. Williamson [6] proposed
a detection and suppression technique that uses the source and destination IP

addresses of the host making a request to detect an attack. Whenever a request
is made, the approach checks the newness of the host making the request by
comparing the destination of the request to a short list of recently made con-
nections. If the host is new it is then delayed, otherwise it will be processed
as normal. However, many fast scanning worms (TCP-based) initiate connec-
tion requests to randomly-generated IP addresses, which results in a number of
failed connections [2]. As a result, in addition to monitoring source and destin-
ation IP addresses, some approaches use the status of connection requests to
detect worm behaviour such as the work of Jung et al. [10], Weaver et al. [11]
and Rasheed et. al [12]. This technique uses the count of successful and failed
connection attempts to determine the presence of worm scanning.

Furthermore, some detection approaches such as those reported by Gu et. al
[13] and Mahoney and Chan [14] monitor source and destination ports and the
Ethernet header fields. The work of Gu et al. [13] uses source and destination IP
addresses and source and destination ports to detect fast scanning worms. This
algorithm termed Destination Source Correlation (DSC), correlates incoming
and outgoing traffic and keeps track of SYN datagrams and UDP traffic of the
source and destination. Thus, if a host received a datagram on port i, and then
starts sending datagrams destined for port i, it becomes a suspect. Then if the
immediate outgoing scan rate for the suspect host deviates from a normal profile,
the host is considered to be infected. Mahoney and Chan [14] developed the
Packet Header Anomaly Detection (PHAD) technique, which learns the normal
ranges of values for each datagram header field at the data link (Ethernet),
network (IP), and transport/control layers (TCP, UDP, ICMP). PHAD uses the
probability of rate anomalies in detection mode, based on the rate of anomalies
observed during the training phase; the rarer the detected anomalies, the more
likely they are to be hostile.

Another detection approach is to use DNS activities of hosts to detect worm
propagation. Whyte et al. [7] and Shahzad and Woodhead [15] used DNS-based
rate limiting to suppress fast scanning worms in an enterprise network. The
observation was scanning worms often use numeric IP addresses instead of the
qualified domain name of a system, which eliminates the need for a DNS query. In
contrast, the vast majority of legitimate publicly available services are accessed
through the use of DNS protocol; the network service that maps numeric IP
addresses to corresponding alphanumeric names. Therefore the main idea behind
this technique is that the absence of DNS resolution before a new connection is
considered anomalous. This notion was first proposed by Ganger et al. [16], and if
is implemented properly, it will impose severe limitations on worm traffic. This
forces scanning worms to either probe DNS namespace or issue a DNS query
for each IP address, which significantly reduces the speed of worm propagation
[17]. The mechanism presented in this paper builds on the DNS-based detection
scheme.

3 Wormable Vulnerability

According to Tidy et. al [5], a vulnerability is said to be wormable if it is network
reachable, provides remote code execution, provides network access, and does not
require human interaction once exploited.

Individual vulnerabilities can be researched through a number of online
sources that provide details of identified vulnerabilities such as the Common
Vulnerabilities and Exposures (CVE) system [18]. The CVE system focuses on
providing details for a range of vulnerabilities and keeps notes of whether a
vulnerability is network reachable or requires human interaction if exploited.
Additionally, Symantec Connect [19] provides working exploits for some vulner-
abilities. These details provide the necessary information for assessing the worm-
ability of many vulnerabilities. Some of the reported contemporary wormable
vulnerabilities include Microsoft RDP (CVE-2012-0002) of 2012 and ShellShock
(CVE-2014-6271) of 2014 [18].

4 Worm Countermeasure System

The proposed detection and containment mechanism uses DNS-based anomalies
to detect the propagation of fast scanning worms in enterprise networks. Many
fast scanning worms generate pseudo-random IPv4 addresses directly, without
undertaking a DNS query. This behaviour obviates the need for DNS lookup,
which is abnormal for the vast majority of legitimate publicly available services
and is therefore a tell tale sign of scanning worm propagation [16]. Using a
classification developed by Whyte et al. [7], the main focus of this paper is to
detect worm propagation where the infection source is from local to remote
and local to local using a detection system working at the network layer and a
containment system working at the data link layer.

The NEDAC mechanism consists of two main sub-systems that work together
to provide a countermeasure solution. The first system is the network layer de-
tection system and the second system is the data link layer containment system,
with a connection maintained between the two components to enable continuous
data transmission. The detection system keeps track of all outgoing new TCP
SYN and UDP datagrams by correlating them with a DNS resolution cache to
determine the absence of DNS lookup. When a datagram is transmitted to a des-
tination address without prior DNS lookup, the source IP address is maintained
in a cache and its corresponding counter is incremented. The counter is incre-
mented subsequently for every distinct datagram sent by a host without a prior
DNS lookup. A threshold value, v, is set in order to assign a maximum num-
ber of distinct IP addresses a host can attempt to contact without a prior DNS
lookup per time duration, t. Upon reaching the value, v, the detection system
will mark the behaviour as worm propagation and therefore invokes the coun-
termeasure by sending the MAC address of the source host to the containment
system. The data link containment system listens on a TCP port for incoming
connection from the detection system in order to block outgoing traffic from

an infected host. Upon the receipt of a host MAC address from the detection
system, the containment system will generate an access control update to block
all datagrams originating from the specified host.

The design of the NEDAC mechanism is presented in Figure 1. Figure 1a
shows the flow diagram of the network layer detection system and Figure 1b
shows the flow diagram of the containment system.

Start

Yes

No

Initialise Timer

No

Get traffic

Are
IP addresses
 in resolution

 table?

Yes

No

getNextDatagram()

Update counter in no-resolution table

While Timer > 0

Yes

Is datagram
outbound?Is packet DNS

reply?

No

Add IP addresses
to resolution table

Yes

Clear no-resolution table

Is TTL
>

 86400

Yes

No
While

there are more entries
in resolution table

Yes

Delete entry
Is

source host
 in exempt

table?

Yes

No

Invoke containment system

Is counter
>

 threshold

No

Yes

No

While true

Yes

No

End

(a) Detection system

Start

Get data
(MAC)

Validate MAC address

Block host with the
specified MAC address

Send the host name
and blocking time to

output file

CSV output file

While true

Incoming
requests

End

Yes

No

(b) Containment system

Figure 1: Flow diagram of the NEDAC mechanism

The detection system initialises a timer and then monitors TCP SYN and UDP
datagrams. The detection system uses two caches, namely the resolution table
and no-resolution table. Upon encountering a DNS response datagram, the al-
gorithm records the host that made the DNS resolution and the resolved ad-
dress in the resolution table. For outbound datagrams, the algorithm determines
whether the source host is white-listed by checking the exempt table. The ex-
empt table elements are a combination of IP addresses and port numbers that are
exempt from the detection algorithm for known systems that legitimately com-
municate using IP addresses directly. If there is a miss, the algorithm determines
whether there is a recent DNS query prior to sending the datagram by checking
the resolution table. If there is a miss, the algorithm then increments the host’s

counter in the no-resolution table and determines whether the entry exceeds a
threshold. Upon exceeding a threshold, the system invokes the countermeasure
solution by sending the source host MAC address to the containment system.
After the expiration of the predefined timer, the system clears the entries in
the no-resolution table, and then checks the resolution table in order to remove
entries with expired TTL values.
The containment system receives MAC address of an infected host from the
detection system and then blocks all traffic originating from the host. Finally,
the system logs the host details and timestamp.

The NEDAC mechanism has been implemented as a software prototype using
the C programming language. The C language provides low level programming
support for network traffic using open source libraries such as libpcap [20] and
pjproject [21], which facilitate traffic analysis.

5 Evaluation

This section presents an evaluation of the NEDAC mechanism. Firstly, analyt-
ical results of the number of susceptible hosts for the candidate contemporary
vulnerabilities were presented. Then a description of the methodology used to
evaluate NEDAC using developed worm outbreak scenarios was also presented.
Finally, the section details the parameters used for the worm outbreak scenarios
and the experimental results obtained.

The experiments reported in this paper use the Microsoft RDP (CVE-2012-
0002) and ShellShock (CVE-2014-6271) contemporary vulnerabilities to develop
potential worm outbreak scenarios for the evaluation of the NEDAC prototype.
An initial challenge for the work was determining the values of the susceptible
populations for these vulnerabilities. As a result, the CAIDA Internet Topology
Data Kit (ITDK) [22] was used as a sample to determine the susceptible popula-
tion values. The CAIDA ITDK includes passive traffic trace files for two Equinix
backbones based in Chicago and San Jose in an anonymised format. Two trace
files were collected from each centre. The four trace files, dated 20/03/2014, com-
prised approximately 47.85 million datagrams across a one minute period. The
trace files were analysed and divided into two separate files containing datagrams
originating from Windows hosts and from Linux hosts based on the reported IP
header TTL of the datagram using Wireshark and Tshark [23]. The filters used
to determine whether a datagram originated from a Windows or Linux host are
“ip.ttl>64 && ip.ttl<129” and “ip.ttl<65” respectively.

Microsoft RDP protocol and mod_cgi are the main infection vectors for
the Microsoft RDP and ShellShock vulnerabilities respectively. The mod_cgi is
required by the popular host management tools Parallel Plesk and cPanel for
certain modules, and so if it is possible to estimate the total number of hosts
with these tools installed, this could act as a lower bound value for the number
of Linux hosts with the module that could be susceptible to ShellShock. Such an
estimate was developed by filtering datagrams with a destination TCP port equal
to the management interface ports of the Plesk (8834) and cPanel (2083, 2082),

compared to overall Linux hosts. However, RDP datagrams were filtered using
TCP/UDP port 3389, compared to overall Windows hosts. The filtration of the
datagrams was achieved using “tshark -r <.pcap> -T fields -e ip.dst | sort
| uniq | wc -l”, where the “sort”, “uniq” and “wc -l” commands provide
a count of the unique IP addresses that offer a particular service. The analysis
further extrapolated the figures to determine a representative value of the entire
IPv4 address space using Sp = r∗m∗uip, where Sp is the susceptible population,
r is the ratio determined for each vulnerability from the dataset, m is the market
share [24] of the target operating system, and uip is the routable IP address space;
3, 673, 309, 759 [25]. The market shares of Windows-based hosts and Linux-based
hosts are 75% and 5.4% respectively of connected hosts on the Internet [24],
therefore the average susceptible population values of RDP and Plesk/cPanel
were estimated as 16.48 million and 42, 533 respectively.

To estimate the worm datagram sizes for experimentation, proof of concept
exploits were collected from Symantec vulnerability database [19] for the Mi-
crosoft RDP and ShellShock vulnerabilities. The result of this estimation pro-
cess was datagram sizes of 3.8 kilobytes and 2 kilobytes for RDP and ShellShock
vulnerabilities respectively. These were used to configure the reported worm
propagation experiments.

5.1 Experimental Methodology

The NEDAC prototype was deployed and tested in a virtualised network envir-
onment. The virtualised network environment comprises two personal computers
with Intel Core i7 (12 virtual cores at 3.20 GHz) processor, 64GB of RAM and
2TB of hard disk storage capacity. The computers use VMware ESXi 5.5 [26]
server to provide virtualization services, which enable the development of vir-
tual networks on each computer in order to form a virtualised enterprise network.
VMware ESXi has been chosen due to its strong performance in terms of the
utilization of CPU, memory, disk I/O and network I/O [27]. The developed virtu-
alised enterprise network of each computer comprises LANs with a DHCP server
for IP address management, a DNS server for name resolution, an NTP server
to provide a time synchronization service for the virtual hosts, a logging server
to keep a record of worm infection activities and routers for internal routing
services. Both internal and external routers have been implemented using the
Quagga routing suite [28]. The detection system was installed on the gateway of
each virtualised LAN and the containment system on the virtual switches of the
virtual enterprise networks. Figure 2 depicts the logical and physical architecture
of the virtualised environment.

