
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Master’s Theses Theses and Dissertations

8-1-2005

On the Design of an Immersive Environment for Security-Related On the Design of an Immersive Environment for Security-Related

Studies Studies

Yougu Yuan
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/masters_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Yuan, Yougu, "On the Design of an Immersive Environment for Security-Related Studies" (2005). Master’s
Theses. 7.
https://digitalcommons.dartmouth.edu/masters_theses/7

This Thesis (Master's) is brought to you for free and open access by the Theses and Dissertations at Dartmouth
Digital Commons. It has been accepted for inclusion in Master’s Theses by an authorized administrator of
Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337600750?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/masters_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/masters_theses?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/masters_theses/7?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

ON THE DESIGN OF AN IMMERSIVE ENVIRONMENT

FOR SECURITY-RELATED STUDIES

Yougu Yuan

Technical Report 2005-552

Department of Computer Science

Dartmouth College

Hanover, NH, 03755

ON THE DESIGN OF AN IMMERSIVE ENVIRONMENT

FOR SECURITY-RELATED STUDIES

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Master of Science

in

Computer Science

by

Yougu Yuan

DARTMOUTH COLLEGE

Hanover, New Hampshire

August, 2005

Examining Committee:

(chair) David Kotz

Sean W. Smith

David M. Nicol
University of Illinois at Champaign-Urbana

Charles K. Barlowe, Ph.D.
Dean of Graduate Studies

Abstract

The Internet has become an essential part of normal operations of both public and private sectors.

Many security issues are not addressed in the original Internet design, and security now has become

a large concern for networking research and study. There is an imperative need to have an simula-

tion environment that can be used to help study security-related research problems. In the thesis we

present our effort to build such an environment: Real-time Immersive Network Simulation Environ-

ment (RINSE). RINSE features flexible configuration of models using various networking protocols

and real-time user interaction. We also present the Estimate Next Infection (ENI) model we devel-

oped for Internet scanning worms using RINSE, and the effort of combining multiple resolutions in

worm modeling.

ii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions and Thesis Outline . 3

2 iSSFNet 4

2.1 Simulation of Large-Scale Networks . 4

2.2 Real-time Immersive Network Simulation Environment 8

2.2.1 Simulation Core Support . 8

2.2.2 RINSE Infrastructure . 10

2.3 iSSFNet Design . 11

2.3.1 Support for Parallel Execution . 13

2.3.2 Domain Modeling Language . 16

2.3.3 Support for Immersive Simulation . 18

3 Modeling and Simulation of Internet Scanning Worms 25

3.1 Large-Scale Malicious Code . 27

3.1.1 Internet Worm History . 27

iii

3.1.2 Effort in Internet Worm Detection and Defense 29

3.2 Traditional Epidemiology Models . 32

3.2.1 General Epidemic Model . 33

3.2.2 Chain Binomial Model . 35

3.2.3 Issues with Traditional Models . 36

3.3 Estimate Next Infection (ENI) Model . 38

3.3.1 ENI Model . 38

3.3.2 Different Scanning Schemes . 40

3.3.3 Validation . 41

3.4 Multi-Resolutions in Modeling and Simulating Internet Worms 44

3.4.1 Resolutions in Modeling and Simulation 44

3.4.2 Combine Multiple Resolutions . 46

3.4.3 Defluidize and Fluidize Scanning Traffic 48

3.4.4 Validation Experiments . 49

3.5 Other Pieces of the Puzzle . 52

3.5.1 Routing and Forwarding . 52

3.5.2 Optimizations in Fluid-Oriented Worm Model 53

3.5.3 Other Experiments . 57

4 Summary and Future Work 63

4.1 Summary . 63

4.2 Future Work . 65

iv

List of Figures

2.1 RINSE Overview . 10

2.2 Example Host in iSSFNet . 12

2.3 Parallel Execution in iSSFNet . 15

3.1 Congestion Effect on Worm Propogation . 37

3.2 ENI Model Validation . 43

3.3 ENI Model v.s. Chain Binomial Model . 44

3.4 Multi-Resolution in Topology and Traffic . 47

3.5 Mulit-Resolution Validation (1) . 50

3.6 Mulit-Resolution Validation (2) . 51

3.7 Space Complexity after Flow Merging . 54

3.8 Runtime of Flow-Merging . 55

3.9 Stochastic Mode v.s. Hybrid Mode . 57

3.10 Runtime of Different Simulation Mode . 58

3.11 Varying Time-Step Size . 59

3.12 Susceptibles Distribution and Worm Dynamics 60

3.13 Varying Initial Infection Location . 62

v

Chapter 1

Introduction

1.1 Motivation

Security over the current global Internet is a large concern for both normal users and the research

community. A wide variety of attacks or abuses are carried out constantly in the networks, ranging

from spam, phishing, to large scale attacks such as distributed denial-of-service and Internet worms.

The security over the Internet is in general a challenging problem partially because that the

Internet itself is a very large complex system. The Internet consists of millions of individual com-

puting devices and terabits of traffic are delivered over the Internet every single second. The scale

of the system alone is less of an obstacle when compared with its heterogeneity. The heterogeneity

of the global Internet not only lies in its various computing devices and network topologies, but

also in the communication traffic it carries. The most challenging property is that the Internet is an

evolving system. Computer devices are added to and removed from the Internet all the time, new

applications or protocols are introduced to the system and spread out quickly.

Given a complex system of that scale, the Internet cannot be studied using analytical models

alone. An analytical model uses mathematics to formulate and solve problems. It is often limited

because of unrealistic simplifications that may have been applied to create a tractable problem.

1

“A simulation is the imitation of the operation of a real-world process or system over time” [2].

In a discrete-event simulation the states of the system only changes at discrete points of time. Sim-

ulation techniques have been widely used to study the behavior of complicated systems. However,

given the scale and the complexity of the Internet, one must realize that only the techniques that

support models of very large scales can be used in this context.

The fact that we want to carry out security-related studies here further emphasizes the use of

simulation technologies. To perform security studies, new technologies and algorithms need to be

designed, the designs needs to be prototyped, the prototypes need to be tested, and all these must

be carried out without disturbing the operations of real existing system. These all call for an envi-

ronment that can be used to study security-related problems, understand their technical implications

and assess effects of newly designed algorithms. In the thesis we present out effort to build such an

environment.

We also demonstrate the use of the built environment through a case study on Internet worms.

One of the major threats to the current Internet is large-scale malicious code, or computer worms.

The key feature that distinguishes a computer worm from a virus is its ability to propagate with no

or very little human interaction. This feature and the fact that the Internet is well-connected enable

a worm to spread and infect the networked vulnerable machines in a short amount of time, and

it often rules out any possible human reaction. Internet worms usually take just hours to days to

propagate [6, 56], and the period can potentially be further reduced [53]. The time interval between

a vulnerability being publicized and a worm exploiting such vulnerability comes out also show a

trend of shrinking [48]. All above symptoms call for an immediate response from the research

community to come up with effective solutions or at least mitigations. We present our research

effort in modeling and simulating Internet worms. The models we develop can be used to study

Internet worm behavior and exercise proposed detection and defense systems.

2

1.2 Contributions and Thesis Outline

The contributions of the presented research work are mainly in two parts:

• We designed and built iSSFNet framework, the simulation infrastructure used in Real-time Im-

mersive Network Simulation Environment (RINSE). I have also implemented many packages

inside iSSFNet. iSSFNet is built on top of iSSF and supports parallel execution. It features

flexible configuration of networking protocols and topologies, real-time user interaction, and

packages that exercise networking attacks and defenses.

• We studied the modeling and simulation of Internet scanning worms. The Estimate Next

Infection (ENI) model is developed inside iSSFNet and is validated against real-world data

trace. We also combined fluid-oriented models with the packet-oriented models to achieve

scalability while maintain packet level detailed information. Some further optimizations have

been developed to improve the model performance.

The rest of the thesis is arranged as following: In chapter 2 we presented the effort to build

iSSFNet. In section 2.1 a review is given on the research on network simulations. iSSFNet is one

main component of RINSE, so in section 2.2 we have an overview of RINSE. Section 2.3 explained

the design of iSSFNet, detailed its support for parallel execution and immersive simulation.

Chapter 3 discussed the modeling and simulation of Internet scanning worms. In section 3.1

we give some background knowledge about Internet worms. Section 3.2 introduced two traditional

worm models. The Estimate Next Infection model is presented in section 3.3. In section 3.4 we

discussed the effort of combine multiple resolutions in worm modeling. Section 3.5 we present the

optimizations we used in worm simulation and other experiment results.

In Chapter 4 we give a summary of the thesis and some possible future work.

3

Chapter 2

iSSFNet

2.1 Simulation of Large-Scale Networks

The global Internet is a constantly changing system with millions of various computing devices. Its

complexity, heterogeneity, size and rapid evolution all contribute to the fact that simulation of the

Internet is an immensely challenging task [17].

Various simulators have been developed over the years to simulate large-scale networks [19,

49, 66]. One widely used network simulator in the research community is the Network Simulator

(ns-2) [42]. ns-2 is a discrete event simulator designed to help networking research. It has been

used to study TCP, routing and multi-cast over both wired and wireless networks. Many pack-

ages contributed by different researchers greatly enriched the capabilities of ns-2 and ensured its

popularity.

ns-2 is based on a sequential discrete-event simulation engine. In order to simulate large-scale

network models, the Parallel / Distributed Network Simulator (PDNS) [19] has been developed as

an extension to ns-2 engine. PDNS used federation approach to distribute time-synchronized events

among multiple instances of the original sequential engine running on a distributed platform [46].

However, to take the advantage of the parallel extension, substantial modifications are needed to the

4

syntax of the network model description, which brought inconvenience to network modelers. The

same kind of approach of providing Real Time Infrastructure (RTI) for sequential simulators, or so

called federates, has also been used in GTNetS [43]. Using RTI to integrate multiple federates is

proposed in High Level Architecture (HLA) standard made by the Defense Modeling and Simula-

tion Office (DMSO) [37]. The original purpose of HLA is to promote interoperability of different

simulators. When HLA is followed, only minimum changes are required to the original sequential

simulator to make use of the standard communication and synchronization services to the partici-

pating federates. One must note, however, that there is an overhead to ensure interoperability among

different simulators.

Another approach to parallelization is to develop a parallel simulator from scratch. This ap-

proach usually means that the simulator is a homogeneous system and there is no interoperabil-

ity issue. The simulator can then focus on efficiency and try to achieve better performance. The

Telecommunications Description Language (TeD) developed on top of Georgia Tech Time Warp

(GTW) [14] is one such system. In TeD / GTW system, the TeD description is converted into exe-

cutable for GTW and can be executed in parallel [45]. The followup research effort continued as TeD

/ Nops at Dartmouth College [44]. The Northern Parallel Simulator (Nops) is a process-oriented

conservatively synchronized parallel simulation system. The success of Nops encouraged further

research in the Scalable Self-organizing Simulations (S3) project and resulted in the invention of

Scalable Simulation Framework (SSF).

SSF is a compact set of programming interface [51]. It is developed to provide core support for

parallel simulation of large-scale telecommunication systems. There have been several implemen-

tations of SSF in both Java and C++. Java version SSF is developed at Renesys Corporation. Using

Java SSF, a wide range of packages have been developed for network simulation and these pack-

ages are organized into the simulator SSFNet [10]. The main components of SSFNet are (1) protocol

modules such as IP, TCP, UDP, sOSPF and BGP; (2) network elements such as hosts, routers, links

and subnets. Complex network models can be assembled using these basic components.

5

The main instance of the SSF C++ implementation was Dartmouth SSF (DaSSF). DaSSFNet

was developed as the C++ counterpart of Java SSFNet [32]. With the support of DaSSF, DaSSFNet

can be used in both shared-memory multiprocessor architecture and distributed environment. DaSSFNet

has support to fluid-oriented simulation and can simulate a mixture of packet level traffic and fluid

flow level traffic. One drawback of DaSSFNet is the lack of routing protocol models such as OSPF

and BGP. As a compensation, it can pre-load IP forwarding table information dumped using Java

SSFNet on the same network configuration files.

The research effort on network simulator is not only focused on its scalability, but also on

extending its usage. Emulation is the effort that tries to address the lack of real-world interaction in

traditional network simulators. Emulation in this context can be classified into network emulation

and direct execution [16].

• Network emulation allows the simulated components to communicate with the real-world

protocol implementations. It can be further classified depending on whether both two end-

points of the communication are real-world protocol implementations [4, 16, 49]. If two end-

points are both real hosts, the simulated network only influence the communication indirectly

through simulated topology, network delay, and activities such as congestion and dropping

packets. If one of the endpoint is not real host, i.e., one simulated device communicates with

a real-world protocol implementation, the implementation is supposedly more sophisticated

because it involves most of the details one would encounter in a real implementation. Al-

though the technique theoretically can be applied to any protocol, only simple ones such as

ping and traceroute are supported in most such emulators.

