50 research outputs found

    Neuron-level dynamics of oscillatory network structure and markerless tracking of kinematics during grasping

    Get PDF
    Oscillatory synchrony is proposed to play an important role in flexible sensory-motor transformations. Thereby, it is assumed that changes in the oscillatory network structure at the level of single neurons lead to flexible information processing. Yet, how the oscillatory network structure at the neuron-level changes with different behavior remains elusive. To address this gap, we examined changes in the fronto-parietal oscillatory network structure at the neuron-level, while monkeys performed a flexible sensory-motor grasping task. We found that neurons formed separate subnetworks in the low frequency and beta bands. The beta subnetwork was active during steady states and the low frequency network during active states of the task, suggesting that both frequencies are mutually exclusive at the neuron-level. Furthermore, both frequency subnetworks reconfigured at the neuron-level for different grip and context conditions, which was mostly lost at any scale larger than neurons in the network. Our results, therefore, suggest that the oscillatory network structure at the neuron-level meets the necessary requirements for the coordination of flexible sensory-motor transformations. Supplementarily, tracking hand kinematics is a crucial experimental requirement to analyze neuronal control of grasp movements. To this end, a 3D markerless, gloveless hand tracking system was developed using computer vision and deep learning techniques. 2021-11-3

    On the role of gestures in human-robot interaction

    Get PDF
    This thesis investigates the gestural interaction problem and in particular the usage of gestures for human-robot interaction. The lack of a clear definition of the problem statement and a common terminology resulted in a fragmented field of research where building upon prior work is rare. The scope of the research presented in this thesis, therefore, consists in laying the foundation to help the community to build a more homogeneous research field. The main contributions of this thesis are twofold: (i) a taxonomy to define gestures; and (ii) an ingegneristic definition of the gestural interaction problem. The contributions resulted is a schema to represent the existing literature in a more organic way, helping future researchers to identify existing technologies and applications, also thanks to an extensive literature review. Furthermore, the defined problem has been studied in two of its specialization: (i) direct control and (ii) teaching of a robotic manipulator, which leads to the development of technological solutions for gesture sensing, detection and classification, which can possibly be applied to other contexts

    Instrumento de medición de la fuerza de agarre en los dedos de la mano /

    Get PDF
    El presente trabajo tiene como objetivo el desarrollo de un sistema para la estimación de las fuerzas aplicadas en las extremidades superiores del ser humano, específicamente, en los dedos. Se diseñó un instrumento cómodo para el usuario que permite la realización de las mediciones por medio de cuatro sensores de fuerza ubicados en un guante, uno en cada dedo (pulgar, índice, medio y anular). Se empleó una tarjeta Bluno Nano, la cual integra un módulo Bluetooth 4.0 junto a un módulo Arduino UNO. A su vez se diseñó una PCB con los componentes requeridos para el acondicionamiento de las señales de los sensores: resistencias, amplificadores operacionales y batería. La tarjeta Bluno Nano envía los valores de fuerza de manera inalámbrica a una computadora con un adaptador Bluetooth de baja energía USB que cuenta con un programa para visualizar y guardar en archivos de texto la información adquirida.Incluye referencias bibliográficas (páginas 52-55