Worm propagation behaviour was experimented using a worm daemon [29]
that has been developed with the capabilities of facilitating a worm attack event
using chosen worm characteristics. The worm daemon system consists of both
client and server modules capable of sending and receiving UDP datagrams. The

RIP

ENTERPRISE NETWORK A ENTERPRISE NETWORK B

Detection

Vmware ESXi Server A Vmware ESXi Server B

DetectionContainment

Containment

Containment

Containment

Containmet

Containment

Virtualised LAN 1

Virtualised LAN 2

Virtualised LAN 3

Virtualised LAN 1

Virtualised LAN 2

Virtualised LAN 3

Figure 2: Virtual environment for countermeasure testing

client module is used to initiate a worm attack against the desired targets. Virtual
hosts are made susceptible by running the server module, which listens on a
specific UDP port and then, after receiving an “infection” datagram, continuously
transmits “infectious” UDP datagrams. Upon infection, a susceptible host will
send its time stamp and IP address information to the logging server for record
management. The logging server has been configured with a logging daemon
that keeps the details of infected host addresses and infection time. This process
will continue until full infection is achieved based on the details recorded on the
logging server. Finally, the experiment used Damn Small Linux (DSL) [30] as
the operating system for the virtual machines. Furthermore, initiating a worm
outbreak experiment involves creating the required number of virtual machines
by cloning a base virtual machine that has been configured with the correct worm
daemon. The virtual machines will then be powered to automatically synchronize
their time with the NTP server, and then wait for inbound datagrams. The
worm infection event is then initiated by sending a UDP datagram to one of
the susceptible virtual machines in one of the virtualised LANs. A UDP-based
worm has been chosen due to its higher rate of propagation compared to a TCP-
based counterpart. UDP-based worms require no acknowledgement and cannot
be detected by mechanisms that rely on number or state of failed connection
attempts.

5.2 Experimental Parameters

The average susceptible population of hosts for each of the two candidate contem-
porary vulnerabilities and the size of routable IPv4 address space (3, 673, 309, 759
[25]) were used to determine the number of susceptible hosts per million Internet
hosts for each vulnerability using Pm =

[(
Sp

Rip

)
∗ 1, 000, 000

]
, where, Pm denotes

the value of susceptible hosts per million Internet hosts, Sp denotes the absolute
number of hosts susceptible to the vulnerability and Rip denotes the number
of routable IPv4 addresses. The results were 4454 and 12 susceptible hosts per
million for the RDP and ShellShock vulnerabilities respectively.

Another input value required by the worm daemon is the scan rate of the
worm. The scan rate for each of the contemporary worm candidates has been
determined using β =

Uip

Sp
, where β denotes the scan rate. The resulting scan

rates were 223 and 86364 “infectious” datagrams per second for RDP-based and
ShellShock-based worms respectively.

5.3 RDP-based Worm Behaviour

The RDP-based worm experiment was conducted using 4454 susceptible
hosts per million in a single class B size network, and therefore contained[
216 ∗

(
4454

1000000

)]
= 292 susceptible hosts. The daemon was configured to listen

on UDP port 3389 and then transmits UDP datagrams to port 3389 at a scan
rate of 80 “infectious” datagrams per second, once “infected” using random seed.
The scan rate was scaled down to 35% of the calculated value in order to avoid
overloading server resources.

Five RDP-based worm experiments were conducted using one initially in-
fected host without any countermeasure in place. Figure 3a shows the average
result of the five experiments. The RDP-based experiment was repeated with
NEDAC mechanism in place using a range of threshold values of 10, 20, 50,
100, 200, 400, 500 and 800 distinct IP addresses contacted without prior DNS
lookup. NEDAC was configured to invoke the containment system if a threshold
is exceeded within time duration of 10 seconds. The worm infection was detected
and contained by the NEDAC mechanism with no further infection across the
entire range of NEDAC experiments conducted.

