8 research outputs found

    The configuration of design and manufacture knowledge models from a heavyweight ontological foundation

    Get PDF
    Problems related to knowledge sharing in design and manufacture, for supporting automated decision-making procedures, are associated with the inability to communicate the full meaning of concepts and their intent within and across system boundaries. To remedy these issues, it is important that the explicit structuring of semantics, i.e., meaning in computation form, is first performed and that these semantics become sharable across systems. This paper proposes an expressive (heavyweight) Common Logic-based ontological foundation as a basis for capturing the meaning of generic feature-oriented design and manufacture concepts. This ontological foundation serves as a semantic ground over which design and manufacture knowledge models can be configured in an integrity-driven way. The implications involved in the specification of the ontological foundation are discussed alongside the types of mechanisms that allow knowledge models to be configured. A test case scenario is then analysed in order to further support and verify the researched approach

    Internal and External Involvements in Integrated Product Development: A Two-Step Clustering Approach

    Get PDF
    © 2017 The Authors. The term Integrated Product Development (IPD) has been introduced as a focus for cross-disciplinary research and can have several forms, or manifestations, with regard to the existing disciplines such as concurrent engineering and design for manufacturing. Of central importance to IPD is the interpretation of the term "integration", particularly with regard to internal and external elements. However, there is not yet an explicit understanding of an appropriate degree of integration, or involvement, with respect to its different forms, that can assure successful implementation of IPD frameworks in practice. Through a review and clustering of the literature, this paper aims to address this challenge

    Methods for the capture of manufacture best practice in product lifecycle management

    Get PDF
    The capture of manufacturing best practice knowledge in product lifecycle management systems has significant potential to improve the quality of design decisions and minimise manufacturing problems during new product development. However, providing a reusable source of manufacturing best practice is difficult due to the complexity of the viewpoint relationships between products and the manufacturing processes and resources used to produce them. This paper discusses how best to organise manufacturing best practice knowledge, the relationships between elements of this knowledge plus their relationship to product information. The paper also explores the application of UML-2 as a system design tool which can model these relationships and hence support the reuse of system design models over time. The paper identifies a set of part family and feature libraries and, most significantly, the relationships between them, as a means of capturing best practice manufacturing knowledge and illustrates how these can be linked to manufacturing resource models and product information. Design for manufacture and machining best practice views are used in the paper to illustrate the concepts developed. An experimental knowledge based system has been developed and results generated using a power transmission shaft example

    Semantic interoperability for an integrated product development process: a systematic literature review

    Get PDF
    International audienceGlobal competitiveness challenges manufacturing industry to rationalise different ways of bringing to the market new products in a short lead-time with competitive prices while ensuring higher quality levels and customisation. Industries need to effectively share heterogeneous information during Product Development Process (PDP) within and across their institutional boundaries to be competitive. However, problems with misinterpretation and mistakes have been identified during information exchange due to the semantic interoperability obstacles. Thus, this research proposes a systematic literature review to identify the main researches and the milestones reference works on semantic interoperability field. A rigorous methodology was conducted in different databases, covering the articles published in scientific journals from 2005 to 2015 as a preliminary study had indicated that the incidence of articles related to the subject was more frequent from the second half of the 2000s. The research structure consisted of four steps: Survey-searching, analysis and selection of recent researches; Categorization-categorization of the selected papers; References citation frequency analysis-the selected papers were analysed and the main researches and milestones references were identified; and Main researches critical analysis – the main researches were analysed for their contributions and limitations, their contributions and limitations, resulting in 14 selected scientific articles and 8 identified milestones references. It is evident that this field has interesting perspectives on future research opportunities on semantic interoperability of information issues across PDP, contributing to the new concepts of future factories

    Manufacturing systems interoperability in dynamic change environments

    Get PDF
    The benefits of rapid i.e. nearly real time, data and information enabled decision making at all levels of a manufacturing enterprise are clearly documented: the ability to plan accurately, react quickly and even pre-empt situations can save industries billions of dollars in waste. As the pace of industry increases with automation and technology, so the need for accurate, data, information and knowledge increases. As the required pace of information collection, processing and exchange change so to do the challenges of achieving and maintaining interoperability as the systems develop: this thesis focuses on the particular challenge of interoperability between systems defined in different time frames, which may have very different terminology. This thesis is directed to improve the ability to assess the requirement for systems to interoperate, and their suitability to do so, as new systems emerge to support this need for change. In this thesis a novel solution concept is proposed that assesses the requirement and suitability of systems for interoperability. The solution concept provides a mechanism for describing systems consistently and unambiguously, even if they are developed in different timeframes. Having resolved the issue of semantic consistency through time the analysis of the systems against logical rules for system interoperability is then possible. The solution concept uses a Core Concept ontology as the foundation for a multi-level heavyweight ontology. The multiple level ontology allows increasing specificity (to ensure accuracy), while the heavyweight (i.e. computer interpretable) nature provides the semantic and logical, rigour required. A detailed investigation has been conducted to test the solution concept using a suitably dynamic environment: Manufacturing Systems, and in particular the emerging field of Manufacturing Intelligence Systems. A definitive definition for the Manufacturing Intelligence domain, constraining interoperability logic, and a multi-level domain ontology have been defined and used to successfully prove the Solution Concept. Using systems from different timeframes, the Solution concept testing successfully identified systems which needed to interoperate, whether they were suitable for interoperation and provided feedback on the reasons for unsuitability which were validated as correct against real world observations

    A framework to support semantic interoperability in product design and manufacture

    Get PDF
    It has been recognised that the ability to communicate the meaning of concepts and their intent within and across system boundaries, for supporting key decisions in product design and manufacture, is impaired by the semantic interoperability issues that are presently encountered. This work contributes to the field of semantic interoperability in product design and manufacture. An attribution is made to the understanding and application of relevant concepts coming from the computer science world, notably ontology-based approaches, to help resolve semantic interoperability problems. A novel ontological approach, identified as the Semantic Manufacturing Interoperability Framework (SMIF), has been proposed following an exploration of the important requirements to be satisfied. The framework, built on top of a Common Logic-based ontological formalism, consists of a manufacturing foundation to capture the semantics of core feature-based design and manufacture concepts, over which the specialisation of domain models can take place. Furthermore, the framework supports the mechanisms for allowing the reconciliation of semantics, thereby improving the knowledge sharing capability between heterogeneous domains that need to interoperate and have been based on the same manufacturing foundation. This work also analyses a number of test case scenarios, where the framework has been deployed for fostering knowledge representation and reconciliation of models involving products with standard hole features and their related machining process sequences. The test cases have shown that the Semantic Manufacturing Interoperability Framework (SMIF) provides effective support towards achieving semantic interoperability in product design and manufacture. Proposed extensions to the framework are additionally identified so as to provide a view on imminent future work.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore