5 research outputs found

    Photovoltaic Energy Harvesting for Millimeter-Scale Systems

    Full text link
    The Internet of Things (IoT) based on mm-scale sensors is a transformational technology that opens up new capabilities for biomedical devices, surveillance, micro-robots and industrial monitoring. Energy harvesting approaches to power IoT have traditionally included thermal, vibration and radio frequency. However, the achievement of efficient energy scavenging for IoT at the mm-scale or sub mm-scale has been elusive. In this work, I show that photovoltaic (PV) cells at the mm-scale can be an alternative means of wireless power transfer to mm-scale sensors for IoT, utilizing ambient indoor lighting or intentional irradiation of near-infrared (NIR) LED sources through biological tissue. Single silicon and GaAs photovoltaic cells at the mm-scale can achieve a power conversion efficiency of more than 17 % for silicon and 30 % for GaAs under low-flux NIR irradiation at 850 nm through the optimized device structure and sidewall/surface passivation studies, which guarantees perpetual operation of mm-scale sensors. Furthermore, monolithic single-junction GaAs photovoltaic modules offer a means for series-interconnected cells to provide sufficient voltage (> 5 V) for direct battery charging, and bypassing needs for voltage up-conversion circuitry. However, there is a continuing challenge to miniaturize such PV systems down to the sub mm-scale with minimal optical losses from device isolation and metal interconnects and efficient voltage up-conversion. Vertically stacked dual-junction PV cells and modules are demonstrated to increase the output voltage per cell and minimize area losses for direct powering of miniature devices for IoT and bio-implantable applications with low-irradiance narrowband spectral illumination. Dual-junction PV cells at small dimensions (150 µm x 150 µm) demonstrate power conversion efficiency greater than 22 % with more than 1.2 V output voltage under low-flux 850 nm NIR LED illumination, which is sufficient for batteryless operation of miniaturized CMOS IC chips. The output voltage of dual-junction PV modules with eight series-connected single cells is greater than 10 V while maintaining an efficiency of more than 18 %. Finally, I demonstrate monolithic PV/LED modules at the µm-scale for brain-machine interfaces, enabling two-way optical power and data transfer in a through-tissue configuration. The wafer-level assembly plan for the 3D vertical integration of three different systems including GaAs LED/PV modules, CMOS silicon chips, and neural probes is proposed.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163261/1/esmoon_1.pd

    Recent Topics in Electromagnetic Compatibility

    Get PDF
    Recent Topics in Electromagnetic Compatability discusses several topics in electromagnetic compatibility (EMC) and electromagnetic interference (EMI), including measurements, shielding, emission, interference, biomedical devices, and numerical modeling. Over five sections, chapters address the electromagnetic spectrum of corona discharge, life cycle assessment of flexible electromagnetic shields, EMC requirements for implantable medical devices, analysis and design of absorbers for EMC applications, artificial surfaces, and media for EMC and EMI shielding, and much more

    Sistemas eficientes de transmissão de energia sem-fios e identificação por radiofrequência

    Get PDF
    Doutoramento em Engenharia EletrotécnicaIn the IoT context, where billions of connected objects are expected to be ubiquitously deployed worldwide, the frequent battery maintenance of ubiquitous wireless nodes is undesirable or even impossible. In these scenarios, passive-backscatter radios will certainly play a crucial role due to their low cost, low complexity and battery-free operation. However, as passive-backscatter devices are chiefly limited by the WPT link, its efficiency optimization has been a major research concern over the years, gaining even more emphasis in the IoT context. Wireless power transfer has traditionally been carried out using CW signals, and the efficiency improvement has commonly been achieved through circuit design optimization. This thesis explores a fundamentally different approach, in which the optimization is focused on the powering waveforms, rather than the circuits. It is demonstrated through theoretical analysis, simulations and measurements that, given their greater ability to overcome the built-in voltage of rectifying devices, high PAPR multi-sine (MS) signals are capable of more efficiently exciting energy harvesting circuits when compared to CWs. By using optimal MS signals to excite rectifying devices, remarkable RF-DC conversion efficiency gains of up to 15 dB with respect to CW signals were obtained. In order to show the effectiveness of this approach to improve the communication range of passive-backscatter systems, a MS front-end was integrated in a commercial RFID reader and a significant range extension of 25% was observed. Furthermore, a software-defined radio RFID reader, compliant with ISO18000-6C standard and with MS capability, was constructed from scratch. By interrogating passive RFID transponders with MS waveforms, a transponder sensitivity improvement higher than 3 dB was obtained for optimal MS signals. Since the amplification and transmission of high PAPR signals is critical, this work also proposes efficient MS transmitting architectures based on space power combining techniques. This thesis also addresses other not less important issues, namely self-jamming in passive RFID readers, which is the second limiting factor of passive-backscatter systems. A suitable self-jamming suppression scheme was first used for CW signals and then extended to MS signals, yielding a CW isolation up to 50 dB and a MS isolation up 60 dB. Finally, a battery-less remote control system was developed and integrated in a commercial TV device with the purpose of demonstrating a practical application of wireless power transfer and passive-backscatter concepts. This allowed battery-free control of four basic functionalities of the TV (CH+,CH-,VOL+,VOL-).No contexto da internet das coisas (IoT), onde são esperados bilhões de objetos conectados espalhados pelo planeta de forma ubíqua, torna-se impraticável uma frequente manutenção e troca de baterias dos dispositivos sem fios ubíquos. Nestes cenários, os sistemas radio backscatter passivos terão um papel preponderante dado o seu baixo custo, baixa complexidade e não necessidade de baterias nos nós móveis. Uma vez que a transmissão de energia sem fios é o principal aspeto limitativo nestes sistemas, a sua otimização tem sido um tema central de investigação, ganhando ainda mais ênfase no contexto IoT. Tradicionalmente, a transferência de energia sem-fios é feita através de sinais CW e a maximização da eficiência é conseguida através da otimização dos circuitos recetores. Neste trabalho explora-se uma abordagem fundamentalmente diferente, em que a otimização foca-se nas formas de onda em vez dos circuitos. Demonstra-se, teoricamente e através de simulações e medidas que, devido à sua maior capacidade em superar a barreira de potencial intrínseca dos dispositivos retificadores, os sinais multi-seno (MS) de elevado PAPR são capazes de excitar os circuitos de colheita de energia de forma mais eficiente quando comparados com o sinal CW tradicional. Usando sinais MS ótimos em circuitos retificadores, foram verificadas experimentalmente melhorias de eficiência de conversão RF-DC notáveis de até 15 dB relativamente ao sinal CW. A fim de mostrar a eficácia desta abordagem na melhoria da distância de comunicação de sistemas backscatter passivos, integrou-se um front-end MS num leitor RFID comercial e observou-se um aumento significativo de 25% na distância de leitura. Além disso, desenvolveu-se de raiz um leitor RFID baseado em software rádio, compatível com o protocolo ISO18000-6C e capaz de gerar sinais MS, com os quais interrogou-se transponders passivos, obtendo-se ganhos de sensibilidade dos transponders maiores que 3 dB. Uma vez que a amplificação de sinais de elevado PAPR é uma operação crítica, propôs-se também novas arquiteturas eficientes de transmissão baseadas na combinação de sinais em espaço livre. Esta tese aborda também outros aspetos não menos importantes, como o self-jamming em leitores RFID passivos, tido como o segundo fator limitativo neste tipo de sistemas. Estudou-se técnicas de cancelamento de self-jamming CW e estendeu-se o conceito a sinais MS, tendo-se obtido isolamentos entre o transmissor e o recetor de até 50 dB no primeiro caso e de até 60 dB no segundo. Finalmente, com o objetivo de demonstrar uma aplicação prática dos conceitos de transmissão de energia sem fios e comunicação backscatter, desenvolveu-se um sistema de controlo remoto sem pilhas, cujo protótipo foi integrado num televisor comercial a fim de controlar quatro funcionalidades básicas (CH+,CH-,VOL+,VOL-)