The RDP-based worm experiment was also conducted with a hit-list [31]
of 10 and 20 hosts in order to further evaluate the capability of the NEDAC
mechanism. The hit-list behaviour was tested using threshold value of 800 and
a time duration of 10 seconds. The worm propagation was also detected and
contained with zero and nine further infections for the hit-list of 10 and 20 hosts
respectively. Figure 3b shows the results of worm propagation using a hit-list of
20 hosts with and without the NEDAC mechanism.

5.4 ShellShock-based Worm Behaviour

The ShellShock-based worm experiment was conducted using 12 susceptible
hosts per million in a single class A size network, and therefore contained[
224 ∗

(
12

1000000

)]
= 203 susceptible hosts. The daemon was configured to listen

on UDP port 8080 and then transmits UDP datagrams to port 8080 at a scan
rate of 86 “infectious” datagrams per second, once “infected” using random seed.

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

300

Time (second)

N
u
m

b
e
r

o
f

in
fe

c
te

d
 h

o
s
ts

(a) No countermeasure in place

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

Time (second)

N
u
m

b
e
r

o
f

in
fe

c
te

d
 h

o
s
ts

Worm infection without countermeasure

Worm infection with NEDAC

(b) RDP-based with a hit-list of 20 hosts

Figure 3: RDP-based worm propagation behaviour

The scan rate was scaled down by a factor of 1000
(

86,364
1,000

)
= 86 in order to

avoid overloading server resources.
As with the RDP experiments, five ShellShock-based worm experiments were

conducted using one initially infected host without any countermeasure in place.
Figure 4a shows the average result of the five experiments. The ShellShock-
based experiment was repeated with NEDAC mechanism in place using a range
of threshold values of 10,20, 50, 100, 200, 400, 500, 800 and 860 distinct IP
addresses contacted without prior DNS lookup. The worm infection was detected
and contained by the NEDAC mechanism with no further infection across the
entire range of NEDAC experiments conducted.
The ShellShock-based worm infection experiment was repeated with a hit-list
[31] of 10 and 20 hosts in order to further evaluate the capability of the NEDAC
mechanism. The hit-list behaviour was tested using a threshold value of 860
and a time duration of 10 seconds. The worm propagation was detected and
contained with zero and three further infections for the hit-list of 10 and 20
hosts respectively. Figure 4b shows the results of worm propagation using a
hit-list of 20 hosts with and without the NEDAC mechanism.

6 Conclusion and Future Work

This paper has presented a mechanism, which comprises a DNS-based anom-
aly detection system and a data link layer containment system to counter
the propagation of worms. The empirical results of the experiments conduc-
ted showed that the mechanism can detect and completely contain fast scanning
worm including hit-list worm propagation scenario. This is due to the contain-
ment techniques employed in the data link layer that isolates a given infected
host from the network and therefore ends the worm propagation.

0 2000 4000 6000 8000 10000 12000
0

20

40

60

80

100

120

140

160

180

200

Time (second)

N
u
m

b
e
r

o
f

in
fe

c
te

d
 h

o
s
ts

(a) No countermeasure in place

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

20

40

60

80

100

120

140

160

180

200

Time (second)

N
u
m

b
e
r

o
f

in

f
e
c
t
e
d

h
o
s
t
s

Worm infection without countermeasure

Worm infection with NEDAC

(b) ShellShock-based worm with a
hit-list of 20 hosts

Figure 4: ShellShock-based worm propagation behaviour

The experimental results for the RDP-based worm experiment without a
countermeasure show attainment of 99% infection in 2 minutes. Thus using 224
scans per second for the RDP-based worm, the susceptible population of 294
hosts in a class B network could be infected in

[
160 sec ∗

(
35
100

)]
= 56 seconds.

