
Loughborough University
Institutional Repository

A framework to support
semantic interoperability in

product design and
manufacture

This item was submitted to Loughborough University's Institutional Repository
by the/an author.

Additional Information:

• A Doctoral Thesis. Submitted in partial ful�llment of the requirements
for the award of Doctor of Philosophy of Loughborough University.

Metadata Record: https://dspace.lboro.ac.uk/2134/5897

Publisher: c© Nitishal Chungoora

Please cite the published version.

https://dspace.lboro.ac.uk/2134/5897

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

i

A Framework to Support Semantic Interoperability in

Product Design and Manufacture

By

Nitishal Chungoora

Under the Supervision of

Dr. R. I. M. Young

A Doctoral Thesis

Submitted in partial fulfilment of the requirements

for the award of

Doctor of Philosophy of Loughborough University

January 2010

© by Nitishal Chungoora 2010

ii

CERTIFICATE OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this thesis,

that the original work is my own except as specified in acknowledgments or in

footnotes, and that neither the thesis nor the original work contained therein

has been submitted to this or any other institution for a degree.

………………………………………… (Signed)

 Nitishal Chungoora

 12th January 2010 (Date)

i

Abstract

It has been recognised that the ability to communicate the meaning of

concepts and their intent within and across system boundaries, for supporting

key decisions in product design and manufacture, is impaired by the semantic

interoperability issues that are presently encountered. This work contributes to

the field of semantic interoperability in product design and manufacture. An

attribution is made to the understanding and application of relevant concepts

coming from the computer science world, notably ontology-based

approaches, to help resolve semantic interoperability problems.

A novel ontological approach, identified as the Semantic Manufacturing

Interoperability Framework (SMIF), has been proposed following an

exploration of the important requirements to be satisfied. The framework, built

on top of a Common Logic-based ontological formalism, consists of a

manufacturing foundation to capture the semantics of core feature-based

design and manufacture concepts, over which the specialisation of domain

models can take place. Furthermore, the framework supports the mechanisms

for allowing the reconciliation of semantics, thereby improving the knowledge

sharing capability between heterogeneous domains that need to interoperate

and have been based on the same manufacturing foundation.

This work also analyses a number of test case scenarios, where the

framework has been deployed for fostering knowledge representation and

reconciliation of models involving products with standard hole features and

their related machining process sequences. The test cases have shown that

the Semantic Manufacturing Interoperability Framework (SMIF) provides

effective support towards achieving semantic interoperability in product design

and manufacture. Proposed extensions to the framework are additionally

identified so as to provide a view on imminent future work.

Keywords: Ontology, Semantics, Interoperability, Common Logic, Knowledge

Representation, Knowledge Sharing, Design and Manufacture.

ii

Acknowledgements

This work has been supported through a research studentship funded by the

Wolfson School of Mechanical and Manufacturing Engineering of

Loughborough University.

First of all, I seize this opportunity to express my utmost gratitude to my

supervisor, Dr. Bob Young. Bob is a very knowledgeable person who has

occupied a key position throughout my three years of research. Under his

supervision, I have benefited immensely from his positive coaching skills,

continuous encouragement and critical but constructive comments. Without

his supervision, I would not have been able to achieve the overall progress in

this work. I also wish to thank Prof. Anne-Françoise Cutting-Decelle, Prof.

Osiris Canciglieri, Prof. Keith Case and Dr. Jenny Harding for their advice and

views regarding my work during the various meetings we had.

I wish to dedicate this work to my girlfriend, Luisa, who has constantly

provided me with her moral support and motivation throughout my research

and beyond…so baby, “quería decirte que no existen palabras para

expresarte mi gratitud”. I also dedicate this work to my parents and brother,

Veemal, who have always greatly supported and inspired me. My kind

appreciation also goes to my friends Bara and Binoy for their encouragement

and ideas, and to Uncle Robin and family.

I would like to thank George, from the research group, for helping me on

several occasions. Thanks also to other people from the research group

notably Claire, Zahid and Najam for listening to my long presentations. My

gratefulness is also directed to Emily Wrobel, from Ontology Works Inc., for

every single help concerning IODE and logic programming. Finally, I wish to

extend my gratitude to the “Ministerio de Asuntos Exteriores y de

Cooperación” of Spain for giving me the chance to undertake a one-month

intensive course in Barcelona under the funding of the “Beca MAEC-AECID”.

iii

Abbreviations

ADACOR ADAptive holonic COntrol aRchitecture

AP Application Protocol

API Application Programming Interface

BFO Basic Formal Ontology

CAD Computer Aided Design

CAE Computer Aided Engineering

CAM Computer Aided Manufacturing

CAPP Computer Aided Process Planning

CIM Computer Independent Model

CIMOSA Computer Integrated Manufacturing Open System Architecture

CL Common Logic

CLIF Common Logic Interchange Format

CPM Core Product Model

DIFF Domain Independent Form Feature

DL Description Logic

DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering

eCOIN extended COntext INterchange

FCA Formal Concept Analysis

FOL First Order Logic

IC Integrity Constraint

ICT Information and Communications Technology

IDEF Icam DEFinition

IODE Integrated Ontology Development Environment

KB Knowledge Base

KBE Knowledge Based Engineering

KFL Knowledge Framework Language

KIF Knowledge Interchange Format

GD & T Geometric Dimensioning and Tolerancing

GPU Graphical Processing Unit

MAFRA ontology MApping FRAmework

MANDATE MANufacturing management DATa interchangE

iv

MDA Model Driven Architecture

MDI Model Driven Interoperability

MSE Manufacturing System Engineering

OKBC Open Knowledge Base Connectivity

OMS Object Management System

OWL Web Ontology Language

PAL Protégé Axiom Language

PDM Product Data Management

PDM Platform Description Model

PERA Purdue Enterprise Reference Architecture

PFEM Product Family Evolution Model

PIM Platform Independent Model

PLIB Parts LIBrary

PLM Product Lifecycle Management

PSL Process Specification Language

PSM Platform Specific Model

PSRL Product Semantic Representation Language

RDF Resource Description Framework

RDF(S) Resource Description Framework Schema

RM-ODP Reference Model of Open Distributed Processing

SCL Simple Common Logic

SMES Saarbrucken Message Extraction System

SMIF Semantic Manufacturing Interoperability Framework

STEP STandard for the Exchange of Product model data

SUO Standard Upper Ontology

SWRL Semantic Web Rule Language

TOGAF The Open Group Architecture Framework

UI User Interface

ULO Upper Level Ontology

UML Unified Modelling Language

URI Uniform Resource Identifier

W3C World Wide Web Consortium

WSDL Web Service Description Language

XML eXtensible Markup Language

v

Table of Contents

1 Introduction... 1

1.1 Research Context .. 1

1.2 Research Hypothesis ... 3

1.3 Research Strategy ... 5

1.3.1 Aim and Objectives .. 5

1.3.2 Research Methodology .. 6

1.3.3 Research Scope ... 7

1.3.4 Thesis Structure ... 8

2 Enabling Interoperable Manufacturing Knowledge Systems: a State-of-the-Art Review

 .. 9

2.1 Introduction .. 9

2.2 Interoperability of Information and Knowledge .. 9

2.2.1 Interoperability Definitions and Concerns .. 9

2.2.2 Semantic Interoperability and Knowledge Sharing .. 10

2.3 Ontology-Driven Interoperability .. 11

2.3.1 Ontology Definitions ... 11

2.3.2 Lightweight and Heavyweight Ontologies .. 13

2.3.3 Ontological Formalisms ... 14

2.3.4 Foundation Ontologies ... 15

2.3.5 Ontologies in Manufacturing Engineering .. 18

2.3.6 Ontology Mapping .. 20

2.4 Model Driven Architecture and Interoperability .. 24

2.5 Standards-Based Approaches to Interoperability .. 27

2.6 Information Modelling in Product Design and Manufacture ... 29

2.6.1 Product Models .. 29

2.6.2 Manufacturing Models .. 30

2.6.3 Integrating Product and Manufacturing Models ... 31

2.6.4 Features and Part Families .. 32

2.7 Interoperability Architectures and Frameworks ... 33

2.8 Summary .. 38

3 Requirements to Support Semantic Interoperability in Product Design and

Manufacture .. 40

3.1 Introduction .. 40

3.2 Semantic Interoperability in Product Design and Manufacture 40

3.3 Semantic Interoperability Issues and Requirements ... 42

vi

3.3.1 View-Specific Semantics in Design and Manufacture ... 42

3.3.2 Semantic Relationships between Viewpoints .. 44

3.3.3 Semantics of Core Concepts across System Domain Boundaries 45

3.3.4 Harnessing Semantic Technologies to Assist Semantic Interoperability 46

3.3.4.1 Knowledge Representation Formalisms ... 47

3.3.4.2 Resolution of Semantic Mismatches ... 48

3.3.5 Concepts for Ontology Matching .. 49

3.3.6 Performance of Methods for Semantic Reconciliation ... 51

3.4 Summary of Requirements .. 51

4 A Novel Framework to Support Semantic Interoperability in Product Design and

Manufacture .. 54

4.1 Introduction .. 54

4.2 Semantic Manufacturing Interoperability Framework (SMIF) .. 55

4.3 Foundation Layer ... 57

4.3.1 Heavyweight Manufacturing Ontological Foundation .. 58

4.4 Domain Ontology Layer ... 60

4.4.1 Part Family Semantics ... 61

4.4.2 Manufacturing Process Semantics .. 61

4.5 Semantic Reconciliation Layer .. 62

4.5.1 Semantic Mapping Concepts ... 63

4.5.2 Ontology Mapping Process Concepts.. 65

4.6 Interoperability Evaluation Layer ... 65

4.6.1 Interoperability Evaluation through Queries ... 66

4.6.2 Interoperability Evaluation Assistant .. 67

4.7 System Boundaries and Assumptions ... 67

4.8 Aligning the Framework with Semantic Requirements .. 69

4.9 Summary .. 71

5 Foundation and Domain Ontology Layers ... 73

5.1 Introduction .. 73

5.2 Foundation Layer ... 73

5.2.1 Process Semantics .. 74

5.2.2 Entity Information Semantics ... 75

5.2.2.1 Core Entities and Core Properties .. 77

5.2.2.2 Measure and Geometry Items .. 79

5.2.2.3 Shape Aspects .. 82

5.2.2.4 Features and Artifacts ... 85

5.2.2.5 Transition Features ... 87

5.2.2.6 Dimensional Tolerances ... 88

vii

5.2.3 Flow Objects .. 89

5.2.4 Summary of Foundation Layer ... 92

5.3 Domain Ontology Layer ... 93

5.3.1 Domain Specialisation of Foundation Semantics .. 95

5.3.1.1 Contexts for Domain Models ... 95

5.3.1.2 Ontological Relationships between Foundation and Domain Ontology

Layers ... 96

5.3.1.3 The Flexible Specialisation Approach ... 98

5.3.1.4 The Controlled Specialisation Approach ... 101

5.3.1.5 Integrity Constraints and the Domain Ontology Layer 103

5.3.1.6 Instantiation and Discrete Knowledge Representation 106

5.3.2 Summary of Domain Ontology Layer ... 110

5.4 Summary .. 111

6 Semantic Reconciliation and Interoperability Evaluation Layers 112

6.1 Introduction .. 112

6.2 Semantic Reconciliation Layer .. 112

6.2.1 Ontology Mapping Process Concepts.. 114

6.2.1.1 Domain Context Adjustment Process ... 114

6.2.1.2 Simple Ontology Merging Process .. 115

6.2.1.3 Semantic Alignment Process .. 117

6.2.2 Semantic Mapping Concepts ... 118

6.2.2.1 Semantic Mapping Concepts Based on Foundation Semantics 119

6.2.2.2 Semantic Mapping Concepts Based on Known Cross-Domain

Correspondences .. 123

6.2.2.3 Semantic Mapping Concepts Based on External Domains 126

6.2.3 Summary of Semantic Reconciliation Layer .. 128

6.3 Interoperability Evaluation Layer ... 129

6.3.1 Interoperable Knowledge Queries ... 130

6.3.1.1 Querying Cross-Domain Arguments over Known Semantic Mapping

Relations ... 131

6.3.1.2 Querying Semantic Mapping Relations over Known Cross-Domain

Arguments ... 133

6.3.1.3 Verification of Reconciliation Correspondences 134

6.3.2 Assisting Knowledge Querying Procedures ... 136

6.3.3 Summary of Interoperability Evaluation Layer ... 137

6.4 Summary .. 138

viii

7 Experimental System Development ... 139

7.1 Introduction .. 139

7.2 Design of the Experimental System... 140

7.3 Implementation of the Experimental System ... 141

7.3.1 Implementation of the Foundation Layer ... 142

7.3.1.1 Implementation of PSL Core and PSL Outer-Core 143

7.3.1.2 Implementation Issues with PSL Process Semantics 144

7.3.1.3 Exploring the Implemented Foundation Layer 147

7.3.2 Implementation of the Domain Ontology Layer ... 148

7.3.3 Implementation of the Semantic Reconciliation Layer 150

7.3.3.1 Semantic Mapping Concepts for Reconciling Classes 151

7.3.3.2 Semantic Mapping Concepts for Reconciling Instances 152

7.3.3.3 Semantic Mapping Concepts for Reconciling Ontological Functions ... 152

7.3.4 Implementation of the Interoperability Evaluation Layer 154

7.3.4.1 Interoperability Evaluation Assistant ... 154

7.3.4.2 The Query Tool in IODE ... 157

7.3.4.3 Logically Verifying Query Results ... 158

7.4 Summary .. 159

8 Case Study .. 161

8.1 Introduction .. 161

8.2 Overview of Test Cases ... 161

8.2.1 The Arrangement of Test Cases in the Case Study .. 161

8.2.2 Case Study Boundaries and Assumptions .. 163

8.3 Test Case 1: Integrity-Driven Specialisation of a Machining Hole Feature Ontology .. 164

8.3.1 Aim and Objectives .. 164

8.3.2 Machining Hole Feature Ontology A .. 165

8.3.2.1 Entity Information Semantics .. 165

8.3.2.2 Machining Process Semantics and Relationships to Entities 168

8.3.2.3 Warnings and Errors in Loading the Machining Hole Feature Ontology A

 .. 170

8.3.2.4 Instantiating Entity Information Concepts ... 171

8.3.2.5 Identifying Incorrect and Missing Entity Information Knowledge 172

8.3.2.6 Instantiating Machining Process Concepts ... 174

8.3.2.7 Identifying Incorrect and Missing Process Knowledge 176

8.3.3 Discussions and Validation of Results ... 177

8.4 Test Case 2: Reconciliation Using Semantic Mapping Concepts Based on Foundation

Semantics .. 179

8.4.1 Aim and Objectives .. 179

8.4.2 Machining Hole Feature Ontology B .. 180

ix

8.4.3 Reconciliation Scenarios .. 183

8.4.3.1 Reconciliation at the Class Level .. 183

8.4.3.2 Reconciliation at the Function Level ... 184

8.4.3.3 Reconciliation at the Instance Level ... 184

8.4.4 Ontology Mapping Process .. 185

8.4.5 Interoperability Evaluation and Verification .. 187

8.4.5.1 Discovery of Semantic Mapping Concepts at the Class Level 187

8.4.5.2 Discovery of Semantic Mapping Concepts at the Function Level 190

8.4.5.3 Discovery of Semantic Mapping Concepts at the Instance Level 191

8.4.6 Discussions and Validation of Results ... 194

8.5 Test Case 3: Reconciliation Using Semantic Mapping Concepts Based on an External

Domain ... 195

8.5.1 Aim and Objectives .. 195

8.5.2 ISO Tolerance Band Model as External Domain ... 195

8.5.3 Reconciliation Scenario ... 197

8.5.4 Interoperability Evaluation and Verification .. 198

8.5.5 Discussions and Validation of Results ... 202

8.6 Test Case 4: Reconciliation Using Semantic Mapping Concepts Based on Known Cross

Domain Correspondences ... 203

8.6.1 Aim and Objectives .. 203

8.6.2 Design Hole Feature Ontology A ... 203

8.6.3 Reconciliation Scenarios .. 206

8.6.3.1 Reconciliation at the Class Level .. 207

8.6.3.2 Reconciliation at the Function Level ... 207

8.6.3.3 Reconciliation at the Instance Level ... 208

8.6.4 Interoperability Evaluation and Verification .. 208

8.6.4.1 Discovery of Semantic Mapping Concepts at the Class Level 208

8.6.4.2 Discovery of Semantic Mapping Concepts at the Function Level 211

8.6.4.3 Discovery of Semantic Mapping Concepts at the Instance Level 211

8.6.5 Discussions and Validation of Results ... 213

8.7 Summary of Chapter .. 213

9 Discussions, Conclusions and Future Work ... 216

9.1 Introduction .. 216

9.2 Discussions .. 216

9.2.1 Ontology Development Methodology ... 216

9.2.2 Semantic Technologies .. 217

9.2.3 Semantic Structures ... 218

9.2.4 Knowledge Bases .. 220

9.2.5 Knowledge Sharing .. 222

x

9.2.6 Positioning of the Framework .. 223

9.2.7 Potential Industrial Applications ... 228

9.3 Conclusions ... 231

9.4 Recommendations for Future Work ... 234

Publications ... 237

References ... 238

A The Knowledge Engineering Methodology and IDEF5 Schematics for Ontology

Development ... 264

A.1 The Knowledge Engineering Methodology .. 264

A.2 IDEF5 Schematics ... 266

B Justification of the Chosen Common Logic-Based Ontological Formalism 269

B.1 Introduction .. 269

B.2 An Exploration of Frames with a First Order Constraint Language 270

B.2.1 Aim of Investigation .. 270

B.2.2 Objectives .. 270

B.2.3 Machining Hole Feature Ontology ... 271

B.2.3.1 Entity Information Semantics .. 271

B.2.3.2 Process Semantics ... 274

B.2.3.3 Entity Information and Process Semantic Relationships 276

B.2.4 Discussions .. 279

B.3 An Exploration of OWL with a Rule Language .. 281

B.3.1 Aim of Investigation .. 281

B.3.2 Objectives .. 281

B.3.3 Modelling PSL Core Semantics Using OWL with SWRL 282

B.3.3.1 PSL Core Original Semantics ... 282

B.3.3.2 Classes and Binary Relations ... 282

B.3.3.3 Ternary Relations Approximation to Binary Relations 283

B.3.3.4 Unary Functions Approximation to Binary Relations 284

B.3.3.5 Individuals ... 285

B.3.3.6 PSL Core Axioms .. 286

B.3.4 Verification of the OWL with SWRL Model of PSL Core 291

B.3.4.1 Expected Results .. 292

B.3.4.2 Actual Results ... 293

B.3.5 Discussions .. 293

B.4 Motivation for a Common Logic-Based Ontological Formalism 295

B.5 Summary .. 296

xi

C Foundation Layer ... 298

C.1 Process Specification Language (PSL) ... 298

C.1.1 PSL Core .. 298

C.1.2 PSL Outer-Core ... 305

C.1.2.1 Theory of Subactivities .. 305

C.1.2.2 Theory of Occurrence Trees ... 307

C.1.2.3 Theory of Discrete States ... 312

C.1.2.4 Theory of Atomic Activities .. 315

C.1.2.5 Theory of Complex Activities .. 317

C.1.2.6 Theory of Activity Occurrences ... 322

C.2 Entity Information Semantics ... 329

C.2.1 Core Entities and Core Properties ... 329

C.2.2 Geometry and Measure Items ... 331

C.2.3 Shape Aspects ... 335

C.2.4 Features and Artifacts .. 341

C.2.5 Transition Features .. 350

C.2.6 Dimensional Tolerances .. 354

C.3 Flow Objects .. 359

C.4 Controlled Specialisation Approach ... 362

D Domain Ontology Layer ... 363

D.1 Machining Hole Feature Ontology A .. 363

D.2 Design Hole Feature Ontology A ... 375

D.3 Machining Hole Feature Ontology B .. 382

D.4 ISO Tolerance Band Model ... 387

E Semantic Reconciliation Layer ... 394

E.1 Semantic Mapping Concepts Based on Foundation Semantics 394

E.2 Semantic Mapping Concepts Based on Known Cross-Domain Correspondences

(Design and Machining Hole Feature Ontology A) .. 406

F Interoperability Evaluation Layer ... 411

F.1 Sitemap for the Interoperability Evaluation Assistant .. 411

F.2 Java-Based Modules ... 412

1

1 Introduction

1.1 Research Context

The rationale behind ensuring the seamless exchange of manufacturing

knowledge within and across enterprise boundaries, is dominated by the need

to speed up the production of goods and services at lower cost, while

ensuring higher levels of quality and customisation (Mertins et al, 2008). In

order to achieve such capabilities, manufacturing enterprises weave their

Information and Communications Technology (ICT) infrastructures to their

established knowledge management strategies and practices. This is

particularly important so as to maximise the benefits of reusable knowledge

residing in several business processes.

Specifically in Product Lifecycle Management (PLM), knowledge which is

shared for collaborative product development not only resides and cuts across

various product lifecycle phases, but also involves groups that may jointly

function within institutional boundaries as well as across multiple

organisations (Hameed et al, 2004). Figure 1-1 illustrates this knowledge

sharing scenario. It is shown that interoperable product design and

manufacturing knowledge is required for (1) allowing seamless knowledge

exchanges between multiple intra-system domains (A) and (2) permitting the

reliable sharing of knowledge across systems (B). This understanding is in

line with the view that interoperation has to be established by the supply of

information through inter- and intra- system communication (Chen et al,

2008).

Therefore, in modern collaborative PLM, design and manufacturing

knowledge handled by decision support systems has to be efficiently

communicated across the entire lifecycle. This knowledge is developed in

activities based on Design for Function, Design for Assembly and

Disassembly, Design for Manufacture, Manufacturing Planning and more.

Interoperable knowledge, for instance, is paramount to the integration of

2

mechanical analysis into the design process, one of the most obvious and

crucial requirements, particularly during the early stages of design (Aifaoui et

al, 2006). Seamless interoperability, in order to effectively support

collaborative product development, is still not completely achievable. This lack

of interoperability is costly to many globally distributed industries where

significant amounts of money are spent into overcoming interoperability

problems (Research Triangle Institute, 1999; Brunnermeier and Martin, 2002).

A view on Figure 1-1 suggests that there exist two obvious yet problematic

solutions to realising interoperable knowledge sharing. The first is linked to

the adoption of an all-embracing common rigid model across systems. This

approach to interoperability is, however, immensely problematic as the level

of flexibility required by multiple systems would be greatly impeded. The other

possibility involves allowing different systems to develop and use their

preferred methods, and to later worry about interoperability. This approach

provides multiple systems with their desired level of flexibility. Unfortunately,

the translation mechanisms that would be needed for allowing inter-system

interpretation and sharing of knowledge would demand considerable effort

and may not provide optimal solutions to interoperability.

System Domain System Domain

Design
Domain

Manufacturing

Domain
Design
Domain

Manufacturing

Domain

Product
Specifications

Design
Stages

Manufacturing
Stages

Product
Specifications

Design
Stages

Manufacturing
Stages

Other
Domains

Other
Domains

(A) (A)

(B)

(B)

Figure 1-1 Interoperable Knowledge Sharing in Collaborative Product
Development

3

1.2 Research Hypothesis

Another possible way of realising interoperable knowledge sharing, which is

under scrutiny in this research, is to adopt a direction where the meaning (i.e.

semantics) associated to core design and manufacturing concepts cutting

across all systems could be defined (see label (C) on Figure 1-2). Such core

concepts may include, for example, the semantics associated to the definition

of product features and manufacturing processes from several viewpoints

arising in design and manufacture.

These core or foundation concepts could be reused and extended, i.e.

specialised, in a controlled manner by multiple design and manufacture

domains across multiple system domains (D). Following this approach,

heterogeneous domains and system domains which use and specialise the

meaning carried by the core concepts, would share a definitional basis which

serves as a ground for interoperation (E). In other words, the definition of

mechanisms for enabling the reconciliation of intra- and inter-system

semantics would raise the level of interoperability and knowledge sharing.

System Domain

Design
Domain

Manufacturing

Domain
Design
Domain

Manufacturing

Domain

Product
Specifications

Design
Stages

Manufacturing
Stages

Product
Specifications

Design
Stages

Manufacturing
Stages

Other
Domains

Other
Domains

(D)

Core Design and

Manufacturing Concepts (C)

System Domain

(D)

(E) (E)

(E)

(E)

Figure 1-2 Motivation Scenario for the Research Hypothesis

4

Linked to this understanding is the research hypothesis to be tested, which

has been quoted next:

 The formal specification of a rigorously-defined set of sharable design and

manufacture core concepts supports the structure for a heavyweight

manufacturing ontological foundation (see Chapter 2 section 2.3.2 for a

definition of heavyweight ontologies). The application of this shared

foundation within and across system domains can provide a basis for the

integrity-driven specialisation of design and manufacture domain models

(i.e. formal ontology-based representations with their associated

Knowledge Bases). The consequence of committing to this shared

foundation can support the capability to evaluate and verify the

correspondences between pairs of domain models that have been

specialised from the foundation. These correspondences can help to

identify the extent of sharable and non-sharable knowledge across the

content of domain models.

The concept of ontologies is first introduced here and further explained in

Chapter 2 and other chapters in the thesis. Broadly speaking, ontologies are

formal models that provide a basis for sharing meaning (Young et al, 2007) in

computational form. The concept originates from the computer science world

and is showing promise in several areas of research including that of product

design and manufacture.

In this work, a route towards satisfying the research hypothesis has involved

the development of a novel ontology-based framework, identified as the

Semantic Manufacturing Interoperability Framework (SMIF). This framework

fulfils the task of (1) contributing to the understanding of combined

heavyweight ontology-based approaches to support semantic interoperability

in product design and manufacture, (2) consolidating knowledge behind the

specification of a heavyweight manufacturing ontological foundation and the

mechanisms involved in supporting the integrity-driven specialisation of

domain models from the foundation, and (3) defining semantic reconciliation

methods that are pertinent to both the evaluation and verification of

5

correspondences between domain models that have been based on the same

foundation, as a means to identifying interoperable knowledge.

1.3 Research Strategy

1.3.1 Aim and Objectives

The aim of this work is to progress the understanding on ontology-based

approaches to support semantic interoperability, applied to the field of product

design and manufacture. This aim is to be addressed by demonstrating the

feasibility of the research hypothesis. The achievement of the aim shall

benefit the area of ontology-driven decision support systems in PLM. Other

benefits include the ability to explicitly and formally capture design and

manufacturing knowledge for reuse, which nowadays constitutes a core

competence for the optimisation of collaborative product development

practices. Furthermore, the realisation of the aim of this work shall benefit the

support for effective knowledge sharing procedures between different agents

within the product lifecycle.

With the intention of meeting the aim of this research, a number of key

objectives have been identified. These cover namely:

1. The identification of key research gaps through a review of existing work

on interoperable knowledge systems (see Chapter 2 section 2.8).

2. A study of the problems related to semantic interoperability in product

design and manufacture, leading to the identification of key requirements

to be satisfied in this research (see Chapter 3 section 3.4).

3. The proposal and exploration of a framework which meets the investigated

requirements (see Chapter 4 section 4.9 for a summary of the proposed

framework and chapters 5 and 6 sections 5.4 and 6.4 respectively for a

summary of the exploration of the framework).

4. The development of an experimental system for implementing the

framework (see Chapter 7 section 7.4 for a summary of the experimental

system design).

6

5. The implementation of a number of test cases, as part of a complete case

study, for testing the proposed framework and validating the solution (see

Chapter 8 sections 8.3, 8.4, 8.5 and 8.6 for test case implementations and

section 8.7 for a summary of the case study as a whole).

6. A proposition for extensions and modifications to the framework in order to

support future work (see Chapter 9 sections 9.2 and 9.4 for more details).

1.3.2 Research Methodology

The research methodology adopted in this work builds on top of the previously

listed objectives. Figure 1-3 depicts the flow within the research methodology.

The main components of the literature review are portrayed (F). Two ontology

development and knowledge engineering techniques, notably IDEF5

schematics (Knowledge Based System Inc., 1994) (G) and the Knowledge

Engineering Methodology (H) prescribed by Noy and McGuinness (2001),

have also been applied to support the stages of proposing, exploring and

experimenting the research framework. These two methods are described in

Appendix A.

Literature Review (F)

Ontology-Driven
Interoperability

Model Driven

Architecture and
Interoperability

Standards-Based

Approaches to
Interoperability

Information
Modelling in

Product Design
and Manufacture

Interoperability

Architectures and
Frameworks

Study of
problems leading
to requirements

definition

Proposal and
exploration of

framework

Development of
experimental

system

Case study

Analysis and
validation of

solution

Future work,
extensions and

possible
modifications ID

E
F

5

S
c
h
e
m

a
ti
c
s

K
n
o
w

le
d
g

e
 E

n
g
in

e
e
ri

n
g

M
e
th

o
d
o
lo

g
y

(G) (H)

Tools

(I)

Figure 1-3 Research Methodology

7

It is to be noted that IDEF5 schematics are used for visually representing

ontology-based content, but is not a fundamental method that complements

the research methodology. This is because any other ontology visualisation

methods could be employed as long as these are able to support the

adequate visual representation of ontology-based content. Hence, IDEF5

schematics have only been used during the exploration and major ontology

development tasks documented in chapters 5 and 6 and in Appendix C.

Furthermore, relevant tools are to be identified in order to support the

development and experimentation of research concepts. The harnessing of

adequate tools and technologies (I) for satisfying this purpose forms an

integral part of the research methodology and is particularly important towards

the development of the experimental system and case study.

1.3.3 Research Scope

Whilst the essence of the concepts, investigated in the proposed framework,

can be applied to a range of situations, the scope set to the work necessarily

implies that the proof of these concepts works within clear boundaries and

constraints. The research scope takes into consideration the domains of

design and manufacture and their interoperability within and across system

domains (refer to Figure 1-1). However, because of the substantial breadth of

semantic interoperability issues in design and manufacture, this research

focuses specifically onto simple product representations involving hole

features in design and manufacture. For example, feature-based semantic

representations for round holes constitute the chief scope, although other

types of features such as cylinders have also been taken into account in order

to provide a context for the existence of hole features on products. In addition,

the research scope also involves the implications of machining process

sequences for hole feature manufacturing and the participation relations

between hole features and machining process sequences.

Hole feature manufacture is problematic and sometimes costly to industries,

as a result of the diverse contexts, manufacturing processes and poorly

established best practice methods associated to hole features (Chungoora

8

and Young, 2008a). Furthermore, the hole is one of the most complex

geometrical features in prismatic machining and building effective hole-

machining Computer Aided Process Planning (CAPP) system is still an

important issue (Yongtao and Jingying, 2006). Hence, it is clear that several

concerns still exist in relationship to the research scope. Moreover, another

reason behind following the tightly-confined research scope implies the ability

for this work to support the testing of the research hypothesis in its entirety.

1.3.4 Thesis Structure

A comprehensive literature review is first documented in Chapter 2. This helps

to identify key research gaps that need to be addressed, so as to position this

work according to these ongoing niches. The research problem is then further

investigated in Chapter 3 and the observations made are used to establish a

set of requirements, which dictate the specifications that this research

attempts to satisfy. Based on these requirements, a novel ontology-based

framework, the Semantic Manufacturing Interoperability Framework (SMIF),

is proposed in Chapter 4.

The preferred concepts explored within the framework are further elaborated

in the subsequent chapters 5 and 6. Chapter 7 documents the experimental

system design and identifies appropriate software tools for deploying the

framework. In Chapter 8, a number of test cases are analysed and validated

as part of a case study, for providing a proof of concept. The overall

understanding is further analysed in the concluding section of the thesis, in

Chapter 9, where relevant drawbacks, possible modifications and extensions

to the framework are finally exposed to provide an outlook on future work.

It is to be pointed out that the appendices C, D and E of the thesis capture the

full development and implementation material required for the deployment of

the framework and the analysed test cases. This has been made available for

any party wishing to explicitly reproduce, verify and/or extend the concepts

explored in this work.

9

2 Enabling Interoperable Manufacturing Knowledge

Systems: a State-of-the-Art Review

2.1 Introduction

This chapter presents a state-of-the-art review on a number of active research

directions related to the topic of supporting interoperability in product design

and manufacture. The review is aimed at exposing the current understanding

behind other research achievements made to date, in order to carefully depict

ongoing niches that this research targets. Section 2.2 firstly describes

interoperability as a general concept. This is then focused at semantic

interoperability and its influence on knowledge sharing. With this preliminary

view onto interoperability, section 2.3 then explains how semantic

interoperability issues have so far been tackled using ontology-based

approaches.

Section 2.4 discusses the concept of Model Driven Interoperability aided

through the Model Driven Architecture. This then leads to an explanation of

efforts fostered from the ISO standards community (Section 2.5) to enable

common grounds to be adopted to enhance integration among stakeholders.

Since this research work also emphasises on the capture of interoperable

manufacturing knowledge for reuse, a special slant is given to information

modelling in design and manufacture (Section 2.6). Section 2.7 is dedicated to

providing a view on current interoperability architectures and frameworks,

oriented at the enterprise level, as well as at the more defined world of

product design and manufacture. A summary is then provided in section 2.8.

2.2 Interoperability of Information and Knowledge

2.2.1 Interoperability Definitions and Concerns

The term “interoperability” is defined as the ability to share technical and

business data, information and knowledge seamlessly across two or more

10

software tools or application systems in an error free manner with minimal

manual interventions (Ray and Jones, 2003). Other definitions for the term

“interoperability” have been proposed, for example, by Chen et al (2008) who

specify that from a computer technology viewpoint, interoperability is the

faculty for two heterogeneous computer systems to function jointly and give

access to their resources in a reciprocal way.

These definition, when extended to the field of product design and

manufacture, is analogous to the seamless exchange of product and

manufacture-centric information and knowledge across multiple expert

systems. A number of key problems currently exist, which prevents the

achievement of total product lifecycle interoperability. One of the most obvious

issues is related to handling incompatible data and information structures

between different platforms that need to interoperate (Brunnermeier and

Martin, 2002; Cutting-Decelle et al, 2002; Das et al, 2007).

In addition to this, Das et al (2007) also point out that the most common

reason to account for the lack of interoperability is due to the incompatibility

between the syntaxes of the languages and the semantics of the terms used

by the languages of software application systems. This statement is in

concordance with Pouchard et al (2000), who have observed that the

problems of interoperability are acute for manufacturing applications as these

do not necessarily share syntax and definitions of concepts (i.e. semantics).

To reinforce this view, Ray and Jones (2003) emphasise that either common

terms are used to mean different things or different terms are used to mean

the same thing, thereby resulting in problems related to ambiguous semantics

(Young et al, 2007). This explains interoperability issues at the semantic level,

and it becomes clear that an important leap is required to investigate new

ways of promoting semantic interoperability.

2.2.2 Semantic Interoperability and Knowledge Sharing

Logical semantics or formal semantics, as used in the context of this work, is

defined as the investigation of the meaning, or interpretation, of expressions

11

in specially constructed logical systems with the aid of mathematical logic

(Lyons, 1977). Following this definition of formal semantics and the definition

of semantic interoperability adopted by Yang and Zhang (2006), a view on

semantic interoperability as employed in this work can be formulated. This

states that semantic interoperability is the ability to support multiple

applications in such a way that the computational meaning of the concepts

defined in these applications can be jointly interpreted and shared.

Some of the implications of semantic interoperability to enable knowledge

sharing have been considered (Yang and Zhang, 2006; Chungoora and

Young, 2008a; Lazenberger et al, 2008; Ye et al, 2008). The main observation

reveals that a progression towards improved methods for semantic

interoperability shall support the potential for more effective information and

knowledge exchanges. This additionally demonstrates that there exists a gap

as far as semantic interoperability and knowledge sharing are concerned. A

number of approaches that help support interoperability (and semantic

interoperability) are next discussed.

2.3 Ontology-Driven Interoperability

2.3.1 Ontology Definitions

Ontology engineering is recognised as a key technology to deal with the

semantic interoperability problem (Yang and Zhang, 2006). Available literature

on ontological engineering points to a number of definitions for describing

what an ontology is. A philosophical viewpoint is a common perspective from

which an ontology can be defined such as the definition portrayed by Gruber

(1993), in which an ontology is said to be an explicit specification of a

conceptualisation.

This view has also been adopted by Studer et al (1998) to propose the

definition that: “An ontology is a formal, explicit specification of a shared

conceptualisation”. This definition adopts a slant towards how ontologies are

realised at applications level. This is because the words in the definition have

12

been carefully chosen, for instance, (1) the word “explicit” reflects the

exactness in the concepts, constraints and interpretations present in an

ontology, (2) the word “formal” implies that the ontology should be machine-

readable and (3) the words “shared conceptualisation” reflect the essence that

an ontology aims at capturing agreed concepts over some field of knowledge.

Another relevant definition for an ontology is that provided in ISO 18629

(2005), stating that an ontology is “a lexicon of specialised terminology along

with some specification of the meaning of the terms in the lexicon”. This

description has led to the emphasis that an ontology is a representation or

model that provides a basis for sharing meaning (Young et al, 2007). Very

often, an ontology is regarded as being a multi-dimensional model of some

domain of interest. Figure 2-1 identifies the multi-dimensional nature of an

ontology. The figure, partly based on the structural view of what an ontology

consists of (Labrou, 2002; Gómez-Pérez et al, 2004), regroups elements from

the various definitions.

The structural view on an ontology (based on Labrou (2002) and Gómez-

Pérez et al (2004)) indicates that the latter is typically composed of a (1)

taxonomy of classes, which provides the backbone for organising concepts,

(2) relations and functions which are used to build associations among

concepts, (3) axioms which dictate the constraints over the ontological content

and (4) individuals which are specific occurrences of classes.

Shared Conceptualisation

Explicit Specification Formal Representation

Taxonomy of Classes

Relations and
Functions

Axioms

Individuals

Figure 2-1 The Multi-Dimensional Nature of an Ontology

13

2.3.2 Lightweight and Heavyweight Ontologies

An important distinction is made between ontologies in terms of the degree of

expressiveness that they capture. Simple ontologies that only involve

taxonomies of concepts and basic relations are referred to as lightweight

ontologies (Fernández-López and Gómez-Pérez, 2002; Gómez-Pérez et al,

2004). Lightweight ontological approaches assume that the meaning

associated to the terms of concepts within an ontology can readily be

understood.

Heavyweight ontological approaches, on the other hand, on top of having the

lightweight ontological structures also benefit from axioms in the form of

constraints. These axioms are used to clarify the intended meaning of the

terms gathered on the ontology (Gómez-Pérez et al, 2004). The configuration

of the explicit specification captured in Figure 2-1 is that of heavyweight

ontological structures. It is to be noted that in the case of a lightweight

ontology, the axiom layer shown in Figure 2-1 is not be present. Additionally,

Figure 3-4 in section 3.3.4.1 of Chapter 3 illustrates some common examples

of lightweight and heavyweight ontological approaches.

It is clear from a semantic viewpoint, that the presence of limitations over the

formal meaning of ontological content in lightweight ontologies explain their

inappropriateness for inter-system interoperability (Young et al, 2007). For this

reason, Young et al (2007) have also identified a need for more

mathematically rigorous approaches in order to ensure that the true meaning

behind the terminology coming from different systems is identical. This work,

thus pursues this direction in order to reinforce and extend the understanding

behind exploiting heavyweight ontological methods to drive semantic

interoperability in design and manufacture.

14

2.3.3 Ontological Formalisms

Several ontology languages, also referred to as ontological formalisms or

knowledge representation formalisms, are nowadays available for

constructing ontologies. A comprehensive review of the spectrum of these

languages is provided in Gómez-Pérez et al (2004) and in the current

literature review, only the implications of the most relevant ontological

formalisms are explained. Figure 2-2, partly adapted from Gómez-Pérez et al

(2004), summarises the layout of these languages paying attention to draw a

distinction between traditional ontology languages versus ontology markup

languages.