    Semiconductor Nanowire Based Piezoelectric Energy Harvesters: Modeling, Fabrication, and Characterization

    Get PDF
    Semiconductor nanowire (NW) arrays’ unique advantages over bulk forms, including enhanced surface area, high mechanical flexibility, high sensitivity to small forces, better charge collection, and enhanced light absorption through trapping, make them ideal templates on which to build other structures. This research on the piezoelectric behavior of NWs used in high-performance energy harvesters is based on device modeling, fabrication, and characterization. These activities optimize the electrical properties of a NW device in response to a compression/release force applied to the NWs. The dissertation first discusses the piezoelectric and semiconductor properties of wurtzite compound nanomaterials, emphasizing III-nitride semiconducting InN and GaN NWs. Static analysis identifies the role of carrier density, temperature, force, length/diameter ratio, and Schottky barrier height. Piezoelectric nanogenerators (NGs) based on vertically aligned InN nanowires (NWs) are fabricated, characterized, and evaluated. In these NGs, arrays of exclusively either p-type or intrinsic InN NWs prepared by plasma-assisted molecular beam epitaxy (MBE) demonstrate similar average piezoelectric properties. The p-type NGs show 160% more output current and 70% more output power product than the intrinsic NGs. The features driving performance enhancement are reduced electrostatic losses due to a higher NW areal density and longer NWs, and improved electromechanical energy conversion efficiency due to smaller NW diameters. These findings highlight the potential of InN based NGs as a power source for self-powered systems and the importance of NW morphology in overall NG performance. The second part is devoted to demonstrate a series of flexible transparent ZnO p-n homojunction nanowire (NW)-based piezoelectric nanogenerators (NGs) with different p-doping concentrations. The lithium-doped segments are grown directly and consecutively on top of intrinsic nanowires (n-type). When characterized under cyclic compressive strains, the overall NG performance is enhanced by up to eleven-fold if the doping concentration is properly controlled. This improvement is attributable to reduction in the mobile charge screening effect and optimization of the NGs’ internal electrical characteristics. Experimental results also show that an interfacial MoO3 barrier layer, at an optimized thickness of 5-10 nm, reduces leakage current and substantially improves piezoelectric NG performance. The third part presents the first cascade-type compact hybrid energy cell (CHEC) that is capable of simultaneously or individually harvesting solar and strain energies. It is made of an n-p junction NW-based piezoelectric nanogenerator to harvest strain energy and an nc/a-Si:H single junction cell to harvest solar energy. The CHECs ability to harvest energy effectively simultaneously, and complementary is demonstrated by deploying six CHECs to power LEDs and a wireless strain gauge sensor node. Under ~10 mW/cm2 illumination and vibrations of 3 m/s2 at 3 Hz frequency, the output current and voltage from a single 1.0 cm2 CHEC are 280 μA and 3.0 V, respectively; enough to drive many low power commercial electronics. This dissertation aims to deepen understanding of the piezoelectric behavior of semiconductor NWs on hard and flexible substrates. Thus, this research in the field of nanopiezoelectrics could have a substantial impact on many areas, ranging from the fundamental study of new nanomaterial properties and mechanical effects in nanostructures to diverse applications like aerospace

    Applications of Power Electronics:Volume 2

    Get PDF
    corecore