However, despite the low population of susceptible hosts for the ShellShock-
based worm compared to the RDP-based worm, the experimental results for
ShellShock-based worm attained 99% infection in 200 minutes. The duration be-
tween detection and containment of an infected host was observed to be 1 second.
Additionally, a hit-list was used to further evaluate the mechanism where 20 hosts
were configured to transmit “infectious” datagrams at the same time. Nine fur-
ther infections were observed after four seconds for RDP-based hit-list scanning
and three further infections were observed after six seconds for ShellShock-based
hit-list worm scanning. For RDP-based worm, the higher number of further in-
fections can be explained due to large number of susceptible hosts compared
to ShellShock-based worm. In both scenarios, further infections were observed
due to the increased number of contacts made per second, i.e., 20 ∗ 80 = 1600
and 20∗86 = 1720 “infectious” datagrams for RDP-based worm and ShellShock-
based worms respectively. In general, NEDAC has demonstrated effectiveness in
detecting and containing fast scanning worms at early stage.

Furthermore, the speed of Internet connection available for an infected host
and the worm datagram size determine how fast a worm can send datagrams.
The Internet connection speed was estimated to be within the range10Mbps to
1000Mbps [32]. Using the Internet connection speed and a worm datagram size,
the time T , required for a single worm instance, with size M (in bytes), to send
datagram to a single IP address over a C megabits Internet connection can be
determined using T = M

C ∗ 8. Using 10Mbps Internet connection speed as a
lower bound, the times required to transmit single datagram by RDP-based and
ShelShock-based worms are 3 and 2 milliseconds respectively. Using 1000Mbps
as an upper bound, the times required are 0.03 and 0.02 milliseconds for RDP-

based and ShellSock-based worms respectively. Therefore the RDP-based worm
can transmit 333 datagrams and 33, 333 datagrams using 10Mbps and 1000Mbps
connections speeds per second respectively. Similarly, the ShellShock-based worm
can transmit 500 datagrams and 50, 000 datagrams using 10Mbps and 1000Mbps
connections speeds per second respectively. Thus, with these scan rates, NEDAC
can detect and contain these contemporary worms in one second depending on
the threshold value used, because a reasonable threshold value should not exceed
300 scans per second.

As future work, we plan to optimise the mechanism, particularly the detection
scheme. It is believed that proper implementation of the DNS-based detection
scheme will impose severe restriction on scanning worms. The mechanism will
further be evaluated using a range of diverse worm scanning techniques such
as stealthy scanning, local-preference scanning, topological scanning and evasive
scanning. The effect of background traffic will also be tested to further evaluate
the effectiveness of the mechanism and determine false alarms. The complexity
of the detection system will be evaluated and then a comparative evaluation of
the overall mechanism will be conducted.

References

1. J. Niemelä and P. Palomäki. Malware detection and application monitoring,
November 2013.

2. P. Li, M. Salour, and X. Su. A survey of internet worm detection and containment.
Communications Surveys & Tutorials, IEEE, 10(1):20 – 35, 2008.

3. C. Fosnock. Computer worms: past, present, and future., August 2005.
4. B. Bencsáth, G. Pék, L. Buttyán, and M. Félegyházi. The cousins of stuxnet:

Duqu, flame, and gauss. Future Internet, 4(4):971 – 1003, 2012.
5. L. J Tidy, K. Shahzad, A. Muhammad, and S. Woodhead. An assessment of the

contemporary threat posed by network worm malware. In The Ninth Internation
Conference on Systems and Networks Communications (ICSNC 2014), October
2014.

6. M. M. Williamson. Throttling viruses: Restricting propagation to defeat malicious
mobile code. In In Computer Security Applications Conference, 2002, Proceedings,
18th Annual IEEE, pages 61 – 68, 2002.

7. D Whyte, E. Kranakis, and P. C. Van Oorschot. Dns-based detection of scanning
worms in an enterprise network. In In NDSS, February 2005.

8. V. Jyothsna, V. R. Prasad, and K. M. Prasad. A review of anomaly based intrusion
detection systems. International Journal of Computer Applications (0975 - 8887),
28(7):26 – 35, August 2011.

9. F. M. Cheema, A. Akram, and Z. Iqbal. Comparative evaluation of header vs.
payload based network anomaly detectors. In Proceedings of the World congress
on Engineering, volume 1, pages 1 – 5, July 2009.