    The Benefits of Haptic Feedback in Mobile Phone Camera

    Get PDF
    Communication is basically the act of transferring information from one place to another. Feedback is a system where the reaction or response of the receiver arrives at the sender after he/she has interpreted the message. Feedback is inevitably essential to make two way communications effective. In fact, without feedback communication remains incomplete. At times, feedback could be verbal such as written and oral. Then in some cases, it could be nonverbal. Feedback is mainly a response from your audiences; it allows you to evaluate the effectiveness of your message. In fact research shows that the majority of the messages that have been sent are nonverbal and the ability to understand and use nonverbal communication is powerful tools that will help people connect with each other. As well as communication where nonverbal shows much more impressive, a sense of touch as known as haptics plays an important role in our new phase of technology. It is the science of applying touch sensation and control to interaction with computer applications by using special input/output devices. It gives users a slight jolt of energy at the point of touch, providing instant sensory feedback, while reducing the audio, visual or audio-visual demand. Haptic technology is an evolutionary step into interacting with objects as an extension of our mind and allows for more socially appropriate and subtle interaction. In this thesis, the benefits of haptic feedback in a mobile phone camera are explored and compared to the existing feedback mechanisms. Discovering expectations from users and gathering ideas in order to improve user experience in haptic feedback of a mobile phone camera will be the main focus as well as to understand “What make end users to use or not to use mobile phone camera?” and “What qualities of haptics could be used in the design of the user interface for mobile phone camera?”. Depending on the settings and the quality of the mobile phones, the feedback from the camera can affect the user experience in many ways. I believe that to improve the existing feedback by applying haptic output such as a vibration or a vibrotactile signal may also considerably improve the user experience. Because haptic feedback is a new technology and proved to be efficient, to apply it to the mobile phone camera feedback should provide better support for users when compared to the existing feedback signals, which are audio and visual only. One of the main objectives was to analyze the users’ needs and expectations regarding the mobile phone camera haptic feedback and applications in various types of difficult situations and challenges users have encountered. Therefore, a user study was done at the beginning of the thesis work. Its aim was to get general results, which can be applied to haptic interaction on the mobile phone camera in order to improve existing applications and help easing users in their photo taking activities with their mobile phone camera. In addition, the results are considered to provide input for further studies as well as to offer concrete input to the development of a prototype

    Towards observable haptics: Novel sensors for capturing tactile interaction patterns