The main perceived difference between traditional ontology languages and

ontology markup languages is that the former generally have a First Order

Logic base while the latter are Description Logic-based (although Description

Logic (DL) itself corresponds to the decidable fragment of First Order Logic

(FOL)). Ontology markup languages help exploit the characteristics of the

Semantic Web as a result of the boom of the Internet (Corcho, 2005). In

traditional ontology languages, the Knowledge Interchange Format (KIF)

(Genesereth and Fikes, 1992), which is FOL-based, supports the construction

of the Open Knowledge Base Connectivity (OKBC) ontology (Chaudhri et al,

1998), Frames-based ontologies and Ontolingua (Farquhar et al, 1997), the

latter using a combination of Frames and FOL.

Knowledge Interchange Format (KIF)

OKBC Ontology

Frame Ontology

Ontolingua

Common Logic (CL)

Common Logic
Interchange

Format (CLIF)

Knowledge
Framework
Language

(KFL)

 XML

RDF

RDF Schema

OWL

Traditional Ontology Languages Ontology Markup Languages

Figure 2-2 Formalisms for Building Ontologies

15

More recently, with the introduction of Common Logic (CL) (ISO/IEC 24707)

as a language framework for knowledge interchange, other ontological

languages have been developed, for instance, (1) the Common Logic

Interchange Format (CLIF), which is directly based on the CL standard itself

and (2) the Knowledge Framework Language (KFL), developed by Ontology

Works Inc. (Ontology Works Inc., 2009).

Ontology markup languages, as opposed to the traditional ontology

languages, have their syntax supported by the eXtensible Markup Language

(XML) to address flexible information structuring (Nurmilaakso et al, 2002).

The XML capability allows the specification of the Resource Description

Framework (RDF) and RDF Schema (Lassila and Swick, 1999) to support the

ability to process metadata for providing interoperability between applications

that exchange machine understandable information (Cingil and Dogac, 2001).

The RDF and RDF Schema stack shown on Figure 2-2 then provides even

further potentials, where the Web Ontology Language (OWL) has been

pursued (Bechhofer et al, 2004), for capturing more rigorous properties

required for building more meaningful DL ontologies.

One of the observations deriving from the identified ontological languages is

that there exists an ongoing requirement to refine the understanding of the

level of logic expressiveness (related to ontological formalisms) capable of

semantically structuring the meaning of product lifecycle concepts (Young et

al, 2009). Being a relatively new ontological direction, Common Logic-based

ontological formalisms as a means to support semantic interoperability in

product design and manufacture has not yet been given due attention. This

work thus aims at contributing to this aspect (consult Chapter 3 and Appendix

B for more details).

2.3.4 Foundation Ontologies

Ontological engineering embraces different levels of conceptualisation, from

the general to the more specific. These gradations of conceptualisations

include the upper or top level towards the domain level. Domain ontologies

16

are generally developed according to the preferences of specific fields of

knowledge. Foundation ontologies also referred to as upper or top-level

ontologies, on the other hand, are regarded as theories that capture the most

common concepts relevant to many tasks and represent human

commonsense which is hard to formalise (Kiryakov et al, 2001a). These

theories involve the definitions of general concepts and formal axioms that

govern the ways in which to interpret these theories. Foundation ontologies

are also sometimes regarded as “formal” or “foundational” ontologies (Borgo

and Leitão, 2007), due to their significance in supporting mutual

understanding and interoperability among people and machines (Masolo et al,

2003).

The Basic Formal Ontology (BFO) is an example of a foundation ontology,

whose core identifies the “SNAP” and “SPAN” which provide foundation

theories for notions about objects and processes respectively, spanning over

time (Grenon, 2003). Other established foundation ontologies include the

Cyc‟s Upper Ontology, developed under the Cyc project (Lenat and Guha,

1990) and the Descriptive Ontology for Linguistic and Cognitive Engineering

(DOLCE). The latter aims at capturing the ontological categories underlying

natural language and human commonsense (Masolo et al, 2003). Particularly

relevant to the field of manufacturing engineering is the development of the

ADAptive holonic COntrol aRchitecture for distributed manufacturing systems

(ADACOR) ontology (Leitão et al, 2005), which uses concepts from the

DOLCE foundation ontology to provide a core ontology of manufacturing. A

segment of the primary concepts of ADACOR are portrayed in the re-drawn

UML class diagram in Figure 2-3.

Another wave of foundational ontologies involve (1) WordNet (Miller, 1995)

which is an example of a top-level linguistic ontology whose purpose is to

describe semantic constructs that offer a heterogeneous amount of resources,

used mostly in natural language processing (Gómez-Pérez et al, 2004), (2)

the Standard Upper Ontology (SUO) (Pease and Niles, 2002), formalised in

SUO-KIF (a variant of the Knowledge Interchange Format (KIF)) which

acknowledges “Object” and “Process” as physical concepts, and (3) Ontology

17

Works Upper Level Ontology (ULO) developed by Ontology Works Inc.

(Ontology Works Inc., 2009).

Figure 2-4 depicts the three main concepts in Ontology Works ULO taxonomy

which are “Particular” (A), “SystemEntity” (B) and “Universal” (C). These

concepts are defined as: (1) particulars are unique things as long as no other

thing is the same as them, i.e. particulars are only identical with themselves,

(2) system entities are the entities upon which the operation of Ontology

Works ontological environment depends on and (3) universals are things that

are allowed to have extents i.e. instances (individuals).

Figure 2-3 Core Manufacturing Ontology in the ADACOR
Architecture (Redrawn from Borgo and Leitão (2008))

Figure 2-4 Taxonomy of Basic Concepts for Ontology Works ULO
(Captured from the ontology environment of Ontology Works Inc. (2009))

(A)

(B)
(C)

resource

work order

grippermovertransporterproducertool

operation

0..*

1

0..*

1

18

In addition to the previously identified foundation ontologies, the value of the

Process Specification Language (ISO 18629, 2005) as providing an effective

foundation for capturing process-related meaning has also been mentioned

(Young et al, 2007). PSL, as a foundation ontology, does not fall under the

same category as the BFO, DOLCE or Ontology Works ULO. However,

because the semantics captured in PSL provide a robust foundation for

building explicit conceptualisations for processes of various sorts, this implies

that PSL acts as a foundation ontology which supports an interlingua

approach to interoperability (Gruninger and Kopena, 2005). This observation

is particularly pertinent since PSL has shown benefits to a wide range of work

such as (1) for project scheduling information exchange (Cheng et al, 2003),

(2) for the support of process interoperation in cross-disciplinary supply chains

(Das et al, 2007) and (3) for capturing the semantics of flow models and

process planning knowledge (Bock and Gruninger, 2005).

There is a general view, as far as foundation ontologies are concerned, that

they should provide the core semantics of endurants (objects/entities) and

perdurants (processes). By understanding relevant work in the field of

foundation ontologies, a major question emerges. This question reflects the

ongoing concern of how effective foundation ontology approaches can be

tailored to support the communication requirements of manufacturing (Young

et al, 2007). It is clear that this is an important research direction which still

deserves attention, especially to facilitate the reuse of the semantics of

endurants to model product representations and those of perdurants to model

manufacturing processes.

2.3.5 Ontologies in Manufacturing Engineering

A significant amount of work has been performed in the field of manufacturing

engineering, where the concept of ontologies has been applied in order to

solve specific problems. The area of supply chain management and

enterprise engineering, for instance, has witnessed the benefits of ontological

engineering (Gruninger and Fox, 1994; Chandra and Kamrani, 2003; Loss et

al, 2005).

19

Other researchers have developed ontologies to aid decision support in

product design and manufacture. One such example can be seen in work

performed by Seo et al (2006) who have researched a methodology for

achieving interoperable product data through the use of a layered reference

ontology. Lin and Harding (2007) have defined a Manufacturing System

Engineering (MSE) ontology model that has the capability to enable

communication and information exchanges between inter-enterprise, multi-

disciplinary engineering design teams.

On similar lines, ontologies for product representation have been pursued.

One example is portrayed in the research approach taken by Patil et al

(2005), where an ontology formalised in Description Logics (DL) has been

exploited for capturing and representing the semantics of product

representations. Formal concept definitions are captured using DL axioms,

which to some extent have enabled the capability for semantic data

interchange, i.e. semantic interoperability. Another example appears in the

work performed by Costa et al (2007), where a refinement of the ISO 10303

AP236 standard, for supporting information exchange for the furniture

industry, is proposed using a product ontology.

More competitive methods for capturing semantics while helping decision

support in product design and manufacture have been researched. A

combination of the Web Ontology Language (OWL) with the Semantic Web

Rule Language (SWRL) has recently been employed for this purpose (Kim et

al, 2006; Rabe and Gocev, 2008; Yang et al, 2008; Chang and Terpenny,

2009; Wei et al, 2009). SWRL rules provide a relatively powerful axiom layer

that interacts with OWL-based ontologies for semantic enrichment. For

example, in their work Kim et al (2006) have specified the constraints and

inferences, that hold over the semantics of concepts arising in assembly

design, using SWRL rules. Rabe and Gocev (2008), on the other hand, have

illustrated that a similar principle would also work in a framework where

SWRL rules help generate knowledge within manufacturing domains.

20

Other related research efforts (Fiorentini et al, 2007; Chen and

Stuckenschmidt, 2008), also exploiting ontology-based approaches, have

culminated in contributions with striking similarities to the ones already

identified in this section. The main finding is that most of these contributions

tend to concentrate on DL and sometimes OWL with SWRL. However,

because DL and SWRL do not provide full coverage for more expressive First

Order semantics, this shows that there is still room for improvement in terms

of exploring new methods for semantic representation and interoperability.

This work targets this niche for the purpose of probing deeper into this aspect.

2.3.6 Ontology Mapping

The continuing diversity of ontologies is partly related to ontologies being

aligned with particular views of the world, resulting in biases and subjective

features (Hameed et al, 2004). Ontology heterogeneity in design and

manufacture also occurs as a result of interspersed knowledge at different

stages of the product lifecycle. The examples of ontologies discussed in the

previous section reveals this ongoing semantic heterogeneity. If these

ontological models are to semantically interoperate, methods need to be

devised to reconcile disparate ontologies.

The area of ontology mapping has been a key direction to tackle semantic

heterogeneity issues across ontologies, with the intention of promoting

semantic interoperability. Several overlapping views over categories of

ontology mapping methods have been suggested (Kalfoglou and

Schorlemmer, 2003; Noy and Musen, 2003; Euzenat and Shvaiko, 2007;

Liping et al, 2007). There is almost general consensus over the types of

methods that can be applied in ontology mapping. Figure 2-5, partly adapted

from Noy and Musen (2003), identifies and summarises these methods.

Ontology mapping methods include (1) techniques that focus on combining

(merging) two ontologies to construct a new ontology from the individual

ontologies, (2) tools that compile a transformation function that transforms a

given ontology into another based on the transformation rules specified (Noy

21

and Musen, 2003), (3) methods that concentrate on establishing a collection

of binary relations between the vocabularies of two ontologies (alignment)

(Kalfoglou and Schorlemmer, 2003) and (4) methodologies that enable

specific portions of two ontologies to be reconciled, through the definition of

mappings via an intermediate articulation ontology. It is to be noted that

although some researched ontology mapping methods fit very well into this

category, others occur as hybrids of the common ontology mapping methods

identified in Figure 2-5.

Comprehensive available literature reviews on ontology mapping and the

related methods (Kalfoglou and Schorlemmer, 2003; Euzenat and Shvaiko,

2007) point to a large number of ontology mapping tools that have been either

theoretically proposed or fully implemented and tested (Kent, 2000;

McGuinness et al, 2000; Maedche and Staab, 2000; Kiryakov et al, 2001b;

Stumme and Maedche, 2001a; Kalfoglou and Schorlemmer, 2002; Madhavan

et al, 2002; Noy and Musen, 2003; Bach et al, 2004; Euzenat and Valtchev,

2004; Mitra et al, 2004). In the literature review exposed in this work, only the

most outstanding and pertinent ontology mapping methods are documented.

The ontology MApping FRAmework (MAFRA) developed by Maedche and

Staab (2000) is an ontology mapping method used for the reconciliation of

distributed ontologies on the Semantic Web. MAFRA consists of five

horizontal dimensions which relate to the implementation structural aspects of

MAFRA and four vertical dimensions which focus on the more strategic

X Y

Merged XY

Merging

X Y

Articulation

Articulation

X Y

Transformation

X Y

Alignment

Figure 2-5 Common Methods Used for Ontology
Mapping (Based on Noy and Musen (2003))

22

perspectives pertaining to the framework (see Figure 2-6). Following the

MAFRA approach, the first step in ontology mapping is that of (D) lift and

normalisation where all information to be mapped are set onto the same

RDF(S) representation platform. Lexical similarities are analysed in stage (E)

and, then, based on the similarities found between the source and target

ontologies, the “Semantic Bridging” module (F) establishes necessary

correspondences (Kalfoglou and Schorlemmer, 2003). These semantic

bridges are then executed (G), verified and enhanced in the final stage (H).

The FCA-Merge (see Figure 2-7), presented by Stumme and Maedche

(2001a), is another important ontology merging environment. Unlike similar

ontology merging tools which tend to exclude instances during semantic

reconciliation, it is said that FCA-Merge in fact extracts meaningful information

from classified instances. The merging process realised in FCA-Merge

comprises three vital steps. The first consists of the extraction of instances

and the computation of two formal contexts where the ontologies reside. An

information extraction technique known as SMES (I) (Saarbrucken Message

Extraction System) (Neumann et al, 1997) is used for this purpose.

The fundamental infrastructure underneath the second phase of the mapping

process is the generation of a single context and the computation of the

pruned concept lattice (J). This is performed using the FCA-Merge algorithm,

known as “Titanic” (Stumme et al, 2000), which is attuned to fit the needs of

the FCA-Merge environment. Both the first and the second stages are claimed

(D) Lift and Normalisation

(E) Similarity

(F) Semantic Bridging

(G) Execution

(F) Post-Processing

D
o
m

a
in

 K
n
o
w

le
d
g
e
 a

n
d

C
o
n
s
tr

a
in

ts

E
v
o
lu

ti
o

n

C
o
o
p
e
ra

ti
v
e
 C

o
n
s
e
n
s
u
s

B
u
ild

in
g

G
U

I
Figure 2-6 Conceptual Architecture of MAFRA (Redrawn from
Maedche et al (2002))

23

to be fully automatic processes. The third stage, which is semi-automatic,

involves an interactive user interface built on top of the OntoEdit tool (K). In

order to support the knowledge engineer in the different steps, there is a

number of queries for focusing his attention to the significant parts of the

pruned concept lattice (Stumme and Maedche, 2001b).

Noy and Musen (2000) initially proposed an algorithm and tool to promote

ontology merging and alignment. The authors have later exposed a complete

suite of tools integrated in the “Prompt” suite (Noy and Musen, 2003),

covering various functionalities for multiple-ontology management. The

“Prompt” suite comprises (1) “IPrompt” for interactive ontology merging, (2)

“AnchorPrompt” for graph-based mapping, (3) “PromptDiff” for ontology

versioning management and (4) “PromptFactor” for factorising out

semantically independent sub-ontologies.

“IPrompt”, which forms part of the algorithm-driven semi-automatic ontology

merging feature of “Prompt”, is responsible for providing suggestions for

merging, identifying inconsistencies, resolving potential problems and

exposing strategies to solve these (Noy and Musen, 2003). During the

Context 1

Context 2

Extract

Instances &
Compute
Contexts

Computation
of Common
Concept &
Concept
Lattice

Pruned
Concept
Lattice

Creation of
Concepts and
Relations in

Target
Ontology

Ontologies

Documents

Single
Merged

Ontology

 SMES (I)

Step 1 Step 2 Step 3

F
C

A
-M

e
rg

e
 I
n
fr

a
s
tr

u
c
tu

re

Automatic Automatic Semi-Automatic

Tokeniser

Lexical Analysis

Chunk Parser

Titanic Algorithm to
Compute Pruned

Concept Lattice (J)

Query System

OntoEdit (K)

UI

Figure 2-7 FCA-Merge Interaction Environment (Based on Stumme and Maedche
(2001b))

24

comparison of two ontologies, “IPrompt” analyses small segments of the

ontology graph around each concept prior to proposing appropriate merging

decisions. Overall, the “Prompt” suite remains a comprehensive semi-

automatic toolkit for coping with semantic reconciliation.

Researched and validated ontology mapping tools indicate that there is

currently no ontology matching technique that uses the semantics of logic-

based systems that employ upper ontologies (Euzenat and Shvaiko, 2007).

Moreover, it is evident, from experiments based on current ontology mapping

methods, that ontology mapping has not been given due attention in design

and manufacture primarily since the latter remains an expert domain with very

specific content and issues (Chungoora and Young, 2008b). Hence, this work

additionally addresses the relevance of semantic-based mapping methods for

aiding semantic interoperability in product design and manufacture.

2.4 Model Driven Architecture and Interoperability

The Model Driven Architecture (MDA) is an initiative launched by the Model

Driven Software Development (MDSD) community, and is nowadays a

recommended specification from the Object Management Group (OMG)

(Bourey, 2007). The MDA approach typically consists of a number of basic

concepts, as defined in the MDA Guide (2003). These concepts involve three

viewpoints and system models notably (1) the Computation Independent

Model (CIM), (2) the Platform Independent Model (PIM) and (3) the Platform

Specific Model (PSM), whose interactions consist of model transformations for

converting one model to another on the same system. These basic concepts

of MDA are reflected in Figure 2-8, together with the identification of model

transformations between the CIM, PIM and PSM.

For a single system solution under development, the high-level requirements

for the system are first set and modelled in a CIM, in order to identify the

intended expectations of the system. In other words, the CIM describes the

business context and business requirements for the system under

consideration, corresponding to a view defined by a computation independent

25

viewpoint (Elvesæter et al, 2006). The PIM, on the other hand, defines a

model at a high level of abstraction, where the model is used to describe the

software solution using a technology independent view (Bourey, 2007). It is

possible through transformation mechanisms to convert a single PIM into one

or several PSMs as shown in Figure 2-8. A PSM corresponds to a view

defined by a platform specific viewpoint and describes the realisation of

software systems in the chosen set of execution platforms (Elvesæter et al,

2006).

The principle of applying MDA to interoperability, referred to as Model Driven

Interoperability (MDI), is an interesting direction as several researchers have

utilised MDA and MDI to solve specific problems attuned to distinct fields of

research (Cutting-Decelle et al, 2006; Elvesæter et al, 2006; Gnägi et al,

2006; Didonet del Fabro, 2008; Moalla et al, 2008).

Figure 2-9, which is based on the reference model identified by Bourey

(2007), portrays a simplified version of the reference model used for MDI. In

the reference model, two MDA approaches are shown to have been applied

separately for developing two system solutions for “Enterprise E1” and

“Enterprise E2”. Model transformations are present between the CIM, PIM

and PSM levels within each enterprise system. The capability for

interoperation between the different MDA levels across enterprise boundaries

is anchored through the definition of intermediate interoperability models that

1. Computation
Independent
Model (CIM)

2. Platform
Independent
Model (PIM)

3. Platform
Specific Model

(PSM)

Transformation

Transformation

3. Platform
Specific Model

(PSM)

3. Platform
Specific Model

(PSM)

Figure 2-8 Basic Concepts in the Model Driven Architecture (MDA)

26

support (1) transformations and mappings between each cross-enterprise

MDA level and (2) transformations between interoperability models too.

Existing work on MDI points to the fact that MDA approaches have been used

for exploring solutions related to interoperability and semantics. Moalla et al

(2008), for instance, have documented the mode in which the deployment of

MDI contributes to an enhancement in product data quality across the vaccine

supply chain. Other authors like Gnägi et al (2006) have looked at promoting

semantic interoperability between Object-Oriented models through the use of

MDA.

Bourey et al (2006), for example, have refined the current knowledge on

models and transformations and have applied them to test cases within the

INTEROP NoE project (Panetto et al, 2004). In these experiments, a meta-

model approach is first defined for enabling transformations. Mappings,

implemented in a suitable transformation language, are then established

between the elements of the defined meta-models and executed to complete

the transformation process. From the breadth of work performed in the field of

MDA and MDI, it becomes obvious that there is an acknowledged importance

relating these approaches to interoperability and semantics. Another purpose

of this work, hence, is to develop novel concepts whose underlying

understanding can also be positioned according to MDA and MDI.

1. Computation
Independent
Model (CIM)

2. Platform
Independent
Model (PIM)

3. Platform
Specific Model

(PSM)

Interoperability
Model (CIM)

Interoperability
Model (PIM)

Interoperability
Model (PSM)

1. Computation
Independent
Model (CIM)

2. Platform
Independent
Model (PIM)

3. Platform
Specific Model

(PSM)

Enterprise E1 Enterprise E2

Figure 2-9 Simplified Version of the Reference Model for MDI (Based on
Bourey (2007))

27

2.5 Standards-Based Approaches to Interoperability

In addition to the previously exposed paradigms, contributions are also being

pursued towards the development of international standards which would

promote interoperability, for example, technical standards for product

information and CAD/CAM documents realised by efforts like Product Data

Management (PDM), Product Lifecycle Management (PLM) and STEP (Lin

and Harding, 2007).

Particularly relevant to the field of product design and manufacture is the ISO

10303 standard, also referred to as STEP (STandard for the Exchange of

Product model data). STEP is aimed at the standardisation of product data for

exchange. The specifics of STEP and its implications on data management,

exchange and sharing, i.e. its implications on interoperability, have long been

recognised (Fowler, 1996). Furthermore, it has been demonstrated how the

various STEP Application Protocols (APs), defined predominantly around the

concept of “machining features”, can be harnessed to achieve an integrated

manufacturing architecture (SCRA, 2006).

Figure 2-10, adapted from SCRA (2006), portrays this interoperability-enabled

architecture, where some of the STEP APs are shown to relate to specific

functions in design and manufacture. The total architecture enables the

deployment of an integrated manufacturing environment where machining

features are present at the core of the information exchange capability. Other

similar efforts towards standardisation have been fostered (TC184/SC4

Website, 2009) such as (1) Parts Library (PLIB) (ISO 13584) for the

representation of parts library data to support interoperability between

suppliers and users, (2) manufacturing management data interchange

(MANDATE) (ISO 15531) for the representation of production process data

and (3) the Process Specification Language (PSL) (ISO 18629) for the

semantic definition of manufacturing processes.

28

Although standards-based approaches provide a viable direction to resolving

interoperability issues, only few of these actually overcome the semantic

interoperability challenge. This is because even concepts which are supposed

to have agreed definitions within Standards, do not necessarily share the

same semantics. For example, Young et al (2007) have shown the

inconsistencies present in the informal semantics of the word “process” in ISO

19493, ISO 18629 and ISO 10303. This observation is also shared by Costa

et al (2007), who have pinpointed the presence of obstacles related to the

fuzziness in ISO 10303 AP236 definitions.

It has to be noted, however, that the concepts defined in PSL (ISO 18629)

remain robust, from a semantic integrity viewpoint. This is because, PSL is

aimed at capturing heavyweight semantics specifically, unlike other standards

like STEP, which remains lightweight in nature and does not satisfy all the

requirements for semantic interoperability (Patil et al, 2005). In addition to

acknowledging the semantic interoperability limitations of STEP, this review

also depicts a clear potential to address these issues by exploiting

heavyweight ontological approaches to formalise relevant parts of ISO

standards.

CAD

Mechanical product
definition using

machining features

Process plans for
machined parts

Machining

Features

CMM

Dimensional inspection
information exchange

CNC

Application
interpreted model for

computerised
numerical controllers

AP224

AP240 AP238

AP219

Figure 2-10 Enabling Manufacturing Integration Using STEP Application
Protocols and Machining Features

29

2.6 Information Modelling in Product Design and Manufacture

The modelling of information and knowledge structures in product design and

manufacture has a direct influence on the capability to semantically

interoperate. This is because, the degree of formality present in the

structuring of information in a model is analogous to the semantic enrichment

of the captured model. In PLM, two significant types of models have been

pursued namely (1) product models (Molina et al, 1995; Anderl, 1997;

Balogun et al, 2004; Sudarsan et al, 2005) and (2) manufacturing models

(Giachetti, 1999; Zhao et al, 1999; Al-Ashaab et al, 2003; Liu and Young,

2004).

2.6.1 Product Models

A product model may be defined as an information model, which stores

information related to a specific product (Molina et al, 1995; Anderl, 1997).

Another analogous description of a product model has been provided by

Balogun et al (2004), who specify that the model represents a complex

product from the top product level to the tolerance detail of every feature

characteristic.

Product models occupy a key role at the centre of the product lifecycle (Young

et al, 2007) since they hold and share product information that are generated,

used and maintained over the processes of design, manufacture, delivery,

maintenance and disposal (Lee et al, 2006). Product models may be

composed of a number of sub-models such as (1) the structure-oriented, (2)

geometry-oriented, (3) feature-oriented and (4) the knowledge-oriented

models, which when unified into integrated product models (Chin et al, 2002)

enable decision support capability to be achieved.

The concept of product models continues to evolve with time. Sudarsan et al

(2005), for example, have successfully exploited a particularly interesting

product model, known as the Core Product Model (CPM) as shown in Figure

2-11. The main advantage of the CPM is that it favours product model

30

extensions while providing a common ground. The model proposed by

Sudarsan et al (2005) also aims at capturing different engineering contexts

that involve view-specific product considerations. The “Product Family

Evolution Model” (PFEM), for instance, represents the evolution of product

families and the rationale of the changes involved (Wang et al, 2003).

2.6.2 Manufacturing Models

The concept of manufacturing models initially took root from contributions

made by Al-Ashaab (1994). Manufacturing models consist of common

repositories of manufacturing capability information and the knowledge and

constraints over the use of manufacturing processes (Al-Ashaab, 1994;

Balogun et al, 2004; Liu and Young, 2004). The information structures

exploited for this purpose comprise of defined relationships between all

manufacturing capability elements.

Similar to how product models can be decomposed into their constituent

individual sub-models, manufacturing models also enfold different concepts

like (1) the manufacturing resource capability model, which concentrates on

representing information about functions and characteristics of manufacturing

resources and their combination into manufacturing processes (Giachetti,

1999; Molina et al, 1995; Zhao et al, 1999), (2) the process plan model, used

to describe the information about the process plan strategy of a manufacturing

process (Feng and Song, 2003) and (3) the manufacturing cost model, used

for driving the meaningful estimation of production costs incurred during

design and manufacture.

Core Product
Model

DesignAnalysisIntegration
Model

OpenAssembly
Model

ProductFamilyEvolution
Model

Figure 2-11 Framework Components of the Core Product Model
(Redrawn from Sudarsan et al (2005))

31

In their work, for example, Feng and Song (2003) have met the aim of

developing a “Manufacturing Object Model” to enable the interoperability of

preliminary design with process planning. Their implementation platform

utilises the Unified Modelling Language (UML) Object-Oriented (OO)

approach for constructing the information structures behind the manufacturing

model. Current documentation on manufacturing models (Tam et al, 2000;

Liu, 2004; Gunendran and Young, 2006) further point to the fact that mostly

an Object-Oriented slant has been given as far as information modelling of

manufacturing models are concerned, i.e. exploited information structures

have remained lightweight in nature.

2.6.3 Integrating Product and Manufacturing Models

Clear evidence is available which demonstrates that there is a need to

integrate the product and manufacturing models. Feng and Song (2003), for

instance, mention that both models have not been shown fully integrated with

each other. The integration of product and manufacturing models is key

towards reinforcing decision support capability and knowledge acquisition in

the product development lifecycle.

The ability to capture and reuse design and manufacturing knowledge in a

meaningful manner is dependent on the semantic interoperability of product

and manufacturing models. Gunendran and Young (2006), for example, have

documented an information and knowledge framework for capturing multi-

perspective design and manufacture and have mentioned that the integration

knowledge may contain several rules, equations and options to support the

information integration of multiple views. However, multi-view modelling to

acquire manufacturing knowledge has been developed into solutions based

on the use of UML, and therefore use a lightweight ontological approach

which is inappropriate for inter-system interoperability (Young et al, 2007).

Hence, it is clear that a progression to achieve this semantic integration

remains to be addressed.

32

2.6.4 Features and Part Families

Feature-based engineering bridges the gap between Computer Aided Design

(CAD) and Knowledge Based Engineering (KBE) systems (Shah, 1995; Otto,

2001). A useful definition for a feature has been provided by Brunetti and

Golob (2000), who mention that a feature is an information unit (element)

representing a region of interest within a product, and is described by an

aggregation of properties of a product.

Several authors have documented the importance of features of various sorts

as providing valuable integration links between design and manufacture, such

as the “machining features” effort from STEP. Gu (1994), for example, have

recognised the significance of feature-based representation, as part of a

product models for supporting integrated manufacturing. The ongoing

significance of feature-based modelling is well established and has been

under consideration by several researchers at different periods of time such

as Young and Bell (1993) and Aifaoui et al (2006).

One of the recent types of feature that has emerged, with the scope of

representing any geometric and non-geometric relations in an assembly,

involves associative assembly design features (Ma et al, 2007). In their

approach, Ma et al (2007) firstly identify the requirements for satisfying

assembly features by specifying, for example, (1) the need for independent

representation of feature relations and (2) the representation of relationships

between features and parts for the inclusion of both geometric and non-

geometric information. However, it is to be noted that a lightweight ontological

approach using UML modelling has been pursued.

Feature technology follows two main paradigms namely that of (1) feature

recognition and (2) design by feature. In the former, intelligent algorithms are

used to extract features from existing geometry. However, a major limitation is

present on this approach and relates to the effectiveness of the exploited

algorithms to recognise interacting features (Martino and Giannini, 1998). In

the design by feature approach, which is nowadays favoured compared to

33

feature recognition, a product can be modelled from a library of available

features. There is, however, a drawback to this approach in that the

representation of features is dependent on the context, i.e. viewpoint, being

taken (Martino and Giannini, 1998). Nevertheless, where features can be

understood within a part family context, there is the potential for them to

provide a significant route to sharing information between lifecycle activities

(Gunendran and Young, 2008), i.e. the semantics of part families can help

support interoperability in product design and manufacture.

The concept of part families, in which specific parts are grouped according to

their manufacturing operation requirements, is particularly relevant to group

technology and cellular manufacturing systems (Ang, 1998; Chan at al, 2006;

Yang and Yang, 2008). Categorisation of part families with respect to specific

viewpoints arising in design and manufacture, as is the case with features, is

also a fact, for example, design, manufacturing and assembly part families

(Westkämper et al, 2000; Simpson, 2004; Jiao et al, 2007; Gunendran and

Young, 2008).

It has been acknowledged by Li et al (2006), whose work is concerned with

the representation and sharing of part feature information in Web-based parts

library, that one of the requirements to achieve meaningful part family

description is to have a comprehensive norm for capturing part family

information. This, from a semantic interoperability perspective, additionally

implies the importance of addressing semantic descriptions of features and

part families, as well as the ability to wrap semantically-rich product and

manufacturing models.

2.7 Interoperability Architectures and Frameworks

Wide-ranging interoperability architectures and frameworks have been

proposed to date. A comprehensive review of some of these has been

documented by Chen et al (2008) and this section, therefore, concentrates on

a discussion of the most pertinent interoperability architectures and

frameworks relevant to this work. Early efforts fostered have resulted in well-

34

established reference architectures such as (1) the Computer Integrated

Manufacturing Open System Architecture (CIMOSA) (AMICE, 1993), (2) the

Purdue Enterprise Reference Architecture (PERA) (Williams, 1994), (3) the

GRAI-GIM reference model (Chen and Doumeingts, 1996) and (4) the

Reference Model of Open Distributed Processing (RM-ODP) (ISO/IEC 10746,

1996).

With the evolving view on interoperability at enterprise level, a majority of

interoperability architectures and frameworks are being established according

to the strategic principles related to the requirements for business

interoperability, considerations for appropriate technological support and the

chosen architecture perspective. The Zachman Framework (The Zachman

Framework Website, 2009), IDEAS interoperability framework (Chen et al,

2004) and The Open Group Architecture Framework (TOGAF) (TOGAF

Website, 2009), for example, all identify significant multi-level prerequisites for

enabling enterprise interoperability.

In the IDEAS interoperability framework, which has been developed within the

ATHENA project (Ruggaber, 2006), a specific dimension is acknowledged for

the implications of semantics cutting across the “business”, “knowledge” and

“Information and Communication Technology” (ICT) levels within single

enterprises and the need for integrating, unifying and federating across

enterprise boundaries. This understanding is portrayed in the simplified

IDEAS interoperability framework in Figure 2-12.

Business

Knowledge

ICT Systems S
e
m

a
n

ti
c
s

Enterprise A

 Business

 Knowledge

 ICT Systems

S
e
m

a
n

tic
s

Enterprise B

Integrated

Unified

Federated

Figure 2-12 IDEAS Interoperability Framework (Redrawn from Chen et al (2004))

35

In the context of international standards, a multi-dimensional framework has

been proposed for enterprise interoperability (CEN/ISO 11354, 2008). The

first elaborated part of the framework entails the requirements for enabling

process interoperability across manufacturing enterprises. Figure 2-13,

adapted from CEN/ISO 11354 (2008) illustrates the Framework for Enterprise

Interoperability. There exist three dimensions to the framework notably (1) the

barriers to interoperability such as conceptual and technological, (2) relevant

concerns such as business and process and (3) the approaches to

interoperability such as federated and unified. In Figure 2-13, PSL has been

positioned according to the Framework for Enterprise Interoperability, and it

can be seen that the “conceptual”, “process” and “unified” dimensions help

position PSL in the right segment of the framework matrix.

Other architectures, such as the semantic-mediation architecture for

business-to-business interoperability (Vujasinovic et al, 2007), have also been

researched and industrially validated. In their work, Vujasinovic et al (2007)

have implemented their architecture within the ATHENA research project

(Ruggaber, 2006). Their implementation platform primarily harnesses

Semantic Web tools with XML and RDF(S) capability. Vetere and Lenzerini

(2005), on the other hand, have identified four different types of models for

semantic interoperability in service-oriented architectures, by following an

understanding of centralised and decentralised mappings between service

PSL

approaches

barriers

concerns

c
o

n
c

e
p

tu
a

l

te
c
h
n
o
lo

g
ic

a
l

o
rg

a
n
is

a
ti
o

n
a
l

business

process

service

data
 integrated

unified

 federated

Figure 2-13 Positioning PSL in the Framework for Enterprise Interoperability
(Redrawn from CEN/ISO 11354 (2008))

36

schemas. However, this work has remained at a conceptual level since no

test case implementation is proposed.

In current literature, very few contributions have coined the terms “semantic

interoperability framework”. Amidst these contributions lies the extended

COntext INterchange (eCOIN) framework (Firat et al, 2007), whose main

purpose is to facilitate semantic reconciliation through the definition of

reusable “conversion function networks” as mappings. The authors of eCOIN

adopt a view that the achievement of semantic interoperability should take

account of semantic heterogeneity as well as semantic reconciliation. It has

been argued that the eCOIN uses a hybrid of ontology-based methods

involving principles like ontology alignment through articulation axioms and

ontology merging (Firat et al, 2007). However, the motivational scenarios that

back up eCOIN remain broad in nature and have not been attuned to the

world of product design and manufacture.

Specifically in the field of product design and manufacture, relatively few

frameworks have been proposed in order to contribute to semantic

interoperability. Patil et al (2005), for instance, have presented an approach to

foster the semantic interoperability of product data utilising an ontology-based

framework. This framework for semantic interoperability is identified in Figure

2-14.

Following the framework diagram proposed by Patil et al (2005), it is possible

to identify two main reconciliation mechanisms present namely (1) the

mapping of the semantics from a “System A” and “System B” into an

intermediate product ontology (Product Semantic Representation Language

(PSRL) which is DL-based) and (2) the translation of syntax and terminology

A‟s Semantics

A‟s
Terminology

B‟s Semantics

B‟s
Terminology

PSRL Semantics

PSRL Syntax

System A System B

Figure 2-14 Framework for Semantic Interoperability by Patil et al (2005)

37

from “System A” to syntax in PSRL, which is then translated to the syntax of

the target “System B”. It is to be noted that Patil et al (2005) have recognised

that their approach does not support low levels of abstraction in product

models, such as geometric entities, as a result of their preference for the

domain of Description Logics.

Gupta and Gurumoorthy (2008) have argued a feature-based framework to

support semantic interoperability of product models. The concept of “Domain

Independent Form Feature” (DIFF) has been proposed, over which the

framework is constructed. Figure 2-15 illustrates their schematic concept

which enables semantic interoperability of product models. In the figure, the

DIFF model supported by an ontology, provides a basis for the representation

of features, and facilitates semantic interoperability between a source and a

target system.

In their approach, Gupta and Gurumoorthy (2008) have focused on the

definition of features in terms of their faces solely, and have looked

exclusively at semantic interoperability problems occurring due to different

labels that refer to the same shape and different representations for the same

shape. This implies that other significant considerations for (1) feature

function in design, (2) relationships between features and manufacturing

processes and (3) other forms of semantic interoperability issues remain to be

addressed. Furthermore, the authors have implemented their framework

utilising the Protégé (Protégé Website, 2009) ontological environment. Since

Protégé does not provide full support for First Order heavyweight semantics,

Ontology
for DIFF
Model

DIFF
Model

IN
T

E
R

F
A

C
E

Feature /
construction
history of a
product in a

source system

Feature /
construction
history of a

product for a
target system

Figure 2-15 Gupta and Gurumoorthy's (2008) Approach to Semantic Interoperability
of Product Model

38

this implies that opportunities still exist for improving the expressiveness of

semantics in product models.

2.8 Summary

This state-of-the-art review has been conducted with a outlook onto the most

pertinent areas of knowledge relevant to the problem of achieving

interoperability at the semantic level, where the interoperation has to be

established by the supply of information through inter- and intra- system

communication (Chen et al, 2008). Five key areas have thus been targeted

namely (1) ontology-based approaches to interoperability, (2) the Model

Driven Architecture, (3) Standards-based methods, (4) the relevance of

interoperable information modelling in design and manufacture and (5) current

architectures and frameworks that attempt to resolve the problem of

interoperability and semantics.

Ontology-based methods have attracted a lot of attention for the development

of shared representations. It has been witnessed that the ability for sharing

semantics across these representations is dependent on the degree of

formality, or logical expressiveness, supported by ontological formalisms.

However, it has to be appreciated that even in the deployment of ontology-

based methods, semantic heterogeneity is unavoidable and for this reason,

methods for ontology mapping are being developed for reconciling the

semantics between ontologies that need to interoperate.

The Model Driven Architecture (MDA) also has a significance in shaping the

future perspectives on semantic interoperability. This work recognises its

influence and, therefore, the MDA approach partly serves as a basis for

positioning this research in terms of the CIM, PIM and PSM levels of the

architecture. Standards-based methods to interoperability are also particularly

important as they corroborate the ability to employ and reinforce useful

principles applied in manufacturing integration.

39

Information modelling in product design and manufacture has been

recognised as providing valuable potential for capturing the semantic

structures required in product and manufacturing models and their integration.

It is seen that this integration can also be facilitated through the consideration

of multiple viewpoints of product features and part families. On the other

hand, it has been possible to comprehend how all the other previously-

mentioned areas of knowledge are reflected in existing interoperability

architectures and frameworks.

The gathered understanding from the state-of-the-art documentation has

helped identify a number of niches that remain to be fulfilled. These key

research gaps are listed below:

 There is a need for improved ontology-based framework solutions to

support semantic interoperability and knowledge sharing in design and

manufacture.