• Direct execution provides an environment that the real-world code can be executed inside

with minimum or none modification [34]. Different from network emulation, this approach

does not always have real-time constraint.

The interaction between the network simulator and the real-world should not be limited to pro-

6

tocol implementations. In many situations, the direct interaction between the network simulator and

the user is more useful. For example, while simulation is running, the user can shutdown / reboot

simulated hosts, install / upgrade software on them, change traffic filtering rules, or even launch

simulated attacks and deploy defenses in the simulated network. All these interactions may not

require protocol models inside the simulation to be as detailed as in the real world, but they need to

account for most common operations that may involve themselves in the real world. I will discuss

the support for this kind of interactions more in section 2.3.3. The traditional network simulator

alone clearly cannot provide such functionality. The design of an immersive conservative network

simulation system needs to have the following pieces.

Support real time simulation One prerequisite of user interaction is that the simulator needs to

be paced with real time. A simulation that runs too quickly does not leave the user enough

time to react. On the contrary, a simulation that runs in real time or even reasonably slower

than real time would facilitate user interactions and have a better effect of mimicking a real

system. An desirable feature would be a simulation pacer that can be used to speed up or slow

down the simulator to meet different simulation needs.

GUI front-end Although it is not necessary for an ordinary network simulation, a Graphic User

Interface (GUI) front end is essential for immersive simulation. The use of the GUI is in two

folds. First, the users need to monitor the simulation progress and inspect simulation output in

real time. In the network simulation context, such output may include topology information,

traffic over the links, status of the simulated hosts / routers, etc.. Second, the users need a

tool to inject user input into the simulator as the simulation is running. In the context here

such input may include actions such as bootup / shutdown devices, launch / kill simulated

applications running on simulated hosts, initiate simulated attacks, etc..

Support external simulation events When the user input or reaction is delivered to the simulator,

it needs to be processed and converted into a simulation event and injected into the event

queue with an appropriate time-stamp.

7

Support run-time data collecting and export The output of the simulation and the results of the

user input need to be organized and sent back to appropriate users. It is also possible that

different users are interested in different data of the same simulation, so a design of an efficient

distribution of the simulation output data is highly recommended.

In the rest of the chapter, I first give an overview of the research effort of our group to develop

such an immersive network simulation environment, then I focus on the design and implementation

of the network simulator iSSFNet.

2.2 Real-time Immersive Network Simulation Environment

Real-time Immersive Network Simulation Environment (RINSE), has been developed to support

security related large-scale network simulations and exercises [26]. RINSE is part of the project

MOSES (Modeling Of Security and Systems) [39], and it has been developed to meet the increas-

ing need of automated tools to help study, analyze, and assess security related network activities.

Traditionally emulation and simulation are two main methods used for such purposes. Emulation

provides a more realistic environment but does suffer in scalability. Simulation does not have as

many details but has an advantage in terms of scalability, and it by nature excludes any risk of

accidental letting loose of the exercised attacks.

2.2.1 Simulation Core Support

One design goal of RINSE is to enable multiple users to interact with the ongoing simulation si-

multaneously. To achieve this goal, more simulation core support is needed. Major extensions have

been added to the original Dartmouth SSF (DaSSF) and the new simulation kernel is named iSSF.

iSSF is a C++ implementation of the Scalable Simulation Framework (SSF) API. Five major classes

are defined in SSF and briefly introduced below. More detailed description of the five base classes

and examples of using them can be found in [33].

8

Entity is a simulation state variable container. For example, in a network simulator, one might

represent a host or a router using an entity. An entity can own instances of process, inChannel

and outChannel.

Process is used to specify state evolution of an entity. An entity can have multiple processes at-

tached to it. A process can pause itself and either wait for a specific amount of simulation

time or wait on a set of inChannels for incoming event

inChannel In SSF a channel connects entities. A message can be delivered from the source entity

to the destination set of entities through a channel. An inChannel is the destination end of a

channel on an entity. Multiple outChannels can be mapped into the same inChannel.

outChannel is the source end of a channel. An outChannel can be mapped into multiple inChan-

nels.

Event is a message that is exchanged between entities.

In iSSF two major extensions have been added in the simulation engine to support immersive sim-

ulation:

• Simulation pacing support. A ratio between the simulation time and real world clock time can

be specified. This can be used to force real time execution as well as setting an appropriate

pace of the simulation running for different needs. When the simulation cannot keep up with

the specified pace, statistics of events that missed the appointment time will be collected as

an indication.

• Import / Export external event support. A special inChannel is added to iSSF. External events

such as real packets received through real sockets can be passed to the special inChannel and

converted into simulation events using user customized callback function. Similarly, a special

outChannel is added and simulation events that go through this outChannel will be delivered

to a user customized callback function and leave the simulated world.

9

PrimergyPrimergy

iSSFNet Simulator

Database

Data Manager

Client

Client Manager

Client

Client

User Input Simulation Output

RINSE Infrastructure Overview

��� �� ���

�� ��

High

Disk

Speed

Figure 2.1: The Infrastructure Overview of Real-time Immersive Network Simulation Environment

2.2.2 RINSE Infrastructure

RINSE currently has five main components, as shown in Figure 2.1.

iSSFNet is the network simulator. It supports immersive simulation and parallel execution. More

details of iSSFNet will be described in the rest of this chapter.

Data Server A server directly connect to the network simulator. It collects the outputs from the

simulation and distribute them into different tables of the database. It also extracts user inputs

from the database and delivers them to the simulator.

Database A database is used to store all outputs and user commands. In the future we hope the

that the database can store enough trace information to support simulation checkpoint, and

facilitate more efficient experiment reproducing.

Client Management Server A server manages multiple clients. Each client needs to present a

user name and password. Different views are associated with different user names. In the

10

real world, a network admin often would just have the privilege to monitor and collect data

within the subnet that he administrates; an ISP would usually only know the detailed topology

of its own network and have control of the computing devices inside. This can be reflected

through different views of the simulated network. In the same time, different users may want

to collect different kinds of data from the simulation. An ISP may care more about the total

throughput of its own part of the network, while a system admin may pay more attention to

intrusion detection and system health. The users specify the data they are interested in through

subscription to this server, and the server needs to collect information from the clients, extract

data from the database and deliver the data to the corresponding clients.

Client This is a GUI front-end. It provides an interface for different users to view different parts of

the simulated network, monitor different data that they are interested in, and allow the users

to input commands to alter the simulated network activities. In the future, web-based GUI

may be developed for RINSE.

2.3 iSSFNet Design

iSSFNet is built on top of iSSF, which supports both the shared-memory multiprocessors and dis-

tributed environments. iSSFNet modules are also parallelizable, and iSSFNet is designed to simulate

security related large-scale network activities.

Many network elements in the real world can find their counterparts in iSSFNet modules. In

the real world the network protocols are used to define the transactions between networked devices,

and the organization of those protocols follow a fairly clean layered pattern. In iSSFNet the Pro-

tocolSession class is used to model a protocol, and multiple sessions are organized into a graph,

ProtocolGraph, to simulate the protocol stack in a host / router in the real life. The interactions

among different sessions are defined using limited number of well-constructed APIs. A Protocol-

Graph and one or more network interface cards (NICs) are the main components of a host or a

11

TCP UDP

ICMP

PHY

MAC

PHY

MAC

IP

Filter
CPU

Memory

Resource Management

Socket Master

FTP Server

Link Link

Protocol Graph

NIC

Host

Figure 2.2: Internal structure of an example host

router. A NIC is also a ProtocolSession stack. For now we only have simplified Media Access Con-

trol (MAC) layer and physical (PHY) layer, but the design would easily enable future elaboration

of the models of these two layers, or even enable wireless extension. A host / router can also have

a model for CPU and memory. APIs are also defined to allow any protocols to influence the CPU

and the memory utilization as well as query the utilization and change behavior accordingly. For

example, a router may decide to drop packets because the CPU is too busy to keep up forwarding the

incoming packets. An example internal structure of a host is show in Figure 2.2. It has two network

interface cards as well as a protocol graph that includes IP, TCP, UDP, Socket, and an application

layer FTP server.

The NICs of hosts / routers can be connected using links, thus subnets are formed. Connect-

ing subnets can form higher-tier subnets. Repeating this process can create simulated network of

very large scale. All the configurations of the simulated network are written in Domain Modeling

Language (DML), and I will describe DML in more detail in section 2.3.2.

Many networking protocols have been implemented in iSSFNet. Studying Internet worm behav-

12

ior using iSSFNet can benefit from the abundance of network protocols and other supports. Table 2.3

listed most of the important high level modules in iSSFNet.

2.3.1 Support for Parallel Execution

iSSF supports both shared-memory multiprocessors and distributed platforms. The details of the

underneath architecture is hidden from iSSFNet. The design of iSSFNet also tries to hide any details

of parallelization from developers of individual protocols.

Hosts and routers in the simulated network are divided into provinces. A province in iSSFNet

is a timeline, or a logical process (LP) in parallel discrete-event simulation terms. All the simulated

devices in the same province have consistent simulated clock throughout the simulation run. At any

wall-clock time, the simulated time in two provinces may be different. Delivering packets among

simulated hosts / routers within the same province are implemented using timers and function calls.

While packets go across to a different province are delivered as simulation events through SSF

channels. There may be multiple simulated links between two provinces, but they share the same

SSF channel using the minimum link delay as the channel delay. The extra delays are added after the

packets are delivered to the other province. All these designs are to reduce the number of simulation

events and minimize the synchronization overhead.

One of multiple provinces are grouped into a country. Each country is a process and all

provinces in the same country share the same memory space. In another word, different provinces

in the same country can share time-invariant state variables in the simulation. In a shared-memory

multiprocessor architecture, the countries are then allocated to different CPUs; while in distributed

environments, they are allocated to different platforms. Figure 2.3 illustrated how a simulated net-

work may be divided when the simulation is run in a distributed environment.

13

Table 2.1: iSSFNet Modules

Module Explanation

IPv4 Internet Protocol implementation

ICMP Internet Control Message Protocol

TCP Packet oriented TCP implementation

Fluid TCP Fluid oriented TCP implementation

UDP Packet oriented UDP implementation

Fluid UDP Fluid oriented UDP implementation

sOSPF Static OSPF implementation

PAO On-demand policy based routing support

Apps Various application level traffic models

Background Traffic Model for background traffic (using fixed point computing)

DDoS Model for Distributed Denial of Service attacks

Worm Model for Internet worms

Simple MAC & PHY Implementations of simplified MAC and physical layer

Filter Simplified filter implementation, can be used to simulate firewall

Fluid Provides support for fluid oriented simulation (including fixed point)

Report Provides support to systematic status report and data output (to the database)

Interact Provides support to real time user interaction

Interface Model for Network interface card

Host & Router Model for hosts and routers

Link Model for Network link

Net Model for a subnet

14

Country 0

Country 1

Province D

Province B

Province A

Province C

Simulated Network Topology

Simulation Platform

To Data Manager

Proxy

Proxy

Ethernet
Switch

Ethernet
Switch

Ethernet
Switch

Ethernet
Switch

Figure 2.3: Support parallel execution in iSSFNet

15

2.3.2 Domain Modeling Language

The Domain Modeling Language (DML) is a “public-domain standards for attribute databases for

model configuration and verification” [51]. DML has also been used in Java SSFNet and DaSSFNet

to specify network topology. It is also used in iSSFNet to maintain backward-compatibility. When

iSSFNet is started, one or more DML files are specified in the command line, and they are used as

input to build the network model and initialize it.

The essence of using DML in iSSFNet is to have a simple database that stores the network

configuration. The syntax of DML is very simple. A configuration written in DML is enclosed by

brackets and composed of (key, value) pairs. The value itself can recursively be a configuration. A

simple segment of DML is given in List 2.1. This DML segment describes a network that has two

hosts inside, and the two hosts are connected to each other through a point-to-point link.

Listing 2.1: Simple DML example

Net [
h o s t [

i d r a n g e [from 0 t o 1] # two h o s t s

s u b s t i t u t i o n
f i n d . d i c t i o n a r y . w o r k s t a t i o n . g raph

i n t e r f a c e [i d 0]
]
l i n k [a t t a c h 0 (0) a t t a c h 1 (0) d e l a y 0 . 1]

]

The ‘#’ in DML is the symbol for comments. The two hosts have an id “0” and “1” respectively,

and each has a network interface card with id “0”. The link specifies its endpoints using “attach”

keyword. “0(0)” inside means “host 0, interface 0”; similarly “1(0)” means “host 1, interface 0”.