    Get PDF
    Kõiva R. Towards observable haptics: Novel sensors for capturing tactile interaction patterns. Bielefeld: Bielefeld University; 2014.Touch is one of the primary senses humans use when performing coordinated interaction, but the lack of a sense of touch in the majority of contemporary interactive technical systems, such as robots, which operate in non-deterministic environments, results in interactions that can at best be described as clumsy. Observing human haptics and extracting the salient information from the gathered data is not only relevant if we are to try to understand the involved underlying cognitive processes, but should also provide us with significant clues to design future intelligent interactive systems. Such systems could one day help to take the burden of tedious tasks off our hands in a similar fashion to how industrial robots revolutionized manufacturing. The aim of the work in this thesis was to provide significant advancements in tactile sensing technology, and thus move us a step closer to realizing this goal. The contributions contained herein can be broken into two major parts. The first part investigates capturing interaction patterns in humans with the goals of better understanding manual intelligence and improving the lives of hand amputees, while the second part is focused on augmenting technical systems with a sense of touch. tacTiles, a wireless tactile sensitive surface element attached to a deformable textile, was developed to capture human full-body interactions with large surfaces we come into contact with in our daily lives, such as floors, chairs, sofas or other furniture. The Tactile Dataglove, iObject and the Tactile Pen were developed especially to observe human manual intelligence. Whereas iObject allows motion sensing and a higher definition tactile signal to be captured than the Tactile Dataglove (220 tactile cells in the first iObject prototype versus 54 cells in the glove), the wearable glove makes haptic interactions with arbitrary objects observable. The Tactile Pen was designed to measure grip force during handwriting in order to better facilitate therapeutic treatment assessments. These sensors have already been extensively used by various research groups, including our own, to gain a better understanding of human manual intelligence. The Finger-Force-Linear-Sensor and the Tactile Bracelet are two novel sensors that were developed to facilitate more natural control of dexterous multi Degree-of-Freedom (DOF) hand prostheses. The Finger-Force-Linear-Sensor is a very accurate bidirectional single finger force ground-truth measurement device that was designed to enable testing and development of single finger forces and muscle activations mapping algorithms. The Tactile Bracelet was designed with the goal to provide a more robust and intuitive means of control for multi-DOF hand prostheses by measuring the muscle bulgings of the remnant muscles of lower arm amputees. It is currently in development and will eventually cover the complete forearm circumference with high spatial resolution tactile sensitive surfaces. An experiment involving a large number of lower arm amputees has already been planned. The Modular flat tactile sensor system, the Fabric-based touch sensitive artificial skin and the 3D shaped tactile sensor were developed to cover and to add touch sensing capabilities to the surfaces of technical systems. The rapid augmentation of systems with a sense of touch was the main goal of the modular flat tactile sensor system. The developed sensor modules can be used alone or in an array to form larger tactile sensitive surfaces such as tactile sensitive tabletops. As many robots have curved surfaces, using flat rigid modules severely limits the areas that can be covered with tactile sensors. The Fabric-based tactile sensor, originally developed to form a tactile dataglove for human hands, can with minor modifications also function as an artificial skin for technical systems. Finally, the 3D shaped tactile sensor based on Laser-Direct-Structuring technology is a novel tactile sensor that has a true 3D shape and provides high sensitivity and a high spatial resolution. These sensors take us further along the path towards creating general purpose technical systems that in time can be of great help to us in our daily lives. The desired tactile sensor characteristics differ significantly according to which haptic interaction patterns we wish to measure. Large tactile sensor arrays that are used to capture full body haptic interactions with floors and upholstered furniture, or that are designed to cover large areas of technical system surfaces, need to be scalable, have low power consumption and should ideally have a low material cost. Two examples of such sensors are tacTiles and the Fabric-based sensor for curved surfaces. At the other end of the tactile sensor development spectrum, if we want to observe manual interactions, high spatial and temporal resolution are crucial to enable the measurement of fine grasping and manipulation actions. Our fingertips contain the highest density area of mechanoreceptors, the organs that sense mechanical pressure and distortions. Thus, to construct biologically inspired anthropomorphic robotic hands, the artificial tactile sensors for the fingertips require similar high-fidelity sensors with surfaces that are curved under small bending radii in 2 dimensions, have high spatial densities, while simultaneously providing high sensitivity. With the fingertip tactile sensor, designed to fit the Shadow Robot Hands' fingers, I show that such sensors can indeed be constructed in the 3D-shaped high spatial resolution tactile sensor section of my thesis. With my work I have made a significant contribution towards making haptics more observable. I achieved this by developing a high number of novel tactile sensors that are usable, give a deeper insight into human haptic interactions, have great potential to help amputees and that make technical systems, such as robots, more capable

    Modelado de sensores piezoresistivos y uso de una interfaz basada en guantes de datos para el control de impedancia de manipuladores robóticos

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Departamento de Arquitectura de Computadores y Automática, leída el 21-02-2014Sección Deptal. de Arquitectura de Computadores y Automática (Físicas)Fac. de Ciencias FísicasTRUEunpu