 There is the ongoing requirement to understand how to exploit effective

foundation ontology approaches to meet the communication needs in

manufacturing.

 There is a potential for exploiting more formal semantic-based methods for

ontology matching.

 It is necessary to explore heavyweight ontological approaches to address

the representation of product and process semantics.

The identification of these research gaps meets the first objective of this

research (see Chapter 1 section 1.3.1). Overall, it has been shown that there

is currently no existing framework that addresses, in a holistic way, the

problem of semantic interoperability in product design and manufacture. This

work, hence, exposes a novel attempt to support semantic interoperability in

product design and manufacture by harnessing relevant capabilities from the

identified areas of knowledge.

40

3 Requirements to Support Semantic Interoperability

in Product Design and Manufacture

3.1 Introduction

This chapter elaborates a set of requirements pertinent to supporting

semantic interoperability in product design and manufacture. Section 3.2

broadly illustrates the implications of pursuing semantic interoperability in

collaborative design and manufacture. Section 3.3 then explores a number of

semantic interoperability issues, based on hole features occurring in design

and manufacture, from which the related semantic requirements are exposed.

These requirements represent a valuable checklist which is closely linked to

the development of the preferred concepts adopted this work. A short

summary of the investigated requirements is provided in section 3.4.

3.2 Semantic Interoperability in Product Design and

Manufacture

Seamless semantic interoperability is achievable when the meaning

associated to captured information and knowledge in computational form can

be effectively shared across systems without any loss of the meaning and

intent of the information and knowledge during the exchange process. At

present, unclear, implicit and ambiguous semantics lead to

misunderstandings and semantic obstacles i.e. obstacles related to the

definitions of business and software classes and organisation of information

(Gunendran et al, 2007). Figure 3-1 opens the issues arising in the quest for

semantic interoperability, based on a design and manufacture information

organisation perspective.

For any given product family whose evolution follows the epicycles in product

lifecycle development (Subrahmanian et al, 2005), several views of the same

artifact are bound to exist when considered from the different nodes residing

in the product lifecycle such as conceptual design, detailed design,

41

manufacturing, operation, etc. In Figure 3-1, these multiple perspectives

include “Geometric Dimensioning and Tolerancing”, “Function”, “Process

Planning and Execution”, “Machining Resource” and may consist of other

views as well. Multiple perspectives of the same artifact result in multi-

viewpoint models (Kugathasan and McMahon, 2001; Gunendran and Young,

2006). Multi-viewpoint models of a type of product naturally overlap with each

other since they pertain to the same artifact. In a semantic interoperability-

enabled environment, it is essential that the semantics of various viewpoints

be captured. This is further explained in section 3.3.1.

In collaborative product development, intra-system domains need to establish

shared interpretations over specific product viewpoints or combinations of

viewpoints, as shown in Figure 3-1, in order to facilitate information

exchanges. In the context of this work, a domain is regarded as a field of

knowledge, based on one or multiple similar viewpoints, required to perform

Figure 3-1 Overlapping Viewpoints and Domains in Design and
Manufacture within a System Domain

Machining Resource

Process Planning
and Execution

Ø Cylinder

Ø Cbore

+/- tol

Depth

Ø Hole

+/- tol

Geometric Dimensioning &
Tolerancing

Function

Other Views

Domain

Domain

Domain

Support through semantic technologies

System Domain

42

the task of solving difficult real-life problems through the use of expert system

procedures (Kalpakjian, 2001). A system domain, on the other hand, involves

multiple interacting domains. Of particular relevance are (1) the means of

driving semantic consistency and interoperability across multiple viewpoints

within a single system domain and (2) the means of supporting semantic

interoperability across system domains. Based on Figure 3-1, within a single

system domain, the ability to semantically interoperate between view-specific

domain models is dependent on the creation, derivation and extraction of

semantic relationships (Ray and Jones, 2006) (see Section 3.3.2). In this

work, the terms “domain model” are used to refer to a formal domain

conceptualisation (ontology) and its associated Knowledge Base (KB).

In a concurrent engineering-driven arena, different system domains, that hold

their own integrated product views, may need to interoperate. From a

semantic interoperability standpoint, this raises a concern linked to ensuring

the cross-system consistency in the meaning of overlapping concepts that cut

across system domain boundaries (refer to section 3.3.3). Acquiring semantic

interoperability in product design and manufacture is also dependent on

available technological support. In the world of semantic interoperability,

semantic technologies provide the capability to address semantic

interoperability obstacles between domain models. However, fundamental

concerns remain in order to identify better means of harnessing semantic

technologies while overcoming the related challenges documented in Shvaiko

and Euzenat (2008). Section 3.3.4 explores this is greater detail.

3.3 Semantic Interoperability Issues and Requirements

3.3.1 View-Specific Semantics in Design and Manufacture

Product lifecycle knowledge resides in multiple different but overlapping

viewpoints. Approaches such as Design for Function, Design for Assembly,

Design for Manufacture and Process Planning dictate the nature of the

meaning and intent of concepts defined within specific viewpoints. This

diversity of perspectives remains a key issue as far as ensuring semantic

43

integrity across viewpoints is concerned. Figure 3-2 presents two views,

namely a functional view and a machining view, featuring visible semantic

differences due to alternative representations of a counterbore hole.

In the functional view, a counterbore hole is considered from a product

requirements angle where the purpose of the feature is to accommodate a

particular bolt size specification, hence its definition as a bolt hole. In the

machining view, the functionality of the counterbore hole is not immediately

relevant, and the same feature is defined by a different set of semantics

pertinent to the machining view. In the case of the functional view, the

attribution of depth parameters to the counterbore hole is based on the bolt

head position and bolt length position. In the machining view, the attribution of

depth parameters involves viewing the counterbore hole as a compound

feature requiring a drilling operation followed by a counterboring operation.

Implications

Implications

1 Drill

2 Counterbore

Bolt Hole

Counterbore Hole

Functional View Machining View

 Drill then Counterbore

Figure 3-2 Example of a Counterbore Hole Viewed from Two Different Viewpoints

44

The example noticeably shows that product features may be defined using

view-specific semantics which is an important encounter across information

modelling in product design and manufacture (Chapter 2 section 2.6).

Furthermore, it has been recognised that semantics need to be defined for

contexts (viewpoints) such as functional, geometry, manufacturing, machining

process and assembly (Gunendran et al, 2007) to support interoperability at

various stages of the product lifecycle. These multi-perspective considerations

are essential for sharing information (Kugathasan and McMahon, 2001;

Canciglieri and Young, 2003; Gunendran and Young, 2006). Hence, it

becomes evident that a progression towards the seamless exchange of

design and manufacturing knowledge requires capturing the semantics of

concepts from multiple product lifecycle viewpoints [Requirement 1].

3.3.2 Semantic Relationships between Viewpoints

To capture the interactions between elements from different view-specific

semantics, relationships need to be made across viewpoints so that the

knowledge contained in one viewpoint can be interpreted in another without

any loss of semantics. These relationships could be supported through the

definition of ontology-based relations (Chapter 2 section 2.3.1) and via the

integration of product and manufacturing model information (Chapter 2

section 2.6.3). The example which follows proposes a scenario where albeit

concepts from two different viewpoints occur, there nevertheless exists a

possible overlap between the two, from a semantic standpoint.

Figure 3-3 identifies a GD & T (Geometric Dimensioning and Tolerancing)

viewpoint where a simple hole feature is described in terms of its nominal

diameter and diameter tolerances. From a machining viewpoint, the

semantics of the same hole feature take into account the machining

processes required to achieve the nominal diameter and diameter tolerances.

In the scenario, it can be seen that a semantic relationship between the

dimensional parameter “A ± B” and a “Reaming” process, that achieves this

dimensional parameter, can be used to drive knowledge of how a “Reamed

45

Hole” may be produced through a sequence of “Centre Drilling” followed by

“Drilling” followed by “Reaming”.

The example clearly demonstrates that if overlapping semantics between

viewpoints can be understood, then it is possible to obtain a basis for defining

semantic relationships. These relationships would apply regardless of domain

boundaries developed within single system domains. Hence, there exists a

need for providing semantic relationships between different but overlapping

product viewpoints in order to support integrated semantic capabilities

[Requirement 2].

3.3.3 Semantics of Core Concepts across System Domain

Boundaries

Several shared domain conceptualisations (domain ontologies) that need to

interoperate at the semantic level do not readily do so as a consequence of

ontology heterogeneity. Continuing diversity of domain ontologies is partly

related to the choices of knowledge representation formalism made, domain

preferences and the inappropriateness of enforcing an all-embracing common

ontology as a basis over which to build up information exchanges (Hameed et

Sequence of Hole Machining Operations

GD & T View

A ± B

Centre
Drilling

Drilling Reaming

Centre

Drilled Hole
Drilled

Hole

Reamed

Hole

Machining View

p
ro

d
u

c
e

Relates To

Figure 3-3 Example of a Semantic Relationship between Two Views
within a Single Domain

46

al, 2004). This subsequently leads to multiple ontologies and schemas

developed by independent entities (Madhavan et al, 2002).

Although multiple domain ontologies impose semantic obstacles during their

interoperation, it is obvious that all system domains in the world of product

design and manufacture, that treat similar families of parts, to some extent

share a “virtual” set of core concepts whose meanings may apply to all

system domains. This understanding partly falls into the category of (1) the

product model and part family effort fostered by various researchers (Molina

et al, 1995; Balogun et al, 2004; Sudarsan et al, 2005; Gunendran et al, 2007)

(Chapter 2 section 2.6) and (2) foundation ontology approaches for

manufacturing (Chapter 2 section 2.3.4). However, since a majority of these

approaches do not include tailored semantic definitions, this indicates that

there is a need for an effective basis to support the provision of a set of

reusable semantically-defined core concepts, which can be exploited by

multiple system domains [Requirement 3].

3.3.4 Harnessing Semantic Technologies to Assist Semantic

Interoperability

The ability to harness the appropriate semantic technologies in order to

facilitate the explicit capture of domain semantics in computational form

(formalisation) and to support shared meaning across domain models

constitutes another key requirement [Requirement 4]. Such technologies

may involve, for example, heavyweight ontologies (Chapter 2 section 2.3.2)

and their platforms as well as ontology mapping methods (Chapter 2 section

2.3.6). Requirement 4 can be broken down into a number of sub-

requirements, the discussions of which are partly based on the challenges

reviewed by Shvaiko and Euzenat (2008), and exposed in the next sub-

sections.

47

3.3.4.1 Knowledge Representation Formalisms

Capturing and representing the semantics of domain ontologies in

computational form is central to sharing across product design and

manufacture. Several families of knowledge representation formalisms have

been developed to capture and represent ontology-based semantics. Figure

3-4 provides some examples of existing knowledge representation

formalisms. Such formalisms include among others Frame-based languages

(Wang et al, 2006), Description Logic-based languages (Baader et al, 2007)

and Common Logic (ISO/IEC 24707, 2007) altogether forming a repertoire of

languages with different levels of expressiveness as far as the representation

of semantics is concerned (Ray, 2004).

Figure 3-4 depicts that these formalisms for knowledge and semantic

representation are either lightweight or heavyweight in nature (Gómez-Pérez

et al, 2004). Heavyweight approaches rely on formal axioms that constrain the

interpretation of concepts at computational level and are, therefore, preferred

from a semantic point of view.

It has been acknowledged that there is a need for more mathematically

rigorous, i.e. heavyweight, approaches (Chapter 2 section 2.3.2) to ensure

that the true meaning of terminology coming from different systems is identical

Lightweight

Approaches

Heavyweight

Approaches

Figure 3-4 Examples of Knowledge Representation Formalisms

48

to permit computational comparisons of the meaning of terms (Das et al,

2007; Young et al, 2007). Consequently, there exists an ongoing requirement

to understand which family of knowledge representation formalism(s) allows

the expressive capture and representation of product design and manufacture

semantics [Requirement 4a] for the development of semantically-rich

models. An experimental investigation explored in Appendix B contributes to

this understanding by showing that a progression towards more expressive

knowledge representation formalisms, like Common Logic (CL), is required to

fully capture and represent semantic structures in product design and

manufacture.

3.3.4.2 Resolution of Semantic Mismatches

Possible semantic mismatches that can exist between domain models are

diverse in nature. The occurrence of these mismatches can be explained from

different angles such as knowledge elicitation and knowledge representation

(Hameed et al, 2004). When considered from the knowledge representation

perspective, which provides a comprehensive way to describe semantic

heterogeneity in systems, these mismatches are shown to occur at different

levels of granularity (Visser et al, 1997; Hameed et al, 2004; Chungoora and

Young, 2008b). Figure 3-5 exposes a classification of semantic mismatches

based on the knowledge representation perspective.

Semantic Mismatches

Conceptualisation Mismatches Explication Mismatches

Class Mismatches

Categorisation

Aggregation Level

Relation Mismatches

Structure

Attribute Assignment

Attribute Type

Concept

Concept and Definiens

Definiens

Term

Concept and Term

Term and Definiens

?

Figure 3-5 Classification of Semantic Mismatches (based on (Hameed et al, 2004))

49

In the figure it can be seen that there are two main trends to semantic

mismatches namely:

 Conceptualisation mismatches which occur as a consequence of having

two or more types of conceptualisations of a certain domain. Disparate

conceptualisations may differ in the way their ontological concepts are

defined or in the way these concepts are related to each other.

 Explication mismatches which are explained using three components of

concept definitions, i.e. concepts, terms and definiens. A concept

constitutes an underlying notion to be defined. A term is used to denote a

particular concept and generally involves a human-assigned terminology.

Definiens are other concepts which provide the building blocks of the

definition of a more complex concept in the form of aggregated

statements. Mismatches arising at any of the three components (i.e.

concept, term and definiens) or combinations of components result in

explication mismatches.

Examples of semantic mismatches, explained from the knowledge

representation perspective and applied to the area of product design and

manufacture, have been investigated (Chungoora and Young, 2008b). The

gathered understanding leads to the identification of another requirement.

With the intention of promoting semantic interoperability, there exists a

prerequisite for exploring semantic technologies which can improve the

identification and resolution of possible semantic mismatches between

domain models [Requirement 4b].

3.3.5 Concepts for Ontology Matching

A fundamental stage in the reconciliation of heterogeneous domain models

involves the capability to match across ontology-based arguments (content)

through the process of ontology mapping/matching (Chapter 2 section 2.3.6).

Matching relationships, which can be associated across domain models,

hence facilitate the process of building an agreement on concept spaces

(Doerr et al, 2003). Figure 3-6 shows an example of how the specification of

50

ontology matching relationships provides a convenient way to reconcile and

interoperate between concepts from two domain ontologies.

The scenario depicts that if some desirable ontology matching relationships

can be specified between the semantic structures (definiens) that define two

hole feature concepts “Simple_Hole” and “Plain_Hole” from “Ontology X” and

“Ontology Y” respectively, then it is possible to not only understand how these

semantic structures correspond, but it also raises awareness of what type of

knowledge could be shared across “Ontology X” and “Ontology Y” at the hole

feature definition level.

Several ontology mapping/matching methodologies exploit the ability to

formally specify cross-ontology correspondences as a means to establishing

mappings from which ontology interoperability can be achieved (Maedche and

Staab, 2000; Kiryakov et al, 2001a; Madhavan et al, 2002). However, at

present, ontology mapping approaches still deserve attention so as to improve

the capability for more effectively matching across ontologies and verifying the

integrity of mappings. Consequently, a key requirement is concerned with the

Figure 3-6 Example of Ontology Matching Relationships to
Reconcile Hole Feature Concepts from Two Domain Ontologies

Ontology Y

Simple_

Hole

Diameter

Depth

Primary_

Diameter

Primary_

Depth

Plain_

Hole

Definiens ofDefiniens of

P
ri
m

a
ry

_
D

e
p
th

Primary_Diameter

Ontology X

D
e
p
th

Diameter

51

need for methods to explicitly and formally specify ontology matching

relationships between domain models [Requirement 4c].

3.3.6 Performance of Methods for Semantic Reconciliation

Performance is of prime importance in many dynamic applications, for

example, where a user cannot wait too long for the system to respond

(Shvaiko and Euzenat, 2008). Current methods for ontology matching may

resolve from linear time to quadratic time, which may imply several minutes,

hours or even days to complete a matching task (Shvaiko and Euzenat,

2008). Performance is also related to the level of automation of methods for

the semantic reconciliation of ontologies. Several approaches have been

proposed in order to reconcile heterogeneous ontologies using ontology

mapping/matching, hence resulting in an extensive range of methodologies

for leveraging ontological semantic interoperability (Euzenat and Shvaiko,

2007). These ontology mapping methodologies attempt to provide ways for

reconciling distributed semantics either automatically or semi-automatically.

It is thus widely accepted that manual mapping is a labour-intensive task

(Mitra and Wiederhold, 2002) which loses its feasibility as larger ontologies

have to be reconciled. Consequently, it follows that the performance level of

semantic reconciliation approaches proves to be an important asset

contributing to the strength of semantic technologies for supporting semantic

interoperability. For this reason, a requirement is present to support higher

performance levels as far as semantic reconciliation processes are concerned

[Requirement 4d].

3.4 Summary of Requirements

This chapter has identified a set of requirements, whose importance is

paramount to supporting semantic interoperability in design and manufacture,

thereby meeting the second objective of this work (see Chapter 1 section

1.3.1). The investigation of these requirements has been based on the

52

aspects that occur in the organisation of manufacturing information for

engineering interoperability (Gunendran et al, 2007).

Close considerations to these requirements are made during the proposal and

development of a novel ontology-based framework, whose underlying

principles are revealed in the forthcoming chapters. In other words, the

investigated requirements form a checklist of development specifications for

the framework. A summary of the explored requirements is provided next:

 Requirement 1: There is a need for a progression towards the seamless

exchange of design and manufacturing knowledge through the capture of

semantics coming from multiple product lifecycle viewpoints.

 Requirement 2: There exists a need for providing semantic relationships

between different but overlapping viewpoints in order to support integrated

semantic capabilities.

 Requirement 3: There is a need for an effective basis to support the

provision of a set of reusable semantically-defined core concepts, which

can be exploited by multiple system domains.

 Requirement 4: There is a need for harnessing the appropriate semantic

technologies in order to facilitate the formal capture of domain semantics

and to support shared meaning across domain models.

 Requirement 4a: It is essential to understand which family of knowledge

representation formalism(s) allows the expressive capture and

representation of product design and manufacture semantics.

 Requirement 4b: There exists a prerequisite for exploring semantic

technologies which can improve the identification and resolution of

possible semantic mismatches between domain models.

53

 Requirement 4c: There is a necessity for methods to explicitly and

formally specify ontology matching relationships between domain models.

 Requirement 4d: A requirement is present to support higher performance

levels as far as semantic reconciliation processes are concerned.

All the above-mentioned requirements have been fully taken into account for

the proposal and development of the research framework (see Chapter 4). It

is to be noted that these requirements have been exposed partly based on the

semantic interoperability issues that derive from the research scope.

However, the statement of these requirements has remained at a high level

which implies that the investigated requirements are applicable to the field of

product design and manufacture as a whole.

54

4 A Novel Framework to Support Semantic

Interoperability in Product Design and Manufacture

4.1 Introduction

The purpose of this chapter is to expose the author‟s concept for a novel

ontology-based framework which helps support semantic interoperability in

product design and manufacture. As an attempt to resolve the semantic

issues that prevent the achievement of semantic interoperability, the concept

proposes a four-layered approach: The Semantic Manufacturing

Interoperability Framework (SMIF), which is explained in further detail in

section 4.2. The first element of the framework, identified as the Foundation

Layer, exploits a heavyweight ontological underpinning and is explained in

section 4.3. This Foundation Layer provides a ladder of capability for the

specialisation of domain models, which can be individually developed in the

Domain Ontology Layer. Section 4.4 discusses some of the basic implications

within the Domain Ontology Layer.

In section 4.5, the Semantic Reconciliation Layer is briefly explained. The

latter, also partly established as a result of the Foundation Layer, involves the

semantic reconciliation of cross-domain arguments coming from pairs of

domain models developed in the Domain Ontology Layer. Interactions

between the first three layers of the framework are key to the fourth level, the

Interoperability Evaluation Layer, which is explained in section 4.6. This fourth

level is where the retrieval of cross-domain correspondences and ontological

knowledge sharing capability can be evaluated. System boundaries and

assumptions are discussed in section 4.7. Section 4.8 aims at aligning the

main framework concepts to the requirements previously explored in Chapter

3. A summary of this chapter is then provided in section 4.9.

55

4.2 Semantic Manufacturing Interoperability Framework

(SMIF)

The Semantic Manufacturing Interoperability Framework (SMIF) exploits a

four-layered ontology-driven architecture towards meeting the identified

requirements for semantic interoperability across product design and

manufacture. The different layers of the Semantic Interoperability Framework

are illustrated diagrammatically in the Figure 4-1, where the constituent layers

are namely (1) a Foundation Layer, (2) a Domain Ontology Layer, (3) a

Semantic Reconciliation Layer and (4) an Interoperability Evaluation Layer.

Figure 4-1 Semantic Manufacturing Interoperability Framework
(SMIF)

Domain Ontology Layer

Interoperability Evaluation Layer

Semantic Reconciliation Layer

Foundation Layer

Common Logic-Based Formalism

Heavyweight Manufacturing
Ontological Foundation

Ontology
Mapping Process

Concepts

Semantic
Mapping

Concepts

56

The framework essentially draws its strength from the combined application

and extension of different established methods, including ontological

underpinnings such as the interlingua approach to interoperability (Gruninger

and Kopena, 2005). This combined application of established methods shall

be discussed in subsequent sections detailing the constituent layers of the

SMIF. The novelty of the proposed concept, which is supported through the

exploration of test cases, consists of three main areas namely:

 The development of a Semantic Manufacturing Interoperability Framework

(SMIF) that contributes to the understanding of combined heavyweight

ontology-based approaches to support semantic interoperability in product

design and manufacture.

 The development of a heavyweight manufacturing ontological foundation,

of core feature-based entity information and process semantics, which

fosters the semantically-sound specialisation of domain models.

 A contribution to the understanding of verifiable logic-based semantic

reconciliation methods as part of ontology mapping processes between

pairs of domain models that have been based on the same foundation.

The proposal of the SMIF enables the research gaps summarised in section

2.8 of Chapter 2 to be addressed in the following way:

 The framework employs an ontology-based underpinning provided by the

Foundation Layer and supports the capability to evaluate interoperable

knowledge. The framework has been targeted to the field of product

design and manufacture.

 The Foundation Layer consists of an upper ontology for the Common

Logic-based formalism over which a heavyweight manufacturing

ontological foundation is stacked. The Foundation Layer hence supports

the understanding on the effective exploitation of foundation ontology

approaches.

 The logic-based system capability supported by the Foundation Layer is

conveyed to the subsequent layers of the framework. This provides the

57

potential for applying formal semantic-based methods during ontology

matching.

 Furthermore, the framework uses a heavyweight ontological approach in

order to benefit in the explicit and expressive representation of product

and process semantics pertinent to design and manufacture.

4.3 Foundation Layer

The Foundation Layer is at the first level of the Semantic Manufacturing

Interoperability Framework (SMIF) and conveys the essential capability for the

existence of subsequent layers of the framework. This first level comprises

two characteristic elements, namely a rigorous Common Logic-based

ontological formalism over which a heavyweight manufacturing ontological

foundation is constructed. Figure 4-2 provides a more detailed view of the

Foundation Layer.

From the diagram, it can be seen that the rigorous Knowledge Framework

Language (KFL), a Common Logic-based formalism developed by Ontology

Works Inc. (Ontology Works Inc., 2009), imparts the syntax and first-order

semantics, governing the way in which the heavyweight manufacturing

Figure 4-2 The Foundation Layer

58

ontological foundation is formalised at computational level. It is to be pointed

out that Common Logic-based knowledge representation formalisms like KFL

applied to the research problem under investigation is unprecedented and,

therefore, constitutes a new aspect which is brought forward in this work (also

see Appendix B for a justification of the chosen ontological formalism).

4.3.1 Heavyweight Manufacturing Ontological Foundation

The heavyweight manufacturing ontological foundation captures and

expressively represents generic feature-based entity information and process

semantics together with some of the existing relationships that hold between

entities and processes (see Chapter 5 section 5.2 for a definition of an

ontological foundation). The researched heavyweight manufacturing

ontological foundation constitutes a novel effort towards the improved

definition of foundation ontologies for manufacturing achieved through the

development, from a low level of granularity, of process and entity information

semantics.

Firstly, the accommodation of process semantics in the Foundation Layer

involves the formalisation of relevant concepts from the Process Specification

Language ontology (PSL) (ISO 18629, 2005) (see Appendix C.1). Since it has

been shown that PSL provides intuitions for reasoning about various forms of

processes (Cheng et al, 2003; Bock and Gruninger, 2005; Bock, 2006; Das et

al, 2007), this implies that the choice of PSL for the capture of generic

process semantics in the Foundation Layer is relevant.

PSL has been written in the Common Logic Interchange Format (CLIF) (PSL

Website, 2009). CLIF as well as KFL are both based on the ISO Common

Logic standard (see Chapter 2 Figure 2-2). However, the main difference

between the two is that CLIF is platform-independent whereas KFL is

platform-dependent and the latter is used for implementation purposes on the

appropriate ontological environment. Since both CLIF and KFL are Common

Logic-based, this clearly implies that PSL expressed in CLIF can completely

be expressed in KFL as well. This constitutes an important benefit which

59

helps to reduce the ontology development time spent during the

implementation of the Foundation Layer. Hence, this work provides the first

factual implementation of relevant portions of PSL on a concrete ontological

platform capable of handling the required semantic expressiveness.

As a result of the current limitations of PSL to relate to resource definitions

and to products inputs and outputs (Young et al, 2007), the “Object” concept

from PSL is being expanded to include a broader understanding of entity

information semantics (see Figure 4-3). Thus, secondly, in order to capture

these generic entity information semantics, for the meaningful description of

product representations, the fundamentals from the revised Core Product

Model (CPM) (Fenves et al, 2004) and those from ISO 10303 AP224 (ISO

10303-224, 2006) are being exploited and adapted to the framework needs.

This is because the CPM is a generic, abstract model that can be used as a

starting point for capturing foundation entity information semantics. Due to the

fact that the CPM exists as a conceptual model while favouring extensions in

order to make the model readily expandable (Fenves et al, 2005), the latter

does not, for example, focus on how specific types of features need to be

semantically defined.

For this particular reason, concepts from ISO 10303 AP224 are formalised in

the Foundation Layer to obtain generic mechanical product representation

semantics based on feature definitions. It is to be noted that selected

concepts coming from the CPM as well as ISO 10303 AP224 are lightweight

in nature. Hence, the progression from their lightweight representations to

their corresponding heavyweight semantics is a novel aspect undertaken at

this level of the framework. Figure 4-3 identifies a conceptual picture of the

combined approach used in the Foundation Layer. The figure emphasises the

“Object” concept from PSL which neatly maps to the “Common Core Object”

from the CPM. Other CPM concepts, for example, “Feature”, “Form” and

“Geometry” are integrated with ISO 10303 AP224 concepts. Appendix C.2

documents the relevant entity information semantics explored in this work.

60

4.4 Domain Ontology Layer

The Domain Ontology Layer is at the second level in the Semantic

Manufacturing Interoperability Framework (SMIF). At this level, formal

axiomatised semantics from the heavyweight manufacturing ontological

foundation can be specialised for the development of domain-specific

ontologies and the capture of domain-centric knowledge. The types of

concepts explored in the Domain Ontology Layer contribute to new knowledge

by consolidating the understanding behind the ontological mechanisms that

ensure the integrity-driven development of domain models that are based on

the same manufacturing foundation ontology.

In the Domain Ontology Layer, the purpose of a domain ontology is generally

seen as providing vocabularies of the concepts within a specific domain and

their relationships, of the activities taking place in that domain, and of the

theories and elementary principles governing that domain (Mizoguchi et al,

1995; van Heijst et al, 1997; Gómez-Pérez et al, 2004). In the context of this

Core Product Model (CPM) Basic Concepts (Sudarsan et al,
2005)

Subset of ISO 10303 AP224 Concepts

Geometry Item

Shape Aspect

Round Hole

Cylinder etc…

Dimensional Tolerance etc…

Subset of PSL Core
Concepts

 Object

 Activity

 Activity Occurrence

 Timepoint

Entity Information Semantics Process Semantics

Figure 4-3 Conceptual Diagram of the Combined Approach Employed in the
Heavyweight Manufacturing Ontological Foundation

61

work, the Domain Ontology Layer is where domains develop domain models

(i.e. domain ontologies and their related KBs). Domain ontologies are bound

to the preferences, practices and terminologies of individual domains.

4.4.1 Part Family Semantics

The extent to which the heavyweight manufacturing ontological foundation

captures entity information semantics inevitably dictates the types of products

or families of parts that can be represented at the Domain Ontology Layer.

Figure 4-4 shows examples of rotary type part families that can potentially be

represented in the Domain Ontology Layer. Domain-specific products may

involve combinations of different shapes. The complexity of foundation entity

information semantics allows concepts like shape representation items,

feature shape aspects, standard features (such as hole features, cylinders,

blocks and compound features), transition features and dimensional

tolerances to be explicitly represented.

4.4.2 Manufacturing Process Semantics

In this work, the representation of domain-dependent manufacturing process

semantics is built on the PSL concepts formalised in the heavyweight

manufacturing ontological foundation. These PSL concepts entail the PSL

Core and PSL Outer-Core theories (ISO 18629, 2005) (see Appendix C.1).

Figure 4-4 Example of Part Families which can be Represented at the Domain
Ontology Layer

62

These two proven theories regroup a number of concepts which when used

allow the expressive description of manufacturing process sequences. Figure

4-5 illustrates an example of a domain-defined machining process sequence

whose semantics can readily be captured using PSL Core and Outer-Core. In

the process planning sequence, it can be seen that the occurrences of

processes are ordered along a timeline where “Centre Drilling” (a compulsory

precondition) takes place before “Drilling” which in turn takes place before a

choice of either “Reaming” or “Boring”.

4.5 Semantic Reconciliation Layer

The Semantic Reconciliation Layer is at the third level in the Semantic

Manufacturing Interoperability Framework (SMIF). The third layer combines

the definition of new semantic mapping concepts alongside ontology mapping

process concepts. The primary aim of the Semantic Reconciliation Layer is to

provide adequate support for the reconciliation of domain models that are

developed in the Domain Ontology Layer and that need to interoperate.

Centre

Drilling

Precondition

Drilling

Reaming

Boring

before before

before

before

TCDbegin TDbegin

TRbegin

TBbegin

TRend

TBend

TCDend TDend

Figure 4-5 Example of a Domain-Defined Machining Process Sequence

63

The approach to semantic reconciliation pursued in the SMIF revolves around

logic/rule-based ontology mapping methods. Several ontology mapping

frameworks (see Chapter 2) that have been researched and validated may be

regarded as utilising three broad methods for achieving ontology and

semantic interoperation namely: (1) the application of heuristics and linguistic-

based techniques, supported by formal algorithms, to provide measures of

similarity between ontological concepts, (2) the identification and allocation of

semantic relationships between ontological entities, sometimes referred to as

“semantic bridges” (Maedche et al, 2002), and (3) combinations of both (1)

and (2) for enhancing the capability of ontology mapping frameworks.

Although ontology mapping research appears to be relatively mature, yet

there still exist limitations to current ontology mapping frameworks. For

example, many mapping techniques do not provide complete solutions for

interoperation at the structural levels of domain models, such as classes,

ontological functions and instances. Moreover, some ontology matching

methods are still dependent on human intervention for the verification of

mappings. In many cases, mapping relations across ontologies remain basic

and, therefore, do not carry sufficiently-expressive interoperable knowledge.

These limitations are being tackled through the exploration of novel verifiable

Common Logic-based mapping methods in the Semantic Reconciliation

Layer. At this framework level, logic-based statements can be formulated to

capture the conditions behind semantic reconciliation. The capabilities of the

logic-based mechanisms involved in the semantic reconciliation surpass those

of other commonly exploited heavyweight approaches, such as Frames with

first order constraint languages and Description Logics with rule languages

(Gómez-Pérez et al, 2004).

4.5.1 Semantic Mapping Concepts

Semantic mapping concepts consist of ontological relations that are written in

the Knowledge Framework Language (KFL). These semantic mapping

concepts hold true for cross-domain arguments (e.g. classes, ontological

64

functions and instances), based on logical situations that arise between

specialised domain models. Consider the class “Round_Hole” which is a class

concept defined in the Foundation Layer (see Figure 4-6). In the IDEF5

schematic (refer to Appendix A for an overview of the IDEF5 schematic

language), the “Round_Hole” class has two specialisations in a “DomainX”

ontology and two specialisations in a “DomainY” ontology. In the Semantic

Reconciliation Layer, an example of a semantic mapping concept could be

formulated to capture the following informal intuitions:

If the class “Round_Hole” from the Foundation Layer has a number of

specialised classes in the “DomainX Ontology” and also has a number of

specialised classes in the “DomainY Ontology”, then a semantic mapping

concept can be assigned between cross-domain sub-classes of

“Round_Hole”, to understand that pairs of these sub-classes originate from

the same parent class.

This semantic mapping relation is denoted by the dotted arrows in Figure 4-6.

The example is relatively simple and the mapping information could be

checked by browsing through the taxonomy of the two domain ontologies. The

point here, however, is to indicate that the definition of other semantic

mapping concepts, based on more complex logical statements, can allow

Figure 4-6 Example of a Semantic Mapping Concept

Round_Hole

Through_

Hole

Blind_Hole

Tapered_

Hole

Radiused_

Hole

DomainY Ontology DomainX Ontology

65

intricate interoperability scenarios to be modelled. These semantic mapping

concepts can be exploited for situations arising at various levels of the

structure of domain models, which constitutes an improvement over current

methods, as discussed further in Chapter 6.

4.5.2 Ontology Mapping Process Concepts

The process of ontology mapping in the Semantic Reconciliation Layer can be

performed for two domain models at a time. The process comprises a first

stage of loading two domain models together, i.e. a simple merging process,

in such a way that the content from both models stays distinct for each of

them. Then, semantic mapping concepts are loaded into the merged model.

During this ontology alignment process, where a collection of binary relations

are established between the vocabularies of the two ontologies (Kalfoglou and

Schorlemmer, 2003a), semantic mapping concepts are automatically fed to

the merged models. If semantic mapping relations hold true between cross-

domain arguments, based on the logic that defines these relations, then the

relevant relations are automatically allocated between the relevant cross-

domain arguments.

4.6 Interoperability Evaluation Layer

The Interoperability Evaluation Layer is at the fourth level of the framework. At

this level, interoperable knowledge queries can be executed with the intention

of finding correspondences between arguments from two domain models that

have been processed in the third level of the framework. The main activity

involved in the Interoperability Evaluation Layer is concerned with the

retrieval, i.e. inference, of semantic mapping concepts which carry the type of

interoperable knowledge. Results obtained can be verified through logical

proof. In other words, query responses can be reviewed with the intention of

finding the truth behind their occurrence. Another element of the

Interoperability Evaluation Layer entails the process of easily creating, running

and managing queries which is facilitated using a developed user interface

further explained in chapters 6 and 7.

66

4.6.1 Interoperability Evaluation through Queries

There are two ways by which the discovery of cross-domain correspondences

can be made. They both revolve around the formulation of logic-based

queries which are written in a form similar to the Common Logic Interchange

Format (CLIF). The first, remains relatively straight forward and requires the

user selecting a particular semantic mapping concept and querying the

concept to see whether any results are retained for the query. For instance,

assuming the scenario in Figure 4-6, but the user is not aware of it, then on

running a query in the form:

Find all arguments that are bound to the specific semantic mapping concept,

The result of the query should be:

All possible pairs of cross-domain subclasses, for example, “Tapered_Hole

and Through_Hole”, “Radiused_Hole and “Through_Hole” out of a total of four

possible combinations of matches.

The other method of inference is concerned with the creation of logical query

statements that retrieve all semantic mapping concepts common between two

cross-domain arguments in a single transaction. Figure 4-7 informally

visualises the content of such a query and the corresponding response. The

expected query response(s) obviously includes the semantic mapping relation

(see dotted arrow) in Figure 4-6. This special form of knowledge querying is

preferred over the first one since it can more effectively deduce all cross-

domain semantic mapping concepts that hold for two known arguments

across domain models, thereby optimising the sharable knowledge discovery

process. Hence, the awareness of the occurrence of semantic mapping

concepts between cross-domain arguments in the Interoperability Evaluation

Layer provides the essential knowledge sharing capability.

67

4.6.2 Interoperability Evaluation Assistant

As a consequence of the large number of semantic mapping concepts that

can possibly be developed, this imposes an important issue on the

implementation aspects of the Interoperability Evaluation Layer. This issue is

concerned with the management of executable interoperable knowledge

queries for reuse. The fourth level of the framework additionally focuses on an

appropriate User Interface (UI), which facilitates user-system interaction

(Chungoora and Young, 2008b). The Web-based UI, called the

Interoperability Evaluation Assistant, most importantly provides a method for

the classification of queries and the ability to dynamically retrieve queries for

improved performance during mapping knowledge discovery, an aspect that

remains distinct to this work.

4.7 System Boundaries and Assumptions

The development of the Semantic Manufacturing Interoperability Framework

(SMIF) and its constituent levels requires the identification of relevant system

boundaries and assumptions. This is because the proposed framework is

being developed aligned to the research scope, which considers specific

areas of interoperability in product design and manufacture. In the Foundation

Layer, it is obvious that a boundary is placed on the extent to which entity

Figure 4-7 Example of an Informal Knowledge Query
and the Query Response

Query

Find all semantic mapping relations that hold between
“Tapered_Hole” and “Through_Hole”

Query Response

The semantic mapping relation:

+ Other semantic mapping relations that bind these
two classes together (if any)

68

information and process semantics enable product and process

representation respectively. Thus, only the most relevant subsets of the Core

Product Model (CPM), ISO 10303 AP224 and the Process Specification

Language (PSL) are being targeted.

Furthermore, since the Knowledge Framework Language (KFL) provides an

expressive knowledge representation formalism, this implies that ontologies

that employ less expressive formalisms can be mapped to KFL without any

loss of semantics while the converse is not likely to be completely achievable.

This issue remains peripheral to this work, and for this reason, this

investigation does not portray the semantic interoperability of distributed

ontologies that are formalised using ontological formalisms other than the

Common Logic-based KFL.

In the Semantic Reconciliation Layer it is assumed that the extent of semantic

mismatches is viewed from the knowledge representation perspective (Visser

et al, 1997; Hameed et al, 2004). However, it has been acknowledged that

semantic discrepancies may well be considered from various other viewpoints

(Klein, 2001). Moreover, because semantic mapping concepts can be used to

capture a range of reconciliation scenarios, different mappings levels are

likely to exist. This suggests that interoperable knowledge queried in the

Interoperability Evaluation Layer can have different levels of importance to the

expert. As a result, it is evident that the intended interoperable knowledge, to

be discovered between two domain models, remains dependent on its

perceived importance.

Furthermore, the framework as a whole assumes a static view on ontologies

and KBs. In reality, different versions of domain ontologies and KBs are a

common case, where it becomes important to support the management of

evolving domain model content. In the framework, ontology versioning (Klein,

2001) is not taken into account, meaning that considerations for ontology

evolution would imply the additional management of the mechanisms

exploited in all four layers of the framework.

69

4.8 Aligning the Framework with Semantic Requirements

As previously mentioned, the Semantic Manufacturing Interoperability

Framework has been developed with strong considerations made to satisfy

the set of requirements investigated in Chapter 3. This section establishes

how the different elements of the framework, as well as the framework in its

entirety, satisfy these requirements.