This addressing scheme is called Network-Host-Interface (NHI) addressing. If one assign an id to

the specified “Net” here in this DML, then it can be used as a subnet in a larger topology. If an id

“1” has been assigned to this subnet, then the complete NHI address of host 1, interface 0 would be

16

“1:1(0)”. Adding another level of subnet would just add and id and a ’:’ before the original NHI.

DML has two often used special keywords: _find and _extends. _find is used to do

inline substitution. The line _find .dictionary.wormstation.graph in the example

DML segment means that the graph of the host is detailed inside “.dictionary.wormstation.graph”.

This is another addressing convention in DML, and it refers to a segment of DML that can be found

in in List 2.2. The protocol graph inside a host, in this example, has IP, ICMP, TCP and Socket layer

installed.

Listing 2.2: Simple DML example (cont.)

d i c t i o n a r y [
w o r k s t a t i o n [

g raph [
P r o t o c o l S e s s i o n [name s o c k e t

use SSF . OS . Socke t . s o c k e t M a s t e r]
P r o t o c o l S e s s i o n [name t c p

use SSF . OS . TCP . t c p S e s s i o n M a s t e r]
P r o t o c o l S e s s i o n [name icmp

use SSF . OS . ICMP . ICMPSession]
P r o t o c o l S e s s i o n [name i p

use SSF . OS . IP]
]

]
]

_find can greatly reduce the size of the DML files because it enables re-use of the DML block,

but it does not allow addition of attributes to the substituted block. _extends can be used in such

situations to provide inline inheritance. The line _find .dictionary.workstation.graph

can be replaced by the DML in List 2.3. Then additional attributes can be added to the graph if

needed.

Listing 2.3: Simple DML example (cont. 2)

g raph [
e x t e n d s . d i c t i o n a r y . w o r k s t a t i o n . g raph

]

17

With inline substitution and inheritance, DML can be fairly efficient when used to build network

models of very large scale. All the keywords except for the special ones are defined by the user,

which makes DML very flexible and expressive.

2.3.3 Support for Immersive Simulation

iSSFNet has support for immersive simulation. The term immersive simulation is often used in the

context of Virtual Reality (VR) which is out of the scope of this thesis, but the fundamental idea of

immersive simulation here in iSSFNet is analogous to its meaning in VR context — to develop a

simulation system that the user can interact with as if the user were interacting with a network in

the real world.

When only the supports (event scheduling, real-time synchronization, etc.) from the simulation

engine are considered, the techniques needed are almost the same in immersive simulation as in

emulation. In fact, we did use the same kernel support to implemented the emulation support in

iSSFNet [26]. However, immersive simulation is different from the traditional emulation in the high

level.

• Traditional emulation either interacts with real-world protocol implementation or provides

an environment for direct execution (section 2.1). Immersive simulation in iSSFNet empha-

sizes on human-in-the-loop interaction. Real-world code implementation is not required to

provide such interaction support. Some common operations on a host / router are not specif-

ically related to any particular single protocol. For example, real-world events such as router

shutdown and network link failure take place constantly in the real Internet. Some other op-

erations do not have real-world equivalent but are also useful to have in the simulation: one

may want to adjust the amount of data trace collected from the simulation, or turn on / off

monitoring on a specific simulated host / router. These kinds of interactions cannot be easily

exercised either through interacting with real-world protocol implementation or direct execu-

tion. There are also security-related operations that are too risky to exercise using real-world

18

code implementation or do not have a very good counterpart in the real world, e.g., ddos

attack, worm attack, buffer overflow, etc..

• The infrastructure most suitable for this kind of human-in-the-loop interactions is different

from the ones in traditional emulation. The direct execution type of emulator needs a wrapper

that can intercept system calls from the real-world protocol implementation and provide a

replacement for compiling, linking or run-time calling [34]. The emulator that can interact

with real-world protocol implementation usually has some special agents inside the simulated

network. A special agent connects to a real host through a special channel. This channel can

be treated in two ways: it may be considered as a link in the simulated network, thus the real

host are connected into the simulated network through the special link; it may also just be

considered as an internal data structure so that the special agent just represents the real host in

the simulated network. For human-in-the-loop interactions, the above infrastructures are not

suitable. Technically these interactions we desire must be allowed to take place between the

user and any of the simulated host / router, or even between users and some protocol sessions

inside a simulated host / router. This means that it needs an infrastructure that can receive the

operation commands, distribute them to the appropriate part of simulated network, and send

back possible feedback. Fortunately, the occurrence of these interactions normally would not

be as frequent as packets in a real-world traffic flow, e.g., FTP file transfer, so not too much

overhead would be introduced for the command distribution.

In this section I introduce the commands currently implemented in iSSFNet and the infrastruc-

ture that supports command processing and distribution.

Command Message

Users can interact with iSSFNet using commands. The commands in iSSFNet have some general

fields:

19

<cmd name> <exec host> {<parameters>}

The command name can uniquely identify one command. The second field is the name / NHI / IP

address of the host or router that the command needs to be executed on. Below is an alphabetically

ordered list of the commands implemented in iSSFNet.

bootup is used to turn on the specified host / router in the simulated network.

bootup <host>

create exploit is used to declare a type of exploit from a given DML configuration file. The created

exploit can be used later to compromise simulated nodes. An exploit usually specifies the

vulnerable OS, application, version number, etc., and a simulated node may be compromised

or crashed by the exploit if its OS and application are vulnerable to it. The exploit may also

have an embed command. If a vulnerable host is compromised, this embed command will

be tried on the compromised host. In general any user command can be used as this embed

command.

create_exploit <DML file>

ddos attack is issued to a ddos session inside a simulated host. It launches a Distributed Denial

of Service (DDoS) attack from the executing host against the target host. The parameters

specify the duration of the attack and the average attacking traffic rate from each participants

(zombies) of the attack. The DDoS attack model implemented in iSSFNet carries out the

attack mainly by squeezing target bandwidth or CPU / memory utilization.

ddos_attack <src> <dst> <duration> <avg_rate_kbps>

filter is issued to the FilterSession on a simulated node. It can turn on/off the filters, or list the

filters currently in the vector. It also allows users to add / remove a filter to / from a specific

20

position of the vector. Each filter can be specified by a filter str. A filter str specify a tuple of

(interface, protocol, src_ip, src_port, dst_ip, dst_port) and an

action (allow or deny) for the packets that satisfy the tuple.

filter <host> list
filter <host> on / off
filter <host> remove <index>
filter <host> add <index> <filter_str>

ftp get is issued to a tcp client session. Upon receiving it, the client should initialize a FTP file

transfer from the specified simulated server, using the given port number.

ftp_get <client> <server> <port> <file_size>

ping is issued to ICMP session. The node that executes this command sends repeat_num of

ICMP echo request messages to the destination host. The response to the command is similar

to the real ping command.

ping <src host> <dst host> <repeat_num>

report is issued to turn on / off the data trace collecting on the given simulated node.

report <host> on/off

setup prot is issued to a host / router. It dynamically instantiates a new protocol session on that

simulated node, and the detailed configuration is in the DML file(s) specified in the parame-

ters. When carried inside an exploit and sent out to a vulnerable host, this command can be

used to effectively simulate how the hosts are compromised in the real world.

setup_prot <host> <DML file>

shutdown is issued to a host / router to power it off.

21

shutdown <host>

snd exploit is issued to an exploit session. Upon receiving it, the simulated node will send a

packet that has an attached exploit. If the simulated target node is vulnerable, the exploit will

be executed on the target node.

snd_exploit <src> <exploit_id> <target> <target port>

throttle is issued to change the frequency of the periodical reports from the simulation to the data

manager server of RINSE.

throttle <new time interval>

worm start is issued to the Internet scanning worm session on a host, upon receiving this, the

worm session will start scanning using pre-configured scanning pattern.

worm_start <host>

Command Proxy and Command Processing

Each country in iSSFNet has a command proxy. When a user command arrives at the data man-

ager server of RINSE, it will be broadcast to all countries using UDP packets. A possible future

optimization is to send the command only to the country that needs to receive it, but this requires

that the data manager server knows how the simulated network model is divided and mapped to

different countries.

When a command arrives at a country, it is received by the command proxy. The proxy has

a special inChannel and a special outChannel (section 2.2.1), each of which is associated with a

real-world socket. The proxy itself is running as a separate SSF timeline and has channels con-

necting with all other provinces in the same country. The processing of the incoming command is

conceptually straightforward and can be illustrated using the pseudo code in List 2.4.

22

Listing 2.4: Command Proxy Pseudo Processing Code

w h i l e (t r u e) {
w a i t f o r incoming command

c o n v e r t command i n t o a s i m u l a t i o n e v e n t : cmd
i f (c o n v e r s i o n f a i l e d) {

a t t a c h e r r o r message ;
send i t t o t h e s p e c i a l ou tChann e l a s f e e d b a c k ;
r e t u r n ;

}

i f (cmd i s f o r t h e whole s i m u l a t o r)
b r o a d c a s t cmd t o a l l p r o v i n c e s ;

e l s e i f (e x e c h o s t o f cmd i s i n t h i s c o u n t r y) {
f i n d a p p r o p r i a t e p r o v i n c e p ;
send cmd t o p ;

}
}

Once the command is delivered to a province, the province identify the host / router that the

command should be issued to, and distribute it through function calls. Further distribution may

be needed within a simulated host or router because the command may be issued to the host /

router, or an interface of this simulated node, or a particular protocol session of the node. All the

distributions are implemented using well defined APIs. The design goal of the infrastructure is

to (1) facilitate easy implementation of any new user commands; (2) have a centralized command

distribution system.

Analytical Mode and Scripted Action

iSSFNet has support for immersive simulation, but it also keeps the flexibility of running in analyt-

ical mode, i.e. without real-time constraint. A boolean switch support_interaction in the

DML configuration file controls which mode the simulation would use.

Listing 2.5: Example Interaction Script

s c r i p t e d a c t i o n s [
a c t i o n [t ime 1 . 5 cmd ” p ing c l i e n t s e r v e r 3 ”]
a c t i o n [t ime 2 . 0 cmd ” f t p g e t c l i e n t s e r v e r 2 1 5 0 0 0 0 ”]

]

23

To maintain reproducibility, the user would has the option of having the interactions scripted

using DML. List 2.5 has an example of a script. It schedules a host named client to send three echo

requests to server at time 1.5 second, and to initialize a file transfer request from the client to the

server at time 2.

24

Chapter 3

Modeling and Simulation of Internet

Scanning Worms

A computer worm is “a computer program that self-propagates across a network exploiting security

or policy flaws in widely used services”[61]. With a more practical and general defnition, the

computer worm can be classified as e-mail worms, windows file sharing worms, and traditional

scanning worms[25]. In this thesis I focus on the propagation dynamics of the traditional scanning

worms. In the rest of the thesis, the term “computer worm” refers to traditional scanning worms

unless specified otherwise.

Hypothetically if there is a computer that has enough computing power, the most straightfor-

ward way of simulating Internet worm propagation is to build a simulated network that has as many

simulated devices as the real Internet does, simulating every single packet, i.e. a packet-level de-

tailed simulation. However, this approach inevitably has to overcome the obstacle of scalability.

Simulating a network of that scale itself is a research topic [9, 11, 12], especially under the con-

straint of moderate amount of computing resources. Two approaches can be taken to alleviate the

scalability problem.

25

• Reduce the scale of the simulated network. The scale is in terms of the topology, the number

of vulnerable hosts, and the total IP space. For a packet-level simulation, reducing any above

factors will effectively reduce the number of events in the simulation. This approach is also

called “scaledown”. Weaver, et al. studied the impact of applying scaledown techniques [59].

They tried to approximate global Internet worm dynamics by shrinking the “effective size of

the network”, in their study, they encountered two artifacts even after applying compensations

to the scaledown techniques: there exist noticable biases that speed up the worm propagation,

and there is also an increase in the stochastic effects. Both artifacts are significant in terms of

the worm propagation dynamics.

• Use a more abstracted model in both the network topology and traffic representation. In the

abstracted network topology, some nodes each represents a subnet instead of a single host /

router. For the ease of description, I use the term wormnet for such nodes. A wormnet is a

subnet that has hosts vulnerable to the simulated attack, and is represented by a router in the

abstracted topology.

In this chapter I present the research focused on the modeling and simulation of the Internet

scanning worms. Section 3.1 gives background knowledge on Internet worms. In section 3.2 we

introduce two traditional worm propagation models. Section 3.3 presents the Estimate Next Infec-

tion (ENI) model we used in iSSFNet. Section 3.4 presents the work that combines fluid-oriented

worm modeling with packet-oriented worm modeling. Section 3.5 discusses related problems that

help complete the worm simulation and presents some other experiment results.

26

3.1 Large-Scale Malicious Code

3.1.1 Internet Worm History

The history of computer worms goes back to more than a decade. The first well-known large scale

Internet worm incident was the Morris worm in 1988 [15]. The Morris worm has many properties

that still exist in many of the newest worms. It exploited multiple vulnerabilities, propagated among

multiple platforms, used local topology information in the propagation, and tried to evade detection

and hinder code analysis.