    Remote tactile feedback on interactive surfaces

    Get PDF
    Direct touch input on interactive surfaces has become a predominating standard for the manipulation of digital information in our everyday lives. However, compared to our rich interchange with the physical world, the interaction with touch-based systems is limited in terms of flexibility of input and expressiveness of output. Particularly, the lack of tactile feedback greatly reduces the general usability of a touch-based system and hinders from a productive entanglement of the virtual information with the physical world. This thesis proposes remote tactile feedback as a novel method to provide programmed tactile stimuli supporting direct touch interactions. The overall principle is to spatially decouple the location of touch input (e.g. fingertip or hand) and the location of the tactile sensation on the user's body (e.g. forearm or back). Remote tactile feedback is an alternative concept which avoids particular challenges of existing approaches. Moreover, the principle provides inherent characteristics which can accommodate for the requirements of current and future touch interfaces. To define the design space, the thesis provides a structured overview of current forms of touch surfaces and identifies trends towards non-planar and non-rigid forms with more versatile input mechanisms. Furthermore, a classification highlights limitations of the current methods to generate tactile feedback on touch-based systems. The proposed notion of tactile sensory relocation is a form of sensory substitution. Underlying neurological and psychological principles corroborate the approach. Thus, characteristics of the human sense of touch and principles from sensory substitution help to create a technical and conceptual framework for remote tactile feedback. Three consecutive user studies measure and compare the effects of both direct and remote tactile feedback on the performance and the subjective ratings of the user. Furthermore, the experiments investigate different body locations for the application of tactile stimuli. The results show high subjective preferences for tactile feedback, regardless of its type of application. Additionally, the data reveals no significant differences between the effects of direct and remote stimuli. The results back the feasibility of the approach and provide parameters for the design of stimuli and the effective use of the concept. The main part of the thesis describes the systematical exploration and analysis of the inherent characteristics of remote tactile feedback. Four specific features of the principle are identified: (1) the simplification of the integration of cutaneous stimuli, (2) the transmission of proactive, reactive and detached feedback, (3) the increased expressiveness of tactile sensations and (4) the provision of tactile feedback during multi-touch. In each class, several prototypical remote tactile interfaces are used in evaluations to analyze the concept. For example, the PhantomStation utilizes psychophysical phenomena to reduce the number of single tactile actuators. An evaluation with the prototype compares standard actuator technologies with each other in order to enable simple and scalable implementations. The ThermalTouch prototype creates remote thermal stimuli to reproduce material characteristics on standard touchscreens. The results show a stable rate of virtual object discrimination based on remotely applied temperature profiles. The AutmotiveRTF system is implemented in a vehicle and supports the driver's input on the in-vehicle-infotainment system. A field study with the system focuses on evaluating the effects of proactive and reactive feedback on the user's performance. The main contributions of the dissertation are: First, the thesis introduces the principle of remote tactile feedback and defines a design space for this approach as an alternative method to provide non-visual cues on interactive surfaces. Second, the thesis describes technical examples to rapidly prototype remote tactile feedback systems. Third, these prototypes are deployed in several evaluations which highlight the beneficial subjective and objective effects of the approach. Finally, the thesis presents features and inherent characteristics of remote tactile feedback as a means to support the interaction on today's touchscreens and future interactive surfaces.Die Interaktion mit berührungsempfindlichen Oberflächen ist heute ein Standard für die Manipulation von digitaler Information. Jedoch weist die Bedienung dieser interaktiven Bildschirme starke Einschränkungen hinsichtlich der Flexibilität bei der Eingabe und der