The matrix shown in Figure 4-8 matches the framework and its components to

the set requirements. Requirement 1 is met through the combined approach

involving PSL, CPM and ISO 10303 AP224 in the Foundation Layer (see

Figure 4-8 label (A)). Capturing the semantics from these methods enables a

number of viewpoints to be considered in product design and manufacture.

These viewpoints include, for example, the GD & T, functional, machining and

process planning.

Semantic relationships between different but overlapping viewpoints are

targeted through the specification of entity information, process semantics and

the participation relationships that hold between them, based on the combined

approach used to meet Requirement 1 (B). This, therefore, helps to satisfy

Requirement 2.

In order to support an effective basis for the provision of shared meaning, the

heavyweight manufacturing ontological foundation is exploited. Since

providing shared meaning is where ontological approaches have been

pursued (Young et al, 2007), this clearly implies that the ontology-based slant

within the framework is favoured. The types of semantics explored in the

ontological foundation pertain to an array of core feature-based concepts that

can be reused and extended by a multitude of domains. This depicts that the

Foundation Layer and the interactions that it supports with the Domain

Ontology Layer help meet Requirement 3 (C).

70

To be able to harness the appropriate semantic technologies to facilitate the

capture of domain semantics and to support shared meaning across domains,

the SMIF harmonises four different dimensions, i.e. four distinct layers which

adopt specific semantic technologies into a single framework, thereby

satisfying Requirement 4 (D). In the sub-requirements of Requirement 4, such

as the need to understand appropriate families of knowledge representation

Figure 4-8 Aligning the SMIF and Its Components to Semantic Requirements

Framework Components

Requirement 1: There is a need for a progression
towards the seamless exchange of design and
manufacturing knowledge through the capture of
semantics coming from multiple product lifecycle
viewpoints.

Requirement 2: There exists a need for providing
semantic relationships between different but
overlapping viewpoints in order to support integrated
semantic capabilities.

Requirement 3: There is a need for an effective basis
to support the provision of a set of reusable
semantically-defined core concepts, which can be
exploited by multiple system domains.

Requirement 4: There is a need for harnessing the
appropriate semantic technologies in order to facilitate
the formal capture of domain semantics and to support
shared meaning across domain models.

Requirement 4a: It is essential to understand which
family of knowledge representation formalism(s)
allows the expressive capture and representation of
product design and manufacture semantics.

Requirement 4b: There exists a prerequisite for
exploring semantic technologies which can improve
the identification and resolution of possible semantic
mismatches between domain models.

Requirement 4c: There is a necessity for methods to
explicitly and formally specify ontology matching
relationships between domain models.

Requirement 4d: A requirement is present to support
higher performance levels as far as semantic
reconciliation processes are concerned.

Combined approach using
PSL, CPM and ISO 10303
AP224 in the Foundation
Layer

Definition of relationships
between entities and
processes, entities and
their functions, etc. in the
Foundation Layer

Heavyweight semantics of
core concepts developed
in the Foundation Layer,
which are extended in the
Domain Ontology Layer

Combined semantic
technologies used
throughout the SMIF

Exploitation of the
Knowledge Framework
Language (KFL)

The Semantic
Reconciliation Layer

Specification of logic-
based semantic mapping
concepts and ontology
mapping processes in the
third framework layer

The Semantic
Reconciliation and
Interoperability Evaluation
layers

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

71

formalisms (Requirement 4a), a study that leads to the choice of the Common

Logic-based formalism, conveys this understanding (see Appendix B) (E).

Furthermore, one of the purposes of the Semantic Reconciliation Layer is to

deal with semantic heterogeneity across domain models, and provide

mechanisms by which semantic mismatches can be identified and possibly

resolved (Requirement 4b) (F). The specification of rigorous semantic

mapping concepts in the third layer of SMIF satisfies the need for improved

methods of specifying ontology matching relationships (Requirement 4c) (G).

Moreover, interactions between the Semantic Reconciliation and

Interoperability Evaluation layers and their implementations, help support

higher performance levels as far as semantic reconciliation processes are

concerned, as these are optimised for the SMIF (H). By so doing, the third

and fourth layers of SMIF aim at meeting Requirement 4d.

4.9 Summary

This chapter has exposed the author‟s ideas for a novel ontology-based

approach to support semantic interoperability in product design and

manufacture. This has helped to fulfil part of the third objective of this

research, linked to the proposal of a framework solution (see Chapter 1

section 1.3.1).

The framework concept has been established with a strong view on the

requirements previously analysed in Chapter 3. The Semantic Manufacturing

Interoperability Framework (SMIF) employs a four-layer architecture which

facilitates the interoperation of domain models as long as these models have

been based on the same ontological foundation. A key contribution of the

SMIF lies in its novel understanding which derives from the development a

heavyweight manufacturing ontological foundation of feature-based entity

information and process semantics. This foundation provides a ladder of

capabilities including the fidelity-driven (i.e. semantically-sound yet flexible-

enough) specialisation of domain models.

72

Other benefits involve the application of competitive semantic reconciliation

techniques. Semantic mapping concepts which are defined ontological

relations, backed by expressive logic (hence their heavyweight nature) are

under exploration as part of these reconciliation techniques. The outcome

from the third level provides a stepping stone for running intelligent queries in

the Interoperability Evaluation Layer in order to derive valuable

correspondences between cross-domain arguments. These correspondences

are synonymous of sharable knowledge. Explanations of the different

components of the SMIF and their interactions are examined in greater detail

in chapters 5 and 6.

73

5 Foundation and Domain Ontology Layers

5.1 Introduction

This chapter is divided into two main sections. The first, explained in section

5.2, considers the Foundation Layer, paying particular attention to expose the

different types of intuitions, assumptions over these intuitions, and the

semantics captured at this level of the framework. These semantic structures,

further developed in the sub-sections of section 5.2, include process

semantics, entity information semantics and the key participation relationships

that hold between them. The ontology development process follows the

knowledge engineering methodology (Noy and McGuinness, 2001).

The second part of the chapter involves an explanation of the Domain

Ontology Layer in section 5.3. The various ways in which domains reuse and

specialise the semantics coming from the Foundation Layer are clarified and

exemplified, in order to depict the differences and interactions between the

Domain Ontology Layer and the Foundation Layer. Section 5.4 then

summarises the key points from the chapter. It is to be noted that the

semantic structures presented here intend to support the relevant set of

requirements discussed earlier. Furthermore, ontology schematics featured in

this chapter are represented using the IDEF5 schematic language.

5.2 Foundation Layer

The Foundation Layer is dependent of the Knowledge Framework Language

(KFL), based on Ontology Works Upper Level Ontology (ULO) (Ontology

Works Inc., 2009), for the formal specification of a heavyweight manufacturing

ontological foundation. Such an ontological foundation, as perceived in this

work, is regarded as an integration of intuitions that provide effective meta-

concepts, with well-established human-perceived meaning, for modelling

domain ontologies (Cho et al, 2006).

74

The heavyweight manufacturing ontological foundation possesses the

property of capturing generic but constrained entity information and process

semantics, together with the participation relationships that hold between

entities and processes. Reusable concepts are captured within the ontological

foundation. The concepts explored remain generic in terms of the underlying

intuitions, constraints and definitions governing their existence. Axiomatised

concepts at this level provide a reusable set of semantics and behaviours

which can be individually specialised in the Domain Ontology Layer (see

section 5.3) to meet the needs of individual product design and manufacture

domains.

Traditional foundation ontology approaches, such as the Basic Formal

Ontology (Grenon, 2003) and the Descriptive Ontology for Linguistic and

Cognitive Engineering (Gangemi et al, 2003), generally define reusable core

ontologies from a philosophical viewpoint. Unlike these traditional

approaches, the heavyweight manufacturing ontological foundation in this

work has been developed as a core ontology with a strong slant onto

important principles arising in feature-based product design and manufacture.

The nature of the Foundation Layer thus provides an understanding of how

effective foundation ontology approaches can be tailored to support the

communication requirements of manufacturing (Young et al, 2007). The

constituent approaches and theories used in the Foundation Layer are next

discussed.

5.2.1 Process Semantics

Process semantics used in the heavyweight ontological manufacturing

foundation derive completely from the Core and Outer-Core theories of the

Process Specification Language (ISO 18629, 2005). The most up-to-date

version of PSL is available from the PSL Website (PSL Website, 2009), and

this has been the primary source for obtaining the Core and Outer-Core

theories in the Common Logic Interchange Format. The CLIF version of PSL

Core and Outer-Core has been expressed using the Knowledge Framework

75

Language (KFL). Appendix C.1 documents relevant PSL concepts exploited in

this work alongside the corresponding IDEF5 schematics.

The purpose of PSL Core is to axiomatise a set of intuitive semantic primitives

that is adequate for describing the fundamental concepts of manufacturing

processes (PSL Website, 2009). Figure 5-1 depicts the four classes defined in

PSL Core namely “Object”, “Activity”, “Activity_Occurrence” and “Timepoint”.

Note that the root class “Origin” is an abstract class defined in the Foundation

Layer to keep the taxonomy tidy, and thus does not carry any formal

semantics other than being the super-class of the four defined classes from

PSL Core.

PSL Outer-Core, consists of a number of theories that together bring greater

strength to PSL, in terms of logical expressiveness. PSL Outer-Core involves

the: (1) Theory of Subactivities, (2) Theory of Occurrence Trees, (3) Theory of

Discrete States, (4) Theory of Atomic Activities, (5) Theory of Complex

Activities and (6) Theory of Activity Occurrences.

5.2.2 Entity Information Semantics

The development of entity information semantics compensates for the limited

ability of PSL to capture object-centric semantics (Young et al, 2007). Entity

information semantics are explored in the heavyweight manufacturing

ontological foundation to formalise a set of semantic structures for the formal

representation of mechanical product definition using features. In other words,

Figure 5-1 PSL Core Classes

C

Object

Origin

Activity
Activity_

Occurrence

Timepoint

76

entity information semantics help capture enriched product models by

embedding the meaning associated to:

 Product feature geometries expressed as a collection of 2-D faces and

their semantic relationships to produce 3-D features,

 The dimensional and dimensional tolerance parameters related to product

feature geometries in design and manufacture,

 The functional aspects of product features, thereby providing a useful way

to describe features from different viewpoints, and,

 The aggregation of features into complete artifacts or families of parts.

The sub-sections of section 5.2.2 document the progressive build up of core

intuitions which help to capture the above-mentioned semantic capability in

the heavyweight manufacturing ontological foundation. Entity information

semantics in the heavyweight manufacturing ontological foundation are

defined based on the fundamentals from the revised Core Product Model

(CPM) (Fenves et al, 2004) as a proposed foundation for interoperability in

next-generation product development systems (Szykman et al, 2001) and

those from ISO 10303 AP224 because of its slant onto wide-ranging feature

definitions and also because features support the integration between design

and manufacture (Abouel Nasr and Kamrami, 2006; Dartigues et al, 2007;

Nassehi et al, 2007).

This combined approach used in the Foundation Layer supports the ability to

capture, represent and axiomatise important reusable and extensible entity

information semantics. The approach shows that the specification of product

definition semantics backed by the expressive Common Logic-based KFL is a

novel aspect brought forward, that from a semantic viewpoint goes one step

beyond related work. This is because documented work points to the fact that,

so far, conceptualisations involving product definitions have at most exploited

heavyweight Description Logics with rule languages (Patil et al, 2005; Kim at

al, 2007; Rabe and Gocev, 2008).

77

5.2.2.1 Core Entities and Core Properties

As a starting point for capturing entity information semantics, the required

ontological commitments have been identified and are based on the following

intuitions:

 Concepts defined to capture and represent entity information semantics

extend the “Object” concept from PSL.

 “Core_Entity” (Fenves et al, 2004) is a kind of abstract object from which

the concepts “Artifact” and “Feature” originate.

 “Core_Property” (Fenves et al, 2004) is another kind of abstract object

whose hierarchy captures relevant notions that embody core entities.

Thus, the two concepts found in the CPM namely “Core_Entity” and

“Core_Property” initially categorise the “Object” class as shown in Figure 5-2.

C

Core_Entity

C

Core_

Property

C

Object

C

Shape_

Aspect

Dimensional_

Tolerance
Function

C

Measure_

Item

C

Geometry_

Item

Core_

Property
Material

Core_Entity

Artifact

C

Feature

Figure 5-2 Class Hierarchy of “Core_Entity” and “Core_Property”

78

While the abstract “Core_Entity” concept involves the basic semantics of

features and artifacts that hold features, the abstract “Core_Property” concept

is present to provide more detail semantics, primarily used towards product

feature definitions and their behaviours. Figure 5-2 also identifies the

decomposition structure of “Core_Entity” and “Core_Property”. The concepts

“Artifact”, “Feature”, “Function” and “Material” originate from the CPM while

the remaining sub-classes of “Core_Property” are adapted from ISO 10303

AP224.

Two binary relations are specified to initially capture the idea that core entities

may hold some function and some material, which are essential factors that

govern the existence of entities in the first place (see Figure 5-3). By, for

example, adding an axiom to capture the constraint that every core entity may

hold some function, it is possible to enforce an optional necessary condition,

which is also carried upwards to the Domain Ontology Layer. Expression 5-1

depicts the Common Logic Interchange Format (CLIF) statement of the

integrity constraint (IC), i.e. axiom.

Function
holds_function

C

Core_Entity

Material
holds_material

C

Core_Entity

Figure 5-3 “holds_function” and “holds_material”
Binary Relations

(forall (?coreEnt)
(=> (Core_Entity ?coreEnt)
 (exists (?func)
 (and (Function ?func)
 (holds_function ?coreEnt ?func)))))

Expression 5-1 IC: Every Core Entity Holds Some
Function

79

Core properties provide the essential building blocks for core entities. In the

Foundation Layer, the gradual build-up of formal entity information semantics

is achieved by exploiting a number of inter-dependent sub-theories developed

in an ascending process. These sub-theories start with geometry and

measure items followed by shape aspects, features and artifacts, transition

features and dimensional tolerances. This particular order has been chosen

because within ISO 10303 AP224 and partly CPM:

 Shape aspects are 2-D profiles which are defined using geometry and

measure items.

 Shape aspects are swept along 2-D paths to produce 3-D features.

 Artifacts are made up of an aggregation of features.

 Transition features only come into existence when standard features

already exist.

 Dimensional tolerances can only be meaningfully captured from the shape

aspects of features that make up artifacts.

As a consequence of the detailed and extensive nature of foundation entity

information semantics, only some of the pertinent examples are illustrated in

this chapter. The formal semantics, alongside the corresponding IDEF5

schematics of the developed entity information semantics can be consulted in

Appendix C.2.

5.2.2.2 Measure and Geometry Items

Measure and geometry items provide the intuitions towards the very basic

elements of entity information semantics from which more complex core

property definitions can be derived. The following intuitions apply to measure

and geometry items:

 Measure items provide the semantics for the representation of measure

qualities. There are two kinds of entities that have been chosen for

reasoning about measure qualities namely “Length_Measure” and

80

“Angle_Measure”. These two concepts provide the description for qualities

of lengths and angles respectively.

 “Measure_Item” is an abstract kind of “Core_Property” because any

instance of “Measure_Item” can only exist as a “Length_Measure” or

“Angle_Measure”.

 A “Length_Measure” or an “Angle_Measure” can only be meaningfully

described using some real number with some attached unit of

measurement.

 “Geometry_Item” is an abstract kind of “Core_Property” for which the

concepts “Point”, “Vector_Direction” and “Placement” are sub-classes of.

 Points and vector directions are the fundamental information elements

necessary to provide a description of the placement of an entity.

 Thus, geometry items help specify the spatial description of the elements

that make up features and artifacts. Points, vector directions as well as

placements are characterised by spatial descriptions that involve the

informal notion of X, Y and Z Cartesian axes. These axes define three

mutually perpendicular imaginary planes in space.

Figure 5-4 identifies the taxonomy of the classes “Measure_Item” and

“Geometry_Item”, following the previously identified intuitions. Figure 5-5 then

depicts a unary function “mm”. This instance of “UnaryFun” has an “argProp”

which is a “RealNumber” and a “returnProp” which is a “Length_Measure”

(note that “RootCtx” is the namespace for the KFL meta-ontology). This

implies that the “mm” function attached to a real number, for example, (mm

10), denotes an instance of the class “Length_Measure”.

Measure_

Item

Length_

Measure

Angle_

Measure

Point

Geometry_

Item

Placement

Vector_

Direction

Figure 5-4 Class Hierarchy of “Measure_Item” and “Geometry_Item”

81

As a result of the expressive first order semantics of KFL, two ternary

functions, “coordinates” and “direction”, have also been defined to denote

instances of “Point” and “Vector_Direction” respectively. So, for example, the

point given by “(coordinates (mm 10) (mm 10) (mm 10))” provides a spatial

designation of a certain point with respect to the X, Y and Z Cartesian axes.

One axiom related to this concept appears in Expression 5-2. The CLIF

statement imposes a necessary condition that every specification of an

instance of “Point” should be given by some X, Y and Z length measure

coordinates. The specification of functions of the required arities is vital for

capturing in an expressive and constrained way some of the lengthy

structures from ISO 10303 AP224 used to capture the same intuitions.

Length_

Measure

RootCtx.returnProp
mm

in
s
t

RootCtx.

UnaryFun

1

2

3

RootCtx.argProp

1

RootCtx.

RealNumber

Figure 5-5 The "mm" Unary Function Used to Denote an
Instance of “Length_Measure”

(forall (?pt)
(=> (Point ?pt)
 (exists (?length1 ?length2 ?length3)
 (and (Length_Measure ?length1)
 (Length_Measure ?length2)
 (Length_Measure ?length3)
 (= ?pt (coordinates ?length1 ?length2 ?length3))))))

Expression 5-2 IC: Every Point Is Given by Some X, Y and Z
Coordinates

82

5.2.2.3 Shape Aspects

A shape aspect is regarded as an entity that provides the geometric

information necessary towards the creation of a feature, such as the

identification of 2D shapes, which when swept along a path create 3D

features (ISO 10303-224, 2006). The following intuitions apply:

 There can be several different types of entities whose semantics allow

reasoning about shape aspects. In the context of this work, six

fundamental types of shape aspect entities are considered namely

“Circular_Closed_Profile”, “Rectangular_Closed_Profile”, “Linear_Path”,

“Linear_Profile”, “Taper” and “Transition_Feature”. These kinds of shape

aspects are sourced from ISO 10303 AP224.

 “Shape_Aspect” is an abstract kind of “Core_Property” from which the

concepts “Circular_Closed_Profile”, “Rectangular_Closed_Profile”,

“Linear_Path”, “Linear_Profile”, “Taper” and “Transition_Feature” are

specialised.

 Circular closed profiles as well as rectangular closed profiles have their

orientation positioned perpendicular to the centre of the profile surfaces.

Figure 5-6 indicates the taxonomy for the abstract class “Shape_Aspect”.

Circular_

Closed_

Profile

C

Transition_

Feature

Rectangular_

Closed_

Profile

Linear

Profile

Linear_

Path

Taper

Shape_

Aspect

Figure 5-6 Class Hierarchy of “Shape_Aspect”

83

Consider the class “Linear_Profile” in the class hierarchy from Figure 5-6. The

informal semantics of “Linear_Profile” state that:

 An instance ?lp of the class “Linear_Profile” is TRUE in an interpretation of

the Foundation Layer if and only if ?lp is a member of a set of linear

profiles. A linear profile is an open profile that involves exactly two

connected points in a straight line of specified length.

In the context of this work, linear profiles are essential to provide semantic

definitions linked to, for example, the axes of hole features and other basic

features. To formalise the above informal semantics, two relations are

specified: a ternary relation named “meets” and a binary relation named

“measures”, the latter being applicable to the other sub-classes of

“Shape_Aspect” as well. Figure 5-7 identifies the two relations.

The CLIF statements in expressions 5-3 to 5-6 (also refer to Figure 5-8)

capture a majority of the foundation axioms that govern the behaviour of

“Linear_Profile”. In Expression 5-3, the axiom is formulated to capture the

intuition that if a linear profile ?lp “meets” two points ?pt1 and ?pt2, then ?lp

also “meets” ?pt2 and ?pt1, hence the symmetry of the relation “meets”.

Moreover, another axiom (Expression 5-4) involves the intuition that a linear

profile ?lp cannot meet the same point ?pt twice. Hence, this implies that the

necessary condition in Expression 5-5 holds in all cases, i.e. the definition of

any instance of “Linear_Profile” should be followed by the identification of two

distinct points that the linear profile instance “meets”.

Measure_

Item

measures

C

Shape_

Aspect

Linear_

Profile

Point

Point
1

2

3

meets

Figure 5-7 "meets" and "measures" Relations

84

Also, since the informal semantics state that a linear profile needs to have a

specified length as a basis for its measure, this immediately conducts the

importance of having Expression 5-6 as another IC. Similar chaining of ICs

has been followed throughout the development of the heavyweight

manufacturing ontological foundation in order to encase generic but

constrained intuitions.

(forall (?lp ?pt1 ?pt2)
(=> (meets ?lp ?pt1 ?pt2)
 (meets ?lp ?pt2 ?pt1)))

(forall (?lp ?pt)
(=> (and (Linear_Profile ?lp)
 (Point ?pt))
 (not (meets ?lp ?pt ?pt))))

Expression 5-3 IC: The Relation "meets" is Symmetric over Linear
Profiles and Points

Expression 5-4 IC: The Relation "meets" is Irreflexive on Points

(forall (?lp)
(=> (Linear_Profile ?lp)
 (exists (?pt1 ?pt2)
 (and (Point ?pt1)
 (Point ?pt2)
 (/= ?pt1 ?pt2)
 (meets ?lp ?pt1 ?pt2)))))

Expression 5-5 IC: Every Linear Profile “meets” Two
Distinct Points

(forall (?lp)
(=> (Linear_Profile ?lp)
 (exists (?length)
 (and (Length_Measure ?length)
 (measures ?lp ?length)))))

Expression 5-6 IC: Every Linear Profile Has an
Associated Length Measure

Figure 5-8 Linear Profile Semantics

?length

?pt1 ?lp

?pt2

85

5.2.2.4 Features and Artifacts

An artifact is a distinct entity whether that entity is a component, part,

subassembly or assembly, which can be defined in terms of the features that

constitute it. Hence, a feature represents a portion or element of interest of an

artifact‟s form (Fenves et al, 2004). The following intuitions apply:

 Features may have specific functions assigned to them depending on their

purpose (Expression 5-2 previously explained captures this intuition).

 “Feature” is a kind of “Core_Entity” for which the chosen concepts

“Round_Hole”, “Cylinder” and “Block” are sub-classes of. Several other

kinds of features can exist but fall outside the scope of this research.

 Round holes, cylinders and blocks as 3-D features consist of closed 2-D

profiles that are swept along a 2-D linear path to produce 3-D features.

 Compound features are not considered a new categorisation of “Feature”

since they consist of the aggregation of more than one simple feature.

Thus, the “compound” property of a complex feature is such that the

compound feature inherits its semantics from its individual constituent

features.

 “Artifact” is a kind of “Core_Entity” and has its own containment hierarchy

so that individual artifacts can be aggregated into more complex ones

(Fenves et al, 2004).

Figure 5-9 illustrates the taxonomy of the “Feature” class, with two important

binary relations “holds_feature” and “holds_shape” that allow artifacts to be

described in terms of features, and features in terms of shape aspects,

respectively. Consider the class “Round_Hole” from Figure 5-9. To capture

part of the axioms governing the existence of an instance of “Round_Hole”,

Expressions 5-7 and 5-8 have been formulated. The logic captured in these

axioms (also see Figure 5-10) imposes the necessary conditions that any

specification of an instance of “Round_Hole” should be accompanied by the

identification of two distinct instances of “Circular_Closed_Profile” (Expression

5-7) and one instance of “Linear_Path” (Expression 5-8) related to that

instance of the “Round_Hole” through the “holds_shape” binary relation.

86

Block

Feature

Cylinder

Round_

Hole

holds_feature
Artifact

C

Feature

holds_shape

C

Feature

C

Shape_

Aspect

(forall (?hole)
(=> (Round_Hole ?hole)
 (exists (?ccp1 ?ccp2)
 (and (Circular_Closed_Profile ?ccp1)
 (Circular_Closed_Profile ?ccp2)
 (/= ?ccp1 ?ccp2)
 (holds_shape ?hole ?ccp1)
 (holds_shape ?hole ?ccp2)))))

(forall (?hole)
(=> (Round_Hole ?hole)
 (exists (?lin)
 (and (Linear_Path ?lin)
 (holds_shape ?hole ?lin)))))

Expression 5-7 IC: Every Round Hole Feature
Holds Two Distinct Circular Closed Profiles

Expression 5-8 IC: Every Round Hole Feature
Holds One Linear Path

Figure 5-9 Class Hierarchy of "Feature" and Binary Relations
"holds_feature" and "holds_shape"

?ccp1

?ccp2

?lin

?hole

Figure 5-10 Round Hole Semantics

87

5.2.2.5 Transition Features

A transition feature is a kind of shape aspect that represents a transition

region between two geometrically-defined faces. The main intuitions are:

 “Transition_Feature” is an abstract kind of “Shape_Aspect” from which the

concepts “Constant_Radius_Edge_Round”, “Constant_Radius_Fillet” and

“Chamfer” are specialised (ISO 10303-224, 2006).

 Transition features can only come into existence if proper features like

cylinders and round holes already exist.

 Transition features require no orientation for placement since their

positions are relative to predefined surfaces of proper features (ISO

10303-224, 2006). Hence because transition features do not exhibit the

same fundamental behaviour as proper features like cylinders and round

holes, this implies that transition features are essentially shape aspects.

Figure 5-11 depicts the class hierarchy of the “Transition_Feature” abstract

class and one binary relation “blends” which holds between

“Transition_Feature” and “Shape_Aspect”. This relation is used to capture the

blending relationship that exists between transition features and shape

aspects. The type of logical integrity constraints formulated for transition

features follow a similar understanding explained so far in this chapter.

Additionally, Appendix C.2 can be consulted for a more detailed insight into

transition feature semantics.

Constant_

Radius_

Edge_

Round

Transition_

Feature

Constant_

Radius_

Fillet

Chamfer
blends

C

Transition_

Feature

C

Shape_

Aspect

Figure 5-11 Class Hierarchy of "Transition_Feature" and Binary Relation
"blends"

88

5.2.2.6 Dimensional Tolerances

A dimensional tolerance is the total amount a specific dimension is permitted

to vary, which is the difference between maximum and minimum permitted

limits of size (ISO 10303-224, 2006). The following intuitions apply to

dimensional tolerances in the Foundation Layer:

 “Dimensional_Tolerance” is a kind of “Core_Property”. It does not have

any further decompositions since a dimensional tolerance may be

regarded as reusable element of information.

 The behaviour of a dimensional tolerance either as a size tolerance or

location tolerance is dictated by the tolerance relationships that hold

between shape aspects, features, measure items and dimensional

tolerances.

 Tolerance values can only be meaningfully interpreted by having a lower-

bound or minimum real value and an upper-bound or maximum real value,

both of which are accompanied with units of measurement.

Figure 5-12 illustrates two higher-arity relations that can be used for the

specification of size tolerances and location tolerances using reusable

dimensional tolerance values. In the case of these two relations, the informal

semantics play an important role in their interpretation at computational level.

1

2

3

holds_size_tolerance

C

Measure_

Item

C

Shape_

Aspect

Dimensional_

Tolerance

1

2

3

4

holds_

location_

tolerance

C

Feature

Dimensional_

Tolerance

C

Measure_

Item

C

Feature

Figure 5-12 Ternary Relation "holds_size_tolerance" and Quaternary Relation
“holds_location_tolerance”

89

The informal semantics for the “holds_size_tolerance” relation states that the

relation is TRUE if and only if a shape aspect holds a given dimensional

tolerance with respect to the toleranced measure item of the shape aspect.

Similarly, the quaternary relation “holds_location_tolerance” is TRUE if and

only if a feature holds a given dimensional tolerance with respect to the

toleranced measure item, which separates the initial feature from another

feature. On the other hand, an important rule in ISO 10303 AP224 regarding

tolerance values is related to the value component of the lower limit being

always less than that of the upper limit. To capture this fundamental intuition,

Expression 5-9 has been defined. This expression imposes a constraint such

that the first real number argument of the binary function “tolerance_value” is

always less than the second real number argument. Thus, for example,

“(tolerance_value (mm -0.1) (mm 0.1))” would be a correct instance of

“Dimensional_Tolerance” while “(tolerance_value (mm 0.1) (mm 0.1))” would

be incorrect and the irregularity would be flagged.

5.2.3 Flow Objects

Most process models support the notion of input and output, which are data or

objects provided to a behaviour execution before it starts, and data produced

when it finishes, respectively (Bock and Gruninger, 2005). An additional set of

basic concepts that hold between entities and processes has been explored,

partly based on previous work performed by Bock and Gruninger (2005), in

order to overcome the current limitations of PSL to relate to products inputs

and outputs (Young et al, 2007). The following intuitions summarise the

understanding behind the definition of relationships between entities and

processes:

(forall (?dtol ?real1 ?real2)
(=> (and (Dimensional_Tolerance ?dtol)
 (RealNumber ?real1)
 (RealNumber ?real2)
 (or (= ?dtol (tolerance_value (mm ?real1) (mm ?real2)))
 (= ?dtol (tolerance_value (degree ?real1) (degree ?real2)))))
 (ltNum ?real1 ?real2)))

Expression 5-9 IC: The Lower-Bound Value of a Dimensional Tolerance Is
Always Numerically Less Than Its Upper-Bound Value

90

 A flow object is the property of an entity that can participate as a

precondition and/or post-condition on runtime executions of activities. In

other words, an object that has the property of being a flow object acts as

an input and/or output on activity occurrences.

 Activity occurrences that depend on precondition entities, i.e. input flow

objects, must be executed after other activity occurrences have provided

these precondition entities as post-condition entities, i.e. output flow

objects. An input flow object can also participate in the execution of a

complex activity.

 Input and output flow objects can participate in activity occurrences that

use the “min_precedes” ordering relation that provides a weaker ordering

constraint, although the “next_subocc” relation can be used to provide a

stronger ordering constraint as required. The two relations are introduced

in the PSL Outer-Core Theory of Complex Activities.

 Entity information semantics explained in section 5.2.2 enable the explicit

ontological definition of fundamental concepts relevant to mechanical

products. It is obvious that during a complex activity occurrence several

input and output flow objects are likely to exist. Intermediate input and

output flow objects, for example, may not necessarily have explicitly-

defined entity information semantics. These specific flow objects whose

definitions are not explicitly captured are regarded as being implicit in

nature.

Figure 5-13 depicts the fundamental nature of the intuition about explicit and

implicit flow objects. In the diagram, a complex process sequence is identified,

one that consists of a centre drilling operation followed by a drilling operation.

A number of entities act as inputs and outputs to the subactivity occurrences

within the complex process, for example, the explicitly-defined block

“Object_A” is an input flow object to “Centre_Drill_Occ”. The resulting output

flow object “Object_B”, whose formal representation using foundation entity

information semantics is not explicitly captured (i.e. implicit), then becomes an

input to “Drill_Occ”. The flow object “Object_C” which is an output from

91

“Drill_Occ” is an explicit object provided “Object_C” holds a complete

representation using foundation entity information semantics.

Figure 5-14 identifies all the binary and unary relations defined to formalise

the key participation relationships that hold between entity information and

process semantics. The unary relations “flow_object”, “implicit” and “explicit”

are used to differentiate between standalone objects and those that

participate as inputs and outputs to activity occurrences. A full list of axioms

governing these relationships is found in Appendix C.3.

 Object_A Object_B Object_C

Centre_Drill_Occ

Drill_Occ

input output input output

Figure 5-13 Explicit and Implicit Flow Objects

input

C

Object
Activity_

Occurrence

output

C

Object
Activity_

Occurrence

flow_object
1

C

Object

implicit
1

C

Object

explicit
1

C

Object

Figure 5-14 Binary Relations "input" and "output" and Unary
Relations "flow_object", "implicit" and "explicit"

92

5.2.4 Summary of Foundation Layer

Section 5.2 of this chapter has exposed the main concepts and the intuitions

exploited in order to conceptualise and formalise the Foundation Layer of the

SMIF ontology-based approach. The main components of the first layer

consist of:

 The expressive Common Logic-based Knowledge Framework Language

(KFL).

 Concepts from PSL Core and PSL Outer-Core.

 The mergence, adaptation and improvement, from a heavyweight

ontological viewpoint, of relevant object concepts originating from ISO

10303 AP224 and the Core Product Model (CPM).

 The definition of concept relationships that dictate how entities should

participate in processes.

The foundation ontology approach, employed in the Foundation Layer,

provides the initial vital building blocks to support the communication and

interoperability requirements in product design and manufacture. Through the

approach discussed in this chapter, it is clear that an integrated heavyweight

manufacturing ontological foundation is a prerequisite. However, it is to be

noted that the ontological foundation is multi-dimensional in nature, as it

integrates different theories and combination of approaches, to help address

the semantics of a range of system domains within design and manufacture.

93

5.3 Domain Ontology Layer

The Domain Ontology Layer is at the second level of the Semantic

Manufacturing Interoperability Framework (SMIF). Reusable foundation

semantics from the Foundation Layer can be specialised for the development

of domain models. In essence a domain ontology classifies the most general

information that characterises an entire domain (IDEF5 Method Report, 1994),

where they are designed to provide common high-level knowledge related to

system structures and controls and are designed for industry specific needs

(Chandra and Kamrani, 2003).

It follows that in the Domain Ontology Layer, a domain model is an

established view-specific model whose content is developed according to the

knowledge assets, practices and preferences, terminologies and constraints

that govern the domain in question. A domain shares an agreed commitment

to its domain ontology. Figure 5-15 exemplifies the conceptual difference

between sample concepts, coming from the heavyweight manufacturing

ontological foundation, and possible domain-specific concepts that could be

specialised, in a single ontology within the Domain Ontology Layer.

Figure 5-15 first identifies two entity information classes namely “Round_Hole”

and “Function” (A) (also see figures 5-3 and 5-10) as well as the PSL-based

process concepts “Activity” and “Activity_Occurrence” (B) respectively.

Relevant semantics such as relations and ontological functions also apply to

the example (here not illustrated for clarity). These sample foundation

concepts are then specialised in the Domain Ontology Layer to establish new

concept definitions such as “Positioning_Hole” (C) and to formalise domain-

specific knowledge such as the machining constraints that apply to the

production of positioning holes (D).

In the example in Figure 5-15, the “Positioning_Hole” (C) concept

demonstrates the prevalence of domain-assigned terminologies set with

respect to the intended function of the feature concept. Similarly, the

94

knowledge of machining constraints on positioning holes (D) could potentially

follow from the best practice knowledge that resides at factory level.

The specialisation dimension between the Foundation Layer and the Domain

Ontology Layer is key to the SMIF approach and consists of:

 The ontological mechanisms that allow specialisation to occur in the first

place. This can be achieved through the specification of ontological

relationships between foundation semantics and domain-centric

semantics.

Figure 5-15 Example to Illustrate the Conceptual Difference between Foundation and
Domain Concepts

Foundation Layer

Heavyweight Manufacturing Ontological Foundation

Knowledge Framework Language

Activity
Activity_

Occurrence
Function

Round_

Hole

Process Semantics Entity Information Semantics

Domain Ontology Layer

“DomainX” Ontology

“Positioning_Hole” Machining Constraints on “Positioning_Hole”

SPECIALISATION SPECIALISATION

New Concept Definition

(A) (B)

(C) (D)

95

 The specification of new domain-defined integrity constraints and

ontological definitions used for knowledge inference. Domain-defined

integrity constraints and ontological definitions can exist as long they do

not violate foundation axioms.

 The ability to instantiate domain and/or foundation concepts in the Domain

Ontology Layer and use foundation and domain-defined semantics for

discrete knowledge representation. For example, the specification of an

instance of the class “Positioning_Hole” of known dimensions that is the

output from a specific execution of a hole reaming process sequence.

A detailed account of ontology specialisation in the Domain Ontology Layer is

documented next, based on the scenario introduced in Figure 5-15.

5.3.1 Domain Specialisation of Foundation Semantics

5.3.1.1 Contexts for Domain Models

In the SMIF, domain models are built “within contexts”. “Contexts” are very

similar to namespaces applied to the Semantic Web. It is well known that the

emerging layers of the W3C‟s architecture are incorporating support for a

multiple-ontology Semantic Web, founded on distributed information

architecture standards such as URIs and XML namespaces for creating object

identifiers that can be defined with respect to a local ontology, yet referenced

globally (Hameed et al, 2004). Similarly, contexts for domain models in the

framework have two main purposes namely:

 To distinguish between elements and attributes from different vocabularies

with different meanings that happen to share the same name (Harold and

Means, 2004).

 To group all related domain arguments from a single domain model

together so that ontology implementation platforms can easily identify

them.

96

During domain ontology construction, it is possible to envisage domains using

concept terms, that are the same as in the heavyweight ontological

manufacturing foundation, to refer to different domain concepts. Similarly, two

separately-developed domain ontologies could be employing the same terms

to mean different notions. At first sight this would lead to semantic

reconciliation problems and matching conflicts. However, in the SMIF,

because domain models are built “within contexts”, this implies that each term

used to designate each argument is defined in a single context.

Using the understanding of contexts for ontologies, the two terms

“Round_Hole” and “Positioning_Hole” (see Figure 5-15) are clearly

disambiguated since “Round_Hole” is in fact “Foundation.Round_Hole” while

“Positioning_Hole” is “DomainX.Positioning_Hole”, where “Foundation” and

“DomainX” are the defined contexts for the heavyweight ontological

manufacturing foundation and the domain ontology in question, respectively.

Another domain ontology could be employing the term “Positioning_Hole” but

the latter would avoid confusion with “DomainX.Positioning_Hole” as long as

the context for that domain ontology be different, for example,

“DomainY.Positioning_Hole”.

5.3.1.2 Ontological Relationships between Foundation and Domain

Ontology Layers

Part of the mechanisms that allow specialisation to take place in the Domain

Ontology Layer consists of three fundamental ontological relationships. The

domain taxonomy (of classes and relations) can be made homogeneous and

logical using the principle of specialisation through subsumption (Rector,

2003). Two subsumption relations that enable taxonomies of classes and

relations to exist are: (1) super/sub-class relation and (2) super/sub-relation

relation respectively. The third ontological relationship, which is not a

subsumption relation, is (3) instance-of, which makes the population of facts

possible through the instantiation of classes. These three ontological relations

are key to the internal structure of any ontology-based model, and are thus

accounted for in all meta-model ontologies such as the Ontology Works Upper

97

Level Ontology (Ontology Works, 2009), the Protégé knowledge model (Noy

et al, 2000) and that of Ontolingua (Gruber, 1992).

Figure 5-16 depicts how subsumption relations may be used to specialise the

“Round_Hole” and “Function” foundation classes as well as the

“holds_function” foundation binary relation. The domain class

“Positioning_Hole” is made a sub-class of “Round_Hole” through the “sup”

relation that holds between classes. The relation “sup” is the super/sub-class

relation as defined in the Ontology Works Upper Level Ontology for the KFL.

The “supRel” relation, also present in the KFL meta-ontology, is used to form

taxonomies of relations. As can be seen in Figure 5-16, the binary relation

“holds_feature_function” in the Domain Ontology Layer is a sub-relation of the

foundation relation “holds_function”. Note that this example does not illustrate

instantiation of classes as this is treated in more detail in section 5.3.1.6 of

this chapter. From the Foundation Layer, it is possible to provide the ability to

enable or constrain the specialisation of domain taxonomies of classes and

holds_function

su
p

C

Core_

Entity
Function

Round_

Hole

sup

C

Feature

Location_

Function

s
u

p

Positioning

_Hole

s
u

p

s
u
p
R

e
l

holds_feature_function

Foundation Layer

Domain Ontology Layer

Figure 5-16 Example of Subsumption Relations between
the Foundation and the Domain Ontology Layers

98

relations. This consequently leads to two types of possible specialisation

approaches in the SMIF namely (1) the flexible specialisation approach and

(2) the controlled specialisation approach. These two specialisation

approaches, explained next, have important repercussions on the capability of

evaluating the interoperation between instantiated facts coming from pairs of

domain models.