After Morris worm incident, it was almost a surprise that no major worm incidents took place

for another 10 years. The next Internet worm incident was in 1998 — the ADM worm appeared

and introduced random scanning which has been extensively used in the later worms. In 2001, there

was an outbreak of the Internet worms. There were ten recorded Internet worm incidents took place

that year, including Code Red v2 [56] and Nimda [6].

Code Red v2 was the first significant Internet worm that propagates on Windows platforms.

It utilized random scanning, attacked a vulnerability inside the Windows IIS systems and infected

around 360,000 hosts in the total. Nimda worm is the most versatile worm that is known of. It is the

only worm that carries four attacking vectors: e-mail, windows file sharing, web page, and scanning.

Code Red and Nimda made headlines, and had significant aftermath besides reported millions of

dollars damage. It has been reported after several months that there are still scans generated by

infected hosts [65].

Slammer/Sapphire is the next worm incident that caught the attention of the researchers. On

January 25th, 2003, with an exploit on Microsoft SQL server vulnerability, Slammer infected the

majority of the vulnerable hosts within 10 minutes. It is by far the fastest computer worm [38], and

its propagation is only limited by the bandwidth available to the infected machines. Slammer made

it very clear that a defense system against the future worms cannot depend on human intervention.

Large Internet worm incidents after Slammer include Blaster, Witty, Sasser, etc..

27

Dissect Internet Worms

Having some understanding of the Internet worms behavior is a prerequisite for modeling and sim-

ulating large-scale malicious code. An Internet worm usually needs three steps to complete its

propagation cycle. (1) Look for / select a target that is potentially vulnerable. (2) Try to gain com-

plete / partial control over the selected target if possible, implant the worm program. (3) Activate

the worm program. The first step distinguishes the Internet worms from the traditional viruses. It is

also the step that needs to be carefully reproduced in simulation for the purpose of exercising worm

detection and defense techniques.

Routing data shows that the IPv4 space is not very densely populated as of now. It is estimated

that around 30% of the IP space has been advertised at the BGP1 level. The schemes a worm can

use are scanning, external target list, internal target list and contagious [60]. The majority of the

existing worms belong to scanning worms. The other schemes are either only hypothetical or only

have very few instances [54]. In this thesis I will focus on the modeling and simulation of scanning

worms.

Scanning is by far the most common means used by the Internet worms. By carefully coding the

random number generator and selecting random seeds, a worm randomly chooses an address in the

232 IP space as a potential target. It is relatively simple and can achieve a good propagation speed.

Several “optimizations” can be applied to scanning. This first obvious optimization is to increase

scanning speed, and the extreme of that will result in bandwidth-limited worms such as Slammer.

In preferential scanning (Code Red II, Nimda), the worms have a preference to scanning local

networks, which renders faster propagation within that part of the network. Permutation scanning

has been discussed by Staniford in [53] to exploit more coordinations of the worms. Wu [64]

and Zou [69] discussed the hypothetical worms that utilize publicly available BGP routing table

information to shrink scanning space. As shown by the past worm incidents, scanning worms have

a slow start phase. To shorten this phase, one possible optimization is to pre-generate a target list

1Border Gateway Protocol (BGP) is the inter-AS routing protocol used throughout the Internet.

28

(hit list) or start the worm from multiple sources.

Although different scanning worms can utilize various exploits, target different platforms, and

vary their scanning strategies, an infected host will have the following similar behavior:

• it generates many new connection attempts;

• many of its connection attempts will fail, given the percentage of advertised IP space;

• it replicates of the exploit code and sends it to infect new hosts.

3.1.2 Effort in Internet Worm Detection and Defense

In this section some possible approaches that people use to develop Internet worm detection and

defense systems are discussed. These approaches have some implications on how the Internet worm

should be modeled and simulated.

As stated in section 3.1.1, all scanning worms have similarities in their behavior. Thus many

currently proposed Internet worm detection techniques try to take advantage of this by detecting

such behaviors. A success in this kind of approach can effectively detect a class of scanning worms.

Usually the techniques proposed approach the problem with one or multiple of the following means:

Egress Connection Detection This kind of approach mainly aims to detect and help defense against

scanning worms within an enterprise or and institute. Williamson [63] proposed to limit the

number of new connection requests that can be initiated from each end host in a given time

slice. In their implementation [57] any outstanding requests will be queued and delayed.

When the queue length exceeds the upper limit, no new connection requests can be sent from

that host. Staniford [52] used the same heuristic but instantiated the defense in the network,

which prevented more sophisticated worms from disabling any “anti-worm” software on the

local host.

Jung et al. [20] proposed a port scan detection algorithm based on Threshold Random Walk

29

(TRW), which detects scans based on the success ratio of new connection requests. Weaver

[62] used it in the effort to contain scanning worms in an enterprise network, and could even

detect worms with very slow scanning rate (1/minute).

There are some variants of this type of detections. In Mirage Networks [36] and Forescout

[18] 2, they closely monitor unused IP space to detect scanning worms and contain internal

infectives.

Ingress Scan Detection The general idea of this approach is to monitor one or multiple chunks of

IP space, and infer worm attacks from the observed data in the monitored space. Many pro-

posed detection schemes fall into this category. Zou et al. [67] used Kalman filter (Kalman,

1960) to detect the exponential increase in the number of scans to detect scanning worms.

Liljenstam et al. [28] examined the correlation of ICMP host unreachable packets to detect

scanning worms. Telescope project [55] monitors a segment of unused IP space and can col-

lect worm-scanning data. Wu et al. [64] also proposed to monitor unused space to detect

scanning worms.

The major drawback of this kind of approach is that an attacker can either evade the detection

by ignoring the monitored space or raise false alarms by spoofing scanning packets just to the

monitored space.

Other Traffic Pattern Detection For a given worm, the packets that contain the exploit code will

be sent to all possible targets. Singh [50] proposed to compute Sampled Rabin Fingerprints

over portions of a packet, use the fingerprints and the destination port to identify suspi-

cious traffic flows and examine the number of (source, destination) pairs to identify scanning

worms. This algorithm may have potential usage in detecting other kinds of worms as well.

Chen and Heidemann [7] proposed a different scheme to detect very fast scanning worms

(scan rate > 25/sec), by checking the correlation of ingress and egress destination ports, then

using outgoing destination address counts as auxiliary information.

2Mirage Networks and WormScout are commercial products that protect enterprise networks against scanning worms.

30

Table 3.1: Internet Worm Detection Approaches

Pkt Level Info Approaches

Yes

Port Threshold Random Walk [20, 62]

Monitor correlated ICMP backscattering [3, 28]

Detect duplicated contents [50]

No

Count initiated network connection attempts [63, 57, 52]

Monitoring unused IP space [36, 18, 55, 64]

Detect exponential increase of scans [67]

Detect ingress / egress traffic port correlation [7]

Some of the above detection approaches require detailed packet level information, while for

some other ones the communication pattern information will suffice. Table 3.1.2 classified the

detection approaches based on whether packet level detail information is necessary to experiment

such approaches.

The research work in programming languages, operating systems, and compilers on vulnerabil-

ity reduction, software fault isolation, and general exploit prevention [60] is of importance but not

in the scope of this thesis. The currently proposed defense strategies against Internet worms are dif-

ferent in their aggressiveness. Benign approaches often involve rate-limiting suspicious traffic or its

connecting attempts[57, 63, 68]. The more traditional approaches include filtering or IP blocking.

The most aggressive approaches might be utilizing active “counter-worm” [27].

The testing of all the mentioned defense strategies does not necessarily need detailed packet

level information.

31

3.2 Traditional Epidemiology Models

The computer worms are analogous in many ways to the contagious disease. They both self-

reproduce and actively propagate among vulnerable populations. The mathematical study of the

spread of the contagious diseases can be traced back to more than three centuraries ago, and some

of the epidemic models can be used to effectively study the Internet worm propagation. The conta-

gious disease spread when some kind of contact takes place between the infected individual and the

vulnerable individual. This contact cannot be easily quantified and recorded when the traditional

models are used to study the spread of disease. In the instance of computer worm propagation,

this kind of contact can be easily isolated, quantified and recorded, and this kind of contact happen

through worm scanning packets. This makes it possible to re-write some formulas of the traditional

models to facilitate computation. In this section two traditional models are explained:

• The General Epidemic model is also called Susceptible-Infection-Removal (SIR) model. It

has been widely used to study the spread of biological viruses in homogeneous systems.

• Chain Binomial model is another commonly used traditional model, and I have implemented

this model in iSSFNet as well.

The pros and cons of these two models will be briefly discussed, then in the next section I will

introduce the model developed in iSSFNet, the Estimate Next Infection (ENI) model.

In epidemiology, it is common to just study the spread of the virus propagation over the whole

system in a high level. However, this kind of approach may not suffice the requirements of some

studies on Internet worms because

• it simply depends on the analytical model and ignores important factors such as network

topology, other network traffic and possible operations on the computing devices inside the

network.

• having a centralized module is potentially an obstacle to parallel execution.

32

Table 3.2: Notations in epidemiology.

Notation Definition

S(t) Number of susceptibles at time t.

I(t) Number of infectives at time t.

R(t) Number of immunes at time t.

Cj CIDR space size of subnet j.

γ Rate at which the infectives turn into immunes.

ρ Relative removal rate.

Therefore, the models discussed in the thesis are based on interacting groups [13]. The intuition

is straightforward: the individuals in the system is divided into groups, and each wormnet has a

group attached to it; the worm propagation within each group is computed individually; groups can

influence each other through the means of contact (worm scans in this context).

Before explaining the models, I first introduce some of the epidemiology notations [13] in Ta-

ble 3.2. These notations will be used in the rest of the thesis, and some detailed explanations will

be added later in place where they are used.

3.2.1 General Epidemic Model

The General Epidemic model is also called Susceptible-Infected-Removal (SIR) model. It has been

widely used in the study of biological virus or contagious disease. The principles of this model was

first noticed by Hamer in 1906. Kephart and White used the traditional general epidemic model to

study the computer virus propagation [21, 22] They found that the SIR model is not accurate because

the traditional virus propagation does not happen in a homogeneous system. The Law of Mass Action

is the center of the traditional generic epidemic models. It states that “for a homogeneous system,

33

the rate of a chemical reaction is proportional to the active masses of the reacting substances”. A

homogeneous system means that every individual in the system has an equal opportunity to contact

any other individuals in the system within a given (short) interval of time [13], which turns out to

fit the propagation pattern of uniform scanning worms. In [29, 28, 53, 58, 67] the authors all used

either the traditional generic SIR epidemic model or some extension of it to model the propagation

of scanning worms. The simulation results of such models fit the collected data from real-world

worm incidents pretty well

An individual in the generic epidemic system is in one of the three states: susceptible, infective

or removal. A susceptible individual is vulnerable to the attack but not compromised yet; a compro-

mised individual is in the state of infective, and an individual that is immune to the particular attack

is called a removal.

In SIR model, the time is divided into discrete time steps. Assume that at time t, the number of

susceptibles is S(t), the number of infectives is I(t), and the number of removals is R(t), we then

have:

n = S(t) + I(t) + R(t) (3.1)

S(t + 1) − S(t) = −βI(t)S(t) (3.2)

I(t + 1) − I(t) = βI(t)S(t) − γI(t) (3.3)

R(t + 1) − R(t) = γI(t) (3.4)

where n is the total number of individuals in the system, β is the pairwise infection parameter,

and γ is the rate of patching. If one assumes that in a given discrete time slice t, no susceptible

individual will be hit be worm scanning packets twice, the β can be approximated using β =

34

(scan rate)/C , where C is the CIDR3 space size 4, i.e. here C = 232.

Given (3.2) (3.4), we can get

(S(t + 1) − S(t))

(R(t + 1) − R(t))
= −(β/γ)S(t) = −S(t)/ρ (3.5)

where ρ = γ/β is defined as the relative removal rate. According to the Kermack-McKendrick

Threshold Theorem, A major outbreak occurs if and only if S(0) > ρ.

When interacting groups are considered, assume that we have groups 0, 1, ...G, for group j, at

time t, we can modify (3.2), (3.3), and get

Sj(t + 1) − Sj(t) =

G∑

i=0

−βijIi(t)Sj(t) (3.6)

Ij(t + 1) − Ij(t) =
G∑

i=0

βijIi(t)Sj(t) − γjIj(t) (3.7)

where βij is the pairwise infection parameter between group i and group j. Note that the order of i

and j matters here. βij can again be approximated using βij = (sij/Cj), where sij is the scan rate

from group i to group j, and Cj is the CIDR block size of group j.

3.2.2 Chain Binomial Model

The Chain Binomial model was firstly introduced by Reed and Frost in 1920’s. Chen et al. used a

model in [8] to simulate worm propagation, and that model is essentially a Chain Binomial. The

original Chain Binomial model states: at time t, if the probability of a susceptible avoiding the

contact from an infective is α′, then the probability it avoids any contact from I(t) infectives is

αI(t). The number of susceptibles at (t + 1) follows a binomial distribution based on the above

3Classless Inter-Domain Routing (CIDR) is a new addressing allocation scheme for the Internet that allow more
efficient allocation than the old class A, B and C address scheme. A CIDR block can be represented using
xxx.xxx.xxx.xxx/xx form, e.g., 198.162.0.0/24 represents a CIDR block of with 24 bit prefix.

4Note that in SIR model the scan rate is scans/(time step).

35

probability and the number of current susceptibles, i.e., S(t + 1) = Binomial(S(t), αI(t)).

Given the Internet worm context, this can be re-written and elaborated: For group j at time t,

p = (1 − 1/Cj)
r
′

j(t) (3.8)

S(t + 1) = Binomial(S(t), p) (3.9)

I(t + 1) = I(t) + S(t) − S(t + 1) − γI(t) (3.10)

R(t + 1) = R(t) + γI(t) (3.11)

where r
′

j(t) is the number of scans received by the group at time t.

3.2.3 Issues with Traditional Models

The general epidemic model is simple and straightforward. It is a deterministic model that can

easily depict high level propagation progress of uniform scanning worms. However, there are some

problems with this model. The worm propagation is mainly controlled by the pairwise infection

parameter β. When using interacting groups, we need to set an array of βij . If the simulated

worm does uniform random scanning, the βij may just use the same value for all group pair (i, j).

Different values have to be used for βij , however, when the worm does more than uniform scanning,

e.g. local preferential scanning. In the original general epidemic model, the βij are constants. This

makes it difficult to incorporate important factors such as network topology, traffic congestion,

and possible defenses. The importance of including such factors can be demonstrated with the

experiment below.

An artificial network topology is generated using Boston University Representative Internet

Topology gEnerator (Brite) [35], and I attached 256 wormnets to it, each wormnet owns a /10 IP

prefix to form a total of /2 advertised IP space. A worm propagation scenario is exercised with

75,000 susceptibles, one initial infection, and a uniform scanning rate of 4,000 scans/sec. Two

experiment runs are carried out deterministically. Traffic congestion is considered in one run but

36

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 100 200 300 400 500 600 700 800 900

#i
nf

ec
tio

n

time (sec)

75000 vul, 4000 scans/sec, no preferential scanning. 256 worm_nets

no congestion
congestion considered

Figure 3.1: Compare Internet worm propagation with and without congestion.

not the other. As shown in Figure 3.1, the effect of traffic congestion on the worm propagation in

this scenario is obvious, and ignoring such effect generates incorrect result.

The Chain Binomial model can be used to easily include those important factors. The worm

scans sent out go through the underneath topology, experiencing possible congestion, filtering or

other regulating, and arrive at the destination wormnet. The received number of scans r
′

jt at the

receiving end is the result after including all those network based factors, and automatically the

influence is brought to the worm propagation computation.

In the Chain Binomial model, an individual infected at time step t does not send out scans until

the time step (t+1). This approximation can bring concerns on the accuracy of the model when the

worms use local preferential scanning, especially when the scanning rate is very high. For example,

assume a time step size of 1 second, if a worm sends out 4000 scans per second, and has 10%

preference of choosing the local /16 addresses, then within the same time step of infection, a newly

37

infected host can, on average, send out 4000 ∗ 0.5 ∗ 10% = 200 scanning packets to the local /16

network. Ignoring this can cause substantial underestimation of the worm propagation over the local

network.

3.3 Estimate Next Infection (ENI) Model

When the Chain Binomial model is run stochastically, random numbers need to be sampled from a

binomial distribution. Computing the inverse density function of Binomial is known to be a com-

putationally expensive operation. The Chain Binomial model also assumes that the hosts infected

within a time step cannot send out scans in the same time step. This assumption is problematic if

the worm has a very high scanning rate and a strong preference for scanning local IP space. We

developed Estimate Next Infection (ENI) model to cope with this problem.

3.3.1 ENI Model

In ENI model, for a given subnet j, at each starting point of the time step, two things are computed:

i) new infections in this subnet that will happen in this time step; ii) scans that will be sent out to

the other subnets in this coming time step.

rj(t) = rjL(t) + rjE(t) (3.12)

The received scanning rate rj is treated as a summary of scanning rates from either local source rjL

or external source rjE . rjE is assumed to be constant during this time step. Initially the number of

scans sent out from this subnet j in this time step is

sj = Ij(t) ∗ scan rate ∗ time step (3.13)

Assume that the received scans arrive at this subnet follow a poisson process, then the infection

38

that will happen also follows a poisson process with a rate of

λj(t) = rj(t) ∗ Sj(t)/Cj (3.14)

where Sj is the number of susceptibles at that time and Cj is the CIDR block size of the subnet.

Thus the next infection time can be sampled using an exponential process with the mean of 1/λj .

∆t = exponential(λj(t)) (3.15)

If the sampled time ∆t is within this time step, the status of the subnet is updated to consider the

scans sent out by this newly infected host from its infection time. Then rL is updated, and the time

is advanced to the sampled infection time.

rjL(t + ∆t) = rjL(t) + ∆r (3.16)

sj = sj + ∆s (3.17)

where sj is the number of scans that are to be sent out in the coming time step. The above process

is iterated. The iteration ends when the estimated infection time falls out of this time step.

After this estimation process, the number of scans sent to other subnets in this time step sj(t)

is computed and fluid flows are sent out. In the current implementation, fixed point computation

is used to compute how those scans compete bandwidth and arrive at their destination subnets. At

the destination, with parameter scan_pkt_size and time_step, a received scan rate can be

easily computed.

We now talk about the computing of rjE(t), scan rate from external sources in equation 3.12.

In the ENI model, at the beginning of each time step t, the scans sent out from subnet j needs to

be computed and one important factor is the scans from external sources in this coming time step t.

The exact rjE(t) is not available at the beginning of the time step, so approximation is used here.

39

We estimate its value from rjE(t−1) and rjE(t − 2) by applying a simple interpolation as in (3.18).

rjE(t) = rjE(t − 1) + (rjE(t − 1) − rjE(t − 2)) (3.18)

3.3.2 Different Scanning Schemes

Local preferential scanning is often used by Internet worms. Having more preference to sending

scanning packets to a destination with the same prefix can significantly speed up worm propagation

within the local subnet, especially if it penetrated a firewall of this subnet. Studies show that a

simple rule of having 20% preference of scanning local class B (/16) network tends to get a good

performance for worms in most situations [52].

The impact of this can be incorporated into ENI model. Assume that there is a preference

Pc of scanning local CIDR space CL, and the wormnet j CIDR block size is CjL, there are two

possibilities depends on the relationship between CL and CjL.

• If CL ≤ CjL, then all local preferential scans fall into the same wormnet j, thus the percent-

age of scans from the subnet j to itself is

PL = Pc + (1 − Pc) ∗ CjL/C (3.19)

where C is the total CIDR space, i.e. total IP space.

• If CL > CjL, then only part of the local preferential scans fall into the same wormnet, we

would have

PL = Pc ∗ (CjL/CL) (3.20)

We can compute ∆r in equation 3.16 using

∆r = scan rate ∗ PL. (3.21)

40

Then scans from wormnet j to wormnet k consequently have two situations:

• If CL > CjL and wormnet j and k are in the same CL space,

sjk = Binomial((sj ∗ (1 − PL) + local scans), (Ck/C)) (3.22)

• All other situations,

sjk = Binomial(sj ∗ (1 − PL), (Ck/C)) (3.23)

In the implementation poisson inverse density function is used to approximate the binomial inverse

density function because the probability Ck/C tends to be small in practice.

If more complicated local preferential scanning scheme is used, the computation of ∆t and sjk

needs to be modified accordingly in the current implementation.

Sweeping is another scanning scheme that is less often used by Internet worms. An infected

host would usually pick a starting point in the address space, and start scanning the address space

following that point sequentially. If another already infected host is encountered, it picks another

starting point for sweeping. ENI model cannot be directly applied to this kind of worms because it

does not do random scanning.

3.3.3 Validation

In this section I present the experimental results to validate the ENI model. In the validation exper-

iment we actually used optimizations and adjustments that we would discuss in section 3.5.

The validation is based on the Code Red v2 scenario. On the days of Code Red v2 worm incident

in July, 2001, data trace has been collected over a /16 network at the Chemical Abstract Service

(http://www.cas.org). The data trace has the source IP addresses of those scanning packets, which

reflects the number of infections and the worm dynamics during the propagation. The data trace is

processed and the worm dynamics over the global Internet can be inferred from the processed data.

41

Table 3.3: ISP Topology from Rocketfuel Project

ISP AS number #Wormnet #links

Exodus 3967 244 785

Above.Net 6461 366 1334

Sprint 1239 516 2111

AT&T 7018 729 2984

In the experiment we used dataset from the Rocketfuel project at University of Washington

[1]. Four ISP backbone topology in the United States are generated. Wormnets are attached to the

routers of the backbone topology. We used the backbone topology of Exodus here in the validation.

The other topologies are used in other experiments that we will discuss in other sections. Some

information of the four ISPs are shown in Table 3.3

From the processed real-world data trace, we assumed that the total number of susceptibles is

374,500. There is no preferential scanning involved in Code Red v2 incident, and the scanning rate

is set to be 5 scans/sec. Code Red v2 worms use TCP to convey the exploit, and a windows machine

has a 21 second timeout time for TCP SYN packet. Although an infected host in Code Red v2 has

100 threads doing scanning concurrently, most scans hit unused addresses or hosts that do not have

open HTTP services, which in turn causes a lot of timeouts, so the average scanning rate is around

5 scans/second.

We run the ENI model in deterministic mode and generated the worm propagation trace, and

both the simulated trace and real-world data trace are plotted in Figure 3.2. When Code Red v1 was

initially released, there was a bug in its random number generation scheme and it used a fixed seed.

This bug was there for days before someone fixed it and re-injected the fixed code into the Internet.

The fixed code was called Code Red v2, but that incident caused much longer delay in the starting

42

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 20000 40000 60000 80000 100000 120000

#i
nf

ec
tio

n

time (sec)

Worm Propagation in Code Red v2 Scenario

ENI model
code red v2 data trace

Figure 3.2: Validation using Code Red v2 trace.

phase of the worm propagation. Therefore, in the figure the starting point of the simulation trace is

shifted to eliminate possible effect of that incident. As shown in the figure, the propagation phase

of those two traces match fairly well. In the end, the number of infections in the real-world trace

decreased, which was caused by multiple factors such as patching effort and device shutdown in

some networks

To demonstrate the difference between the ENI model and the Chain Binomial model, an exper-

iment has been conducted. The experiment used the Sprint backbone topology with 566 wormnets.

The total number of susceptibles is 75,000, scanning rate is set to 4,000 scans/sec. In both runs,

there is a 25% preference of scanning local /16 networks. In Chain Binomial model, it is assumed

that for a given wormnet j and a time step t, the scans from all sources are in constant rate; while

in ENI model, it accounted for the scans from newly infections in wormnet j within this time step

t. Given 25% preference of scanning the local addresses, the effect of those scans should not be

43

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 20 40 60 80 100 120 140

#i
nf

ec
tio

n

time (sec)

AS number 1239, Sprint, 516 wormnet, local preferential scanning (25% on /16)

Chain Binomial model
ENI model

Figure 3.3: ENI model v.s. Chain Binomial model

simply ignored. As shown in Figure 3.3, there is a noticeable difference between the dynamics of

the two models.

3.4 Multi-Resolutions in Modeling and Simulating Internet Worms

3.4.1 Resolutions in Modeling and Simulation

When simulating a complicate system, it is almost certain that some trade-off exists between the

level of simulated details and the required computing resources. Intuitively the more details a sim-

ulation exhibits, the more computing resources it consumes. When it comes to the modeling and

simulation of Internet worms, resolutions in different dimensions need to be considered. They have

significant influences on the accuracy, the performance, and possible usage of the models.

Traffic Representation In network simulation, the representation of the traffic usually has a large

44

impact on the simulation. One can choose to represent each single packet using an event,

thus the term packet-oriented simulation. This is a natural choice of simulating a network in

fairly detail. However, if the simulated network topology is large, usually a large amount of

traffic is expected. The simulation would then generate many events, and become computing

resource intensive.

From the experience, people find that sometime a small portion of the traffic is the focus of the

simulation, and sometime the contents of the traffic do not need to be elaborated in the model.