Ausdruckskraft der Ausgabe auf, wenn man sie mit den vielfältigen Möglichkeiten des Umgangs mit Objekten in unserer Alltagswelt vergleicht. Besonders die nicht vorhandenen Tastsinnesrückmeldungen vermindern stark die Benutzbarkeit solcher Systeme und verhindern eine effektive Verknüpfung von virtueller Information und physischer Welt. Die vorliegende Dissertation beschreibt den Ansatz der 'distalen taktilen Rückmeldungen' als neuartige Möglichkeit zur Vermittlung programmierter Tastsinnesreize an Benutzer interaktiver Oberflächen. Das Grundprinzip dabei ist die räumliche Trennung zwischen der Eingabe durch Berührung (z.B. mit der Fingerspitze) und dem daraus resultierenden taktilen Reiz am Körper der Benutzer (z.B. am Rücken). Dabei vermeidet das Konzept der distalen taktilen Rückmeldungen einzelne technische und konzeptionelle Nachteile existierender Ansätze. Zusätzlich bringt es Interaktionsmöglichkeiten mit sich, die den Eigenheiten der Interaktion mit aktuellen und auch zukünftigen berührungsempfindlichen Oberflächen Rechnung tragen. Zu Beginn zeigt ein Überblick zu relevanten Arbeiten den aktuellen Forschungstrend hin zu nicht-flachen und verformbaren berührungsempfindlichen Oberflächen sowie zu vielfältigeren Eingabemethoden. Eine Klassifizierung ordnet existierende technische Verfahren zur Erzeugung von künstlichen Tastsinnesreizen und stellt jeweils konzeptuelle und technische Herausforderungen dar. Der in dieser Arbeit vorgeschlagene Ansatz der Verlagerung von Tastsinnesreizen ist eine Form der sensorischen Substitution, zugrunde liegende neurologische und psychologische Prinzipien untermauern das Vorgehen. Die Wirkprinzipien des menschlichen Tastsinnes und die Systeme zur sensorischen Substitution liefern daher konzeptionelle und technische Richtlinien zur Umsetzung der distalen taktilen Rückmeldungen. Drei aufeinander aufbauende Benutzerstudien vergleichen die Auswirkungen von direkten und distalen taktilen Rückmeldungen auf die Leistung und das Verhalten von Benutzern sowie deren subjektive Bewertung der Interaktion. Außerdem werden in den Experimenten die Effekte von Tastsinnesreizen an verschiedenen Körperstellen untersucht. Die Ergebnisse zeigen starke Präferenzen für Tastsinnesrückmeldungen, unabhängig von deren Applikationsort. Die Daten ergeben weiterhin keine signifikanten Unterschiede bei den quantitativen Effekten von direktem und distalen Rückmeldungen. Diese Ergebnisse befürworten die Realisierbarkeit des Ansatzes und zeigen Richtlinien für weitere praktische Umsetzungen auf. Der Hauptteil der Dissertation beschreibt die systematische Untersuchung und Analyse der inhärenten Möglichkeiten, die sich aus der Vermittlung distaler taktiler Rückmeldungen ergeben. Vier verschiedene Charakteristika werden identifiziert: (1) die vereinfachte Integration von Tastsinnesreizen, (2) die Vermittlung von proaktiven, reaktiven und entkoppelten Rückmeldungen, (3) die erhöhte Bandbreite der taktilen Signale und (4) die Darstellung von individuellen Tastsinnesreizen für verschiedene Kontaktpunkte mit der berührungsempfindlichen Oberfläche. Jedes dieser Prinzipien wird durch prototypische Systeme umgesetzt und in Benutzerstudien analysiert. Beispielsweise nutzt das System PhantomStation psychophysikalische Illusionen, um die Anzahl der einzelnen Reizgeber zu reduzieren. In einer Evaluierung des Prototypen werden mehrere Aktuatortechnologien verglichen, um einfache und skalierbare Ansätze zu identifizieren. Der ThermalTouch-Prototyp wird dazu genutzt, distale thermale Reize zu vermitteln, um so Materialeigenschaften auf Berührungsbildschirmen darstellen zu können. Eine Benutzerstudie zeigt, dass sich auf Basis dieser Temperaturverläufe virtuelle Objekte unterscheiden lassen. Das AutomotiveRTF-System wird schließlich in ein Kraftfahrzeug integriert, um den Fahrer bei der Eingabe auf dem Informations- und Unterhaltungssystem zu unterstützen. Eine Feldstudie untersucht die Auswirkungen der proaktiven und reaktiven Rückmeldungen auf die Benutzerleistung. Die vorliegende Dissertation leistet mehrere Beiträge zur Mensch-Maschine-Interaktion: Das Prinzip der distalen taktilen Rückmeldungen wird eingeführt als Alternative zur Erzeugung nicht-visueller Rückmeldungen auf interaktiven Oberflächen. Es werden technische Verfahrensweisen zur prototypischen Implementierung solcher Systeme vorgeschlagen. Diese technischen Prototypen werden in einer Vielzahl verschiedener Benutzerstudien eingesetzt, welche die quantitativen und qualitativen Vorteile des Ansatzes aufzeigen. Schließlich wird gezeigt, wie sich das Prinzip zur Unterstützung heutiger und zukünftiger Interaktionsformen mit berührungsempfindlichen Bildschirmen nutzen lässt

