137 research outputs found

    A cross-talk robust multichannel VAD model for multiparty agent interactions trained using synthetic re-recordings

    Full text link
    In this work, we propose a novel cross-talk rejection framework for a multi-channel multi-talker setup for a live multiparty interactive show. Our far-field audio setup is required to be hands-free during live interaction and comprises four adjacent talkers with directional microphones in the same space. Such setups often introduce heavy cross-talk between channels, resulting in reduced automatic speech recognition (ASR) and natural language understanding (NLU) performance. To address this problem, we propose voice activity detection (VAD) model for all talkers using multichannel information, which is then used to filter audio for downstream tasks. We adopt a synthetic training data generation approach through playback and re-recording for such scenarios, simulating challenging speech overlap conditions. We train our models on this synthetic data and demonstrate that our approach outperforms single-channel VAD models and energy-based multi-channel VAD algorithm in various acoustic environments. In addition to VAD results, we also present multiparty ASR evaluation results to highlight the impact of using our VAD model for filtering audio in downstream tasks by significantly reducing the insertion error.Comment: Accepted for presentation at the Hands-free Speech Communication and Microphone Arrays (HSCMA 2024

    The third 'CHiME' speech separation and recognition challenge: Analysis and outcomes

    Get PDF
    This paper presents the design and outcomes of the CHiME-3 challenge, the first open speech recognition evaluation designed to target the increasingly relevant multichannel, mobile-device speech recognition scenario. The paper serves two purposes. First, it provides a definitive reference for the challenge, including full descriptions of the task design, data capture and baseline systems along with a description and evaluation of the 26 systems that were submitted. The best systems re-engineered every stage of the baseline resulting in reductions in word error rate from 33.4% to as low as 5.8%. By comparing across systems, techniques that are essential for strong performance are identified. Second, the paper considers the problem of drawing conclusions from evaluations that use speech directly recorded in noisy environments. The degree of challenge presented by the resulting material is hard to control and hard to fully characterise. We attempt to dissect the various 'axes of difficulty' by correlating various estimated signal properties with typical system performance on a per session and per utterance basis. We find strong evidence of a dependence on signal-to-noise ratio and channel quality. Systems are less sensitive to variations in the degree of speaker motion. The paper concludes by discussing the outcomes of CHiME-3 in relation to the design of future mobile speech recognition evaluations

    The third `CHiME' Speech Separation and Recognition Challenge: Dataset, task and baselines

    Get PDF
    International audienceThe CHiME challenge series aims to advance far field speech recognition technology by promoting research at the interface of signal processing and automatic speech recognition. This paper presents the design and outcomes of the 3rd CHiME Challenge, which targets the performance of automatic speech recognition in a real-world, commercially-motivated scenario: a person talking to a tablet device that has been fitted with a six-channel microphone array. The paper describes the data collection, the task definition and the base-line systems for data simulation, enhancement and recognition. The paper then presents an overview of the 26 systems that were submitted to the challenge focusing on the strategies that proved to be most successful relative to the MVDR array processing and DNN acoustic modeling reference system. Challenge findings related to the role of simulated data in system training and evaluation are discussed

    Sound Event Localization, Detection, and Tracking by Deep Neural Networks

    Get PDF
    In this thesis, we present novel sound representations and classification methods for the task of sound event localization, detection, and tracking (SELDT). The human auditory system has evolved to localize multiple sound events, recognize and further track their motion individually in an acoustic environment. This ability of humans makes them context-aware and enables them to interact with their surroundings naturally. Developing similar methods for machines will provide an automatic description of social and human activities around them and enable machines to be context-aware similar to humans. Such methods can be employed to assist the hearing impaired to visualize sounds, for robot navigation, and to monitor biodiversity, the home, and cities. A real-life acoustic scene is complex in nature, with multiple sound events that are temporally and spatially overlapping, including stationary and moving events with varying angular velocities. Additionally, each individual sound event class, for example, a car horn can have a lot of variabilities, i.e., different cars have different horns, and within the same model of the car, the duration and the temporal structure of the horn sound is driver dependent. Performing SELDT in such overlapping and dynamic sound scenes while being robust is challenging for machines. Hence we propose to investigate the SELDT task in this thesis and use a data-driven approach using deep neural networks (DNNs). The sound event detection (SED) task requires the detection of onset and offset time for individual sound events and their corresponding labels. In this regard, we propose to use spatial and perceptual features extracted from multichannel audio for SED using two different DNNs, recurrent neural networks (RNNs) and convolutional recurrent neural networks (CRNNs). We show that using multichannel audio features improves the SED performance for overlapping sound events in comparison to traditional single-channel audio features. The proposed novel features and methods produced state-of-the-art performance for the real-life SED task and won the IEEE AASP DCASE challenge consecutively in 2016 and 2017. Sound event localization is the task of spatially locating the position of individual sound events. Traditionally, this has been approached using parametric methods. In this thesis, we propose a CRNN for detecting the azimuth and elevation angles of multiple temporally overlapping sound events. This is the first DNN-based method performing localization in complete azimuth and elevation space. In comparison to parametric methods which require the information of the number of active sources, the proposed method learns this information directly from the input data and estimates their respective spatial locations. Further, the proposed CRNN is shown to be more robust than parametric methods in reverberant scenarios. Finally, the detection and localization tasks are performed jointly using a CRNN. This method additionally tracks the spatial location with time, thus producing the SELDT results. This is the first DNN-based SELDT method and is shown to perform equally with stand-alone baselines for SED, localization, and tracking. The proposed SELDT method is evaluated on nine datasets that represent anechoic and reverberant sound scenes, stationary and moving sources with varying velocities, a different number of overlapping sound events and different microphone array formats. The results show that the SELDT method can track multiple overlapping sound events that are both spatially stationary and moving
    • …
    corecore