Therefore, models have been created in which a train of packets is represented by a fluid flow

[23, 24, 30, 31, 40, 47]. In a normal fluid-oriented model, an event will be generated when

there is a change in the rate of the traffic fluid, and usually this can significantly reduce the

number of events generated in a simulation. This rate-change event is propagated gradually

in the simulated network, and may in turn generate more simulation events due to congestion

[31, 40].

To avoid the possible event explosion situation in the fluid-oriented simulation, various tech-

niques can be used, and one of them is to use a more crude level abstraction. In this abstrac-

tion, the transit states of the fluid rate change are ignored, i.e., it always tries to compute the

steady state of the traffic in the network [5, 41]. This approach is called fixed-point computa-

tion in fluid-oriented simulation.

Time In a fluid-oriented Internet worm model, time resolution has become an option as well. In

such a model, the time has been divided into discrete slices. The granularity of the time slice

can affect the accuracy of the model as well as performance. The choice here is straightfor-

ward. The finer the time slice is, the more computation is required, but the more accurate the

simulated result might be. In a more general case, when simulating slowly evolving systems,

one can choose larger time slices; a finer time slice is preferred if the states of the simu-

lated system change very quickly or frequently. When different parts of the system evolve at

different speeds, applying individual time resolutions on different parts might be considered.

45

Topology Representation The Internet now has millions of computing devices. In the simulation it

is very difficult to simulate as many devices with the current technology. Simulating computer

worms on top of a much smaller network topology has some implications on the simulated

results and can bring artificial effects [59]. A more common approach is to provide another

level of abstraction in the network topology. In this abstraction, a node in the simulated

topology might be used to represent a subnet. It keeps some state information of the simulated

devices inside the subnet but omit all detailed internal topology details. The size of this

represented subnet depends on the granularity of abstraction.

3.4.2 Combine Multiple Resolutions

We presented ENI model in section 3.3. In fact, the ENI is a model with multi-resolution in time.

When we consider the scanning traffic received by wormnet j, two parts of the traffic are considered:

scans from sources inside the same wormnet rjL(t) and scans from external sources rjE(t). For

rjE(t), scans from external sources, we considered it to be constant within a time step t. In another

word, the resolution on the external scans is the time_step size. This approximation is inspired

from the following observations: the CIDR block size of wormnet j is relatively small compared

with the total IP space (true in most cases). Given random scanning, only a small portion of the

scans fall into wormnet j. Ignoring this in a short period of time is an acceptable approximation. On

the other hand, for rjL(t), the resolution is smaller than time_step size because every time we

advance ∆t inside a time step we update the rjL(t) to rjL(t+∆t). This finer granularity is because

if there is local preferential scanning, a new infection inside the local networks can potentially

increase the scanning over the local network significantly even within the same time step, especially

if the worm has a significant preference for local IP addresses as suggested in [52].

Having a multi-resolution approach on traffic representation and topology can be an approach

that helps scalability while preserver detailed packet level information. As shown in Figure 3.4, a

backbone is formed using routers and wormnets. Fluid-oriented worm models can be applied on

46

wormnet

wormnet

wormnet

Backbone Special subnet

Fluid flow traffic Packet level traffic

Converter

! Power

COL1 2 3 4 5 6 7 8 1 2 3 6 25 508012
100
10

Ether 10/100

! Power

COL1 2 3 4 5 6 7 8 1 2 3 6 25 508012
100
10

Ether 10/100

! Power

COL1 2 3 4 5 6 7 8 1 2 3 6 25 508012
100
10

Ether 10/100

! Power

COL1 2 3 4 5 6 7 8 1 2 3 6 25 508012
100
10

Ether 10/100

Ethernet
Switch

Ethernet
Switch

Ethernet
Switch

Ethernet
Switch

Figure 3.4: Multi-Resolution in topology and traffic

47

top of it. For a particular wormnet, a traffic converter is implanted, and the converter connects to a

subnet with detailed internal topology. Within this special subnet, the worm traffic from the outside

is converted into discrete packets then sent in. The worm scanning packets that go out will be again

intercepted by the converter and fluidized into fluid flows. By using the abstracted backbone topol-

ogy and fluid flow scanning traffic in large portion of the network model, the scalability advantage

can be kept. By preserving packet level traffic inside the special network, some techniques that

require packet level information can be exercised and studied.

3.4.3 Defluidize and Fluidize Scanning Traffic

The key component of implementing the multi-resolution model is the traffic converter. The main

functionality of the converter is to defluidize and fluidize worm scanning traffic. In the current

implementation, worm scans based on TCP are not considered in the defluidizing and fluidizing. The

TCP is connection-oriented, and it applies congestion avoidance algorithm to adjust its transmission

speed. It is not clear yet on how to convert TCP packets of different connections into aggregated

fluid TCP flow.

Fluidizing the scanning traffic is straightforward. The converter intercepts the outgoing worm

scanning packets, accounts them based on which wormnet their destination IP belongs to, and sends

out aggregated fluid flows every time step.

Defluidizing is comparatively more sophisticated. Let us assume that the converter is just on

wormnet j. In the current implementation, the flow merging optimization discussed in section 3.5.2

cannot be applied to fluid flows that go to this wormnet j any more. (The optimization can still be

applied to the traffic go to other wormnets.) At each time step t, we have received scanning rate

rji(t). The packets from wormnet i are assumed to arrive with poisson process, thus the inter-arrival

time can be sampled using exponential process with mean of 1/rji(t). In another word, we would

probably have N − 1 poisson processes on wormnet j, where N is the total number of wormnets.

When a scanning packet from wormnet i is generated, the critical fields that need to be filled

48

include source_ip, dest_ip, source_port, dest_port, and time_to_live (ttl).

• The fields dest_ip and dest_port are easy. The destination port number is a configured

parameter and can be directly used. The destination IP can be randomly chosen from the

CIDR block of wormnet j.

• In order to fill the other information, for each wormnet i, wormnet j needs to keep an array

of (IP, port, ttl) tuples. Whenever a new infection happens in wormnet i, one more element

needs to be added to the corresponding array. The tuple keeps information of the IP address,

source port and TTL information for each “infected” host in wormnet i. The source IP and

source port can be randomly generated as long as the IP falls in the CIDR block of wormnet i.

The TTL can use the value from the fluid flow packet, minus some random value to account

for the “internal topology” of wormnet i. The reason to keep all the detailed information is to

keep the consistency of generated worm scanning packets.

3.4.4 Validation Experiments

To validate the correctness of the multi-resolution approach, an experiment has been set up. In the

experiment, the “speical subnet” is a /16 network. Its detailed topology includes more than 300

hosts and routers, 140 of which are vulnerable hosts. We used Brite to generate a simple topology

to be used as the backbone, and the backbone has just 32 wormnets. 75000 vulnerable hosts are

populated inside the backbone part of the topology, and one of them is initially infected. In the

experiment, only uniform scanning is used, i.e., there is no local preferential scanning. We focus on

the worm propagation dynamics inside the special /16 subnet, which can be indicated by the data

below.

• The number of received worm scans from the outside to this special wormnet. This is the

main driving force for the worm spread dynamics inside the special wormnet.

49

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 50 100 150 200 250 300

re
ce

iv
ed

 s
ca

ns
 o

ve
r

th
e

/1
6

ne
tw

or
k

time (sec)

75140 Susceptiables, no LP scanning, 4000 scans/sec, 9 runs each

ENI model
simple packet-oriented worm model

Figure 3.5: Received scans over the /16 subnet

• The histogram of the number of infections inside the special subnet. This directly reflects the

worm dynamics inside.

Simple Packet-Oriented Worm Model

We need some baseline results with which we can compare the results from the multi-resolution

experiment runs, and we developed a very crude packet-oriented worm model for this purpose.

Inside this simple packet-oriented model, we do not have any topology. We have an array of

n hosts, each can be susceptible or infected. Given that I(t) hosts have been infected at time t,

the next time a scan will happen can be computed using ∆t = 1/(scanrate ∗ I(t)). We can then

advance the simulation time of this model to (t + ∆t), randomly sample an integer k from [0, 232].

If k is inside [0, n), then the host with index k becomes infected if it is still susceptible. Through

an iterating process, we can simulate the uniformly scanning worm dynamics in the high level in

50

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300

#i
nf

ec
tio

ns

time (sec)

Worm Dynamics within a /16 Network, 75140 susceptible (140 inside /16 subnet), 4000 scans/sec, no LP

multi-resolution model
simple pkt oriented model

Figure 3.6: Worm popagation dynamics inside the /16 subnet

a packet-oriented fashion. To collect the same data as in the multi-resolution approach, we can

focus on the number of scans fall in the scope [(n − n′), (n − n′ + C ′)], where n′ is the number of

susceptible hosts inside the special subnet, and C ′ is the CIDR block size of the speical subnet. We

can also collect data on how worms propagate among hosts of range [(n − n′), n].

Experiment Results

We run both the simple packet-oriented model and the multi-resolution model in stochastic mode,

and plotted the results in Figure 3.5 and Figure 3.6. Figure 3.5 displays the number of received scans

inside the special /16 network, and Figure 3.6 displays the worm spreading process inside the /16

network. From the results we can see that the worm propagation dynamics in both model exhibit the

same characteristics and trend. It is noted that in simple packet-oriented model, the results seem to

have more stochastic effect. We need some further investiagtion for the exact cause of such effect.

51

3.5 Other Pieces of the Puzzle

Having the worm propagation model alone does not complete all the pieces needed for worm sim-

ulation. This section discuss the optimizations and other problems need to be solved in order to

improve the performance and conduct the simulation.

3.5.1 Routing and Forwarding

Routing is one important aspect of network simulation. When exercising random scanning worm

scenarios, the scanning traffics are generated from all sources to all destinations. If on-demand route

computation [27] is used, special caching can significantly reduce total runtime. If packet-oriented

model is used, many sources/destinations would be in the same subnets. Therefore appropriate

route aggregation, if supported, can reduce the memory usage significantly by shrinking the route

forwarding table , and can consequently improve the runtime. I will not discuss the above in this

thesis but will focus on the interactions between the routing scheme and worm propagation.

In a real-world worm incident, when the scanning packets are sent, roughly three situations may

happen:

1. The destination IP address belongs to an unadvertised CIDR block. Because local hosts and

routers do not have the full routing map, the packet will be delivered using a default route. It

should be eventually dropped at the first router that does have a full routing map, i.e., a BGP

router that does not have default route. Usually it is the first main access router of the ISP,

right before the packet can reach the backbone. Default route is the route used to forward

packets when no other route is available.

2. The destination IP address belongs to an existing host. There is no problem in this scenario,

the packets should normally be delivered.

3. The destination IP address belongs to an advertised CIDR block, but it is not used by any

52

host or router. The packet should at least be delivered to one gateway router of the subnet that

owns that CIDR block, and dropped by some router inside that subnet when more detailed

information is available.

In a packet-oriented simulation, situation 2 is naturally covered. For packets that go to unad-

vertised space, they are taken care of as long as default route is supported. One needs to be careful

with packets that need to be delivered to an unused address in advertised CIDR block. If in the

model both inter-domain (BGP) and intro-domain (OSPF, etc.) routing are used, the hierarchy of-

ten ensures that the packet can be delivered to a router in the destination CIDR block before being

dropped. If hierarchical routing is not supported, very likely the source host of a scan packet will

immediately discover that there is no route for that particular packet and drop it too early.

If fluid-oriented worm model is used, the situation is slightly different. Situation 2 is naturally

covered. For packets that go to unused hosts inside an advertised space, the packets are counted

inside the traffic flow and will be delivered to the correct subnet. However, for traffic that are

destinated to unadvertised space, the system would not able to setup paths for those scanning fluid

flows because there is not route. In current iSSFNet implementation we incorporate this inside the

worm model. Assume that each time step the total number of sent out scans is sj , the scans go to

wormnet i is sji. We then have

sd = sj −
∑

i6=j

sji (3.24)

where sd is the rate of a traffic flow that should be sent to unadvertised space. Such a flow is

computed at each wormnet in every time step and sent to the first router that has a full BGP map.

3.5.2 Optimizations in Fluid-Oriented Worm Model

Flow Merging

In the fluid-oriented models, each wormnet sends out flows to every other wormnets. If the number

of wormnets is N , then the total number of flows is N 2. The time complexity of this is difficult

53

.

.

..
.
.

wormnet j

Figure 3.7: Analysis of space complexity after applying flow merging optimization

to estimate because it depends very much on the topology and whether there is any loop of traffic

congestion. The space complexity of this is O(N 2H), where H is the average number of hops a

flow traverses.

Two properties motivate an practical optimization:

• For the purpose of computing worm propagation, the detailed contents of each single scanning

packet are insignificant. The simple fact of receiving a scanning packet at a vulnerable host

is enough to determine an infection. That is also the exact reason we can use fluid-oriented

model for worm propagation.

• There are N 2 flows, while only N possible destinations.