5.3.1.3 The Flexible Specialisation Approach

As its name suggests, the flexible specialisation approach enables domains to

reuse foundation semantics without being imposed of domain ontology

structural restrictions (apart from restrictions in violating foundation integrity

constraints explained later in this chapter). In other words, the subsumption

relations identified previously in Figure 5-16 are fully permitted as well as the

declaration of instances. The consequence of creating relation taxonomies

using “supRel” is a major concern to the reconciliation of instantiated facts

across domain models. This is because the ability to evaluate the

interoperation between cross-domain arguments at the instance level

between domain models is drastically reduced.

Consider the example illustrated in Figure 5-17. Since the foundation relation

“holds_function” holds between the classes “Core_Entity” and “Function” (also

see Figure 5-16), this necessarily implies that “Round_Hole”, which is part of

the taxonomy of “Core_Entity” is also an argument to the “holds_function”

relation as shown in (E). These foundation semantics are then specialised

using the relations “sup” and “supRel” to form domain taxonomies of classes

and relations in two domain model contexts here identified as “DomainX” and

“DomainY”. For example, in “DomainX”, “Positioning_Hole” is a sub-class of

“Round_Hole” while “holds_feature_function” is a sub-relation of the

foundation relation “holds_function”.

Based on this specialisation scenario, suppose it is necessary to establish an

inference reconciliation relation, called “Relation_XY” (F), between instances

of all domain-defined sub-classes of “Round_Hole” that are always

99

accompanied by the specification of some “Function" instance. An example of

one such specification is “Hole_X holds_feature_function Location_Criteria_X”

in “DomainX” while the statement of “Hole_Y holds_hole_function

Position_Criteria_Y” is another similar example in “DomainY”. In order to

logically replicate this specialisation scenario, which then leads to the ability to

assign the “Relation_XY” (F) between applicable instances from both domain

models, it is first required to formalise the scenario.

Expression 5-10 identifies the inference axiom required for modelling the

above scenario. The inference axiom has been broken down into sections in

order to explain the relevance of each logic-based section in relationship to

the example exposed in Figure 5-17.

Figure 5-17 Example of the Flexible Specialisation Approach Involving Relation
Subsumptions

 has_hole_function

su
p

 sup sup

 s

up

su

p
R

e
l

su
p
R

e
l

Round_

Hole
holds_function Function

Location_

Function

Positioning

_Hole
holds_feature_function Positioning

Locating_

Hole
 has_hole_function

Location_

Criteria_X

Position_

Criteria_Y
holds_feature_function Hole_Y

in
s
t

in
s
t

in
s
t

in
s
t

Hole_X

Foundation Layer

DomainX Context DomainY Context

Relation_XY (F)

(G) (H)

(I)

(J) (K)

(E)

100

The above expression states that the variables ?x and ?y are related through

the binary relation “Relation_XY” (F) if and only if:

 ?x is an instance of the foundation class “Round_Hole” and is defined in

the “DomainX” context and can, therefore, pertain to any sub-class of

“Round_Hole” defined in “DomainX” (G).

 ?fx is an instance of the foundation class “Function” and is defined in the

“DomainX” context and can, therefore, pertain to any sub-class of

“Function” defined in “DomainX” (H).

 ?relx has the super-relation “holds_function” and is defined within the

“DomainX” context (I).

 ?relx is the relation that binds the instance ?x to the instance ?fx (J).

 ?y is an instance of the foundation class “Round_Hole” and is defined in

the “DomainY” context and can, therefore, pertain to any sub-class of

“Round_Hole” defined in “DomainY”.

(forall (?x ?y ?fx ?fy ?relx ?rely)
(<= (Relation_XY ?x ?y) (F)

 (and (Round_Hole ?x)
 (withinContext ?x DomainX)

 (Function ?fx)
 (withinContext ?fx DomainX)

 (supRel ?relx holds_function)
 (withinContext ?relx DomainX)

 (?relx ?x ?fx) (J)

 (Round_Hole ?y)
 (withinContext ?y DomainY)

 (Function ?fy)
 (withinContext ?fy DomainY)

 (supRel ?rely holds_function)
 (withinContext ?rely DomainY)

 (?rely ?y ?fy)))) (K)

(G)

(H)

(I)

Expression 5-10 Example of a Redundant Reconciliation
Axiom as a Result of Unbound Relation Variables

101

 ?fy is an instance of the foundation class “Function” and is defined in the

“DomainY” context and can, therefore, pertain to any sub-class of

“Function” defined in “DomainY”.

 ?rely has the super-relation “holds_function” and is defined within the

“DomainY” context.

 ?rely is the relation that binds the instance ?y to the instance ?fy (K).

Although this axiom at first sight appears to be correct, it is vital to point out

that there is a problem within Expression 5-10, which constitutes the primary

drawback, from an ontology interoperability perspective, of enabling domain

relation taxonomies. The lines (J) and (K), i.e. (?relx ?x ?fx) and (?rely ?y ?fy)

respectively, cannot be processed because of the presence of the variables

?relx and ?rely used to denote possible sub-relations of “holds_function” that

become unbound in lines (J) and (K). This inevitably occurs as a

consequence of trying to capture possible relations specialisations, and

prevents the desired level of deductive reasoning to be reached. Deduction

(deductive reasoning) in this case refers to the process of reaching a

conclusion on the basis of some given premises (Markovits, 2004), and is a

fundamental part of logical reasoning. Hence, this example identifies the

inference issues at the instance level arising from the creation of relation

taxonomies in domain ontologies.

5.3.1.4 The Controlled Specialisation Approach

The controlled specialisation approach overcomes the issue of ontology

interoperation at the instance level. By restricting domain models from

specialising foundation relations, it is possible to carry out deductive

reasoning at the instance level, across the KBs of domain models. Expression

5-11 depicts an integrity constraint which can be added to the heavyweight

manufacturing ontological foundation to prevent domains from creating

relation subsumptions and relation taxonomies.

102

Expression 5-11 informally states that if there is purely a relation ?rel, where

?rel is defined within the “Foundation” context, then no specification of a sub-

relation of ?rel identified as ?subrel is meant to exist. This integrity constraint

immediately imposes a structural constraint at the Domain Ontology Layer.

This constraint is portrayed in Figure 5-18, where it can clearly be discerned

that the “holds_function” foundation relation is used as-is in both “DomainX”

and “DomainY”. Consequently, a deductive reconciliation axiom can be

written (see Expression 5-12) with the intention of reconciling all the instances

of “Round_Hole” defined in “DomainX” and “DomainY” that happen to hold

some function, for example, “Hole_X holds_function Location_Criteria_X” in

“DomainX” and “Hole_Y holds_function Position_Criteria_Y” in “DomainY”.

(forall (?rel)
(=> (and (Relation ?rel)
 (not (Property ?rel))
 (withinContext ?rel Foundation))
 (not (exists (?subrel)
 (and (Relation ?subrel)
 (supRel ?subrel ?rel))))))

Expression 5-11 IC: Subsumptions Involving
Foundation Relations Are Not Permitted

Figure 5-18 Example of the Controlled Specialisation Approach

holds_function

su
p

 sup sup

 s

up

Round_

Hole
holds_function Function

Location_

Function

Positioning

_Hole
holds_function Positioning

Locating_

Hole
holds_function

Location_

Criteria_X

Position_

Criteria_Y
holds_function Hole_Y

in
s
t

in
s
t

in
s
t

in
s
t

Hole_X

Foundation Layer

DomainX Context DomainY Context

Relation_XY (F)

(L) (M)

103

Expression 5-12 remains somehow similar to Expression 5-10. However, the

difference lies in lines (L) and (M) where instead of having variables to denote

relations, the known foundation relation “holds_function” is present. The

arguments to the “holds_function” relation are also obvious, for example, line

(L) comprises (holds_function ?x ?fx), meaning ?x is the first argument to the

relation “holds_function” and ?fx is the second argument to the same relation,

where it is known that ?x and ?fx refer to some instance of “Round_Hole” and

some instance of “Function” in “DomainX” respectively. This understanding

also applies to line (M). Hence, Expression 5-12 is well-formed and for this

reason, the controlled specialisation approach provides a way for enabling

cross-domain inferences to be performed at the instance level of domain

models.

5.3.1.5 Integrity Constraints and the Domain Ontology Layer

One of the features of integrity constraints (ICs), as a means to embed

foundation ontological axioms as prescriptions to complement semantic

knowledge (Mäs et al, 2005), has previously been exposed (see section 5.2).

In addition to this, ICs also have a direct influence on the semantic

conformance of domain models that are developed in the second layer of the

SMIF. ICs ensure that the completeness of the heavyweight ontological

(forall (?x ?y ?fx ?fy)
(<= (Relation_XY ?x ?y) (F)

 (and (Round_Hole ?x)
 (withinContext ?x DomainX)
 (Function ?fx)
 (withinContext ?fx DomainX)

 (holds_function ?x ?fx) (L)

 (Round_Hole ?y)
 (withinContext ?y DomainY)
 (Function ?fy)
 (withinContext ?fy DomainY)

 (holds_function ?y ?fy)))) (M)

Expression 5-12 Example of a Deductive Reconciliation
Axiom

104

manufacturing foundation as a logical theory is met. As a consequence of

domain models being specialised directly from foundation semantics,

foundation ICs ascertain that the soundness in semantics is conveyed to

domain-defined arguments too.

Consider the example shown in Figure 5-19, where a foundation IC is present

in order to detect incorrect or incomplete specifications involving the binary

relation “holds_function”. The IC is written in KFL and is appended in line (U)

with a textual statement that reads: “The holds_function relation only holds

between core entities and functions”. Note the “:IC soft” declaration at the

beginning of line (U), which is a KFL-permitted declaration. Suppose in one

domain ontology the “holds_function” relation is specialised to

“holds_feature_function” and the latter is asserted as being a binary relation

whose arguments involve an incorrect class definition (see Figure 5-19 “Not a

Core_Entity Class”). On loading the domain ontology, the loading process

would be prevented because of infringements against the class argument

declarations to the relation “holds_function” as well as the presence of the “:IC

soft” declaration.

(forall (?coreEnt ?func)
(=> (holds_function ?coreEnt ?func)
 (and (Core_Entity ?coreEnt)
 (Function ?func))))
:IC soft “The holds_function relation only holds between core entities and functions” (U)

Foundation Layer

Function
holds_function

C

Core_Entity

Domain Ontology Layer

This is not permitted because…

A

“Function”

Class

holds_feature_function
Not a

“Core_

Entity”

Class

Figure 5-19 Example of an Integrity Constraint Violation

105

During the domain ontology loading process, the knowledge engineer is made

aware of the nature of the infringement, thereby prompting a rectification

action to be proceeded with. In KFL, there are four degrees of gravity relating

to the violation of ICs and are identified as “weak”, “soft”, “hard” and

“adamant” (in ascending order of gravity). A weak IC, when infringed, would

simply indicate an irregularity which does not necessarily constitute a

problem. A soft IC is stronger than a weak IC and does not prevent an

instance loading process from taking place. On the other hand, a hard IC

completely prevents a wrong action from being committed. An adamant IC is

one which indicates a necessity and is destined to be used for the functioning

of Ontology Works‟ Upper Level Ontology system.

The simple example illustrated in Figure 5-19 demonstrates one of the

important potentials of ICs. ICs extend a conceptual model (in this case the

heavyweight ontological manufacturing foundation) to make the model precise

and capable to ensure that domain semantics is rightly expressed (Halpin,

1999). In a similar way, ICs are intended to ensure correctness, consistency

support and checking of data (instances) in the implementation in a database

(in this case a domain KB) (Pakalnickiene and Nemuraite, 2007). Therefore,

this advantage of ICs contributes positively early on during the domain

ontology development phase and further downstream during instantiation and

commitment of fact statements to a domain KB.

It is also to be pointed out that domain ontologies are able to formulate

domain-specific ICs, provided these are in line with foundation ICs. As an

example to illustrate this facet, consider Figure 5-20. Recall from Expression

5-1 that there is a foundation IC present in order to ensure that “every core

entity holds some function” (V). Based on the scenario previously exposed in

Figure 5-18, it becomes possible to specialise the expression (V) in order to

establish an IC in “DomainX”. For example, expression (W) in Figure 5-20

captures the semantics that “every positioning hole holds exactly one location

function”. Expression (W) consistently follows from expression (V) and is,

therefore, a completely suitable IC capable being declared in “DomainX”.

106

5.3.1.6 Instantiation and Discrete Knowledge Representation

Instantiation often becomes an important process after the domain ontology

development phase is completed. The instance layer is the commitment layer

which is concerned with the composition, constraining and instantiation of

lexons (a fact type of some category or description, for example, a class) to

represent the semantics of a particular fact (instance) (Pretorius, 2004). In

other words, individual instances are the most specific concepts represented

in a Knowledge Base (KB) (Noy and McGuinness, 2001).

It is necessary to emphasise that, from the point of view of this work, there

exists a fine line between an ontology as a logical theory and a Knowledge

Base (KB). An ontology aims to capture the conceptual structures of some

field while a KB aims to specify a concrete state of the field, i.e. an ontology

consists of intensional logical definitions (characteristics that distinguish

concepts) while a KB comprises of extensional parts (instances) (Pretorius,

2004). A KB, therefore, may be regarded as being a form of database

dedicated to the effective management of knowledge which is facilitated

through the classification and constraining mechanisms coming from the

domain ontology to which the KB is associated with. Thus, the structure of the

(forall (?coreEnt)
(=> (Core_Entity ?coreEnt)
 (exists (?func)
 (and (Function ?func)
 (holds_function ?coreEnt ?func)))))
:IC soft “Every core entity holds some function” (V)

(forall (?hole ?func1 ?func2)
(=> (and (Positioning_Hole ?hole)
 (Location_Function ?func1)
 (Location_Function ?func2)
 (holds_function ?hole ?func1)
 (holds_function ?hole ?func2))
 (= ?func1 ?func2)))
:IC hard “Every positioning hole holds exactly one location function” (W)

Figure 5-20 Example of a Consistently-Defined Domain Integrity
Constraint

107

KB relies on semantic structures established in an ontology. For example,

machine-readable KBs store knowledge in a computer-readable form where

an ontology can be used to define the structure of the stored data (Wikipedia,

2009).

Figure 5-21 illustrates how through instantiation, discrete knowledge

pertaining to a complex reaming process execution sequence can be

represented. The example takes into account the instantiation of sample

foundation semantics (primarily PSL-based process semantics) employed in

the Domain Ontology Layer to formalise a complex hole reaming process

sequence as a machining constraint on the production of an instance of the

class “Positioning_Hole” (also refer to (C) and (D) on Figure 5-15 if needed).

The example uses the controlled specialisation approach, where relation

subsumptions are not allowed.

Part of the instance file which contributes to encoding the instance knowledge

within “DomainX” in Figure 5-21 is captured in Expression 5-13. Instance files

are required in the Domain Ontology Layer whenever facts, i.e. instances,

have to be populated in the KB of domain models. Instance files are written in

Simple Common Logic (SCL) (Kendall et al, 2004), which is very similar to the

Common Logic Interchange Format (CLIF), except that SCL instance files

used in the Domain Ontology Layer are dedicated to the population of

instances rather than the manipulation of an ontology‟s logical theory.

Based on the example illustrated in Figure 5-21 and Expression 5-13, it is

shown that there are essential components that influence the instantiation of

facts in order to capture domain instance knowledge. These components

include:

 The specification of instances, for example, in (N), “DomainX.Make_Hole”

is an instance of the foundation class “Activity” identified as “Make_Hole”

in the “DomainX” context. Note that the specification of instances should

always be accompanied by the context, for example,

“DomainX.Make_Hole”, for term disambiguation.

108

 The use of relations to bind instances together in order to create fact

sentences, for example, in (O), the instance “Make_Hole_X” is linked to

the instance “Make_Hole” via the foundation binary relation

“occurrence_of”. This understanding also applies to (P), (Q), (R) and (T).

Note that (Q) and (R) in Expression 5-13 are exploited to provide part of

the semantics of the process sequence in Figure 5-19, while (T) is used to

capture the knowledge that the instance “Hole_X” (S) is an output from the

complex hole reaming activity occurrence “Make_Hole_X”.

in
st

Make_

Hole_X

Centre_

Drilling_

Occ

Drilling_

Occ

Reaming_

Occ

s
u
b

a
c
ti
v
it
y
_
o
c
c
u

rr
e
n

c
e

su
ba

ct
iv

ity
_o

cc
ur

re
nc

esubactivity_occurrence

output
Hole_X

Activity_

Occurrence

Positioning

_Hole

Round_

Hole

s
u
p

in
s
t

Make_

Hole

oc
cu

rr
en

ce
_o

f

Activity

in
s
t

Complex Hole Reaming

Activity Occurrence

Foundation Layer

DomainX (Domain Ontology Layer)

Drilling_Occ immediately
after Centre_Drilling_Occ

Reaming_Occ some time
after Drilling_Occ

(O)

(N)

(P)

(Q) (R)

(S)

(T)

Figure 5-21 Example of Instantiation and Discrete Knowledge
Representation in the Domain Ontology Layer

109

The nature of instantiation elucidated in the previous example reveals the way

in which the formalisation of discrete knowledge (such as the known

machining constraints on a specific “Hole_X” in “DomainX”) is performed.

Instances can be committed to the KB of a domain model as long as both

foundation and domain integrity constraints are not violated. During the

commitment transaction of facts to the KB, ICs ensure that the knowledge

engineer always supplies correct and complete instance knowledge.

;;; DEFINE ACTIVITY INSTANCES

e.g. (Foundation.Activity DomainX.Make_Hole) (N)

;;; DEFINE ACTIVITY OCCURRENCE INSTANCES

e.g. (Foundation.Activity_Occurrence DomainX.Make_Hole_X)
e.g. (Foundation.Activity_Occurrence DomainX.Centre_Drilling_Occ)

;;; RELATE ACTIVITIES TO ACTIVITY OCCURRENCES

e.g. (Foundation.occurrence_of DomainX.Make_Hole_X
 DomainX.Make_Hole) (O)

;;; DEFINE SUBACTIVITY OCCURRENCE RELATIONSHIPS

e.g. (Foundation.subactivity_occurrence DomainX.Drilling_Occ
 DomainX.Make_Hole_X) (P)

;;; DEFINE PROCESS SEQUENCE RELATIONSHIPS

e.g. (Foundation.root_occ DomainX.Centre_Drilling_Occ
 DomainX.Make_Hole_X) (Q)
e.g. (Foundation.next_subocc DomainX.Drilling_Occ
 DomainX.Centre_Drilling_Occ DomainX.Make_Hole) (R)

;;; DEFINE POSITIONING HOLE INSTANCE

e.g. (DomainX.Positioning_Hole DomainX.Hole_X) (S)

;;; DEFINE OUTPUT RELATIONSHIPS

e.g. (Foundation.output DomainX.Hole_X DomainX.Make_Hole_X) (T)

Expression 5-13 Example of Part of an Instance File Written in Simple
Common Logic (SCL)

110

5.3.2 Summary of Domain Ontology Layer

Section 5.3 of this chapter has documented the essential principles adopted,

in Domain Ontology Layer, to allow domain models to be developed from the

heavyweight ontological manufacturing foundation. Domain model

specialisation typically consists of:

 Ontological relationships and interactions between concepts from the

Foundation and Domain Ontology layers.

 The declaration of domain-specific integrity constraints, which need to

remain coherent with foundation semantics.

 The definition of instances in order to capture instance knowledge in the

form of facts (instances) and sentences that relate facts together.

It has also been shown that there are two directions in which domain models

could be specialised. The specialisation process can either be flexibly carried

out or performed in a controlled manner. A simple understanding can be

applied regarding the suitability of specialisation processes to specific

domains. For example, if the main purpose of a domain ontology is to focus

on the capture of domain concepts and constraints as a logical theory, and

does not involve the population of instances, then the flexible specialisation

approach is as convenient as the controlled approach.

However, if discrete knowledge representation is a significant aspect of a

domain model, alongside the representation of domain concepts and

constraints, then the controlled specialisation approach is preferred from an

ontology interoperability viewpoint. Moreover, since relation specialisations

are not allowed at domain level following the controlled specialisation

approach, this implies that relation mismatches between domain models are

avoided. Relation mismatches typically involve dissimilarities in the definition

of relations, the way in which these are attributed and used to structure

classes in disparate ontologies (Hameed et al, 2004; Chungoora and Young,

2008b). In this work, the controlled specialisation approach has been chosen

111

in order to explore higher capabilities for the reconciliation of instances and

also to limit relation mismatches.

5.4 Summary

This chapter has explained the nature and implications of the first two layers

of the SMIF, thereby satisfying part of the third objective of this work

concerned with the exploration of concepts related to the framework (see

Chapter 1 section 1.3.1). In order to develop the rigorous heavyweight

ontological manufacturing foundation in this research, informal intuitions about

entity information and processes need to be formalised. This formalisation

process necessitates the accurate definition of heavyweight semantics,

involving basic ontological concepts such as classes and relations backed

with the efficient declaration of integrity constraints. Moreover, IDEF5

schematics have been used in order to visually explore the primary semantic

structures within the heavyweight manufacturing ontological foundation (also

see Appendix C).

With the heavyweight ontological manufacturing foundation in place, it then

becomes possible to develop domain models in the Domain Ontology Layer.

This process is enabled via ontology specialisation mechanisms such as the

definition of domain contexts, the specification of subsumption relationships,

and the definition of concept instances for the capture of discrete domain

knowledge. Furthermore, because the Domain Ontology Layer interacts with

the Foundation Layer, this implies that the benefits arising from the definition

of foundation integrity constraints are passed on to the Domain Ontology

Layer to ensure the integrity-driven specialisation of domain models. The

interactions between the Foundation and Domain Ontology layers identified in

this chapter have been experimentally tested and applied to a number of test

cases in Chapter 8.

112

6 Semantic Reconciliation and Interoperability

Evaluation Layers

6.1 Introduction

This chapter discusses in more detail the understanding behind the Semantic

Reconciliation and Interoperability Evaluation layers of the Semantic

Manufacturing Interoperability Framework (SMIF). Section 6.2 and its sub-

sections focus on how a stepwise semantic reconciliation process is achieved

through the application of ontology mapping process concepts to reconcile

pairs of domain models developed in the Domain Ontology Layer. One

fundamental stage of the ontology mapping process comprises semantic

alignment, which relies on logic-based definitions of semantic mapping

concepts. The different modes in which semantic mapping concepts occur are

also further explained.

The automated association of semantic mapping concepts in the Semantic

Reconciliation Layer provides a basis for evaluating and verifying the possible

correspondences between cross-domain arguments. Section 6.3 documents

the main mechanisms used for the evaluation and verification process carried

out in the Interoperability Evaluation Layer. These mechanisms enable the

formulation of interoperable knowledge queries. As a result of the complexity

involved in constructing several interoperable knowledge queries, a method is

then identified in order to assist knowledge querying procedures in order to

maximise reusability of interoperable knowledge queries at the fourth level of

the SMIF.

6.2 Semantic Reconciliation Layer

Following the framework approach, several collaborating domain models of

feature-based design and manufacture are bound to exist in the Domain

Ontology Layer. In the event that these domain models need to interoperate

with the intention of sharing knowledge, domain semantics need to be

113

reconciled. The Semantic Reconciliation Layer covers applied ontology-based

techniques relevant to enabling the reconciliation of domain semantics.

These techniques employ segments of known ontology matching methods

such as (1) the computation of contexts for domain ontologies (Stumme and

Maedche, 2001), (2) ontology merging (Noy and Musen, 2003) and (3)

semantic alignment (Euzenat and Shvaiko, 2007). However, unlike known

ontology matching methods, the combined approach exploited at the

Semantic Reconciliation Layer provides a unique way to the reconciliation of

domain semantics. This takes into account:

 Cross-domain arguments that may share the same terms but are

semantically different, since from a semantic interoperability viewpoint,

term similarity does not necessarily imply equivalence.

 A progression towards heavyweight Common Logic-based semantic

alignment processes, to reinforce current knowledge on semantic

alignment and the related methods to verify the integrity of cross-domain

mappings.

 Interoperation at the instance level of domain models made possible

through the controlled specialisation approach, an aspect which until now

has remained problematic to the ontology mapping community.

Figure 6-1 illustrates the basic concepts involved in the mapping of domain

models at the Semantic Reconciliation Layer. The process of semantic

reconciliation can be performed between pairs of models at a time, as can be

encountered with almost all current ontology mapping frameworks and

methodologies (Kalfoglou and Schorlemmer, 2003). Ontology mapping

process concepts involve a first stage of adjusting the contexts (namespaces

in this case) of two domain models which are to be reconciled. Following this

stage is a simple ontology merging process, where both models are loaded

intact into a single Foundation Layer. The last procedure in the ontology

mapping process is that of semantic alignment, where semantic mapping

114

concepts are loaded into the merged models. Semantic mapping concepts are

further discussed in section 6.2.2.

6.2.1 Ontology Mapping Process Concepts

6.2.1.1 Domain Context Adjustment Process

Adjusting the contexts of pairs of domain models to be reconciled forms part

of the initial stage of semantic reconciliation. It is relatively easy to understand

the reason behind the adjustment of the contexts of two domain models to two

standard contexts, which resembles the computation of contexts adopted in

the FCA-Merge ontology merging method (Stumme and Maedche, 2001), but

is simpler. From the preferences established in this research, any two domain

models to be reconciled have their contexts adjusted to the standard contexts

“DomainX” and “DomainY”.

For example, suppose there are two domain models which need to

interoperate and one uses a context called “Design” while the other uses a

context called “Manufacture”. Following the approach of domain context

adjustment, the “Design” context would be renamed to “DomainX” and the

“Manufacture” context to “DomainY”, or vice versa, where “Design” is

renamed to “DomainY” and “Manufacture” to “DomainX”. In short, any two

domain contexts are renamed to either “DomainX” or “DomainY” as standard

contexts. Context adjustment also needs to be performed for instance files

Semantic Reconciliation Layer

 Class Mapping Relations

 Function Mapping Relations

 Instance Mapping Relations

Context Adjustment

Ontology Merging

Semantic Alignment

Ontology Mapping Process

Concepts

Semantic Mapping Concepts

Figure 6-1 Concepts Explored in the Semantic Reconciliation Layer

115

pertaining to each domain model, if reconciliation needs to be carried out at

the KB level.

The context adjustment procedure is important because the semantic

alignment process, which takes place later on during ontology mapping,

involves semantic mapping concepts based around the two predefined

contexts “DomainX” and “DomainY”. The process of context adjustment is

straight forward and only requires a substitution of the names of domain

model contexts. Figure 6-2 captures this understanding.

6.2.1.2 Simple Ontology Merging Process

The second stage in the ontology mapping process is concerned with a

simple ontology merging procedure, which uses the domain models with their

adjusted contexts and loads both in a single Foundation Layer. During this

simple ontology merging process, all domain arguments present in “DomainX”

and “DomainY” remain distinct to each domain model. The merging process

also applies to the instances adjusted to “DomainX” and “DomainY”, if these

instances exist. Figure 6-3 identifies the consequence of merging two domain

models under the simple ontology merging process adopted.

Same Domain
Model using
“DomainX”

Context

Same Domain
Model

using “DomainY”
Context

Rename
Context

Rename
Context

Domain Model
using “Design”

Context

Domain Model using
“Manufacture”

Context

Figure 6-2 Adjusting Domain Contexts to Standard
Contexts "DomainX" and "DomainY"

116

The figure first illustrates two specialisations of the foundation class

“Round_Hole” that are defined separately in the “DomainX” and “DomainY”

contexts. Under the simple merging process, all ontology-based content from

both domain models are brought under one platform. Notice in Figure 6-3 how

during merging, the two classes “Positioning_Hole” and “Locating_Hole” stay

distinct to their contexts but both still appear as specialisations of

“Round_Hole”.

It is to be noted that the ontology merging process is referred to as being

simple, on the basis that no similarity computation is made during the

mergence of both domain models unlike other dedicated ontology merging

approaches such as FCA-Merge (Stumme and Maedche, 2001), the system

developed by Fernández-Breis and Martínez-Béjar (2002) and PROMPT (Noy

and Musen, 2003). The procedure here simply ensures that all domain model

Figure 6-3 Simple Ontology Merging Process

Domain Model
using “DomainX”

Context

Domain Model using
“DomainY” Context

Merged Domain Models

Foundation Layer

DomainX DomainY

s
u
p

Positioning

_Hole

Round_

Hole

s
u
p

Locating_

Hole

Round_

Hole

DomainX DomainY

su
p sup

Positioning

_Hole

Round_

Hole

Locating_

Hole

117

content is captured in a single environment prior to the semantic alignment

process.

6.2.1.3 Semantic Alignment Process

The semantic alignment process is at the heart of the Semantic Reconciliation

Layer and is illustrated in Figure 6-4. The alignment process is enabled by

feeding semantic mapping concepts to the merged models (see section 6.2.2

for a description of semantic mapping concepts). Based on the heavyweight

logical conditions that define these semantic mapping concepts, mapping

relations may become associated to cross-domain arguments, if during the

merging of a model in “DomainX” and another model in “DomainY”, there exist

arguments from both contexts that happen to satisfy these logical conditions.

The semantic alignment process is almost entirely automatic.

The view on the semantic alignment process exposed in this work falls under

the category of tools responsible for the discovery of mappings between two

domain models. This is performed by finding pairs of related arguments,

through the process of alignment and the reconciliation of specific portions of

two domain models through an intermediate articulation ontology (in this case

the Foundation Layer). It has been acknowledged that alignment and

Semantic Mapping

Concepts

Merged Domain Models

Foundation Layer

DomainX DomainY

Merged and Aligned Domain Models

Foundation Layer

DomainX DomainY

Load

Figure 6-4 Semantic Alignment Process

118

articulation mapping processes are related in the sense that binary relations

can be used to align two ontologies. These binary relations can themselves

be decomposed into a pair of functions emanating from a common

intermediate source where the intermediate ontology serves as the

articulation ontology (Kalfoglou and Schorlemmer, 2003).

6.2.2 Semantic Mapping Concepts

A semantic mapping concept in the Semantic Reconciliation Layer consists of

a formally-defined semantic mapping relation (using logic programming) and

written informal remarks that accompany the relation. A semantic mapping

relation binds two cross-domain arguments (such as classes) when certain

logical conditions, that define the semantic mapping relation, become true

between these arguments.

In addition to these formal semantics, semantic mapping concepts also

include the statement of informal remarks for human interpretation. This is

because alignments produced by matching systems may not be intuitively

obvious to human-users and, therefore, need to be explained (Shvaiko and

Euzenat, 2008). These remarks generally include the informal way of

interpreting the mapping concept. In certain cases, depending on the reliability

of a semantic mapping concept, other remarks may be added to capture

possible limitations of the extent to which the semantic mapping concept is

applicable to cross-domain arguments, and possible example remarks which

further reflect the understanding behind the semantic mapping concept.

Figure 6-5 conceptually summarises the above-mentioned components of

semantic mapping concepts. The diagram shows that if the argument ?x

satisfies certain conditions and is defined within the “DomainX” context and

the argument ?y satisfies certain conditions and is defined within the

“DomainY” context, then the “semanticMappingRelation” holds true between

?x and ?y where ?x is to be interpreted in the first argument position and ?y in

the second argument position to the “semanticMappingRelation”. Information

carried by the relations, both formally in terms of logical definition and

119

informally in terms of remarks, represents the nature of semantic

interoperation between cross-domain arguments.

The predefined standard contexts “DomainX” and “DomainY” present in the

definition of logical conditions justify the domain context adjustment stage

discussed earlier. Furthermore, it is to be noted that the arguments ?x and ?y

from Figure 6-5 could be classes, instances or ontological functions but not

relations. The reconciliation of relations is not under consideration in the

chosen method, since the controlled specialisation approach is taken, where

relation subsumptions are not permitted within domain models, in order to

optimise reconciliation at the instance level.

Semantic mapping concepts embrace different levels of granularity based on

foundation semantics and the user‟s knowledge of domain semantics. This

leads to the ability to define (1) reusable semantic mapping concepts based

directly on foundation semantics, (2) reusable semantic mapping concepts

that are only relevant to the two domains to be reconciled and (3) reusable

semantic mapping concepts based on domain knowledge that does not reside

in neither the Foundation Layer nor the two domains to be reconciled. These

different implications are next discussed.

6.2.2.1 Semantic Mapping Concepts Based on Foundation Semantics

A standard set of semantic mapping concepts derive from foundation

semantics (see Figure 6-6). This set of mapping concepts can be reused in all

reconciliation scenarios since, following the SMIF approach, all domain

Satisfies certain conditions
in “DomainX”

?x

Satisfies certain conditions
in “DomainY”

?y

semanticMappingRelation Tagged Remarks Tagged Remarks

Figure 6-5 Understanding Semantic Mapping Concepts

120

models are essentially specialisations of the Foundation Layer, and therefore

all share a common semantic ground.

Consider Figure 6-7 which illustrates how a semantic mapping concept can be

specified for the reconciliation of cross-domain sub-classes of the foundation

class “Round_Hole”. The expression accompanying the diagram captures the

intuition that the “classMappingRelation_018” (A) be inferred as true between

the arguments ?x and ?y if and only if ?x is a sub-class of “Round_Hole”

defined within the “DomainX” context (B) and ?y is another sub-class of

“Round_Hole” defined within the “DomainY” context (C).

(forall (?x ?y)
(<= (classMappingRelation_018 ?x ?y) (A)
 (and (sup ?x Round_Hole)
 (withinContext ?x DomainX) (B)
 (sup ?y Round_Hole)
 (withinContext ?y DomainY)))) (C)

su
p sup

?x

Round_

Hole

?y

classMappingRelation_018

DomainX DomainY

Figure 6-6 Semantic Mapping Concepts Based on
Foundation Semantics

Figure 6-7 Example of a Class Semantic Mapping Concept Based on Foundation
Semantics

Semantic
Mapping

Concepts

Domain Ontology Layer

Foundation Layer

DomainX DomainY

Merged Domain Models

DomainX DomainY

Semantic Reconciliation Layer

121

Although the name tag of the “classMappingRelation_018” carries very little

information, yet, it is formally defined (refer to the logical expression in Figure

6-7). Informal remarks can be tagged to the semantic mapping relation, based

on the formal logical conditions, to enhance the meaning of

“classMappingRelation_018” between ?x and ?y for human interpretation.

This can be achieved by stating, for example, that:

 There exists a commonality between the class ?x in the “DomainX” context

and the class ?y in the “DomainY” context as a result of both ?x and ?y

being subclasses of the foundation class “Round_Hole”. Both ?x and ?y

capture the notion of a feature that is of cylindrical or conical negative

(removal) volume. It is necessary for instances of ?x and ?y be defined in

terms of a first instance of “Circular_Closed_Profile” swept along an

instance of “Linear_Path” resulting in a second instance of

“Circular_Closed_Profile” of identical or different dimensions. Every

instance of ?x and ?y may be specified as holding a “Linear_Profile” axis.

The above informal statement is highly relevant in terms of interoperable

semantics between the possible classes ?x and ?y, since the “Round_Hole”

concept possesses formal necessary conditions, captured as integrity

constraints, which restrict its interpretation (see also Chapter 5 section

5.2.2.4). Besides informal remarks about the semantic commonality, there is

also the issue of dealing with uncertainties in ontology matching (Shvaiko and

Euzenat, 2008) and in the case of the “classMappingRelation_018”, one way

to specify this is to tag a limitation remark such as:

 Without reference to the terms assigned to the concepts ?x and ?y, there

could potentially be class mismatches present. This is because ?x and ?y

could have been defined with a view on specific domain preferences,

which vary across domains. Varying levels of abstraction of the foundation

class “Round_Hole” in both domains could also result in class

mismatches.

122

The statement identified above is also relevant to semantic reconciliation in

terms of the inconclusive correspondences that could exist between ?x and

?y. This is because the logical conditions for “classMappingRelation_018” do

not entail term similarities nor the identification of the number of sub-class

levels of “Round_Hole” in “DomainX” and “DomainY”. Hence, it is clear that

possible semantic mismatches could still prevail even though the capability is

present to infer similarities between ?x and ?y.

In a very similar way to the one explained, other semantic mapping concepts

can be defined based on foundation semantics. Figure 6-8 depicts a scenario

where a semantic mapping relation named “instanceMappingRelation_041”

(D) has been specified in order to partly reconcile domain-defined instances of

the class “Round_Hole”. The logical expression accompanying the figure

states that the “instanceMappingRelation_041” (D) be inferred as true

between the arguments ?holex and ?holey if and only if ?holex is an instance

of “Round_Hole” defined within the “DomainX” context (E) and ?holey is

another instance of “Round_Hole” defined within the “DomainY” context (F)

and that both instances ?holex and ?holey share the common condition of

having blind circular closed profiles (G).

The informal remarks which support the definition of the semantic mapping

concept to partly reconcile round holes in “DomainX” and “DomainY” state

that:

(forall (?holex ?holey ?ccpx ?ccpy)
(<= (instanceMappingRelation_041 ?holex
 ?holey) (D)
 (and (inst ?holex Round_Hole)

 (withinContext ?holex DomainX) (E)
 (inst ?ccpx Circular_Closed_Profile)
 (holds_shape ?holex ?ccpx)
 (blind ?ccpx) (G)
 (inst ?holey Round_Hole)
 (withinContext ?holey DomainY) (F)
 (inst ?ccpy Circular_Closed_Profile)
 (holds_shape ?holey ?ccpy)
 (blind ?ccpy)))) (G)

in
st

inst

?holex

Round_

Hole

?holey

instanceMappingRelation_041

DomainX DomainY

Figure 6-8 Example of an Instance Semantic Mapping Concept Based on Foundation
Semantics

123

 There exists a commonality between the instances ?holex and ?holey as a

result of both being asserted instances of the foundation class

“Round_Hole” declared in “DomainX” and “DomainY” respectively. ?holex

and ?holey both share in common the property of having blind hole bottom

conditions.

In this case the logical conditions that define “instanceMappingRelation_041”

are very constrained and for this reason, no potential limitation could be

envisaged over the semantic mapping concept. In other words, if the

“instanceMappingRelation_041” holds true for two instance arguments ?holex

and ?holey, then there is a total certainty that the semantic mapping concept

applies under all circumstances (refer to Appendix E.1 for more information on

other similar types of semantic mapping concepts that derive from foundation

semantics).

6.2.2.2 Semantic Mapping Concepts Based on Known Cross-Domain

Correspondences

The definition of semantic mapping concepts can also be based on the user‟s

knowledge of the concepts and conditions present in two domain models to

be reconciled (see Figure 6-9). It becomes possible to specify domain-derived

semantic mapping concepts depending on the user‟s knowledge of the

commonalities and differences between the two domain models. This

knowledge can, for example, be gathered through historical cross-domain

information correspondences which are at the disposal of the knowledge

engineer. This understanding falls in line with the discovery of missing

background knowledge to improve matchability acknowledged by Shvaiko and

Euzenat (2008) in their analysis of ten challenges for ontology matching.

Unlike the semantic mapping concepts that are based on foundation

semantics and are fully reusable in all reconciliation scenarios, semantic

mapping concepts based on the semantics of reconcilable domains are much

more specific and are only generally reusable for two domain models, for

which the semantic mapping concepts have been designed to reconcile.