    Doctor of Philosophy

    Get PDF
    dissertationThe optimization of novel stretchable fingernail sensors for detecting fingertip touch force direction is introduced. The fingernail sensor uses optical reflectance photoplethysmography to measure the change in blood perfusion in the fingernail bed when the finger pad touches a surface with various forces. This "fingernail sensing" technique involves mounting an array of LEDs (Light Emitting Diodes) and photodetectors on the fingernail surface to detect changes in the reflection intensity as a function of applied force. The intensity changes correspond to changes in blood volume underneath the fingernail and allow for fingertip force detection without haptic obstruction, which has several applications in the area of human-machine interaction. This dissertation experimentally determines the optimal optical parameters for the transmittance of light through the human fingernail bed. Specifically, the effect of varying the wavelength and optical path length on light transmittance through the nail bed are thoroughly investigated. Light transmittance through the human fingernail is optimized when using green light (525nm) and when placing optoelectronic pairs as close together as possible. The optimal locations of the optoelectronic devices are predicted by introducing an optical model that describes light transmittance between an LED and a photodiode in the fingernail area based on optical experimentation. A reduced configuration is derived from the optimal optoelectronic locations in order to facilitate iv the fabrication of the optimized fingernail sensor without significantly compromising the recognition accuracy. This results in an overall force direction recognition accuracy of 95%. Using novel fabrication techniques, we successfully build a stretchable fingernail sensor prototype, which fully conforms to the two-dimensional fingernail surface and is independent of its geometry. Namely, we overcome the challenges of patterning conductive lines on a stretchable substrate, and embedding rigid optical components in a stretchable platform while maintaining electrical conductivity. A finite element analysis is conducted to optimize the electrical contact resistance between the optoelectronic components and underlying stretchable conductors, as a function of the bending curvature and substrate thickness. The functionality of the stretchable sensor is tested in relation to the design parameters. Finally, applications and potential impacts of this work are discussed

    Telerobotic Sensor-based Tool Control Derived From Behavior-based Robotics Concepts

    Get PDF
    @font-face { font-family: TimesNewRoman ; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0in 0in 0.0001pt; font-size: 12pt; font-family: Times New Roman ; }div.Section1 { page: Section1; } Teleoperated task execution for hazardous environments is slow and requires highly skilled operators. Attempts to implement telerobotic assists to improve efficiency have been demonstrated in constrained laboratory environments but are not being used in the field because they are not appropriate for use on actual remote systems operating in complex unstructured environments using typical operators. This work describes a methodology for combining select concepts from behavior-based systems with telerobotic tool control in a way that is compatible with existing manipulator architectures used by remote systems typical to operations in hazardous environment. The purpose of the approach is to minimize the task instance modeling in favor of a priori task type models while using sensor information to register the task type model to the task instance. The concept was demonstrated for two tools useful to decontamination & dismantlement type operations—a reciprocating saw and a powered socket tool. The experimental results demonstrated that the approach works to facilitate traded control telerobotic tooling execution by enabling difficult tasks and by limiting tool damage. The role of the tools and tasks as drivers to the telerobotic implementation was better understood in the need for thorough task decomposition and the discovery and examination of the tool process signature. The contributions of this work include: (1) the exploration and evaluation of select features of behavior-based robotics to create a new methodology for integrating telerobotic tool control with positional teleoperation in the execution of complex tool-centric remote tasks, (2) the simplification of task decomposition and the implementation of sensor-based tool control in such a way that eliminates the need for the creation of a task instance model for telerobotic task execution, and (3) the discovery, demonstrated use, and documentation of characteristic tool process signatures that have general value in the investigation of other tool control, tool maintenance, and tool development strategies above and beyond the benefit sustained for the methodology described in this work

    Reports to the President

    Get PDF
    A compilation of annual reports for the 1989-1990 academic year, including a report from the President of the Massachusetts Institute of Technology, as well as reports from the academic and administrative units of the Institute. The reports outline the year's goals, accomplishments, honors and awards, and future plans
    corecore