Given the two properties, an intuitively simple optimization is to merge the flows that have the same

destinations.

After applying this optimization, the space complexity become O(N 2). As shown in Figure 3.7,

if we only consider the traffic flows that have destination as wormnet j, regardless of the topology

and the routing schemes or policies, the traffic flows will eventually form a tree pattern. Given N

wormnets, we have N − 1 edges in the tree. Since we apply flow merging, there would be at most

one flow in each link, so the space cost of all flows that go to wormnet j is N − 1. Because we have

54

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 200 250 300 350 400 450 500 550 600 650 700 750

ru
n

tim
e

(s
ec

)

worm_net

Effect of Flow Merging, Deterministic Model Fixed Point Computation (300 sec)

flow merging optimization
no flow merging

Figure 3.8: Flow-merging effect on simulation runtime

N wormnets, so the total space complexity is O(N 2).

The time complexity, again, is difficult to compute analytically. However, empirical results

show that in a fairly realistic topology, the optimization can significantly reduce run time. We again

used the topologies generated from Rocketfuel project. Some details of the topologies can be found

in Table 3.3.

In the Internet worm scenario exercised, there are 75,000 vulnerable hosts, the advertised space

is kept to be 25%, the worm scanning rate is 4,000 scans/sec, and there is a 25% local scanning

preference on local /16 networks. Two groups of experiments were run deterministically, and the

simulation run time is collected and plotted in Figure 3.8. It is clear that flow merging benefits the

simulation runtime, especially in larger topologies.

55

Deterministic v.s. Stochastic

In the ENI model, there are several places we need to generate random numbers from certain distri-

butions. The model can run both deterministically and stochastically. Intuitively running stochas-

tically costs more time because we need to generate random numbers, but it brings in stochastic

effects that are desirable in some situations.

Experiments show that we can use a hybrid running mode to have stochastic effects while im-

prove the performance in the same time. It is motivated by the fact that the randomness in the

starting phase of the worm propagation is often the most important part that determines how fast

the worm can propagate. After a significant portion of the vulnerable hosts are infected, the number

of scans is often large enough so that running the simulation in deterministic mode does not make

much difference in terms of propagation. So the approach is to run the model stochastically in the

beginning, but once the number of infectives exceeds a threshold, switch to deterministic mode. The

threshold can be chosen empirically.

To demonstrate its effect, we have three groups of experiments. They are based again on the

Rocketfuel dataset. The three groups are run deterministically, stochastically and in hybrid mode

respectively. In Figure 3.9 we have the comparison of the stochastic model and hybrid model on

Exdous backbone network. Ten runs are conducted on each mode, and one can see that the dynamics

of worm propagation is preserved nicely in the hybrid model. When the hybrid model is used,

intuitively the runtime is better than the runtime of using stochastic model. In fact, it actually

performs better than the deterministic model as well. This is because that in the starting phase there

are less traffic flows when the hybrid model is used. In Figure 3.10 we plotted the runtime of the

experiments on the four ISP backbone networks, and this effect is fairly obvious .

The confidence interval of the stochastic runs on Above.net is relatively large, further investi-

gation confirmed that it was caused by the susceptible hosts distribution in the setup. Given 75,000

vulnerable hosts and 366 wormnets, we distributed the vulnerable hosts to the wormnets using an

exponential distribution. The particular distribution for Above.net in the experiment happens to

56

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 50 100 150 200

#i
nf

ec
tio

n

time (sec)

Stochastic model v.s. Hybrid model, 244 wormnets

seed 1
seed 1 hybrid model

seed 2
seed 2 hybrid model

seed 3
seed 3 hybrid model

seed 4
seed 4 hybrid model

seed 5
seed 5 hybrid model

seed 6
seed 6 hybrid model

seed 7
seed 7 hybrid model

seed 8
seed 8 hybrid model

seed 9
seed 9 hybrid model

seed 10
seed 10 hybrid model

Figure 3.9: Comparison of stochastic mode and hybrid mode

be more uneven when compared with the other three ISP networks. When there is a significant

preference to scanning local addresses, this unevenness caused more variability in stochastic runs.

Some further experiments revealed some interesting rule of worm propagation and is discussed in

section 3.5.3

3.5.3 Other Experiments

There are some other experiments and results that cannot be easily included in the previous sections,

and they are organized into this section.

Impact of Varying Time-Step Size

One parameter in the fluid-oriented worm model is the time_step size. Given a fixed simulation

time, intuitively the runtime cost is linear to the number of time steps, thus inversely proportional

57

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 200 250 300 350 400 450 500 550 600 650 700 750

ru
nt

im
e

(s
ec

)

wormnets

Runtime for 200 simulated sec, (25% LP scan on /16), 4000 scan/sec, 75000 vul

deterministic
all stochastic (95% confidence)
mixed model (95% confidence)

Figure 3.10: Runtime of deterministic mode, stochastic mode and hybrid mode.

to the time_step size. From the modeling point of view, a too large time_step size may

introduce errors into the worm simulation results, especially when the worm spread is fast. Other

other hand, a time_step size that is smaller than the average packet traverse time will also have

negative impact on the accuracy of the results. Ideally, the time_step size can set to be the

expected time when an infection will occur in the system, but it is not a constant value in the worm

propagation process. We choosed a simpler approach in the current implementation and used a fixed

value.

Figure 3.11 has the experiment result of varying time_step size in a worm scenario with

75, 000 susceptibles, 4, 000/sec scanning rate, As shown in the figure, even for very fast scanning

worms, choosing a time_step size of 1 second does provide s fairly accurate result already, using

1/2 second as time_step size would probably suffice for higher requirements for accuracy. In

the other experiments of the thesis, the results are all based on 1 second time_step size.

58

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 20 40 60 80 100 120 140 160 180 200

#i
nf

ec
tio

ns

time (sec)

Various Time-Step Size, Deterministic ENI model on Exdous (244 wormnets)

1 sec
1/2 sec
1/4 sec
1/8 sec

Figure 3.11: Impact of varying time-Step size

Local Preferential Scanning and Susceptibles Distribution

In this part we presents a group of experiment results that reveals an interesting connection between

local preferential scanning and susceptible distribution. Simulation results show that when there is

a significant preference to scanning local subnet addresses, the more uneven the susceptibles are

distributed in the network, the faster it tends to propagate.

Although this rule is not very explicit from the first glance, it is not counter-intuitive. When the

susceptibles are not evenly distributed, there are some clusters of susceptibles with higher density,

local preferential scanning can take advantage of the higher density in those clusters and speed up

the whole propagation. Notice that for the same reason, whether the initial infection happens in

those larger clusters also has an impact on the simulation results.

We demonstrate this effect through a group of experiments. We used Brite [35] to generate a

simple topology and attached just 32 wormnets to it. In all scenarios we use 80, 000 susceptibles,

59

 74

 76

 78

 80

 82

 84

 86

 88

 90

 92

 1 2 3 4 5 6 7 8 9

ha
lf

po
in

t t
im

e
(s

ec
)

majorization vector

Deterministic, 32 wormnets, 80,000 vulnerables, initial infection 1

half infection reached

Figure 3.12: Impact of susceptibles distribution on Internet worm dynamics

4, 000 scan/sec, 25% local preferential scanning, and the wormnet CIDR block size is chosen to be

/7.

To generate different unevenness in susceptibles distribution, we use the concept of majoriza-

tion. For vector X = (x1, x2...xn) and Y = (y1, y2...yn), given that
∑n

i=0 xi =
∑n

i=0 yi, It is said

that X majorizes Y (X > Y) if
j∑

i=1

x[i] ≥

j∑

i=1

y[i] (3.25)

for all j = 1, 2, ...n, where x[i] denotes the ith largest element in X . Now if we have two suscepti-

bles distributions D1 = (a0, a1, ...a31), D2 = (b0, b1, ...b31) and D2 > D1, it is clear that D1 is a

more even distribution than D2.

An array of distributions are created: D1, D2, ... D9. The first element of all Di here is always

2500 and has the initial infection. The array of distributions also has the property that Di+1 > Di.

In another word, in D1 the susceptibles are most evenly distributed, while in D9 they are the least

60

evenly distributed.

We run the simulation on the array of distributions deterministically and marked the time at

which half of the susceptibles are infected and plotted the results in Figure 3.12. The x-axis is the

index of that distribution in the array, i.e. the first point from left is for D1, while the last is for D9.

The y-axis is the time at which half of the susceptible hosts have been infected. We can see that the

more uneven the susceptible hosts are initially populated, the worm propagates faster in the system.

For a given distribution, the location of the initial infection also affects the worm propagation

speed. We used D3, D6 and D9 distributions, all but the first element inside each vector are sorted

in increasing order. In another word, when i > 1, moving initial infection from wormnet i to

wormnet (i + 1) is moving it to a larger concentration of susceptibles. Figure 3.13 plots the results

of varying the location of the initial infection. As we expected, when the initial infection move to

larger concentrations the propagation become faster. This effect is more prominent if the distribution

itself is more uneven.

61

 70

 75

 80

 85

 90

 95

 0 5 10 15 20 25 30 35

ha
lf

po
in

t t
im

e
(s

ec
)

index of the wormnet that has the initial infection

distribution 9
distribution 6
distribution 3

Figure 3.13: Impact of varying initial infection location on Internet worm dynamics

62

Chapter 4

Summary and Future Work

4.1 Summary

This thesis presents the research work of building an immersive simulation environment for security

related studies, and in particular, presents the case study of using the environment for Internet worm

modeling and simulation. The thesis can be summarized as below:

• Real-time Immersive Network Simulation Environment (RINSE) has been built as an effort to

provide automated tools for security related simulations and studies. One major component of

RINSE is a network simulator: iSSFNet. iSSFNet is built on top of iSSF, a high-performance

conservative discrete event simulation engine.

– iSSFNet facilitates the design and implementation of protocol models. It supports dy-

namic configuration of network models running various networking protocols. It allows

a mixture of fluid-oriented model and packet-oriented model coexist in the same net-

work model.

– Taking advantage of the lower layer simulation engine, iSSFNet supports parallel exe-

cution both with shared-memory multiprocessors and in distributed environment. The

63

infrastructure design of iSSFNet also provides a layer of abstraction to hide details of

parallel execution from users and developers of networking protocols.

– iSSFNet supports human-in-the-loop interaction during runtime. A centralized user

command distribution infrastructure is implemented inside iSSFNet to support efficient

command processing. A dozen of commonly used user commands have been imple-

mented and it is easy to add in new commands in the future.

• One component of the research on the defense against Internet worms is to have an envi-

ronment that can be used to study worm behavior and exercise worm related incidents. The

modeling and simulation of Internet scanning worms is studied using iSSFNet.

– The Estimate Next Infection (ENI) model has been developed in iSSFNet. The model

incorporates important factors such as network topology and traffic congestion in com-

puting worm dynamics. It is also a model that exercise multi-resolution in time domain

to compensate for worms that have a significant preference to scanning local networks.

– Resolutions in different domains on worm modeling are discussed. We also presented

the work to combine worm models with different resolutions in topology and traffic

representation, preliminary results are reported.

– Some optimizations in fluid-oriented work simulation have been applied to the worm

model in iSSFNet. The effect and impact on the performance are tested through exper-

iments. A hybrid approach is proposed so that one can keep the stochastic effect in the

worm simulation while slightly improving performance in the same time.

– Some other worm related experiment results are reported. A connection between local

preferential scanning and initial susceptibles distribution is revealed and demonstrated

using experiments.

64

4.2 Future Work

There are several tasks that seem to be natural follow-ups for the current work I am doing, and can

be described as possible short term future work:

• Some further optimizations can be applied to fluid-oriented Internet worm models. To be

more specific, one approach is flow splitting. Instead of sending out multiple flows from the

wormnets, sending out an aggregated scanning traffic flow, split the flow when it traverses the

network. This I believe is going to further improve the simulation performance in practice.

• The defluidize / fluidize converter has some preliminary results, but there are other possi-

ble implementations, a deeper study may bring some further understanding of the general

problem of combining fluid-oriented traffic with packet-oriented traffic.

• The current worm model in iSSFNet has not taken the advantage of parallel execution yet.

The implementation is generally straightforward except some technical problems that may be

caused in defluidizing worm scanning traffic. A parallel version of the worm model can run

on a larger topology that we cannot afford right now with sequential execution.

For relatively long term, there are open problems that I am interested in and may become future

direction. I am still interested in the security related simulation problems. For Internet worms,

it has almost come to an agreement that automated system is necessary to help worm detection

and defense, but building such system still involve many open questions. For example, if there

is an alarm, assume that it carries a proof of its validity, how can it be efficiently distributed in

large scale? This particular problem may touch fields such as peer-to-peer networks and overlay

networks, and a simulation environment is exactly what is needed for designing and exercising. I

have also conducted research on wireless ad-hoc networks. I am in general interested in the wireless

ad-hoc routing and the simulation of wireless ad-hoc networks. The wireless network simulation is

generally more computation intensive than simulation for wired networks. The sophisticated lower

65

layer interactions and node movement make it difficult to parallelize, but a good solution to this is

also attractive.