124

Consider the example portrayed in Figure 6-10 where the foundation class

“Activity” has one specialisation called “Drilling_Process” defined in the

“DomainX” context and another specialisation called “Drilling_Operation”

defined in the “DomainY” context.

Purely based on the “sup” subsumption relation of the domain-defined classes

to the class “Activity”, it is possible to infer that both “Drilling_Process” and

“Drilling_Operation” originate from the same parent class. However, if the

knowledge engineer already understands the implications of

“Drilling_Process” and “Drilling_Operation”, the latter could specify a domain-

derived semantic mapping concept that directly holds between these two

classes. In this case, assuming that the knowledge engineer understands that

the two classes are in fact the same, a semantic mapping concept called

“classDomainMappingRelation_001” (H) can be used to infer that

“Drilling_Process” and “Drilling_Operation” are conceptually similar types of

reusable process behaviours as depicted in the expression in Figure 6-10.

Semantic
Mapping

Concepts

Domain Ontology Layer

Foundation Layer

DomainX DomainY

Merged Domain Models

DomainX DomainY

Semantic Reconciliation Layer

Figure 6-9 Semantic Mapping Concepts Based on Known
Cross-Domain Correspondences

125

User-defined informal remarks listed below can also be added for enhancing

human interpretation:

 The “Drilling_Process” class in “DomainX” is a conceptually similar class to

the “Drilling_Operation” class in “DomainY”.

 There is a term mismatch between the class “Drilling_Process” and

“Drilling_Operation”.

The process of establishing semantic mapping concepts based on known

cross-domain correspondences is regarded as being an important method

currently used in ontology mapping research. In Description Logics (DL), pre-

defined semantic mapping relations such as “owl:sameClassAs” (Lin and

Harding, 2007), other related DL comparison relationships (Lazenberger et al,

2008; Rabe and Gocev, 2008) and the exploration of “semantic bridges” such

as the “ConceptBridge” (Maedche and Staab, 2002) provide similar

capabilities to the “classDomainMappingRelation_001” (H) discussed earlier.

The fundamental difference between the semantic mapping concepts based

on known cross-domain correspondences explored in this work, for example

“classDomainMappingRelation_001”, and other related concepts like

“owl:sameClassAs” lies in the degree of formality and flexibility in the

definition of the former. Heavyweight Common Logic-based rules are used to

reinforce the semantics of semantic mapping concepts based on known

 (<= (classDomainMappingRelation_001
 Drilling_Process Drilling_Operation)
 (and (Property Drilling_Process)
 (Property Drilling_Operation)))

su
p sup

Drilling_

Process

Activity

Drilling_

Operation

classDomainMappingRelation_001 (H)

DomainX DomainY

Figure 6-10 Example of a Class Semantic Mapping Concept Based on Known Cross-
Domain Correspondences

126

cross-domain correspondences. Furthermore, the tagging of informal

remarks, which informally identify the criteria for matching and the limitations

to the matching, improves the interpretability of semantic mapping concepts.

6.2.2.3 Semantic Mapping Concepts Based on External Domains

There is a third mode in which semantic mapping concepts could be defined

following the SMIF approach. In Figure 6-11, the two domains to be

reconciled are “DomainX” and “DomainY”. The knowledge engineer is able to

specify other types of semantic mapping concepts based on some external

domain model if the knowledge contained within the external model can

potentially be used during the reconciliation of “DomainX” and “DomainY”.

This external domain model also needs to have been developed from the

Foundation Layer.

The diagram in Figure 6-12 exemplifies the understanding behind the

specification of semantic mapping concepts based on external domain

knowledge. In this example, the external domain model is that of the ISO

Tolerance Band and machining processes associated with ISO IT Tolerance

Grade (ISO 286-2, 1988). In this external domain model, the knowledge that

originates from ISO Tolerance Band and machining processes has been

External

Semantic
Mapping

Concepts

Domain Ontology Layer

Foundation Layer

DomainX DomainY

Merged Domain Models

DomainX DomainY

Semantic Reconciliation Layer

Figure 6-11 Semantic Mapping Concepts Based on External Domains

127

formalised in such a way that it is possible to infer suitable machining

methods based on the dimensional parameters of “Round_Hole” instances.

The expression in Figure 6-12 captures the ISO Tolerance Band domain

condition that if a “Round_Hole” instance (I) has an entry hole diameter that is

between 6 mm (exclusive) and 10mm (inclusive) (J) accompanied with an

upper diameter tolerance value which is between 0.06 mm (inclusive) and

0.36 mm (inclusive) (K) and a lower diameter tolerance value which is

between -0.36 mm (inclusive) and -0.06 mm (inclusive) (L), then it is possible

to infer that the unary relation “toleranceBandRelation_04” (M) holds for that

specific instance of “Round_Hole”. In this case, the informal remarks that

accompany the declaration of “toleranceBandRelation_04” state that:

 Based on the entry diameter and entry diameter size tolerance of the

queried “Round_Hole” instance, it can be inferred that this hole feature can

be produced using a Reaming machining process. This criteria is only

satisfied under the ISO Tolerance Band domain model.

Inference Rule Based on the ISO Tolerance Band Model (External Domain)

(forall (?hole ?ccp ?real ?realmin ?realmax)
(<= (toleranceBandRelation_04 ?hole) (M)
 (and (Round_Hole ?hole) (I)
 (Circular_Closed_Profile ?ccp)
 (holds_shape ?hole ?ccp)
 (not (through ?ccp))
 (not (blind ?ccp))
 (measures ?ccp (mm ?real))
 (holds_size_tolerance ?ccp (tolerance_value (mm ?realmin)

 (mm ?realmax)) (mm ?real))
 (inInterval ?real (interval ex 6 10 in)) (J)
 (inInterval ?realmin (interval in -0.36 -0.06 in)) (L)
 (inInterval ?realmax (interval in 0.06 0.36 in))))) (K)

?hole

Ø: ?real
Upper Tol: ?realmax

Lower Tol: ?realmin

in
st

inst

?hole

Round_

Hole

?hole

DomainX DomainY

Figure 6-12 Example of an Instance Semantic Mapping Concept Based on an External
Domain

128

The knowledge captured in the expression in Figure 6-12 shows an example

of how a semantic mapping concept could be specified using an external

domain model as an articulation model for reconciling two other domain

models. The unary relation “toleranceBandRelation_04” (M) can act as a

semantic mapping concept when used to reconcile “Round_Hole” instances in

“DomainX” and “DomainY”, where these “Round_Hole” instances happen to

share the commonality of being able to be machined using reaming processes

under the ISO Tolerance Band conditions set. In other words, SMIF provides

the potential for reusing the knowledge contained in ISO standard-based

domain models towards the reconciliation of pairs of other domain models.

6.2.3 Summary of Semantic Reconciliation Layer

The Semantic Reconciliation Layer is based on the interactions between three

key stages of the ontology mapping process between two domain models to

be reconciled. Ontology mapping process concepts adopted in the third layer

of the research framework involve a domain context adjustment process

followed by a simple ontology merging action. The next stage is that of

semantic alignment, where a number of pre-defined semantic mapping

concepts aligns the arguments present across domain models.

Semantic mapping concepts may be developed from three distinct angles. A

reusable set of semantic mapping concepts can be defined from foundation

semantics. Also, depending on the experience of the knowledge engineer, it is

possible to define semantic mapping concepts based on known cross-domain

correspondences that only apply to the specific pair of domain models to be

reconciled. The third method of specifying semantic mapping concepts is

concerned with the use of knowledge, coming from other domain models

external to the pair of domain models to be reconciled, which serves as

articulation knowledge. The case study in Chapter 8 explores all three means

of defining semantic mapping concepts (also consult Appendix E for a sample

of explored semantic mapping concepts).

129

Semantic mapping concepts are not limited to one-to-one mappings. They

can involve, in addition to (1) one-to-one mappings, (2) many-to-one, (3) one-

to-many and (4) many-to-many mappings, which are governed through the

logical conditions that define semantic mapping concepts. Although semantic

mapping concepts help identify the correspondences that may exist between

two distinct domain representations, it is nevertheless appreciated that

semantic mismatches could still occur. This has helped identify a suitable

way, by using tagged remarks, to flag the uncertainties or possible

mismatches that might exist even after a semantic mapping relation has been

established. In this way, not only is the user able to understand what is

sharable between two cross-domain arguments, but the latter is also made

aware of the extent to which it is not possible to infer about their resemblance.

6.3 Interoperability Evaluation Layer

One of the most active areas of research in ontology alignment is the

automatic and semi-automatic mapping discovery (Noy and Stuckenschmidt,

2005). The Interoperability Evaluation Layer which is at the last level of the

SMIF uses semi-automatic mechanisms for enabling mapping discovery. This

layer builds on top of the Semantic Reconciliation Layer and, therefore, uses

the capabilities achieved in the third level to help evaluate the commonalities,

differences and uncertainties (i.e. correspondences) across domain models.

Figure 6-13 illustrates how the last stage of the ontology mapping process in

the Semantic Reconciliation Layer contributes to the ability to formulate

interoperable knowledge queries in the Interoperability Evaluation Layer. The

alignment of pairs of domain models provides a basis for the retrieval of

mappings across models (interoperability evaluation process). Moreover,

since all the semantics in the merged and aligned representations are

logically defined, it is possible to verify the conformance of retrieved evaluated

results (verification process).

130

6.3.1 Interoperable Knowledge Queries

Interoperable knowledge queries are Common Logic-based queries that allow

(1) the retrieval of cross-domain arguments over known semantic mapping

concepts and (2) the retrieval of semantic mapping concepts over known

cross-domain arguments. These queries fall in the category of structured

query processing of alignments supported by ontologies (Noy and

Stuckenschmidt, 2005) and the explanation of matching results in ontology

matching (Shvaiko and Euzenat, 2008). The integrity of results obtained from

an interoperable knowledge query can be verified via logical proof. This proof

is traced back from the source logic of the semantic mapping concepts, the

cross-domain arguments in question and a breakdown of the conditions, as to

why certain cross-domain arguments satisfy certain semantic mapping

concepts, in order to provide a valid logical justification. The next sub-sections

of this chapter explain, in an exemplified fashion, the relevant mechanisms

involved in evaluating and verifying interoperable knowledge queries.

Interoperability Evaluation Layer

Interoperable Knowledge
Queries

DomainX DomainY

Merged and Aligned Domain Models

Foundation Layer

DomainX DomainY

Figure 6-13 Interoperable Knowledge Queries in the
Interoperability Evaluation Layer

131

6.3.1.1 Querying Cross-Domain Arguments over Known Semantic

Mapping Relations

One possible way of formulating interoperable knowledge queries in the

Interoperability Evaluation Layer is to create a general query over a known

semantic mapping relation and deduce whether or not there are cross-domain

arguments that have become bound to the semantic mapping relation during

the semantic alignment process previously discussed. Consider the example

illustrated in Figure 6-14 which is based on Figure 6-7.

In the diagram, the class “Locating_Hole”, defined in the “DomainX” context is

a sub-class of “Round_Hole” and the class “Gate_Hole”, defined in “DomainY”

is another sub-class of the foundation class “Round_Hole”. During the

semantic alignment process, based on the logical conditions that define the

relation “classMappingRelation_018” (A), the classes “Locating_Hole” and

“Gate_Hole” are inferred as being valid ?x and ?y arguments to the

“classMappingRelation_018” respectively (refer to (A), (B) and (C) in the

expression in Figure 6-14). Recall that this semantic mapping concept helps

to establish a correspondence between cross-domain sub-classes of

“Round_Hole” and also increases awareness about possible class

mismatches between these cross-domain sub-classes.

Assuming that the user is unaware of the semantic mapping relation between

“Locating_Hole” and “Gate_Hole”, the person could formulate a query by

selecting “classMappingRelation_018” to find out whether or not there are

(forall (?x ?y)
(<= (classMappingRelation_018 ?x ?y) (A)
 (and (sup ?x Round_Hole)
 (withinContext ?x DomainX) (B)
 (sup ?y Round_Hole)
 (withinContext ?y DomainY)))) (C)

su
p sup

Locating_

Hole

Round_

Hole

Gate_Hole

classMappingRelation_018

DomainX DomainY

Conditions for “classMappingRelation_018” to hold
between arguments ?x and ?y

Figure 6-14 Example of a Scenario to Be Queried which Returns a One-to-One Mapping
Result

132

arguments bound by the relation. This query would be in the Common Logic

statement of: (classMappingRelation_018 ?x ?y)

If the query transaction returns results, then the results would be in the form of

a list of all the possible combinations under “classMappingRelation_018”. In

the example depicted in Figure 6-14, the argument ?x would be

“Locating_Hole” while the argument ?y “Gate_Hole”, thereby returning a one-

to-one mapping. In the event that there were two or more specialisations of

“Round_Hole” defined in the “DomainX” context and one specialisation of the

same foundation class declared in the “DomainY” context as shown in Figure

6-15, then there would be a many-to-one mapping under the same logical

conditions that define “classMappingRelation_018”. Many-to-many mappings

would occur in the presence of a plurality of sub-classes of “Round_Hole” in

both “DomainX” and “DomainY”.

The type of querying method mentioned in this section is highly useful when

the user readily understands the implied semantics of the queried semantic

mapping concept and wants to discern what cross-domain arguments are

bound by the relation. However, not in all circumstances is the user expected

to be an expert in interpreting semantic mapping concepts. For this reason,

this querying method is not always preferred from a user perspective. The

next sub-section explains an alternative direction to optimise interoperable

knowledge querying procedures. Furthermore, a potential problem occurs

when there is a large number of semantic mapping concepts that needs to be

su
p

su
p sup

Locating_

Hole

Round_

Hole

Gate_Hole

classMappingRelation_018

Locating_

Hole

classMappingRelation_018

DomainX DomainY

Figure 6-15 Example of Many-to-One Mapping Results

133

managed. Section 6.3.2 suggests a method to facilitate the management of

semantic mapping concepts for reusability.

6.3.1.2 Querying Semantic Mapping Relations over Known Cross-

Domain Arguments

An alternative way of formulating queries, in the Interoperability Evaluation

Layer, is to discover in a single querying transaction all the semantic mapping

relations that hold between two chosen cross-domain arguments. Selecting

cross-domain arguments can be performed by browsing through the merged

domain models. It is to be noted that the selection of cross-domain arguments

is dependent on the user‟s objectives and intentions during the querying

procedure. Consider the example portrayed in Figure 6-16 which is based on

Figure 6-8.

In the illustration, the instance “Hole_X”, defined in the “DomainX” context is

an instance of “Round_Hole” and the instance “Hole_Y”, defined in “DomainY”

is another instance of the foundation class “Round_Hole”. Assuming that

“Hole_X” and “Hole_Y” both satisfy the given logical conditions for holding

blind hole bottom parameters (according to (E), (F) and (G)), the relation

“instanceMappingRelation_041” (D) infers the instances “Hole_X” and

“Hole_Y” as being valid ?holex and ?holey arguments to the

“instanceMappingRelation_041” respectively.

(forall (?holex ?holey ?ccpx ?ccpy)
(<= (instanceMappingRelation_041 ?holex
 ?holey) (D)
 (and (inst ?holex Round_Hole)

 (withinContext ?holex DomainX) (E)
 (inst ?ccpx Circular_Closed_Profile)
 (holds_shape ?holex ?ccpx)
 (blind ?ccpx) (G)
 (inst ?holey Round_Hole)
 (withinContext ?holey DomainY) (F)
 (inst ?ccpy Circular_Closed_Profile)
 (holds_shape ?holey ?ccpy)
 (blind ?ccpy)))) (G)

in
st

inst

Hole_X

Round_

Hole

Hole_Y

instanceMappingRelation_041

DomainX DomainY

Conditions for “instanceMappingRelation_041” to hold
between arguments ?holex and ?holey

Figure 6-16 Example of a Scenario to be Queried between Known Cross-Domain
Instances

134

Knowing that “Hole_X” and “Hole_Y” exist in the merged domain models, the

user is able to write a query with the intention of retrieving all possible

semantic mapping relations based on foundation semantics that bind these

two instances together, where “Hole_X” is in the first argument position and

“Hole_Y” in the second argument position. The person would do so by stating

a query in the form:

(and (BinaryRelation ?rel) (withinContext ?rel foundationMapping) (holdsArg

?rel 1 DomainX.Hole_X) (holdsArg ?rel 2 DomainY.Hole_Y))

When the query is run, the user is able to gather a list of all the semantic

mapping relations based on foundation semantics, that apply to the instances

“Hole_X” and “Hole_Y”. The query should return the binary relation

“instanceMappingRelation_041” as a relation that binds “Hole_X” and

“Hole_Y”. The user is then able to browse “instanceMappingRelation_041” in

order to view the informal remarks that are tagged to the relation for further

interpretation of the correspondence. It is to be noted that the way to

formulate queries is dependent on the expertise of the user in the use of KFL.

It is also possible to provide user interfaces for guiding the user through

querying procedures as explained in sections 6.3.2 and Chapter 7 section

7.3.4. This helps to retrieve accurate queries that do not demand a solid

knowledge of KFL on behalf of the user.

6.3.1.3 Verification of Reconciliation Correspondences

It has been acknowledged that the verification of alignment results

(Lazenberger et al, 2008) forms an important facet of ontology alignment for

knowledge sharing and reuse. In the research framework, by committing to

the Foundation Layer, multiple KBs (in this case domain models) are enforced

a common set of rules and constraints, which is particularly useful when

attempting to verify the interactions of multiple KBs (Cochrane, 2006). Hence,

following the framework approach, the verification of reconciliation

correspondences between cross-domain arguments is the procedure by

which the results obtained from a query action are checked for conformance

135

to (1) the logical conditions set in the query and (2) any inferred logical

conditions based on semantic mapping concepts.

Based on the scenario in Figure 6-16 and Figure 6-17, the verification process

entails the action of proving the reason why “instanceMappingRelation_041”

corresponds to the queried variable ?rel. The logical proof in this case reflects

the fact that in the query:

 ?rel is a binary relation.

 ?rel has been defined in the “foundationMapping” context and is, therefore,

a semantic mapping relation based on foundation semantics.

 ?rel holds the argument “Hole_X” in the first argument position.

 “Hole_X” is an argument defined in the “DomainX” context.

 ?rel holds the argument “Hole_Y” in the second argument position.

 “Hole_Y” is an argument defined in the “DomainY” context.

Since “instanceMappingRelation_041” satisfies all the above-mentioned

conditions and “Hole_X” and “Hole_Y” also satisfy the criteria for the relation

to bind them together (through inferred logical conditions), this implies that

“instanceMappingRelation_041” is in fact ?rel. Hence, the reconciliation

correspondence is a verified semantic mapping relation that holds for

“Hole_X” and “Hole_Y”, since its occurrence can be proved.

Hole_X Hole_Y?rel
1 2

Query: Find ?rel such that …

Result: ?rel is instanceMappingRelation_041

Verify: Why does “instanceMappingRelation_041”

 correspond to the queried variable ?rel

Figure 6-17 Example of a Verification Procedure

136

Verification processes are particularly significant when different parties

involved in multi-domain model reconciliation wish to become aware of the

logical conditions pertaining to the reasons as to why certain semantic

mapping concepts exist between cross-domain arguments. Therefore,

automated verification through the exploitation of heavyweight logic is key to

ensuring the integrity of sharable knowledge between systems.

6.3.2 Assisting Knowledge Querying Procedures

Section 6.2.2 has identified three ways in which semantic mapping concepts

can be defined based on (1) foundation semantics, (2) known cross-domain

correspondences and (3) external domains. Another viewpoint from which

semantic mapping concepts are being developed under this work is to

consider different levels of domain models namely the class, instance and

function levels. As a result of these various possible ways of categorising

semantic mapping concepts, this implies that querying procedures naturally

follow a similar breakdown. As the extent of foundation and domain semantics

grows, so does the rate of development of semantic mapping concepts and

their associated queries. This clearly demonstrates that there is a need for the

effective management of queries, which would assist the user during

knowledge querying procedures.

In ontology reconciliation research, it has been acknowledged that semantic

mapping management systems is needed to support users and applications in

creating, reusing, managing and applying such semantic mappings in order to

handle these multiple and complex semantic mappings (Thomas et al, 2008).

Furthermore, the development of suitable infrastructure and support for

alignment management still remains a challenge for ontology matching

(Shvaiko and Euzenat, 2008). This challenge is clear in this work as a result

of an extensive range of semantic mapping concepts and their associated

queries.

In order to assist knowledge querying procedures, a matrix approach has

been devised. The main purpose of the matrix is to support the ability to

137

configure the different modes in which semantic mapping concept queries

occur according to the different levels involved in domain models. Figure 6-18

depicts the matrix configuration adopted.

In the figure, the matrix follows an intuitive categorisation approach, for

example, queries based on semantic mapping concepts, that derive from

foundation semantics, can be carried out at the instance level, class level and

function level of merged and aligned domain models. This also applies to the

other two modes in which semantic mapping concept queries occur. Each cell

of the matrix correspond to the collection of designated queries at the relevant

instance, class or function level. The matrix approach is simple in essence,

yet it can facilitate user-system interactions during knowledge querying

procedures.

6.3.3 Summary of Interoperability Evaluation Layer

The capability for interoperability evaluation in the fourth layer of the research

framework is based on the formulation of interoperable knowledge queries

expressed in Common Logic, while the verification process involves the

logical reasons for which certain results are obtained when queries are run.

There are two main ways in which queries can be executed namely (1) by

querying for cross-domain arguments over known semantic mapping relations

and (2) by querying for semantic mapping concepts based on known cross-

domain arguments.

Figure 6-18 Matrix Configuration to Assist Knowledge Querying Procedures

Queries based on
semantic mapping

concepts developed from
foundation semantics

Queries based on semantic
mapping concepts

developed from known
inter-domain

correspondences

Queries based on semantic
mapping concepts

developed from external
domains

Instance Level

Class Level

Function Level

138

Unlike the first querying method, the second provides an optimised way of

retrieving all the mapping correspondences between known pairs of

arguments present across domain models. Moreover, this querying mode

does not necessarily require the user to be an expert in understanding

semantic mapping concepts. Nevertheless, since both methods of querying

are useful in the Interoperability Evaluation Layer, both remain under

consideration. Furthermore, a matrix-based configuration has been proposed

in order to support the management and retrieval of all querying possibilities

within a reconcilable system.

6.4 Summary

This chapter has documented the nature and implications of the second two

layers of the Semantic Manufacturing Interoperability Framework (SMIF),

which helps meet the third objective of this work (see Chapter 1 section

1.3.1). The Semantic Reconciliation Layer exploits a combined improved

approach based on known methods of ontology reconciliation. This combined

approach imparts a unique facet to the third layer of the framework, by

enabling the meaningful capture of the semantics of mapping concepts using

the Knowledge Framework Language (KFL). IDEF5 schematics have been

employed in this chapter to visually communicate various scenarios that take

place during semantic reconciliation.

The Interoperability Evaluation Layer closely interacts with the Semantic

Reconciliation Layer to provide the capability to evaluate and verify the

correspondences that hold between the entities from two domain models.

Querying techniques act as mapping discovery methods to understand the

consequence of ontology mapping performed in the third layer of the

framework. The case study in Chapter 8 experimentally tests the concepts

explored in the Semantic Reconciliation and Interoperability Evaluation layers.

139

7 Experimental System Development

7.1 Introduction

The development of the experimental system to explore and experiment with

the different constituent layers of the Semantic Manufacturing Interoperability

Framework (SMIF) and their interactions are documented in this chapter.

Section 7.2 concentrates on providing an overview into the design of the

experimental system for the framework. The various tools exploited for this

purpose are first presented. Section 7.3 then provides further details on the

experimental system, by targeting the implementation side of the four layers

of the SMIF, while emphasising the relevant development methodologies

employed.

A number of key facets has been identified as part of the experimental system

development process. These are namely:

 The formalisation of the heavyweight manufacturing ontological foundation

of the Foundation Layer in an appropriate ontological environment.

 The exploitation of the Foundation Layer for the purpose of developing

semantically-sound domain models in the Domain Ontology Layer (see

Chapter 8 for more details).

 The formalisation of a set of semantic mapping concepts, based on the

three different modes in which these occur (refer to Chapter 6 if required)

and explore the ontology mapping process concepts pertinent to the

Semantic Reconciliation Layer.

 The exploration of querying methods via the use of a suitable interface for

assisting knowledge querying procedures and through appropriate query

tools.

140

7.2 Design of the Experimental System

There exist two critical aspects involved in the design of the experimental

system for testing the research framework, namely (1) the selection of

relevant software applications and (2) the knowledge representation

formalism. A list of the software tools and the knowledge representation

formalism applied to meet the needs of the experimental system are identified

next. These resources have been selected based on their availability for

research and other set preferences for this work.

 Integrated Ontology Development Environment (IODE) V2.1.1 developed

by Ontology Works Inc. (Ontology Works Inc., 2009). IODE is an

ontological environment that is capable of handling heavyweight Common

Logic-based ontologies and KBs. This ontology development tool

constitutes the primary environment for deploying the experimental

system.

 Knowledge Framework Language (KFL). KFL is a Common Logic-based

ontological formalism, developed by Ontology Works Inc., that provides

the syntax and first order semantics required for developing heavyweight

ontological models. The ability to encode ontological content in KFL

derives from Ontology Work‟s Upper Level Ontology (ULO).

 Unlike other ontological environments, like Protégé (Protégé Website,

2009) for instance, IODE makes use of ontology files that are “written” in

KFL format outside the ontological environment before these files can be

loaded and saved into IODE. For the purpose of “writing” these files, the

software tool Notepad++ has been sought (Notepad++ Website, 2009).

Notepad++ is a free source code editor that is particularly useful for

manipulating programming in various forms. SCL files (instance files) can

also be written using this application.

 Ontology development processes have been aided through the use of the

IDEF5 schematic language (Knowledge Based Systems Inc., 1994) for

141

diagrammatically representing ontological content such as classes and

their taxonomies, relations and ontological functions, before these

ontologies are coded in the KFL format. As a result of the unavailability of

a dedicated tool for constructing these schematics, a template (see

Appendix A) has been purposely developed for providing the required

IDEF5 schematic constructs using Microsoft Office Visio 2003 (Microsoft

Office Visio Homepage, 2009). This application has also been used for the

manipulation of some graphics during the development of the interface for

assisting knowledge querying procedures.

 A suite of development tools such as Adobe Flash 8 (Adobe Website,

2009) and scripting languages like ActionScript 2.0 have been utilised

during the course of the development of this interface. These development

methods are further identified in section 7.3.4.1 of this chapter.

7.3 Implementation of the Experimental System

An overview of the total implementation of the experimental system is next

revealed. Figure 7-1 illustrates how all the levels of the SMIF are implemented

in IODE and where relevant tools come into play. KFL files are present at the

first three levels of the framework for encoding ontological content needed in

the Foundation and Domain Ontology layers and to formalise semantic

mapping concepts present in the Semantic Reconciliation Layer. SCL files are

required in the Domain Ontology Layer to populate instances. Ontology files in

KFL are loaded in separate Object Management Systems (OMS) in IODE as

shown in Figure 7-1.

An OMS in IODE corresponds to a system that holds an ontology written in

KFL with a linked KB for populating facts based on the ontology (if needed). In

IODE, the Foundation Layer and domain models in the Domain Ontology

Layer are developed in separate OMSs. In the event that a pair of domain

models needs to be reconciled, each are merged in a single OMS (see OMS4

in Figure 7-1) and KFL files that hold the necessary semantic mapping

142

concepts are then loaded and saved in the merged OMS in order to complete

the ontology mapping process.

To evaluate and verify cross-domain correspondences in the Interoperability

Evaluation Layer, two main tools are employed. The interface, developed to

assist querying procedures, is first used to retrieve the appropriate user-

selected query. This query is then pasted in the query tool (an integral module

of IODE) and run to process results. Results can then be analysed in IODE

itself or saved for other external transactions.

7.3.1 Implementation of the Foundation Layer

The implementation of the Foundation Layer is at the base of the

experimental system development process. All the concepts discussed in

section 5.2 of Chapter 5 have been implemented in IODE. It is also to be

noted that relevant concepts from the CPM and ISO 10303 AP224 have been

formalised in KFL, following a careful study of their lightweight structures,

natural language statements and informally-expressed axioms. Due to the

different ontological components of the heavyweight manufacturing

Figure 7-1 Overview of the Implementation of the Experimental System

Interface to Assist Queries

Domain Ontology Layer

Interoperability Evaluation Layer

Semantic Reconciliation Layer

Foundation Layer

Knowledge Framework Language

Heavyweight Manufacturing Ontological
Foundation

Ontology Mapping

Process Concepts

Semantic Mapping

Concepts

K
Notepad++

KFL Files

KFL + SCL
Files

KFL Files

IODE

OMS1

Foundation
Layer

OMS2

DomainX

OMS3

DomainY

OMS4

Merged and Aligned

Query
Tool

143

ontological foundation, such as (1) process semantics based on PSL, (2)

entity information semantics and (3) the participation semantics between

entity and process concepts, KFL ontology files are developed for each

component (1), (2) and (3). These files are then loaded together in a single

OMS to hold the Foundation Layer of SMIF. Appendix C supports a full set of

implemented semantic structures for the Foundation Layer.

The development of the heavyweight manufacturing ontological foundation is

based on the knowledge engineering methodology prescribed by Noy and

McGuinness (2001). Following this methodology, one major competency

question has been identified for the implementation of the Foundation Layer:

 Can the Knowledge Framework Language (KFL) and IODE be used to

formally capture and represent the heavyweight semantics required for a

fully functioning Foundation Layer?

7.3.1.1 Implementation of PSL Core and PSL Outer-Core

The implementation of process semantics coming from PSL Core and Outer-

Core theories forms part of one of the components of the Foundation Layer.

To load and save PSL in a fresh OMS (A) (see Figure 7-2), the KFL file

containing the PSL process semantics (B) is browsed and firstly parsed (C). If

no parsing errors are present, the loading process is initiated as shown in

label (D). If during the loading process no loading errors are detected, the

loaded file is accepted and can be saved (E) to the OMS.

It is important to note that parsing errors occur as a consequence of missing

parentheses in written axioms, wrongly specified KFL commands and the like.

On the other hand, the loading action detects errors in the event that logical

integrity conflicts are present within the KFL file during the loading process

(i.e. the ontology as a logical theory does not prove to be consistent in its

entirety). Note that the parsing, loading and saving processes in the OMS of

the Foundation Layer also applies to KFL files that contain entity information

semantics and participation semantics between entities and processes.

144

7.3.1.2 Implementation Issues with PSL Process Semantics

During the implementation of PSL, from its Common Logic Interchange

Format (CLIF) form to its KFL form in IODE, a few issues have been faced

and resolved. One of the issues lies in the need to remove “forall” statements

(F), carefully disambiguating variables present in axioms (G) and appending

the axiom with the necessary type of integrity constraint statement (H) as

shown in Expression 7-1.

(A)

(B)

(C)

(D)

(E)

Figure 7-2 Parsing, Loading and Saving Process Semantics in the Foundation
Layer OMS

Expression 7-1 Implementing a CLIF-Written PSL Axiom in KFL

PSL Core axiom 13. An activity
occurrence is associated with a unique
activity.

CLIF Form

(forall (?occ ?a1 ?a2) (F)
(if (and (occurrence_of ?occ ?a1)
 (occurrence_of ?occ ?a2))
 (= ?a1 ?a2)))

KFL Form

(=> (and (Activity ?a1) (G)
 (Activity ?a2)
 (Activity_Occurrence ?occ)

 (occurrence_of ?occ ?a1)
 (occurrence_of ?occ ?a2))
 (= ?a1 ?a2)))
:IC hard “An activity occurrence is
associated with a unique activity.” (H)

145

The example illustrates an original CLIF-written axiom from PSL (PSL Core

axiom 13) versus its implemented form in KFL. Statements with “forall” are

redundant and are, therefore, removed from logical statements because in

KFL, written axioms already have an implicit universal quantification over

them (i.e. although “forall” is not physically identified, it nevertheless is present

in any axiom). The above-mentioned modifications to PSL axioms do not

change their behaviour. In other words, original semantics are fully preserved.

Another obstacle faced with the implementation of CLIF-based PSL to PSL

expressed in KFL is concerned with some of the very complex PSL axioms

which have to be broken down into smaller axioms for better manageability in

the IODE environment. One such example is captured in Expression 7-2

where in the CLIF form of the axiom, more than one “if-then” statement is

nested into one another, which in IODE creates confusion. In the example,

axiom 5 from PSL Outer-Core Theory of Subactivities has been split into two

parts, the consequence of which is the same as expressing the more complex

single axiom. Only few of these very complex axioms (five in all) arising in

PSL Outer-Core Theory of Subactivities and Theory of Discrete States have

been broken down.

From an IODE implementation viewpoint, very few PSL rules need to be

modified in order to enhance their interpretation. One such example is the

logical condition in definition 1 from PSL Outer-Core Theory of Subactivities.

A definition in PSL is analogous to an inference rule as opposed to an

integrity constraint, hence explaining why a definition is appended with a

remark line “:rem” (I) instead of “:IC” as identified in Expression 7-3.

The PSL definition is used for inferring instances of the class “Activity” as

being “primitive” based on the fact that these instances do not have any

proper subactivities. However, based on PSL semantics, any “Activity”

instance is a subactivity of itself. If the definition were left as per its CLIF from

in Expression 7-3, this would lead to the inference that even complex activities

are “primitive” since complex activities, in addition to having proper

subactivities, are also a subactivities of themselves. For this reason, the

146

definition of a “primitive” activity is extended in KFL (H) for not inferring

complex activities as being “primitive”. During the implementation of PSL, only

very few rules have been extended. However, this brings forward an

improvement of PSL process semantics from an implementation perspective.

CLIF Form
Subactivity Theory axiom 5. The subactivity
relation is a discrete ordering, so every
activity has an upwards successor in the
ordering.

(forall (?a1 ?a2)
(if (and (subactivity ?a1 ?a2)
 (not (= ?a1 ?a2)))
 (exists (?a3)
 (and (subactivity ?a1 ?a3)
 (subactivity ?a3 ?a2)
 (not (= ?a3 ?a1))
 (forall (?a4)
 (if (and (subactivity ?a1 ?a4)
 (subactivity ?a4 ?a3))
 (or (= ?a4 ?a1)
 (= ?a4 ?a3))))))))

KFL Form (Part 1)

(=> (and (Activity ?a1)
 (Activity ?a2)
 (/= ?a1 ?a2)
 (subactivity ?a1 ?a2))
 (exists (?a3)

 (and (Activity ?a3)
 (/= ?a3 ?a1)
 (subactivity ?a1 ?a3)
 (subactivity ?a3 ?a2))))
:IC hard “The subactivity relation is a
discrete ordering, so every activity has
an upwards successor in the ordering.”

KFL Form (Part 2)

(=> (and (Activity ?a1)
 (Activity ?a2)
 (/= ?a1 ?a2)
 (Activity ?a4)
 (subactivity ?a1 ?a2)
 (subactivity ?a1 ?a4)
 (subactivity ?a4 ?a3)
 (exists (?a3)
 (and (Activity ?a3)
 (/= ?a3 ?a1)
 (subactivity ?a1 ?a3)
 (subactivity ?a3 ?a2))))
 (or (= ?a4 ?a1)
 (= ?a4 ?a3)))
:IC hard “The subactivity relation is a
discrete ordering, so every activity has
an upwards successor in the ordering.”

Expression 7-2 Splitting a PSL Axiom into Two Parts for Improving Manageability in
IODE

CLIF Form

Subactivity Theory definition 1. An
activity is primitive if and only if it has
no proper subactivities.

(forall (?a)
(<= (primitive ?a)
 (and (activity ?a)
 (forall (?a1)
 (if (subactivity ?a1 a)
 (= ?a1 ?a))))))

KFL Form

(<= (primitive ?a)
 (and (subactivity ?a1 ?a)
 (= ?a1 ?a)
 (not (exists (?a2)
 (H) (and (subactivity ?a2 ?a)
 (/= ?a2 ?a1)
 (/= ?a2 ?a))))))
:rem “An activity is primitive if and only
if it has no proper subactivities.” (I)

Expression 7-3 Improving the Logical Interpretation of a PSL Definition

147

7.3.1.3 Exploring the Implemented Foundation Layer

After all the KFL files, containing the relevant ontological content for the

heavyweight manufacturing ontological foundation have been parsed, loaded

and saved in the OMS, it becomes possible to browse through the Foundation

Layer. This is illustrated in Figure 7-3.

(J)

(K)

(L)

(M)

(N)

Figure 7-3 Browsing through the Implemented Foundation Layer

148

The screenshots indicate the possibility of browsing through the taxonomy of

classes present in the Foundation Layer (J). These classes form the

backbone of the heavyweight manufacturing ontological foundation. In the

figure, a majority of the developed classes are shown. By selecting a

particular class like “Round_Hole” (K), the user is able to view a number of

aspects relevant to “Round_Hole”. For instance, the “Description” tab (L)

allows the user to view general information about the class. This includes

natural language remarks which informally describe the intuition behind

“Round_Hole”. It is also possible to analyse the defined relations over

“Round_Hole” by switching to the “Relations” tab as in (M). Note that in this

case no specific relation is defined explicitly over “Round_Hole”. This is

because all relevant relations are inherited from its parent class “Feature”.

Axioms over classes, i.e. integrity constraints as well as definitions (inference

rules), can be viewed by selecting the “Assertions” tab (N) in the IODE

browser. In the example in Figure 7-3, two of the ICs governing two necessary

conditions over “Round_Hole” are shown. It is important to emphasise at this

point that once an ontology is saved in an OMS, it cannot be manipulated

within the environment, i.e. modified in IODE itself. Any modification needs to

be carried out in the relevant KFL file(s) prior to being re-saved to a new

OMS.

7.3.2 Implementation of the Domain Ontology Layer

The implementation of the Domain Ontology Layer follows a similar approach

to that of the Foundation Layer. The knowledge engineering methodology

(Noy and McGuinness, 2001) is also applied for this purpose. Four different

domain models are under consideration namely:

 A “Machining Hole Feature Ontology A” which treats the definition of

different types of hole features based on the machining and process

planning viewpoints.

149

 A “Machining Hole Feature Ontology B”, which focuses on the definition of

a set of hole features based on the machining and process planning

viewpoints.

 A “Design Hole Feature Ontology A” which entails an ontological model

based on a design function viewpoint of the “Machining Hole Feature

Ontology A”.

 An “ISO Tolerance Band Model” for round holes, based on ISO Tolerance

Band and machining processes associated with ISO IT Tolerance Grade

(ISO 286-2, 1988). This model serves as an external domain model to

experiment with semantic mapping concepts based on external domains

(refer to Chapter 6 section 6.2.2.3).

Figure 7-4 illustrates the creation of OMSs for the four domain ontologies

under consideration. To create an OMS for any domain ontology that follows

the SMIF approach, the Foundation Layer OMS is first cloned. The new OMS

is renamed at convenience, and the KFL file for the required domain ontology

is loaded in the new OMS. The implementation of domain models is not

discussed further in this section as this constitutes an element of the case

study in Chapter 8, where the implementation of integrity-driven domain

models specialised from the Foundation Layer is debated in more detail. The

content of the various domain models can be consulted in Appendix D.

Figure 7-4 Creating OMSs for Four Domain Models under Investigation

150

7.3.3 Implementation of the Semantic Reconciliation Layer

The development process of semantic mapping concepts for semantic

alignment follows the ontology alignment lifecycle (Euzenat et al, 2008;

Shvaiko and Euzenat, 2008). This is because of the iterative process required

during the creation, testing and modification (if needed) of these semantic

mapping concepts for their optimised implementation. The meaning behind

semantic mapping concepts (both formal and informal) required for the

implementation of the Semantic Reconciliation Layer is captured in KFL files.