10. Jaeyeon Jung, Vern Paxson, Arthur W Berger, and Hari Balakrishnan. Fast ports-
can detection using sequential hypothesis testing. In Security and Privacy, 2004.
Proceedings. 2004 IEEE Symposium on, pages 211–225. IEEE, 2004.

11. N. Weaver, S. Staniford, and V. Paxson. Very fast containment of scanning worms.
In In Proceedings of the 13th USENIX Security Symposium, 2004.

12. M. M. Rasheed, N. M. Norwawi, O. Ghazali, and M. M. Kadhum. Intelligent
failure connection algorithm for detecting internet worms. International Journal
of Computer Science and Network Security (IJCSNS), 9(5):280, 2009.

13. G. Gu, M. Sharif, X. Qin, D. Dagon, W. Lee, and G. Riley. Worm detection, early
warning and response based on local victim information. In In Computer Security
Applications Conference, 20th Annual IEEE, pages 136 – 145, 2004.

14. M. Mahoney and P. K. Chan. Phad: Packet header anomaly detection for identi-
fying hostile network traffic. Technical report, Florida Institute of Technology
technical report CS200104, 2001.

15. Khurram Shahzad and Steve Woodhead. Towards automated distributed contain-
ment of zero-day network worms. In Computing, Communication and Network-
ing Technologies (ICCCNT), 2014 International Conference on, pages 1–7. IEEE,
2014.

16. G. R. Ganger, G. Economou, and S. M. Bielski. Self securing network interfaces:
What, why and how? Technical report, CARNEGIE MELLON UNIV PITTS-
BURGH PA SCHOOL OF COMPUTER SCIENCE, 2002.

17. Cynthia Wong, Stan Bielski, Ahren Studer, and Chenxi Wang. Empirical analysis
of rate limiting mechanisms. In Recent Advances in Intrusion Detection, pages
22–42. Springer, 2006.

18. CVE. Common Vulnerabilities and Exposures, 2014. [Online]. Accessed on 19th
October 2014. Avalable: https://cve.mitre.org/.

19. S. Connect. Vulnerabilities. [Online]. Accessed on 12th November 2014. Available:
http://www.securityfocus.com/.

20. Luis Martin Garcia. Programming with libpcap sniffing the network from our own
application. Hakin9-Computer Security Magazine, pages 2–2008, 2008.

21. PJPROJECT LIBRARY. http://www.pjsip.org/.
22. CAIDA, The Internet Topology Data Kit. [Online]. Accessed on 11th November

2014. Avalable: http://www.caida.org/data/passive.
23. Gerald Combs. Tshark-the wireshark network analyser. URL http://www. wire-

shark. org.
24. W3schools os statistics. [Online]. Accessed on 12th November 2014. Avalable:

http://www.w3schools.com.
25. M Cotton and L Vegoda. Special use ipv4 addresses. Technical report, BCP 153,

RFC 5735, January, 2010.
26. Scott Lowe. Mastering VMware vSphere 5. John Wiley & Sons, 2011.
27. J. Hwang, S. Zeng, and T. Wood. A component based performance comparison of

four hypervisors. In Integrated Network Management (IM 2013), 2013 IFIP/IEEE
International Symposium, pages 269 – 276, May 2013.

28. Kunihiro Ishiguro, T Takada, Y Ohara, AD Zinin, G Natapov, and A Mizutani.
Quagga routing suite, 2007.

29. Khurram Shahzad and Steve Woodhead. A pseudo-worm daemon (pwd) for empir-
ical analysis of zero-day network worms and countermeasure testing. In Comput-
ing, Communication and Networking Technologies (ICCCNT), 2014 International
Conference on, pages 1–6. IEEE, 2014.

30. Damn Small Linux. [Online]. Accessed 19th October 2014. Available:
http://www.damnsmalllinux.org/.

31. S. Staniford, P. Vern, and W. Nicholas. How to own the internet in your spare
time. In USENIX Security Symposium, pages 149 – 167, August 2002.

32. Net Index. [Online]. Accessed 16 November 2014. Available:
http://www.netindex.com/.

