7 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationThe optimization of novel stretchable fingernail sensors for detecting fingertip touch force direction is introduced. The fingernail sensor uses optical reflectance photoplethysmography to measure the change in blood perfusion in the fingernail bed when the finger pad touches a surface with various forces. This "fingernail sensing" technique involves mounting an array of LEDs (Light Emitting Diodes) and photodetectors on the fingernail surface to detect changes in the reflection intensity as a function of applied force. The intensity changes correspond to changes in blood volume underneath the fingernail and allow for fingertip force detection without haptic obstruction, which has several applications in the area of human-machine interaction. This dissertation experimentally determines the optimal optical parameters for the transmittance of light through the human fingernail bed. Specifically, the effect of varying the wavelength and optical path length on light transmittance through the nail bed are thoroughly investigated. Light transmittance through the human fingernail is optimized when using green light (525nm) and when placing optoelectronic pairs as close together as possible. The optimal locations of the optoelectronic devices are predicted by introducing an optical model that describes light transmittance between an LED and a photodiode in the fingernail area based on optical experimentation. A reduced configuration is derived from the optimal optoelectronic locations in order to facilitate iv the fabrication of the optimized fingernail sensor without significantly compromising the recognition accuracy. This results in an overall force direction recognition accuracy of 95%. Using novel fabrication techniques, we successfully build a stretchable fingernail sensor prototype, which fully conforms to the two-dimensional fingernail surface and is independent of its geometry. Namely, we overcome the challenges of patterning conductive lines on a stretchable substrate, and embedding rigid optical components in a stretchable platform while maintaining electrical conductivity. A finite element analysis is conducted to optimize the electrical contact resistance between the optoelectronic components and underlying stretchable conductors, as a function of the bending curvature and substrate thickness. The functionality of the stretchable sensor is tested in relation to the design parameters. Finally, applications and potential impacts of this work are discussed

    Grasping Strategies for a Dexterous Hand during Teleoperation

    Get PDF
    Telerobotics is an interdisciplinary branch of engineering that deals with the control of robots at a distance in a manner that entails the intuition and the physical involvement of the operator controlling the robot. The end of the robotic manipulator consists of a device called an end effector that is used to hold the tools. Most telerobotic systems employ a simple single degree of freedom end effector called a parallel jaw gripper. Since such end effectors have just one degree of freedom and hence limited dexterity, it is essential to develop special fixtures to be attached to the tool that is grasped. The current research attempts to employ a multi fingered end effector, which has multiple degrees of freedom in an attempt to reduce tool fixturing costs and ensure ease of operation. The research integrates the end effector into an existing telerobotic system, develops and implements grasping strategies based on human grasp observations and experimental grasp by demonstration validation for specific tool and objects in an attempt to find stable grasps. The strategies developed are further implemented by designing a master controller for the end effector and integrating it with a human machine interface and the overall system

    Effects of different push-to-talk solutions on driving performance

    Get PDF
    Police officers have been using the Project54 system in their vehicles for a number of years. They have also started using the handheld version of Project54 outside their vehicles recently. There is a need to connect these two instances of the system into a continuous user interface. On the other hand, research has shown that the PTT button location affects driving performance. This thesis investigates the difference between the old, fixed PTT button and a new wireless PTT glove, that could be used in and outside of the car. The thesis describes the design of the glove and the driving simulator experiment that was conducted to investigate the glove\u27s merit. The main results show that the glove allows more freedom of operation, appears to be easier and more efficient to operate and it reduces the visual distraction of the drivers

    Telerobotic Sensor-based Tool Control Derived From Behavior-based Robotics Concepts

    Get PDF
    @font-face { font-family: TimesNewRoman ; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0in 0in 0.0001pt; font-size: 12pt; font-family: Times New Roman ; }div.Section1 { page: Section1; } Teleoperated task execution for hazardous environments is slow and requires highly skilled operators. Attempts to implement telerobotic assists to improve efficiency have been demonstrated in constrained laboratory environments but are not being used in the field because they are not appropriate for use on actual remote systems operating in complex unstructured environments using typical operators. This work describes a methodology for combining select concepts from behavior-based systems with telerobotic tool control in a way that is compatible with existing manipulator architectures used by remote systems typical to operations in hazardous environment. The purpose of the approach is to minimize the task instance modeling in favor of a priori task type models while using sensor information to register the task type model to the task instance. The concept was demonstrated for two tools useful to decontamination & dismantlement type operations—a reciprocating saw and a powered socket tool. The experimental results demonstrated that the approach works to facilitate traded control telerobotic tooling execution by enabling difficult tasks and by limiting tool damage. The role of the tools and tasks as drivers to the telerobotic implementation was better understood in the need for thorough task decomposition and the discovery and examination of the tool process signature. The contributions of this work include: (1) the exploration and evaluation of select features of behavior-based robotics to create a new methodology for integrating telerobotic tool control with positional teleoperation in the execution of complex tool-centric remote tasks, (2) the simplification of task decomposition and the implementation of sensor-based tool control in such a way that eliminates the need for the creation of a task instance model for telerobotic task execution, and (3) the discovery, demonstrated use, and documentation of characteristic tool process signatures that have general value in the investigation of other tool control, tool maintenance, and tool development strategies above and beyond the benefit sustained for the methodology described in this work

    Neuron-level dynamics of oscillatory network structure and markerless tracking of kinematics during grasping

    Get PDF
    Oscillatory synchrony is proposed to play an important role in flexible sensory-motor transformations. Thereby, it is assumed that changes in the oscillatory network structure at the level of single neurons lead to flexible information processing. Yet, how the oscillatory network structure at the neuron-level changes with different behavior remains elusive. To address this gap, we examined changes in the fronto-parietal oscillatory network structure at the neuron-level, while monkeys performed a flexible sensory-motor grasping task. We found that neurons formed separate subnetworks in the low frequency and beta bands. The beta subnetwork was active during steady states and the low frequency network during active states of the task, suggesting that both frequencies are mutually exclusive at the neuron-level. Furthermore, both frequency subnetworks reconfigured at the neuron-level for different grip and context conditions, which was mostly lost at any scale larger than neurons in the network. Our results, therefore, suggest that the oscillatory network structure at the neuron-level meets the necessary requirements for the coordination of flexible sensory-motor transformations. Supplementarily, tracking hand kinematics is a crucial experimental requirement to analyze neuronal control of grasp movements. To this end, a 3D markerless, gloveless hand tracking system was developed using computer vision and deep learning techniques. 2021-11-3

    Design and analysis of fingernail sensors for measurement of fingertip touch fouce and finger posture

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2002.Includes bibliographical references (leaves 142-148).A new type of wearable sensor for detecting fingertip touch force and finger posture is presented. Unlike traditional electronic gloves, in which sensors are embedded along the finger and on the fingerpads, this new device does not constrict finger motion and allows the fingers to directly contact the environment without obstructing the human's natural haptic senses. The fingertip touch force and finger posture are detected by measuring changes in the coloration of the fingernail; hence, the sensor is mounted on the fingernail and does not interfere with bending or touching actions. Specifically, the fingernail is instrumented with miniature light emitting diodes (LEDs) and photodetectors in order to measure changes in the reflection intensity when the fingertip is pressed against a surface or when the finger is bent. The changes in intensity are then used to determine changes in the blood volume under the fingernail, a technique termed "reflectance photoplethysmography." By arranging the LEDs and photodetectors in a spatial array, the two-dimensional pattern of blood volume can be measured and used to predict the touch force and posture. This thesis first underscores the role of the fingernail sensor as a means of indirectly detecting fingertip touch force and finger posture by measuring the internal state of the finger. Desired functionality and principles of photoplethysmography are used to create a set of design goals and guidelines for such a sensor.(cont.) A working miniaturized prototype nail sensor is designed, built, tested, and analyzed. Based on fingertip anatomy and photographic evidence, mechanical and hemodynamic models are created in order to understand the mechanism of the blood volume change at multiple locations within the fingernail bed. These models are verified through experiment and simulation. Next, data-driven, mathematical models or filters are designed to comprehensively predict normal touching forces, shear touching forces, and finger bending based on readings from the sensor. A method to experimentally calibrate the filters is designed, implemented, and validated. Using these filters, the sensors are capable of predicting forces to within 0.5 N RMS error and posture angle to within 10 degrees RMS error. Performances of the filters are analyzed, compared, and used to suggest design guidelines for the next generation of sensors. Finally, applications to human-machine interface are discussed and tested, and potential impacts of this work on the fields of virtual reality and robotics are proposed.by Stephen A. Mascaro.Ph.D

    Modelado de sensores piezoresistivos y uso de una interfaz basada en guantes de datos para el control de impedancia de manipuladores robóticos

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Departamento de Arquitectura de Computadores y Automática, leída el 21-02-2014Sección Deptal. de Arquitectura de Computadores y Automática (Físicas)Fac. de Ciencias FísicasTRUEunpu
    corecore