Appendix E exposes a subset of the types of semantic mapping concepts

used in the Semantic Reconciliation Layer.

If, for example, semantic mapping concepts based on foundation semantics

are to be deployed, then the corresponding KFL file is loaded after the

merging stage is completed for two domain models to be reconciled. Similarly,

if semantic mapping concepts based on an external domain is required, then

the KFL file containing the ontological content of the external domain has to

be loaded after the merging stage is performed.

In this section, the implementation of semantic mapping concepts based on

foundation semantics is explained. The case study in Chapter 8 further

elaborates the other aspects of the Semantic Reconciliation Layer, for

example, (1) how to reconcile cross-domain arguments based on known

cross-domain correspondences and (2) how to reconcile cross-domain

arguments based on external domains.

The KFL file containing all the semantic mapping concepts based on

foundation semantics is loaded and saved in an OMS. The creation of this

OMS follows the context adjustment and merging processes for two domain

models to be reconciled. When the semantic mapping concepts are saved in

the OMS, it then becomes possible to browse through them.

151

7.3.3.1 Semantic Mapping Concepts for Reconciling Classes

Figure 7-5 illustrates some of the semantic mapping relations for reconciling

cross-domain classes (O). Notice the “classMappingRelation_018” (P)

previously explained in section 6.2.2.1 of Chapter 6. Further browsing into this

semantic mapping relation provides options for viewing the logical sentence

(Q). This logical sentence provides the formal definition of the relation

“classMappingRelation_018”. By switching to the “Description” tab for the

relation, the user is able to view the informal semantics in the form of written

remarks (R). Also notice within the window in (R) the presence of highlighted

foundation concepts. These concepts are hyperlinked to their relevant

locations in the Foundation Layer in case the user wishes to refer to these

concepts too.

(O)

(Q)

(R)

(P)

Figure 7-5 Implementation of Semantic Mapping Relations for Reconciling Cross-
Domain Classes

152

7.3.3.2 Semantic Mapping Concepts for Reconciling Instances

Figure 7-6 depicts a portion of the semantic mapping concepts based on

foundation semantics, explored for the reconciliation of cross-domain

instances. The semantic mapping concept “instanceMappingRelation_041”

(S), also previously explained in section 6.2.2.1 of Chapter 6, is highlighted.

As with all other semantic mapping concepts based on foundation semantics,

“instanceMappingRelation_041” is also accompanied by its formal definition

and the adequate tagged remarks.

7.3.3.3 Semantic Mapping Concepts for Reconciling Ontological

Functions

The implementation of semantic mapping concepts based on foundation

semantics also involves reconciling at the ontological function level of domain

ontologies. Figure 7-7 identifies four such mapping relations where the logical

definition as well as the informal semantics of the relation

(S)

Figure 7-6 Implementation of Semantic Mapping Concepts for Reconciling Cross-
Domain Instances

153

“functionMappingRelation_003” (T) are illustrated. This semantic mapping

concept infers correspondences between cross-domain units of measurement

functions for denoting instances of the foundation class “Length_Measure”

(U).

The logical conditions that define “functionMappingRelation_003” (T) are

relatively complex and for this reason, the logical statement has to be split for

better manageability. During implementation, “pointer relations” such as

“pointerRelation_003” (V) are defined to provide a better facility to infer over

complex logic.

(T)

(V)

(U)

Figure 7-7 Implementation of Semantic Mapping Concepts for Reconciling Cross-
Domain Ontological Functions

154

7.3.4 Implementation of the Interoperability Evaluation Layer

There are two main components used in the Interoperability Evaluation Layer

for the discovery of correspondences. The first is a graphical Web-based user

interface, developed in this work, called the Interoperability Evaluation

Assistant. This user interface applies the matrix configuration identified in

section 6.3.2 of Chapter 6 in order to improve the management of queries and

user interaction, before these queries can be executed. Appropriate queries

are accessed from the Interoperability Evaluation Assistant and run in the

second component in the Interoperability Evaluation Layer. This second

component is the query tool facility provided in IODE.

7.3.4.1 Interoperability Evaluation Assistant

During the development of the Interoperability Evaluation Assistant, a number

of software tools and programming languages have been harnessed. These

include:

 Microsoft Office FrontPage 2003 (Microsoft Office FrontPage Homepage,

2009). This application allows the development of Web-based interfaces

and has, therefore, been exploited towards the development of the

Interoperability Evaluation Assistant. Where necessary, the scripting

language JavaScript has been used to control user inputs in text fields and

for outputting relevant messages.

 Adobe Flash 8 (Adobe Website, 2009). This application allows more

complex Web-based interfaces to be realised, with the advantage of

nesting several possible user actions within one page instead of requiring

multiple pages. The scripting language ActionScript 2.0 has been utilised

in Adobe Flash 8 for enabling the coordination of dynamic content present

within the Interoperability Evaluation Assistant.

 Adobe Photoshop CS (Adobe Website, 2009). The manipulation of

graphical content to go on the interface has been performed through the

application of this image editing software.

155

Two main aspects have been taken into consideration for selecting a Web-

based approach towards the realisation of the user interface. Firstly, a Web-

based approach has been chosen because of the recognised information

sharing benefits of Web-based architectures for collaborative product

development (Rodriguez and Al-Ashaab, 2005). This implies that a Web-

based interface is a useful way of supporting an interoperability-enabled

environment. Secondly, a Web-based interface is relatively straightforward to

implement, when viewed from the author‟s experience. Appendix F highlights

the sitemap and sample codes used in the development of the interface.

Figure 7-8 identifies the main panel of the interface. Two ways of building

queries are supported namely by (1) allowing the user to look for specific

semantic mapping concepts to query, using the matrix configuration (W) and

(2) allowing the user to build queries to retrieve all semantic mapping

concepts that hold between two known cross-domain arguments (X).

Figure 7-9 identifies how the Interoperability Evaluation Assistant helps the

user to browse through specific semantic mapping concepts to be queried

(also see Appendix F if needed) In the first place, the user switches on the

Figure 7-8 Main Panel of the Interoperability Evaluation Assistant

(W)

(X)

156

relevant cell in the matrix, for example, “Queries involving semantic mapping

concepts based on foundation semantics” against the “Instance Level” (Y).

Using the taxonomical breakdown of foundation classes (Z), the user goes to

the relevant concept in question, in this case “Round_Hole” (A1). From the set

of possible semantic mapping concepts that may exist, the user then selects

the intended query and clicks on the download button (B1) to retrieve the

logical query (C1). The query can then be copied and pasted in the query tool

provided in IODE for processing. Note that the storage of these queries has

been done using a simple folder-based method. For even better

manageability, this method would preferably be a database storage facility.

Figure 7-10 depicts the other way in which the interface can be used, i.e. to

build queries for retrieving all semantic mapping concepts that hold between

two known cross-domain arguments. For so doing, the additional JavaScript-

supported facility (refer to label (X) in Figure 7-8) is utilised. Suppose the user,

by browsing through an IODE OMS containing two merged domain models,

comes across two classes named “Primary_Hole” in the “DomainX” context

and “Drilled_Hole” in the “DomainY” context. The user, at this point, wishes to

(Y)

(Z)
(A1)

(B1)

(C1)

Figure 7-9 Retrieving a Specific Interoperable Knowledge Query

157

build a query to find out all the semantic mapping concepts based on

foundation semantics, that hold between these two classes.

The query procedure consists of opening the main panel of the Interoperability

Evaluation Assistant and using the JavaScript-supported facility, the names of

the two arguments are typed in the provided text fields (D1). On clicking the

submit button, a new window opens (E1) where the more complex query can

be retrieved. The query is selected and copied (F1) prior to being pasted into

IODE‟s query tool for being processed.

7.3.4.2 The Query Tool in IODE

After the appropriate query is accessed from the Interoperability Evaluation

Assistant (refer to Figure 7-10), the query is pasted into the query editing

window of the query tool in IODE (see label (G1) on Figure 7-11). On clicking

the “Run query” button, all the results of the query can be viewed as a table of

results. Notice the presence of “classMappingRelation_018” (H1), which is

one of the correspondences that hold between the class “Primary_Hole” in

“DomainX” and “Drilled_Hole” in “DomainY”. The user is able to further

browse into the details of the query result by selecting it and viewing its

tagged remarks (I1).

(D1)

(D1)
(E1)

(F1)

Figure 7-10 Building a Query to Retrieve All Semantic Concepts that Hold
between Two Known Cross-Domain Arguments

158

7.3.4.3 Logically Verifying Query Results

Results obtained from running a query can then be verified through logical

proof for enhancing the user‟s awareness of why the query results portray

certain semantic mapping concepts. The verification process also utilises

IODE‟s query tool. By switching to the “View results as facts” window (see

label (J1) on Figure 7-12) an option for launching the proof procedure for each

query result becomes available. On clicking this link, the proof structure for a

specific query result is made visible (K1). A proof structure is accompanied by

both an informal interpretation (K1) as well as a formal one expressed in logic

form (not shown on Figure 7-12).

(G1)

(H1)

(I1)

Figure 7-11 Executing an Interoperable Knowledge Query and Viewing Its Results

159

7.4 Summary

This chapter has described the core details involved in the development and

deployment of an experimental system for testing the SMIF approach. This

consequently meets the fourth objective of this research (see Chapter 1

section 1.3.1). The implementation has been decomposed into a number of

stages that hold for each specific level of SMIF, where the primary

implementation environment exploited being IODE, the latter supporting the

development of ontologies expressed in KFL. IDEF5 schematics used for the

exploration of concepts in the heavyweight manufacturing ontological

foundation (see Appendix C), have helped implementation into KFL and

deployment in IODE. The competency question to be answered is as follows

(see section 7.3.1):

 Can the Knowledge Framework Language (KFL) and IODE be used to

formally capture and represent the heavyweight semantics required for a

fully functioning Foundation Layer?

(J1)

(K1)

Figure 7-12 The Verification of an Evaluated Query Result using Logical Proof

160

It is evident from the implementation that the full semantic capability required

for establishing the Foundation Layer is acquired, although, for example,

some modifications related to PSL axioms and definitions need to be

performed during implementation. However, it is seen that these modifications

do not affect semantic integrity (i.e. there is no actual loss of meaning in

computational form).

In the Domain Ontology Layer, various domains employ the implemented

Foundation Layer to build, in an integrity-driven way, their own tailored

domain models. The case study in Chapter 8 analyses this aspect in more

detail, following the success in the implementation of the Foundation Layer. In

the event that a pair of domain models need to be reconciled with the

intention of identifying the correspondences that hold between the two, the

Semantic Reconciliation and Interoperability Evaluation layers are deployed.

The pair of domain models to be reconciled undergo the simple merging

procedure under the explored ontology mapping process concepts from

Chapter 6. The domain models are merged in a distinct Object Management

System (OMS) where, based on the intention of the user, the relevant set of

semantic mapping concepts (available as KFL files) are loaded in the OMS in

question. Section 7.3.3 has illustrated that semantic mapping concepts based

on foundation semantics can be made relevant to different levels of domain

models namely the (1) class level, (2) instance level and (3) function level.

Mapping discovery and the interpretation of cross-domain correspondences

between domain models is carried out at the fourth level of the framework.

Two mechanisms are applied for this purpose. A Web-based user interface,

the Interoperability Evaluation Assistant developed in this work, facilitates the

retrieval of the correct query to be processed. After the query is obtained, the

latter is simply copied and pasted in the query tool provided in IODE. The

results obtained from a query action are tabulated. These results can be

browsed or proved in order to support the verification of evaluated cross-

domain correspondences.

161

8 Case Study

8.1 Introduction

This chapter explores a number of test cases as part of a complete case

study in order to provide a proof of concept for the overall deployment of the

Semantic Manufacturing Interoperability Framework (SMIF), whose underlying

understanding has been discussed in the previous chapters. The case study

has been set in order to test the research hypothesis identified in Chapter 1. A

re-statement of the research hypothesis is given below:

 The specification of a heavyweight manufacturing ontological foundation

can provide a basis for the integrity-driven specialisation of domain

models, while supporting the capability to evaluate and verify the

correspondences between pairs of domain models that have been

specialised from the foundation.

The different test cases are thus oriented on the research hypothesis, where

the appropriate aims and objectives have been identified for each test case.

The results gathered from the case study are presented and necessary

discussions and validation of results are exposed at the end of each test case.

Section 8.2 provides a global picture of the intended test cases as well as the

identification of relevant case study boundaries and assumptions. Four test

cases are then analysed in sections 8.3, 8.4, 8.5 and 8.6. Finally, section 8.7

provides a summary of the main findings from the test case implementations.

8.2 Overview of Test Cases

8.2.1 The Arrangement of Test Cases in the Case Study

The various test cases are aimed at specific levels of the SMIF notably the

Domain Ontology, Semantic Reconciliation and Interoperability Evaluation

layers. Note that at this point, a fully functioning and validated Foundation

Layer has already been implemented (see section 7.3.1 in Chapter 7 and

162

Appendix C) and this implementation is, therefore, not further documented in

the case study.

Figure 8-1 visually illustrates how the test cases are arranged. The test cases

involve the development of three domain models in the first place, namely a

“Machining Hole Feature Ontology A” (A) within a “System Domain A”, a

“Machining Hole Feature Ontology B” (B) within a “System Domain B” and a

“Design Hole Feature Ontology A” (C) pertaining to the “System Domain A”.

Test Case 1 firstly analyses the integrity-driven development of the

“Machining Hole Feature Ontology A” facilitated through the heavyweight

semantics residing in the Foundation Layer.

Figure 8-1 The Arrangement of Test Cases in the Case Study

System Domain A System Domain B

Design
Domain

Manufacturing
Domain

Manufacturing
Domain

Design
Domain

Product
Specifications

Design
Stages

Manufacturing
Stages

Product
Specifications

Design
Stages

Manufacturing
Stages

Machining Hole
Feature Ontology A

Machining Hole
Feature Ontology B

Design Hole
Feature Ontology A

Test Case 1

Semantic Mapping
Concepts Based on

Foundation
Semantics

Semantic Mapping
Concepts Based on
an External Domain

Semantic Mapping
Concepts Based on

Known Cross-Domain
Correspondences

Test Case 2 Test Case 3 Test Case 4

(A) (B) (C)

(D) (E) (F)

163

Test Case 2 focuses on the reconciliation of two domain models, “Machining

Hole Feature Ontology A” (A) and “Machining Hole Feature Ontology B” (B)

developed within the system domains A and B respectively. In Test Case 2,

reconciliation is established using semantic mapping concepts based on

foundation semantics (D). Test Case 3, on the other hand, also aims at

reconciling “Machining Hole Feature Ontology A” and “Machining Hole

Feature Ontology B”, but instead, the reconciliation is driven through semantic

mapping concepts based on an external domain ontology (E). Both test cases

2 and 3 are targeted at inter-system interoperability.

Test Case 4 considers intra-system interoperability. Another domain model

pertaining to the “System Domain A”, identified as “Design Hole Feature

Ontology A” (C), is developed for this purpose. The ontology captures the

concepts from the “Machining Hole Feature Ontology A” (A) but aligned to a

functional design viewpoint. The “Design Hole Feature Ontology A” and

“Machining Hole Feature Ontology A” are then reconciled utilising semantic

mapping concepts based on known cross-domain correspondences (F). Test

cases 2, 3 and 4 altogether explore the different modes in which semantic

mapping concepts occur.

All domain models explored in the test cases have been developed following

the Knowledge Engineering Methodology (Noy and McGuinness, 2001). The

types of hole feature concepts defined in the various test cases have been

partly inspired from (1) hole feature terminologies obtained from company

sources, (2) sources such as Canciglieri (1999) and NX (Siemens PLM

Software Website, 2009) terms for holes and (3) the author‟s preferences and

experience of the research scope.

8.2.2 Case Study Boundaries and Assumptions

The main boundary set is concerned with a restriction to the scope of the

research, which is centred around the formal representation of hole features

in design and manufacture and the representation of hole making process

sequences. Furthermore it is assumed that all the domain models being

164

developed within the framework follow the controlled specialisation approach

and use IODE as a common implementation platform. It is also assumed that

the formalised domain integrity constraints accurately capture the intended

informal meaning. Other boundaries and assumptions previously identified in

section 4.7 of Chapter 4 also apply to the case study.

8.3 Test Case 1: Integrity-Driven Specialisation of a

Machining Hole Feature Ontology

8.3.1 Aim and Objectives

The aim of Test Case 1 is to prove the ways in which the Foundation Layer

facilitates the specialisation of a “Machining Hole Feature Ontology A”, such

that a semantically rich and accurate representation of the ontology-based

model is obtained. In this first test case, the following competency questions

have been formulated:

 Can the ontological mechanisms that allow specialisation to occur be used

during the development of “Machining Hole Feature Ontology A”?

 Can the specification of domain-defined integrity constraints be achieved

in a flexible way while not violating foundation semantics?

 Is it possible to accurately represent discrete knowledge through

instantiation, based on the semantics captured in the “Machining Hole

Feature Ontology A” and foundation semantics?

There are two main objectives involved namely (1) the deployment of the

Foundation and Domain Ontology layers of the Semantic Manufacturing

Interoperability Framework in order to analyse the test case and (2) the use of

the relevant set of tools and ontological formalism depicted in Chapter 7

notably IODE (Ontology Works Inc., 2009) as ontology development

environment.

165

8.3.2 Machining Hole Feature Ontology A

The diagram in Figure 8-2 provides a view on the type of part family being

investigated, where in this scenario, a “Housing_Part_Family” is considered. It

is to be pointed out that the diagram does not represent a concrete state of

the domain ontology, i.e. instances of the concepts from the ontology, but in

fact reflect some of entity information classes being developed in the

“Machining Hole Feature Ontology A”. Additionally, although the classes

“Turned_Flange” and “Turned_Boss” are referenced in the domain ontology,

these are primarily present to provide a context for the existence of the hole

features held by the “Housing_Part_Family”.

8.3.2.1 Entity Information Semantics

The taxonomy of entity information classes for the “Machining Hole Feature

Ontology A” is shown in Figure 8-3 (G). Some of the classes present are

“Housing_Part_Family” (H) specified as a sub-class of the foundation class

“Artifact”, “Counterbore_Hole” (I) as a sub-class of “Feature” and

“Drilled_Hole” (J) as a sub-class of “Round_Hole”. Consider the domain-

defined class “Counterbore_Hole”. The latter is defined as a sub-class of the

Reamed_Hole

Drilled_Hole
Turned_Flange

Turned_Boss

Counterbore

Counterbore_Hole

Housing_Part_Family

Figure 8-2 Examples of Classes Developed in the “Machining Hole
Feature Ontology A”

166

foundation class “Feature” using the super-class/sub-class directive “:sup”

(K), in the KFL file of the domain ontology.

This is because “Counterbore_Hole” is a class of compound feature that

aggregates the “Round_Hole” sub-classes “Drilled_Hole” (J) and

“Counterbore” (L), which themselves have their definitions based on domain-

defined dimensional parameters. For example, “Drilled_Hole” (J) consists of

“Drilled_Hole_Diameter” (M) and “Drilled_Hole_Depth” (N), which are

identified as sub-classes of the foundation class “Length_Measure”. The

“Description” tab (O) views the remarks defined for “Counterbore_Hole”, while

the “Assertions” tab (P) depicts two of the ICs defined for that class.

The diagram in Figure 8-4 illustrates the intuitions adopted in the “Machining

Hole Feature Ontology A” for capturing the domain-defined axioms for the

class “Counterbore_Hole” in terms of the “Round_Hole” classes that it

(G)

(H)

(I)

(J)

(K)

(L)

(M)

(N)

(O)

(P)

Figure 8-3 The Specialisation of Entity Information Classes in the “Machining Hole
Feature Ontology A”

167

aggregates. A list of the several informal ICs is provided in Figure 8-4. Similar

axioms have been formalised (refer to Appendix D.1 if needed) in order to

have a semantically enriched model which is (1) consistent to the practices

and preferences within “Machining Hole Feature Ontology A” as well as (2)

consistent with foundation semantics

The formal logical statements written in KFL for the first three ICs of the class

“Counterbore_Hole” are listed in Expression 8-1. These expressions capture

Counterbore_
Diameter

Drilled_Hole_
Diameter

Drilled_
Hole_
Depth

Counterbore_
Depth

Drilled_Hole

Counterbore

Counterbore_Hole

Counterbore_Hole

 A counterbore hole is a compound feature

 Every counterbore hole involves a drilled hole and a
counterbore which are elements of the counterbore
hole

 The drilled hole of a counterbore hole is the base
feature of the counterbore hole

 The counterbore element of a counterbore hole has
a diameter value which is always greater than that
of the drilled hole element of the same counterbore
hole

 The drilled hole element of a counterbore hole has
a depth value which is always greater than that of
the counterbore element of the same counterbore
hole

Drilled_Hole

 Every drilled hole holds exactly two circular closed
profiles of identical drilled hole diameter

 Every drilled hole holds exactly one linear path of
drilled hole depth

Counterbore

 Every counterbore holds exactly two circular closed
profiles of identical counterbore diameter

 Every counterbore holds exactly one linear path of
counterbore depth

Figure 8-4 Entity Information Semantics for the class “Counterbore_Hole”

(=> (Counterbore_Hole ?cbhole)
 (Foundation.compound ?cbhole)) (Q)
:IC hard "A counterbore hole is a
compound feature."

(=> (Counterbore_Hole ?cbhole)
 (exists (?dhole ?chole)

(and (Drilled_Hole ?dhole)
 (Counterbore ?chole)
(Foundation.element_of ?dhole ?cbhole) (R)
(Foundation.element_of ?chole ?cbhole))))
:IC hard "Every counterbore hole involves a
drilled hole and a counterbore which are
elements of the counterbore hole."

(=> (and (Counterbore_Hole ?cbhole)
 (Drilled_Hole ?dhole)
 (Foundation.element_of
?dhole ?cbhole))
 (Foundation.base ?dhole)) (S)
:IC hard "The drilled hole of a
counterbore hole is the base feature of
the counterbore hole."

Expression 8-1 Example of ICs for the Class “Counterbore_Hole”

168

domain-defined ICs. It is important to notice how the specification of these

axioms are based on the reuse of appropriate foundation semantics such as

in line (Q) where the foundation unary relation “compound” is used, in line (R)

where the “element_of” binary relation is used and in line (S) where the unary

relation “base” is used.

8.3.2.2 Machining Process Semantics and Relationships to Entities

The taxonomy of machining process classes for the “Machining Hole Feature

Ontology A” is illustrated in Figure 8-5. In the figure, a number of sub-classes

of the foundation class “Activity” is present such as “Reamed_Hole_Making”

(T). The “:sup” directive has also been exploited for the purpose of creating

the sub-classes of “Activity”. Similar to the previously explained example of

the “Counterbore_Hole”, “Activity” sub-classes also carry informal semantics

as captured in the “Description” tab (U) and formal ICs for semantic

enrichment as shown in the “Assertions” tab (V) in Figure 8-5.

(T)

(U)

(V)

Figure 8-5 The Specialisation of Machining Process Classes in the “Machining Hole
Feature Ontology A”

169

The IC exposed in Figure 8-5 (V) is an example of an axiom that governs the

participation semantics between the individuals of the class “Reamed_Hole”

and the corresponding activity occurrences. Informally, this soft IC states that

“every reamed hole that is a flow object is both an output from a potential

occurrence of a complex reamed hole making activity and an output from a

potential occurrence of an atomic reaming activity." This understanding is

captured in Figure 8-6, where it may be required that some instance of the

class “Reamed_Hole” (W), carrying the “flow_object” semantics, be specified

as being an “output” of some “occurrence_of” the “Activity” class “Reaming”

(X) and an “output” of some “occurrence_of” the “Reamed_Hole_Making”

class (Y).

The informal ICs defined for capturing rigorous semantics for the class

“Reamed_Hole_Making” are also listed in Figure 8-6. The Expression 8-2

then reveals the formalised IC for the first informal axiom in the list from

Figure 8-6. It is important to notice the use of the “min_precedes” relation (see

Figure 8-6 (Z) and line (Z) in Expression 8-2) defined in PSL-based process

Some occurrence_of Reamed_Hole_Making

Some
Reamed_Hole
specified as a

flow_object

Some
occurrence_of

Centre_Drilling

min_precedes min_precedes

Some
occurrence_of

Drilling

Some
occurrence_of

Reaming

output

(W)

(X)

(Y)

(Z) (Z)

Reamed_Hole_Making

 An occurrence of centre drilling must precede an occurrence of drilling under a complex
occurrence of reamed hole making. Other behaviours under the complex reamed hole
making activity may occur in between

 An occurrence of drilling must precede an occurrence of reaming under a complex
occurrence of reamed hole making. Other behaviours under the complex reamed hole
making activity may occur in between

 An occurrence of centre drilling under a complex occurrence of reamed hole making
must be at the extreme beginning of the complex occurrence

 An occurrence of reaming under a complex occurrence of reamed hole making must be
at the extreme end of the complex occurrence

Figure 8-6 Process Semantics for the class “Reamed_Hole_Making” and its
Relationships to the Entity Class “Reamed_Hole”

170

semantics coming from the Foundation Layer and reused in the domain

ontology in order to capture the semantics of the process sequence under

occurrences of “Reamed_Hole_Making”. A full list of the explored process-

based ICs for the “Machining Hole Feature Ontology A” is also provided in

Appendix D.1.

8.3.2.3 Warnings and Errors in Loading the Machining Hole Feature

Ontology A

During the development of the “Machining Hole Feature Ontology A”, few

warnings and errors were flagged while loading the KFL file containing the

domain ontology in the corresponding Object Management System (OMS).

These occurred during the parsing phase of the KFL file. Figure 8-7 depicts

(1) warnings as a result of confusing variables declared in some axioms and

(2) an error which occurred due to an incorrect use of the foundation unary

relation “base”. These warnings and errors have prompted the necessary

rectifications prior to a successful loading and saving of the KFL file for

“Machining Hole Feature Ontology A”.

(=> (and (Reamed_Hole_Making ?rholeMake)
 (Foundation.Activity_Occurrence ?rholeMakeOcc)
 (Foundation.occurrence_of ?rholeMakeOcc ?rholeMake))
 (exists (?cDrill ?drill ?cDrillOcc ?drillOcc)
 (and (Centre_Drilling ?cDrill)
 (Drilling ?drill)
 (Foundation.Activity_Occurrence ?cDrillOcc)
 (Foundation.Activity_Occurrence ?drillOcc)
 (Foundation.occurrence_of ?cDrillOcc ?cDrill)
 (Foundation.occurrence_of ?drillOcc ?drill)
 (Foundation.min_precedes ?cDrillOcc ?drillOcc ?rholeMake)))) (Z)
:IC hard "An occurrence of centre drilling must precede an occurrence of drilling
under a complex occurrence of reamed hole making. Other behaviours under
the complex reamed hole making activity may occur in between."

Expression 8-2 Example of an IC for the class “Reamed_Hole_Making”

171

8.3.2.4 Instantiating Entity Information Concepts

The “Machining Hole Feature Ontology A” provides a domain model that

allows the semantic representation of discrete knowledge through

instantiation. Instances based on the domain ontology are populated

according to the KB schema defined within the “Machining Hole Feature

Ontology A”. In this test case a concrete state of the entity information

concepts of the ontology has been captured as shown in Figure 8-8.

Figure 8-7 Warnings and Errors during the Loading Process of “Machining Hole
Feature Ontology A” in its OMS

Figure 8-8 Populated Entity Information Instances for Discrete Knowledge
Representation

Turned_Flange_A
Ø (100 ± 0.8) mm

10 mm High

Machined_Housing_A
Material:

Aluminium_2000_Series_Alloy

Turned_Boss_A
Ø (60 ± 0.8) mm

20 mm High

Drilled_Hole_A
Ø (12 ± 0.8) mm

10 mm Deep

Drilled_Hole_B
Ø (12 ± 0.8) mm

10 mm Deep

Drilled_Hole_D
Ø (12 ± 0.8) mm

10 mm Deep

Reamed_Hole_B
Ø (7.5 ± 0.1) mm

30 mm Deep
1x1 mm Chf‟ Both Sides Reamed_Hole_A

Ø (7.5 ± 0.1) mm
30 mm Deep

1x1 mm Chf‟ Both Sides

Drilled_Hole_E
Ø (15 ± 0.8) mm

20 mm Deep

Counterbore_A
Ø (30 ± 0.8) mm

10 mm Deep

Counterbore_Hole_A

x y

z

(A1)

172

Individuals of the various classes of features are identified and these carry

geometry and dimensional semantics as shown in the figure, for example,

“Drilled_Hole_A” (A1) is an instance of the class “Drilled_Hole” (see Figure 8-

3 (J)) and has a diameter that measures 12 mm, a diameter tolerance of +/-

0.8 mm and has a depth that measures 10 mm. Note that another instance

“Drilled_Hole_C” of “Drilled_Hole” has also been defined but has not been

shown in the diagram as it is hidden. The “Drilled_Hole_C” follows the same

dimensional parameters as “Drilled_Hole_A” but has a different placement. All

the specified instances that pertain to this domain ontology have been defined

within the “machiningHoleFeatureOntologyA” context, which is the created

namespace for the “Machining Hole Feature Ontology A”.

8.3.2.5 Identifying Incorrect and Missing Entity Information Knowledge

Figure 8-9 illustrates the process of loading facts and fact sentences into the

KB linked to “Machining Hole Feature Ontology A” in IODE. The “Asserter”

button (B1) is used to invoke the “Asserter” pane (C1). Required facts and

fact sentences are copied and pasted from the appropriate SCL file containing

the instances into the load window (D1) of the “Asserter”.

It is of extreme importance to check the “Check ICs?” field (E1) prior to

loading the SCL file, as this process is detrimental to saving instances in such

a way that these follow the consistency of the ICs from the Foundation Layer

and the “Machining Hole Feature Ontology A”. In this way any violated ICs are

reported, thereby prompting the knowledge engineer to perform the necessary

modifications to rectify incorrect and/or missing semantics in the SCL file

containing the facts. In the first attempt to load and save entity information

knowledge, two hard IC violations and three soft IC violations have been

reported as shown in Figure 8-9 (F1). The source of the infringements appear

at the end of each listed violated IC (not shown in Figure 8-9 for clarity).

As a result of the hard IC violations, for example, “Every counterbore hole

involves a drilled hole and a counterbore which are elements of the

173

counterbore hole” (G1), the first loading attempt is rejected. On consulting the

appropriate SCL file, it is discovered that missing information is in fact present

in the specification of the “Counterbore_Hole_A” instance (see Figure 8-8),

where “Drilled_Hole_E” and “Counterbore_A” have not been aggregated

under the compound feature “Counterbore_Hole_A”. Note also from Figure 8-

9 the soft IC violation “Every core entity holds some function” (H1), which is

present because core entities from the machining viewpoint do not carry

semantics about their functions, as this is more relevant to the functional

design viewpoint. The consequence of the soft IC is not detrimental to the

integrity of facts being populated under “Machining Hole Feature Ontology A”.

Facts with hard IC violations are rectified accordingly, reloaded and checked

for IC violations again, and saved in the KB. Figure 8-10 shows the

“Counterbore_Hole_A” instance (I1) that has been successfully created and

can be browsed from the “Instances” tab (J1) for the class

“Counterbore_Hole” (I). In the test case, all entity information instances have

Figure 8-9 Loading Entity Information Instances in the KB of "Machining Hole Feature
Ontology A" Using the Asserter Tool in IODE

(B1)

(C1)

(D1)

(E1)

(F1)

(G1)

(H1)

174

been successfully created, with consideration made to the list of IC violations

reported in Figure 8-9 (F1).

8.3.2.6 Instantiating Machining Process Concepts

Based on the “Machining Hole Feature Ontology A”, a concrete state of the

machining process concepts, and the relationships between process and

entity information instances, have also been captured as shown in Figure 8-

11. The figure depicts a complex instance of the foundation class “Activity

Occurrence”, “occ_Make_Counterbore_Hole_A” (K1), from which the

compound feature “Counterbore_Hole_A” is output (O1). Notice that the

occurrence “occA_Hole_Centre_Drilling” (M1) is not only at the root of the

machining process sequence “occ_Make_Counterbore_Hole_A” (K1), but is

also positioned as the initial activity occurrence in the occurrence tree, and

therefore precedes all other occurrences in the tree. The dotted arrows (N1) in

the diagram capture the linear ordering semantics over the various

occurrences. These linear ordering semantics are built based on the PSL

Core Theory, the Theory of Subactivities, Occurrence Trees, Complex

Activities and Activity Occurrences coming from the PSL Outer-Core.

A complex occurrence “occ_Make_Reamed_Holes_AB” (L1) has also been

specified from which “Reamed_Hole_A” and “Reamed_Hole_B” are output

(O1). Recall from Figure 8-6 the linear ordering semantics involved in the

specification of occurrences of the “Activity” class “Reamed_Hole_Making”

Figure 8-10 Example of a Successfully Created Instance of
the Class "Counterbore_Hole"

(I1)

(I)

(J1)

175

from which “occ_Make_Reamed_Holes_AB” (L1) is an occurrence. Following

these linear ordering semantics, the occurrences appearing under

“occ_Make_Reamed_Holes_AB”, shown in Figure 8-11, are completely legal

and allowable. This is because, for example, as long as all occurrences of

“Centre_Drilling” are happening before occurrences of “Drilling”, which in turn

are happening before all occurrences of “Reaming”, then the complex

occurrence “occ_Make_Reamed_Holes_AB” can take place.

occ_Make_Counterbore_

Hole_A

occA_Hole_

Centre_Drilling
(K1)

occA_Hole_

Drilling

occA_Hole_

Counterboring

occB_Hole_

Centre_Drilling

occB_Hole_

Drilling

occC_Hole_

Centre_Drilling

occC_Hole_

Drilling

occA_Hole_

Reaming

occB_Hole_

Reaming

occ_Make_Reamed_Holes

_AB

(L1)

(N1)

Initial activity occurrence in
the occurrence tree

(M1)

output

Reamed_Hole_B

Counterbore_Hole_A

Reamed_Hole_A

output

output

(O1)

(O1)

(O1)

Linear ordering
semantics over activity
occurrences

KEY:

Figure 8-11 Populating Process Instances and Creating Relationships
between Entity Information and Process Instances for Discrete
Knowledge Representation

176

8.3.2.7 Identifying Incorrect and Missing Process Knowledge

Facts and fact sentences that contain the semantics expressed in Figure 8-11

are loaded into the KB of “Machining Hole Feature Ontology A”. During the

loading process, a number of violations of ICs have been reported. This is

illustrated in Figure 8-12. Five soft ICs (P1) are present and, therefore, do not

constitute a problem to committing the loaded instances into the KB.

However, the soft ICs being flagged raise the awareness of the knowledge

engineer about the possible options available to assert additional semantics if

needed. In other words, the action of ensuring that soft IC violations are

corrected is not obligatory but may help to add extra semantics to the

represented discrete knowledge.

Figure 8-13 then portrays all the successfully created instances of the class

“Activity_Occurrence” (Q1) relevant to the “Machining Hole Feature Ontology

A”. The complex occurrence “occ_Make_Reamed_Holes_AB” (R1) has been

highlighted. Reviewing Figure 8-11 with Figure 8-13 reveals that all the

subactivity occurrences of complex occurrences have also been asserted.

Figure 8-12 Loading Process Instances in the KB of “Machining Hole Feature A” Using
the Asserter Tool in IODE

(P1)

177

8.3.3 Discussions and Validation of Results

Test Case 1 has demonstrated how the integrity-driven specialisation of a

domain model, “Machining Hole Feature Ontology A”, can be achieved using

the supported semantic structures present in the Foundation Layer of SMIF.

The competency questions featured in section 8.3.1 are next reviewed.

 Can the ontological mechanisms that allow specialisation to occur, be

used during the development of “Machining Hole Feature Ontology A”?

The simplest of the ontological mechanisms that allows specialisation to occur

is concerned with the statement of a context (namespace) for the “Machining

Hole Feature Ontology A”. In the test case, this context has been named

“machiningHoleFeatureOntologyA”. Secondly, the primary type of ontological

relationship used to specialise the concepts from the Foundation Layer to

appropriate concepts in the domain ontology has been specified through

super/sub-class relationships. Instance-of relationships have been employed

whenever facts have been populated.

Since the controlled specialisation approach is under consideration, this

indicates that the domain ontology has not defined new relations but instead

reused the relations already present in the heavyweight manufacturing

ontological foundation. Overall, Test Case 1 provides a solid confirmation that

(Q1)

(R1)

Figure 8-13 Example of Successfully Created Instances of the
class "Activity_Occurrence"

178

the ontological mechanisms that allow specialisation to take place can fully be

exploited during domain model specialisation.

 Can the specification of domain-defined integrity constraints be achieved

in a flexible way while not violating foundation semantics?

A number of integrity constraints of varied formal meaning, relevant to the

domain ontology, has been documented in this section. These ICs have been

defined in order to capture the constraints pertinent to the semantics of

“Machining Hole Feature Ontology A”. It is evident that the approach fosters

the desired level of flexibility in the specialisation of domain-defined ICs.

Perceivable mistakes and inconsistencies in the logical theory of the domain

ontology have been reported during the KFL file loading phase. However, it is

worth pointing out that IODE is an ontological environment as opposed to a

theorem prover, and therefore the underlying computational principle of IODE

differs slightly from theorem provers.

 Is it possible to accurately represent discrete knowledge through

instantiation, based on the semantics captured in the “Machining Hole

Feature Ontology A” and foundation semantics?

Instance files written in SCL contain the necessary semantics for the

representation of discrete knowledge to be loaded in the KB of a domain

model. In Test Case 1, a number of facts and fact sentences have been

populated in the KB of “Machining Hole Feature Ontology A”. During the

assertion process of these instances, a number of IC violations have been

reported and rectified. Therefore it is possible, through the specification of

correctly structured and rectified SCL instance files, based on domain and

foundation semantics, to support the accurate representation of discrete

knowledge.

179

8.4 Test Case 2: Reconciliation Using Semantic Mapping

Concepts Based on Foundation Semantics

8.4.1 Aim and Objectives

The aim of Test Case 2 is to provide a proof of concept for the reconciliation

between two inter-system domains. The mode in which reconciliation is to

take place is through the use of semantic mapping concepts based on

foundation semantics. Two domain models are under consideration namely

(1) “Machining Hole Feature Ontology A” and (2) another hole feature

ontology identified as “Machining Hole Feature Ontology B”. The following

competency questions apply to Test Case 2:

 Is it possible to exploit the semantic mapping concepts based on

foundation semantics to evaluate and verify the correspondences at the

class level between “Machining Hole Feature Ontology A” and “Machining

Hole Feature Ontology B”?

 Is it possible to exploit the semantic mapping concepts based on

foundation semantics to evaluate and verify the correspondences at the

function level between “Machining Hole Feature Ontology A” and

“Machining Hole Feature Ontology B”?

 Is it possible to exploit the semantic mapping concepts based on

foundation semantics to evaluate and verify the correspondences at the

instance level between “Machining Hole Feature Ontology A” and

“Machining Hole Feature Ontology B”?

There are three main objectives involved namely (1) the deployment of the

Semantic Reconciliation and Interoperability Evaluation layers for reconciling

between the two domain models, (2) the deployment of semantic mapping

concepts based on foundation semantics and (3) the use of the relevant set of

tools identified in Chapter 7 notably IODE, the Interoperability Evaluation

Assistant and the query tool in IODE for evaluating and verifying cross-

domain correspondences.