66

Bibliography

[1] T. Anderson, R. Mahajan, N. Spring, and D. Wetherall. Rocketfuel: An isp topology mapping

engine. http://www.cs.washington.edu /research/networking/rocketfuel/, 2005.

[2] J. Banks, J. S. II Sarson, B. L. Nelson, and D. M. Nicol. Discrete-Event System Simulation.

Prentice-Hall international series in industrial and system engineering. 3rd edition, 2000.

[3] V. H. Berk, R. S. Gray, and G. Bakos. Using sensor networks and data fusion for early detection

of active worms. In Proceedings of the SPIE Aerosense conference, Orlando, FL, April 2003.

[4] R. Bradford, R. Simmonds, and B. Unger. A parallel discrete event ip network emulator. In

Proceedings of the 9th International Symposium on the Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems (MASCOTS’00), 2000.

[5] T. Bu and D. Towsley. Fixed point approximations for tcp behavior in an aqm network. In

Proceedings of ACM SIGMETRICS 2001, June 2001.

[6] Cert advisory ca-2001-26 nimda worm. http://www.cert.org/advisories/CA-2001-26.html,

2001.

[7] X. Chen and J. Heidemann. Detecting early worm propagation through packet matching.

Technical report, University of Southern California, Information Sciences Institute, Februray

2004.

67

[8] Z. Chen, L. Gao, and K. Kwiat. Modeling the spread of active worms. In Proceedings of IEEE

Infocom 2003, 2003.

[9] D. M. Cowie, J. H.and Nicol and A. T. Ogielski. Modeling the global internet. Computing in

Science & Engineering, pages 30–38, January - February 1999.

[10] J. H. Cowie. Parallel discrete-event simulation in java. In Proceedings of ACM 1998 Workshop

on Java for High Performance Netwrok Computing, 1998.

[11] J. H. Cowie, H. Liu, J. Liu, D. M. Nicol, and A. T. Ogielski. Towards realistic million-node

internet simulation. In Proceedings of the 1999 International Conference on Parallel and

Distributed Processing Techniques and Applications (PDPTA), 1999.

[12] J. H. Cowie, D. M. Nicol, and A. T. Ogielski. Modeling 100,000 nodes and beyond: Self-

validating design. In DARPA/NIST Workshop on Validation of Large Scale Network Simulation

Models, May 1999.

[13] D. J. Daley and J. Gani. Epidemic Modelling: An Introduction. Cambridge University Press,

2001.

[14] S. Das, R. F. Fujimoto, K. Panesar, D. Allison, and M. Hybinette. Gtw: A time warp system

for shared memory multiprocessors. In Proceedings of the 1994 Winter Simulation Conference

(WSC’94), pages 1332–1339, December 1994.

[15] M. W. Eichin and J. A. Rochlis. An analysis of the internet virus of november 1988. In IEEE

Symposium on Researchiin Security and Privacy, 1989.

[16] K. Fall. Network emulation in the vint/ns simulator. In Proceedings of the Fourth IEEE

Symposium on Computers and Communications (ISCC’99), July 1999.

[17] S. Floyd and V. Paxson. Difficulties in simulating the internet. IEEE/ACM Transactions on

Networking, 9(4):392–403, August 2001.

68

[18] Wormscout anti-worm solution components. Forescout, http://www.forescout.com/ worm-

scout.html.

[19] R. M. Fujimoto, K. Perumalla, A. Park, H. Wu, M. Ammar, and G. F. Riley. Large-scale

network simulation -how big? how fast? In Symposium on Modeling, Analysis and Simulation

of Computer Telecommunication Systems (MASCOTS), October 2003.

[20] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast portscan detection using sequential

hypothesis testing. In IEEE Symposium on Security and Privacy, 2004. to appear.

[21] J. O. Kephart, D. M. Chess, and S. R. White. Computers and epidemiology. In Proceedings of

IEEE SPECTRUM, May 1993.

[22] J. O. Kephart and S. R. White. Measuring and modeling computer virus prevalence. In Pro-

ceedings of the 1993 IEEE Computer Society Symposium on Research in Security and Privacy,

Oakland, CA, May 1993.

[23] G. Kesidis, A. Singh, D. Cheung, and W. W. Kwok. Feasibility of fluid-driven simulation for

atm network. In Proceedings of IEEE Globecom’96, November 1996.

[24] C. Kiddle, R. Simmonds, C. Williamson, and B. Unger. Hybrid packet/fluid flow network

simulation. In Proceedings of the 17th Workshop on Parallel and Distributed Simulation, June

2003.

[25] D. M. Kienzie and M. C. Elder. Recent worms: A survey and trends. In Proceedings of the

2003 ACM Workshop on Rapid Malcode, pages 1–10, October 2003.

[26] M. Liljenstam, J. Liu, D. Nicol, Y. Yuan, G. Yan, and C. Grier. Rinse: the real-time immer-

sive network simulation environment for network security exercises. In Proceedings of 2005

Workshop on Principles of Advanced and Distributed Simulation, June 2005.

[27] M. Liljenstam and D. Nicol. Comparing passive and active worm defenses. In Proceedings of

2004 Winter Simulation Conference, December 2004.

69

[28] M. Liljenstam, D. M. Nicol, V. H. Berk, and R. S. Gray. Simulating realistic network worm

traffic for worm warning system design and testing. In Worm Workshop at ACM, Washington

DC, Oct 2003.

[29] M. Liljenstam, Y. Yuan, B. J. Premore, and D. Nicol. A mixed abstraction level model of

large-scale internet worm infestations. In Proceedings of the 10th IEEE/ACM Symposium

on Modeling, Analysis and Simulation of Computer and Telecommunications Systems (MAS-

COTS), Fort Worth, TX, Oct 2002.

[30] B. Liu, D. R. Figueiredo, Y. Guo, J. Kurose, and D. Towsley. A study of networks simulation

efficiency: Fluid simulation vs. packet-level simulation. In Proceedings of IEEE Infocom’01,

2001.

[31] B. Liu, Y. Guo, J. Kurose, D. Towsley, and W. Gong. Fluid simulation of large scale net-

works: Issues and tradeoffs. In Proceedings of the International Conference on Parallel and

Distributed Processing Techniques and Applications, June 1999.

[32] J. Liu. Dartmouth ssfnet home. http://www.crhc.uiuc.edu / jasonliu/ projects/ssfnet/.

[33] J. Liu. Improvements In Convervative Parallel Simulation Of Large-Scale Models. PhD thesis,

Dartmouth College, 2003.

[34] J. Liu, Y. Yuan, D. M. Nicol, R. S. Gray, C. C. Newport, D. Kotz, and L. F. Perrone. Simulation

validation using direct execution of wireless ad-hoc routing protocols. In Proceedings of 2004

Workshop on Parallel and Distributed Simulation (PADS’04), 2004.

[35] A. Medina, A. Lakhina, I. Matta, and J. Byers. Boston university representative internet topol-

ogy generator. http://www.cs.bu.edu/brite/.

[36] Mirage networks. http://www.miragenetworks.com.

[37] Defense Modeling and United States Department of Defense Simulation Office. High level

architecture. https://www.dmso.mil/public/transition/hla, April 2005.

70

[38] D. Moore, V. Paxson, S. Savage, C. Shannon, and S. Staniford. Slammer worm dissection:

Inside the slammer worm. IEEE Security & Privacy, 1(4):33–39, 2003.

[39] Modeling of security and systems. http://www.linklings.net/MOSES/.

[40] D. M. Nicol, M. Goldsby, and M. Johnson. Fluid-based simulation of communication networks

using ssf. In Proceedings of the 1999 European Simulation Symposium, Erlangen-Nuremberg,

Germany, October 1999.

[41] D. M. Nicol and G Yan. Discrete event fluid modeling of background tcp traffic. ACM Trans-

actions on Modeling and Computer Simulation, 14:1–39, July 2004.

[42] The network simualtor - ns-2. ISI, http://www.isi.edu/nsnam/ns/.

[43] K. Perumalla, A. Park, R. F. Fujimoto, and G. F. Riley. Scalable rti-based parallel simulation

of networks. In Proceedings of the Workshop on Parallel and Distributed Simulation (PADS

2003), June 2003.

[44] A. Poplawski and D. M. Nicol. Nops: A conservative simulation engine for ted. In Proceedings

of the 1998 Workshop on Parallel and Distributed Simulation (PADS), pages 180–187, June

1998.

[45] B. J. Premore, D. M. Nicol, and X. Liu. A critique of the telecommunication description

language (ted). Technical Report PCS-TR96-290, Dartmouth College, Hanover, NH, 03755,

November 1996.

[46] G. F. Riley, R. M. Fujimoto, and M. H. Ammar. A generic framework for parallelization

of network simulations. In Proceedings of the 7th International Symposium of Modeling,

Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS’99), pages

128–135, October 1999.

71

[47] G. F. Riley, T. M. Jaafar, and R. M. Fujimoto. Integrated fluid and packet network simulations.

In Proceedings of the 10th IEEE Symposium on Modeling, Analysis, and ComputerSimulation

(MASCOTS), Oct. 2002.

[48] C. Shannon and D. Moore. The spread of the witty worm. CAIDA Analysis.

http://www.caida.org /analysis/security/witty/, 2004.

[49] R. Simmonds and B. W. Unger. Towards scalable network emulation. Computer Communica-

tions, 26(3):264–277, June 2003.

[50] S. Singh, C. Estan, G. Varghese, and S. Savage. The earlybird system for real-time detection

of unknown worms. Technical report, University of California, San Diego, 2003.

[51] Scalable simulation framework. http://www.ssfnet.org.

[52] S. Staniford. Containment of scanning worms in enterprise networks. Journal of Computer

Security, 2003.

[53] S. Staniford, V. Paxson, and N. Weaver. How to own the internet in your spare time. In

Proceedings of the 11th USENIX Security Symposium, August 2002.

[54] W32.gnuman.worm. Symantec Security Response, http://securityresponse.symantec.com /av-

center /venc/data/w32.gnuman.worm.html, February 2001.

[55] Telescope analysis. CAIDA, http://www.caida.org/analysis/security/telescope.

[56] The spread of the code-red worm (crv2). CAIDA, http://www.caida.org/analysis/security/

code-red/coderedv2 fanalysis.xml, 2001.

[57] J. Twycross and M. M. Williamson. Implementing and testing a virus throttle. In Proceedings

of the 12th USENIX Security Symposium, USENIX, August 2003.

72

[58] Y. Wang and C. Wang. Modeling the effects of timing parameters on virus propagation. In

Proceedings of the 2003 ACM Workshop on Rapid Malcode, pages 61–66, Washington, DC,

October 2003.

[59] N. Weaver, I. Hamadeh, G. Kesidis, and V. Paxson. Preliminary results using scale-down to

explore worm dynamics. In Proceedings of 2004 ACM Worm Workshop, October 2004.

[60] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. Large scale malicious code: A

research agenda.

[61] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A taxonomy of computer worms. In

Proceedings of the 2003 ACM Workshop on Rapid Malcode, pages 11–18, Washington, DC,

Oct 2003.

[62] N. Weaver, S. Staniford, and V. Paxson. Very fast containment of scanning worms. Technical

report, Berkeley, 2004.

[63] M. M. Williamson. Throttling viruses: Restricting propagation to defeat malicious mobile

code. Information Infrastructure Laboratory, HP Lab. Bristol, June 2002.

[64] J. Wu, S. Vangala, and L. Gao. An effective architecture and algorithm for detecting worms

with various scan techniques. In Network and Distributed System Security Symposium, 2004.

[65] V. Yegneswaran, P. Barford, and J. Ullrich. Internet intrusions: Global characteristics and

prevalence. In Proceedings of SIGMETRICS, June 2003.

[66] J. Zhou, Z. Ji, M. Takai, and R. Bagrodia. Maya: Integrating hybrid network modeling to

the physical world. In ACM Transactions on Modeling and Computer Simulation (TOMACS),

volume 14, pages 149–169, April 2004.

[67] C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring and early warning for internet worms.

Technical report, University of Massachusetts at Amherst, 2003.

73

[68] C. Zou, W. Gong, and D. Towsley. Worm propagation modeling and analysis under dynamic

quarantine defense. In Worm Workshop at ACM, 2003.

[69] C. Zou, D. Towsley, W. Gong, and S. Cai. Routing worm: A fast selective attack worm based

on ip address information. Technical report, Univ. Massachusetts, Amherst, 2003.

74

	On the Design of an Immersive Environment for Security-Related Studies
	Recommended Citation

	tmp.1594758963.pdf.r47Yo