180

8.4.2 Machining Hole Feature Ontology B

The ontology development process for “Machining Hole Feature Ontology B”

follows a similar approach to that of “Machining Hole Feature Ontology A”. All

the concepts and ICs developed in this domain ontology can be browsed from

Appendix D.3. The diagram in Figure 8-14 illustrates the types of entity

information and process concepts being investigated in “Machining Hole

Feature Ontology B” pertaining to a “Crank_Pulley_Part_Family”. A number of

classes of features form the basis for the representation of entity information

semantics, for example, the class “Pulley_Core_Feature” (S1) identifies a

category of feature of compound property expressed in terms of “Bored_Hole”

(T1), “Large_Bored_Hole” (U1) and the foundation class “Cylinder”.

Large_Bored_Hole

(U1)

Crank_Pulley_Part_Family

Bored_Hole

 (T1)

Pulley_End_Feature

Pulley_Core_

Feature (S1)

Some
occurrence_of

Rough_Boring

Some
occurrence_of
Finish_Boring

Root Leaf

min_precedes

Some occurrence_of Bore_Hole_Making (V1)

Entity Information Semantics

Process Semantics

Figure 8-14 Example of Entity Information and Process Semantics Developed in
"Machining Hole Feature Ontology B"

181

Process concepts are also present in order to further capture the machining

process planning viewpoint of the domain ontology. Figure 8-14 illustrates an

example featuring “Bore_Hole_Making” (V1), a sub-class of the foundation

class “Activity”, which captures the semantics of hole boring operations for the

types of hole features represented in the ontology.

Based on the entity information and process concepts explored in “Machining

Hole Feature Ontology B”, a concrete state of the ontology is then presented

in Figure 8-15. The figure identifies the instantiation of concepts from Figure

8-14 used for representing and populating discrete knowledge in the KB of

“Machining Hole Feature Ontology B”. Entity information instances have been

specified such as “Crank_Pulley_Series_01” (W1) and “Pulley_Core_A” (X1).

Note that the instances “Cylinder_A” (Y1) and “Large_Bored_Hole_A” (Z1) are

hidden features which cannot be directly labelled in the figure but have been

defined in order to obtain a full representation of “Crank_Pulley_Series_01”.

Figure 8-15 also depicts a defined branch of the occurrence tree containing

the linear ordering semantics over atomic “Activity_Occurrence” instances,

used for capturing the ordering semantics within an execution of the complex

occurrence “occ_Make_Bored_Holes_ABCDE” (A2), from which the hole

features “Bored_Hole_A” to “Bored_Hole_E” are output. Under the formalised

version of the process semantics expressed in Figure 8-14 (see Appendix

D.3), such a process execution sequence as shown in Figure 8-15 is

completely legal according to the domain-defined process semantics.

182

(X1)

(Y1)

(Z1)

(W1)
Crank_Pulley_Series_01

Material:
Mild_Steel_0.2%_Carbon

Pulley_End_A
Ø (120 ± 0.2) mm

5 mm High

Pulley_End_B
Ø (120 ± 0.2) mm

5 mm High

Bored_Hole_A
Ø (15 ± 0.5) mm

5 mm Deep

Bored_Hole_B
Ø (15 ± 0.5) mm

5 mm Deep

Bored_Hole_C
Ø (15 ± 0.5) mm

5 mm Deep

Bored_Hole_D
Ø (15 ± 0.5) mm

5 mm Deep

 Bored_Hole_E
Ø (15 ± 0.5) mm

5 mm Deep
Edge R=1 mm

Both Sides

Large_Bored_
Hole_A

Ø (80 ± 0.5) mm
10 mm Deep

Cylinder_A
Ø (100 ± 0.2) mm

10 mm High

Large_Bored_Hole_B
Ø (80 ± 0.5) mm

5 mm Deep

x y

z

Pulley_Core_A

occ_Make_Bored_Holes_

ABCDE
(A2)

Initial activity occurrence
in the occurrence tree

occA_Rough_
Boring

occB_Rough_
Boring

occC_Rough_
Boring

occD_Rough_
Boring

occE_Rough_
Boring

occA_Finish_
Boring

occB_Finish_
Boring

occC_Finish_
Boring

occD_Finish_
Boring

occE_Finish_
Boring

(B2)

Linear ordering
semantics over activity
occurrences

KEY:

 Occurrences of
“Rough_Boring”

 Occurrences of “Finish
_Boring”

Figure 8-15 Populated Entity Information and Process Instances for Discrete
Knowledge Representation in the KB of “Machining Hole Feature Ontology B”

183

8.4.3 Reconciliation Scenarios

A number of reconciliation scenarios are to be proved in this test case. These

scenarios are based on the reconciliation of “Machining Hole Feature

Ontology A” with “Machining Hole Feature Ontology B”. The class, function

and instance levels of both models are under consideration, and where

appropriate, reconciliation is to be shown for entity information as well as

process semantics between both domain models.

8.4.3.1 Reconciliation at the Class Level

Figure 8-16 illustrates the concepts to be reconciled at the class level. These

involve the discovery of correspondences between the entity information

classes “Reamed_Hole” and “Bored_Hole” (B2), and the process classes

“Reaming” and “Finish_Boring” (C2).

Reamed_Hole

Reaming

P
ro

c
e
s
s
 S

e
m

a
n
ti
c
s

E
n
ti
ty

 I
n
fo

rm
a

ti
o

n
 S

e
m

a
n
ti
c
s

Bored_Hole

Finish_Boring

P
ro

c
e
s
s
 S

e
m

a
n
ti
c
s

E
n
ti
ty

 I
n
fo

rm
a

ti
o

n
 S

e
m

a
n
ti
c
s

??

??

Machining Hole Feature Ontology A Machining Hole Feature Ontology B

Figure 8-16 Reconciliation Scenario at the Class Level

(B2)

(C2)

184

8.4.3.2 Reconciliation at the Function Level

Two unary domain-defined ontological functions are to be reconciled as

shown in Figure 8-17. The correspondences that hold between the functions

“inch” and “inches” (D2) are to be discovered.

8.4.3.3 Reconciliation at the Instance Level

Figure 8-18 depicts the individuals to be reconciled at the instance level.

Correspondences need to be discovered between the entity information

instances “Reamed_Hole_A” and “Bored_Hole_E” (E2), and the compound

features “Counterbore_Hole_A” and “Pulley_Core_A” (F2).

??

Machining Hole Feature Ontology A Machining Hole Feature Ontology B

Figure 8-17 Reconciliation Scenario at the Function Level

Figure 8-18 Reconciliation Scenario at the Instance Level

(D2)

P
ro

c
e
s
s
 S

e
m

a
n
ti
c
s

E
n
ti
ty

 I
n
fo

rm
a

ti
o

n
 S

e
m

a
n
ti
c
s

Reamed_Hole_A
Ø (7.5 ± 0.1) mm

30 mm Deep
1x1 mm Chf‟ Both Sides

Counterbore_Hole_A

Bored_Hole_E
Ø (15 ± 0.5) mm

5 mm Deep
Edge R=1 mm

Both Sides

Pulley_Core_A

occA_Hole_Centre_
Drilling

occ_Make_Reamed_
Holes_AB

occA_Rough_Boring

occ_Make_Bored_
Holes_ABCDE

P
ro

c
e
s
s
 S

e
m

a
n
ti
c
s

E
n
ti
ty

 I
n
fo

rm
a

ti
o

n
 S

e
m

a
n
ti
c
s

??

??

??

??

Machining Hole Feature Ontology A Machining Hole Feature Ontology B

(E2)

(F2)

(G2)

(H2)

185

Other correspondences are to be discovered between the primitive activity

occurrences “occA_Hole_Centre_Drilling” and “occA_Rough_Boring” (G2),

and the complex activity occurrences “occ_Make_Reamed_Holes_AB” and

“occ_Make_Bored_Holes_ABCDE” (H2).

8.4.4 Ontology Mapping Process

The deployment of the Semantic Reconciliation Layer necessitates the

application of the ontology mapping process concepts explained in Chapter 6.

Figure 8-19 demonstrates the order in which the ontology mapping process

concepts are executed, while picturing the result of each stage during

implementation. The context “machiningHoleFeatureOntologyA” defined for

the “Machining Hole Feature Ontology A” is first adjusted to “DomainX” (I2) in

the KFL file for the domain ontology. The same step is carried out for the

“Machining Hole Feature Ontology B” whose context is adjusted to

“DomainY”. Instance files pertaining to both domain models also have their

contexts adjusted to “DomainX” and “DomainY” respectively.

The OMS for the “Foundation Layer” (J2) is cloned and renamed accordingly

(K2). The context-adjusted “Machining Hole Feature Ontology A” is loaded

and saved (L2) into the new OMS named “Test Case 2”. “Machining Hole

Feature Ontology B” is loaded and saved in the same OMS resulting in the

merged ontologies. Instance files are merged into the KB of “Test Case 2”.

Figure 8-19 (M2) identifies the taxonomy of merged domain-defined classes

pertaining to both domain ontologies and carrying their adjusted contexts, for

example, “DomainX.Reamed_Hole” and “DomainY.Bored_Hole”. Following

the simple merging stage, the KFL file for semantic mapping concepts based

on foundation semantics (see Appendix E.1 if needed) is loaded and saved

(N2) in “Test Case 2”.

During the latter process, semantic alignments are automatically assigned to

the appropriate cross-domain arguments, but remain invisible to the user. The

discovery of applicable correspondences between cross-domain arguments is

performed by deploying the Interoperability Evaluation Layer.

186

 Machining Hole Feature
Ontology A using

“DomainX” Context

 Machining Hole Feature
Ontology B using

“DomainY” Context

Merged Domain Models

Foundation Layer

DomainX DomainY

Load and Save

Merged and Aligned Domain
Models

Foundation Layer

DomainX DomainY

Semantic Mapping
Concepts

Load
and

Save

Load
and

Save

(I2)

(J2)

(K2)

(L2)

(M2)

(N2)

Figure 8-19 Deploying Ontology Mapping Concepts in the Semantic Reconciliation
Layer

187

8.4.5 Interoperability Evaluation and Verification

In the Interoperability Evaluation Layer, two main tools are deployed namely

the web-based Interoperability Evaluation Assistant interface and the query

tool in IODE. Note that in this test case only the Java-based modules of the

Interoperability Evaluation Assistant have been used in order to build queries

for retrieving all semantic mapping concepts between known cross-domain

arguments in a single transaction (see section 7.3.4.1 in Chapter 7). This is

used particularly for a quicker approach to analysing query results.

8.4.5.1 Discovery of Semantic Mapping Concepts at the Class Level

“Reamed_Hole” v/s “Bored_Hole”

The home page for the Interoperability Evaluation Assistant is invoked as

shown in Figure 8-20. Using the Java-based module for building queries

involving semantic mapping concepts based on foundation semantics, the

names of the classes are typed in the relevant text field (O2). On clicking the

submit button, the query is retrieved (P2), copied and pasted in the query tool

in IODE as illustrated in Figure 8-21 (Q2).

Figure 8-20 Using the Interoperability Evaluation Assistant to Build a Query

(O2) (P2)

188

Figure 8-21 Running a Query, Viewing Results and Verifying Semantic Mapping
Concepts between the Classes “Reamed_Hole” and “Bored_Hole”

(Q2) (R2)

(S2) (T2)

(U2)

(V2)

189

The query is run and appropriate results are tabulated (R2). In this case, there

is only one correspondence “classMappingRelation_018” that has been

aligned between the class “Reamed_Hole” from “Machining Hole Feature

Ontology A” and “Bored_Hole” from “Machining Hole Feature Ontology B”.

The semantic mapping concept can be browsed to view the nature of the

interoperability (S2). The remarks available during browsing provide a view on

the commonalities as well as the possible uncertainties that may exist

between the two classes. The result can further be viewed as a fact and

proved (T2) using logic. During this verification stage, an informal

interpretation of the verification is provided (U2) alongside the more formal

proof structure (V2).

“Reaming” v/s “Finish_Boring”

A similar procedure is applied for finding the semantic mapping concepts

between the classes “Reaming” and “Finish_Boring” (see Figure 8-16). Figure

8-22 shows a single result, “classMappingRelation_022”, obtained. Browsing

the semantic mapping concept reveals the nature of the commonalities and

possible differences between both cross-domain classes. The verification

stage resembles the one shown previously and has not been indicated here.

Figure 8-22 Browsing the Semantic Mapping Concept between the Classes "Reaming"
and "Finish_Boring"

190

8.4.5.2 Discovery of Semantic Mapping Concepts at the Function Level

“inch” v/s “inches”

The names of the ontological functions to be reconciled are typed into the

required text fields from the Interoperability Evaluation Assistant. The built

query is pasted into the query tool in IODE and executed as shown in Figure

8-23.

(W2)
(X2)

(Y2)

(Z2)

Figure 8-23 Browsing and Verifying the Semantic Mapping Concept between the
Ontological Functions "inch" and "inches"

191

On running the query, one result called “functionMappingRelation_003” (W2)

is retained. The browsed result (X2) informally identifies the correspondences

between “inch” in “Machining Hole Feature Ontology A” and “inches” in

“Machining Hole Feature Ontology B”. The result can also be viewed as a fact

and proved (Y2) in order to verify the reason behind the alignment of the

semantic mapping concept “functionMappingRelation_003” to “inch” and

“inches”. Part of the proof, which is informally expressed, (Z2) is also

identified in Figure 8-23.

8.4.5.3 Discovery of Semantic Mapping Concepts at the Instance Level

“Reamed_Hole_A” v/s “Bored_Hole_E”

A number of query results are obtained while interrogating the semantic

mapping concepts that hold between the two entity information instances

“Reamed_Hole_A” and “Bored_Hole_E” (see Figure 8-24).

 Figure 8-24 Viewing and Browsing Semantic Mapping Concepts between the Instances
"Reamed_Hole_A" and "Bored_Hole_E"

192

These results represent the commonalities and differences that occur

between the geometric and dimensional semantics carried by these

instances. The verification and proof structure stage has not been shown here

due to the lengthy proof structures present. However, in any situation where

semantic mapping concepts are discovered to the held between two cross-

domain arguments, it is always possible to verify them.

“Counterbore_Hole_A” v/s “Pulley_Core_A”

Two feature instances of compound property namely “Counterbore_Hole_A”

from “Machining Hole Feature Ontology A” and “Pulley_Core_A” from

“Machining Hole Feature Ontology B” have been compared. Figure 8-25

illustrates the established semantic mapping concepts.

Figure 8-25 Viewing and Browsing Semantic Mapping Concepts between the Instances
“Counterbore_Hole_A” and “Pulley_Core_A”

193

“occA_Hole_Centre_Drilling” v/s “occA_Rough_Boring”

Figure 8-26 depicts the established semantic mapping concepts between two

atomic activity occurrences which form part of distinct branches of the

occurrence tree in both domains.

“occ_Make_Reamed_Holes_AB” v/s “occ_Make_Bored_Holes_ABCDE”

Figure 8-26 Viewing and Browsing Semantic Mapping Concepts between the Instances
"occA_Hole_Centre_Drilling" and "occA_Rough_Boring"

Figure 8-27 Viewing and Browsing Semantic Mapping Concepts between the Instances
“occ_Make_Reamed_Holes_AB” and “occ_Make_Bored_Holes_ ABCDE”

194

Figure 8-27 illustrates the results of querying for all the semantic mapping

concepts that hold between the instances “occ_Make_Reamed_Holes_AB”

and “occ_Make_Bored_Holes_ABCDE”.

8.4.6 Discussions and Validation of Results

Test Case 2 has demonstrated that it is possible, following the SMIF

approach, to exploit semantic mapping concepts based on foundation

semantics. These semantic mapping concepts have been used to evaluate

and verify the correspondences that hold between cross-domain arguments

that could be present at the class, function and instance levels of domain

models. Based on the test case results, the competency questions identified

in section 8.4.1 have been answered positively.

Carefully selected pairs of cross-domain arguments have been chosen in

order to illustrate the applicability of semantic mapping concepts for the

reconciliation of inter-domain semantics. However, in reality, any suitable

pairs of cross-domain arguments could be identified and queried for semantic

mapping concepts. Results would be obtained in the event that semantic

mapping concepts can be logically verified between the pairs of arguments. It

is to be noted that the verification stage is heavily logic-dependent and

necessitates a good user knowledge of Common Logic and KFL in order to

interpret the proof structures. However, it is seen that the verification stage is

more appropriate to the system as it is through this process that the results for

queries can be interpreted.

195

8.5 Test Case 3: Reconciliation Using Semantic Mapping

Concepts Based on an External Domain

8.5.1 Aim and Objectives

The aim of Test Case 3 is to provide a proof of concept for the reconciliation

between two inter-system domains. The mode in which reconciliation is to

take place is through the use of semantic mapping concepts based on an

external domain model (see section 6.2.2.3 in Chapter 6), which has been

specialised from the Foundation Layer. In this test case, “Machining Hole

Feature Ontology A” and “Machining Hole Feature Ontology B” are again

under consideration. The competency question relevant to this test case is

listed next:

 Can the knowledge structures contained in an external domain model be

employed as semantic mapping concepts in order to evaluate and verify

the correspondences between cross-domain arguments?

The objectives of this test case include (1) the deployment of the Semantic

Reconciliation and Interoperability Evaluation layers, (2) the deployment of

semantic mapping concepts based on the “ISO Tolerance Band Model”

(adapted from ISO 286-2, 1988) and (3) the use of IODE, the Interoperability

Evaluation Assistant and the query tool in IODE for evaluating and verifying

cross-domain correspondences.

8.5.2 ISO Tolerance Band Model as External Domain

The understanding behind the formalisation of the “ISO Tolerance Band

Model”, as external domain ontology under construction, has previously been

explained in section 6.2.2.3 from Chapter 6. Therefore, this section

concentrates on providing a global picture on the domain model and how a

logic-based approach has been devised for allowing inferences to be made

based on the formalised knowledge contained within the domain model.

196

The “ISO Tolerance Band Model” is based on foundation semantics. The

formalised semantic structures for the model can be accessed in Appendix

D.4. The “ISO Tolerance Band Model” can firstly help establish the possible

hole making processes that could be used to produce known domain-defined

“Round_Hole” instances, based on their nominal diameters and diameter

tolerances. Tables 8-1 and 8-2, adapted from the documentation in ISO 286-

2, serve as the source of knowledge formalised in the external domain

ontology. Nominal hole diameters of up to 50 mm (see Table 8-1) and six

common hole machining processes (see Table 8-2) have been considered in

the domain model.

Secondly, using the same knowledge it becomes possible to compare

domain-defined hole making processes to standard hole machining processes

from the “ISO Tolerance Band Model”. For example, it is possible to infer from

the “ISO Tolerance Band Model” whether a certain domain-defined instance

of “Round_Hole” satisfies the reaming criteria. If such is the case, and if the

“Round_Hole” instance is an output from some “Activity_Occurrence”

instance, then this could potentially imply that the “Activity_Occurrence”

Table 8-1 ISO Tolerance Band Table for Nominal Hole Diameters up to 50 mm

Table 8-2 ISO Tolerance Band Process Chart for Six Common Hole Machining Processes

197

instance in question would match the tolerance range capability of a reaming

process under the “ISO Tolerance Band Model”, regardless of the name of the

occurrence. The screen shot in Figure 8-28 identifies all the inference

relations present and the remarks associated to two inference relations.

8.5.3 Reconciliation Scenario

The reconciliation scenario in this test case is to take place at the instance

level, due to the nature of the knowledge captured in the external domain

model, which interacts only with discretely-represented knowledge. The

formalised inference relations in the “ISO Tolerance Band Model” are to be

used as semantic mapping concepts in order to help establish cross-domain

correspondences. Figure 8-29 depicts three pairs of instances to be

reconciled: “Reamed_Hole_A” and “Bored_Hole_E” (A3), “Drilled_Hole_A”

and “Bored_Hole_E” (B3) and “occ_Make_Reamed_Holes_AB” and

“occ_Make_Bored_Holes_ABCDE” (C3).

Figure 8-28 Inference Relations Defined in the ISO Tolerance Band Model

198

It is to be noted that the ontology mapping process used in Test Case 3

follows a similar implementation to the one explained in section 8.4.4 (see

Figure 8-19). The only difference is that instead of loading semantic mapping

concepts based on foundation semantics, the KFL file for the “ISO Tolerance

Band Model” is loaded and saved. The various actions involved in this

ontology mapping process use a new OMS named “Test Case 3”.

8.5.4 Interoperability Evaluation and Verification

“Reamed_Hole_A” v/s “Bored_Hole_E”

To build the query for reconciling “Reamed_Hole_A” and “Bored_Hole_E”, the

appropriate cell in the matrix configuration on the main panel of the

Interoperability Evaluation Assistant is activated (see Figure 8-30 label (D3)).

A new window is opened and the required text fields (E3) are used to input

the names of the two cross-domain instances of “Round_Hole”. The “Submit”

button is pressed and the relevant query is retrieved (F3). The query is copied

and pasted in the query tool in IODE and run. The results of the query are

illustrated in Figure 8-31.

P
ro

c
e
s
s
 S

e
m

a
n
ti
c
s

E
n
ti
ty

 I
n
fo

rm
a

ti
o

n
 S

e
m

a
n
ti
c
s

Bored_Hole_E
Ø (15 ± 0.5) mm

5 mm Deep
Edge R=1 mm

Both Sides

P
ro

c
e
s
s
 S

e
m

a
n
ti
c
s

E
n
ti
ty

 I
n
fo

rm
a

ti
o

n
 S

e
m

a
n
ti
c
s

??

occ_Make_Reamed_
Holes_AB

occ_Make_Bored_
Holes_ABCDE

??

Machining Hole Feature Ontology A Machining Hole Feature Ontology B

Reamed_Hole_A
Ø (7.5 ± 0.1) mm

30 mm Deep
1x1 mm Chf‟ Both Sides

Drilled_Hole_A
Ø (12 ± 0.8) mm

10 mm Deep

??

(A3)

(B3)

(C3)

Figure 8-29 Reconciliation Scenario at the Instance Level

199

(D3)

(E3) (F3)

Figure 8-30 Using the Interoperability Evaluation Assistant to Build a Query for
Reconciling Two “Round_Hole” Instances

(G3)

(H3)

(I3)

(J3)

Figure 8-31 Viewing and Browsing Semantic Mapping Concepts between
"Reamed_Hole_A" and "Bored_Hole_E"

200

Figure 8-31 shows that using the semantics from the “ISO Tolerance Band

Model” it is possible to understand the machining processes that could be

associated to “Round_Hole” instances of given diameters and diameter

tolerances. In this case, the “Reamed_Hole_A” from “Machining Hole Feature

Ontology A” has been inferred, via the external domain model, as being a

feature that could be produced using internal grinding (G3), internal broaching

(H3), reaming (I3) as well as boring (J3). “Bored_Hole_E” from “Machining

Hole Feature Ontology B”, on the other hand, has been inferred as a suitable

candidate which can be produced using some boring machining process (J3).

These results have been logically formulated based on the nominal diameter

and diameter tolerances carried by the various domain-defined hole features,

and articulated through the “ISO Tolerance Band Model” semantics.

“Drilled_Hole_A” v/s “Bored_Hole_E”

Figure 8-32 depicts the results of processing a query to determine cross-

domain correspondences, based on the “ISO Tolerance Band Model”,

between the “Round_Hole” instances “Drilled_Hole_A” and “Bored_Hole_E”. It

is seen that both instances are suitable candidates which could be produced

using boring as machining process.

Figure 8-32 Viewing and Browsing Semantic Mapping Concepts
between “Drilled_Hole_A” and “Bored_Hole_E”

201

“occ_Make_Reamed_Holes_AB” v/s “occ_Maked_Bored_Holes_ABCDE”

To determine the correspondences that hold between “occ_Make_Reamed_

Holes_AB” and “occ_Make_Bored_Holes_ABCDE” a query is built as shown

in Figure 8-33.

The query is copied and pasted in IODE‟s query tool and executed. Figure 8-

34 portrays the results of processing the query where the deductions indicate

that the occurrence “occ_Make_Reamed_Holes_AB” could potentially be

matched to the tolerance range capability of internal grinding (K3), internal

broaching (L3), reaming (M3) and boring processes (N3). The occurrence

“occ_Make_Bored_Holes_ABCDE” conforms to the tolerance range of boring

machining processes (N3).

Figure 8-33 Using the Interoperability Evaluation Assistant to Build a Query for
Reconciling Two “Activity_Occurrence” Instances

(K3)

(L3)

(M3)

(N3)

Figure 8-34 Viewing and Browsing Semantic Mapping Concepts between "occ_Make_
Reamed_Hole_AB" and "occ_Make_Bored_Holes_ABCDE"

202

8.5.5 Discussions and Validation of Results

This test case has shown that the knowledge structures contained in an

external domain ontology, notably the inference relations present within the

“ISO Tolerance Band Model”, can be employed as semantic mapping

concepts in order to evaluate and verify the correspondences between cross-

domain arguments. The external domain model, based on the Foundation

Layer, carries valuable semantics which help articulate cross-domain

arguments. It is to be noted that in this test case, emphasis has not been laid

on logical proof (verification), since the evaluation of queries retaining results

already points to their verification at computational level.

The type of reconciliation mechanism under consideration in Test Case 3 has

proved its benefits at the instance level. This is because the formalised

knowledge in the “ISO Tolerance Band Model” facilitates interactions with

instances carrying discrete knowledge. For extending the reconciliation

capabilities using external domains, it is possible to further exploit other

standards-based models such as ISO limits and fits for holes and shafts.

Similar domain models would require specialisation from the Foundation

Layer.

203

8.6 Test Case 4: Reconciliation Using Semantic Mapping

Concepts Based on Known Cross Domain

Correspondences

8.6.1 Aim and Objectives

The aim of Test Case 4 is to provide a proof of concept for the reconciliation

between two intra-system domains. The mode in which reconciliation is to

take place is through the use of semantic mapping concepts based on known

cross-domain correspondences. Two domain models are under scrutiny

namely (1) “Machining Hole Feature Ontology A” (machining process

viewpoint) and (2) “Design Hole Feature Ontology A” (functional design

viewpoint). The following competency question applies to Test Case 4:

 Is it possible to exploit the semantic mapping concepts based on known

cross-domain correspondences to evaluate and verify correspondences

between “Machining Hole Feature Ontology A” and “Design Hole Feature

Ontology A”?

There are three objectives to this test case namely (1) the deployment of the

Semantic Reconciliation and Interoperability Evaluation layers for reconciling

between the two domain models, which are in the same system domain, (2)

the deployment of semantic mapping concepts based on known cross-domain

correspondences and (3) the use of IODE, the Interoperability Evaluation

Assistant and the query tool in IODE for evaluating and verifying intra-domain

correspondences.

8.6.2 Design Hole Feature Ontology A

The “Design Hole Feature Ontology A” captures entity information semantics

from viewpoints including GD & T and design function. Figure 8-35 identifies

the classes of concepts that are being explored in this domain ontology.

These classes adopt terminologies and semantic definitions that are relevant

to the field of design. In particular, the dimensional parameters carried by the

204

various classes of features have been specifically chosen in order to reflect

the design perspective on the features pertaining to “Housing_Part_Family”.

Locating_Pin_
Hole

 Plain_Diameter
_Hole

External_Flange

 Boss

Secondary_
Hole

 Bolt_Hole

Housing_Part_Family

Secondary_
Diameter

Primary_
Diameter

Primary
_Depth

Secondary_
Depth

Plain_Diameter

_Hole

Secondary

_Hole

Bolt_Hole (O3)

Primary_
Depth

Primary_
Diameter

Locating_Pin_Hole (P3)

Bolt_Hole

 A bolt hole is a compound feature

 Every bolt hole involves a plain diameter hole and a
secondary hole which are elements of the bolt hole

 The plain diameter hole of a bolt hole is the base feature
of the bolt hole

 The secondary hole element of a bolt hole has a
diameter value which is always greater than that of the
plain diameter hole element of the same bolt hole.

Locating_Pin_Hole

 Every locating pin hole holds exactly two circular
closed profiles of identical primary diameter.

 Every locating pin hole holds exactly one linear
path of primary depth.

 Every locating pin hole that has a through hole
bottom condition needs to be chamfered in order
to facilitate easy insertion.

Miscellaneous (Q3)

 Every instance of feature and artifact in the Design Hole Feature Ontology A holds some design function.

 Every housing has some compulsory external flange, boss, bolt hole, plain diameter hole and locating pin hole as
features present on the housing.

 Every housing is made up of some aluminium material.

Figure 8-35 Examples of Classes and Informal ICs captured in the "Design Hole Feature
Ontology A"

205

Two example features have been elaborated in Figure 8-35. The entity

information class “Bolt_Hole” (O3) of compound feature property has been

rigorously defined using a number of ICs. The same understanding applies to

the class “Locating_Pin_Hole” (P3) in terms of the dimensional parameters

that define the latter and other necessary conditions such as “every locating

pin hole that has a through hole bottom condition needs to be chamfered in

order to facilitate easy insertion”. This captures a necessary design aspect

that needs to be fulfilled during the population of instances in the KB for the

“Design Hole Feature Ontology A”. Figure 8-35 further depicts other forms of

ICs (Q3) relevant to the functional design viewpoint in the domain ontology.

Appendix D.2 can be consulted for a formalised interpretation of all the

concepts and ICs explored for this domain ontology.

A concrete state of the “Design Hole Feature Ontology A” has also been

captured by defining the semantic representation of discrete knowledge

through instantiation. Figure 8-36 portrays this concrete state of design entity

information.

External_Flange_A

Function: Seal

Housing_A (R3)
Material: Aluminium_2000_Series_Alloy

Function: Seal_and_Assemble

Boss_A
Function:

Align_and_Assemble

Plain_Hole_A
Function:

Accommodate_Screw

Plain_Hole_B
Function:

Accommodate_Screw

Plain_Hole_D
Function:

Accommodate_Screw

Locating_Hole_B

Function: Alignment Locating_Hole_A

Function: Alignment

Plain_Hole_E
Function:

Accommodate_Bolt

_Length

Secondary_Hole_A
Function:

Accommodate_Bolt_Head

Bolt_Hole_A
Function:

Accommodate_Bolt

x y

z

Figure 8-36 Populated Entity Information Semantics for Capturing a Concrete
State of "Design Hole Feature Ontology A"

206

The various features present on “Housing_A” (R3) carry exact dimensional

semantics to that of “Machined_Housing_A” (see Figure 8-8 section 8.3.2.4),

but the terminologies and semantics of their defining structures are different

since, for example, in the “Design Hole Feature Ontology A”, functional

information of features is a prerequisite, which is not the case in its machining

viewpoint counterpart. Note that the instance “Plain_Hole_C” has not been

shown on the diagram because it is hidden. Figure 8-37 then identifies part of

the implemented taxonomy for the “Design Hole Feature Ontology A” and

sample instances that satisfy both foundation and domain-defined ICs.

8.6.3 Reconciliation Scenarios

The ontology mapping process used in Test Case 4 follows a similar

implementation approach to the one previously explained in section 8.4.4 (see

Figure 8-19). However, instead of loading semantic mapping concepts based

on foundation semantics, the KFL file for the semantic mapping concepts

based on known cross-domain correspondences between “Design Hole

Feature Ontology A” and “Machining Hole Feature Ontology A” (see Appendix

E.2 if needed) is loaded and saved. The various actions involved in this

ontology mapping process use a new OMS named “Test Case 4”. In the

Figure 8-37 Example of Classes and Instances Defined in the "Design
Hole Feature Ontology A"

207

process, the context for “Design Hole Feature Ontology A” has been renamed

to “DomainX” and that of “Machining Hole Feature Ontology A” to “DomainY”.

8.6.3.1 Reconciliation at the Class Level

Figure 8-38 illustrates the concepts to be reconciled at the class level. These

involve the discovery of correspondences between three pairs of entity

information classes namely “Boss” and “Turned_Boss” (S3), “Bolt_Hole” and

“Counterbore_Hole” (T3) and “Primary_Depth” and “Drilled_Hole_Depth” (U3).

8.6.3.2 Reconciliation at the Function Level

Two unary domain-defined ontological functions are to be reconciled as

shown in Figure 8-39. The correspondences that hold between the functions

“inch” in “Design Hole Feature Ontology A” and “inch” in “Machining Hole

Feature Ontology A” (V3) are to be discovered.

Figure 8-38 Reconciliation Scenario at the Class Level

E
n
ti
ty

 I
n
fo

rm
a

ti
o

n
 S

e
m

a
n
ti
c
s

Machining Hole Feature Ontology B

Turned_Boss

Boss

E
n
ti
ty

 I
n
fo

rm
a

ti
o

n
 S

e
m

a
n
ti
c
s

Design Hole Feature Ontology A

Primary

_Depth

Secondary_
Depth

Bolt_Hole Counterbore_Hole

Drilled_
Hole_

Depth

Counterbore_
Depth

??

??

??

(S3)

(T3)

(U3)

208

8.6.3.3 Reconciliation at the Instance Level

Figure 8-40 depicts two pairs of individuals to be reconciled at the instance

level. Correspondences need to be discovered between the entity information

instances “External_Flange_A” and “Turned_Flange_A” (W3), and the

“Plain_Hole_A” and “Drilled_Hole_D” (F2).

8.6.4 Interoperability Evaluation and Verification

8.6.4.1 Discovery of Semantic Mapping Concepts at the Class Level

Boss v/s Turned_Boss

The Interoperability Evaluation Assistant is first invoked as shown in Figure 8-

41. The Java-based module for building queries involving semantic mapping

concepts based on known cross-domain correspondences is used, where the

names of the classes are typed in the relevant text field (Y3). On clicking the

??

Design Hole Feature Ontology A Machining Hole Feature Ontology A

(V3)

Figure 8-39 Reconciliation Scenario at the Function Level

Plain_Hole_A
E

n
ti
ty

 I
n
fo

rm
a

ti
o

n
 S

e
m

a
n
ti
c
s

Design Hole Feature Ontology A Machining Hole Feature Ontology A
??

(W3)

Drilled_Hole_D

External_Flange_A Turned_Flange_A

(X3)

?? E
n
ti
ty

 I
n
fo

rm
a

ti
o

n
 S

e
m

a
n
ti
c
s

Figure 8-40 Reconciliation Scenario at the Instance Level

209

submit button, the query is retrieved (Z3) and is copied and pasted in the

query tool in IODE.

The results of executing the above query is illustrated in Figure 8-42. Two

mapping results have been discovered and the nature of the interoperability

between the classes “Boss” and “Turned_Boss” has been captured in the

informal remarks associated to each semantic mapping concept. Note that the

results could easily be verified through the logic-based proof structure. In all

cases, the verification is confirmed through the presence of query results.

(Y3)

(Z3)

Figure 8-41 Using the Interoperability Evaluation Assistant to Build a Query for
Reconciling the Classes “Boss” and “Turned_Boss”

Figure 8-42 Viewing and Browsing Semantic Mapping Concepts between the
Classes "Boss" and "Turned_Boss"

210

Bolt_Hole v/s Counterbore_Hole

The query to be processed to discover the semantic mapping concepts

between the classes “Bolt_Hole” and “Counterbore_Hole” is retrieved in a

similar way as documented previously. Figure 8-43 depicts the results of

processing the relevant query. Note that the semantic mapping concept

“classMappingRelation_001” is the same as the one shown in Figure 8-42.

The other alignment “classMappingRelation_002”, when browsed, provides an

enhanced view of the differences between the two classes.

Primary_Depth v/s Drilled_Hole_Depth

A query is also formulated in order to process the semantic mapping concepts

between the classes “Primary_Depth” and “Drilled_Hole_Depth”. The results

between the two classes are shown in Figure 8-44. In addition to the semantic

mapping concept “classMappingRelation_001”, another mapping concept

identified as “classMappingRelation_003” is also present. Browsing the

remarks clearly depicts some clear differences between the two classes.

Figure 8-43 Viewing and Browsing Semantic Mapping Concepts between the
Classes "Bolt_Hole" and "Counterbore_Hole"

Figure 8-44 Viewing and Browsing Semantic Mapping Concepts between the
Classes "Primary_Depth" and "Drilled_Hole_Depth"

211

8.6.4.2 Discovery of Semantic Mapping Concepts at the Function Level

inch v/s inch

Figure 8-45 identifies the result of executing a query to retrieve all semantic

mapping concepts that exist between the two ontological functions “inch” in

“Design Hole Feature Ontology A” and “inch” in “Machining Hole Feature

Ontology A”. It is clear from the result that both functions are semantically

equivalent as there are no perceivable mismatches between them.

8.6.4.3 Discovery of Semantic Mapping Concepts at the Instance Level

External_Flange_A v/s Turned_Flange_A

There exists only one alignment between the instances “External_Flange_A”

and “Turned_Flange_A”. As can be seen in Figure 8-46, the remarks

associated to the semantic mapping concept “instanceMappingRelation_002”

include similarities and limitations to the interoperability between the two

individuals.

Figure 8-45 Viewing and Browsing Semantic Mapping Concepts between the
Ontological Functions "inch" and "inch"

212

Plain_Hole_A v/s Drilled_Hole_D

When the query for finding semantic mapping concepts between the

instances “Plain_Hole_A” and “Drilled_Hole_D” is retrieved and executed, one

correspondence is obtained (see Figure 8-47). The semantic mapping

concept “instanceMappingRelations_001” carries valuable informal semantics

in the form of remarks, which the user can interpret.

Figure 8-46 Viewing and Browsing Semantic Mapping Concepts between the
Instances "External_Flange_A" and "Turned_Flange_A"

Figure 8-47 Viewing and Browsing Semantic Mapping Concepts between the
Instances "Plain_Hole_A" and "Drilled_Hole_D"

213

8.6.5 Discussions and Validation of Results

Test Case 4 has illustrated the effectiveness of semantic mapping concepts

based on known cross-domain correspondences. These semantic mapping

concepts have been used to evaluate and verify the correspondences that

hold between cross-domain arguments that could be present at the class,

function and instance levels of domain models within a single system domain.

The test case results confirm that the competency question identified in

section 8.6.1 has been positively answered.

The principle for semantic reconciliation documented in this section could also

be used for inter-system interoperability. If two inter-system domains are to

the reconciled using this approach, this would require that the knowledge

engineer understands the ontological structures from both domain

representations before formulating the relevant semantic mapping concepts.

Furthermore, unlike the other two modes of semantic mapping concepts,

those based on known cross-domain correspondences carry more accurate

interoperability information.

However, the formal logic governing these semantic mapping concepts may,

in certain cases, be less rigorous than in the other two modes of semantics

mapping concepts. For example, it has not been possible to fully capture the

formal semantics to express that the class “Primary_Depth”, when applied to

the “Bolt_Hole” class, is the subtraction of the “Counterbore_Depth” from the

“Drilled_Hole_Depth” classes. Consequently, this indicates that extensions to

the logical basis of semantic mapping concepts based on known cross-

domain correspondences may be required in certain situations.

8.7 Summary of Chapter

This chapter has concentrated on four test cases as part of a complete case

study in order to provide a proof of concept for the Semantic Manufacturing

Interoperability Framework (SMIF) (meets the fifth objective of this research in

Chapter 1 section 1.3.1). Figure 8-48 identifies how the four test cases

214

implemented in this chapter demonstrate that the framework satisfies the

semantic requirements (see Chapter 3). The four test cases altogether show

that it has been possible to capture a number of viewpoints in domain models

(A4) (Requirement 1). The various semantic relationships present in the

ontological definition of the heavyweight manufacturing ontological foundation

have enabled the implemented domain models in the test cases to reuse

these relationships to link multiple viewpoints (B4) (Requirement 2).

Requirement 1

Requirement 2

Requirement 3

Requirement 4

Requirement 4a

Requirement 4b

Requirement 4c

Requirement 4d

Combined approach using
PSL, CPM and ISO 10303
AP224 in the Foundation
Layer

Definition of relationships
between entities and
processes, entities and
their functions, etc. in the
Foundation Layer

Heavyweight semantics of
core concepts developed
in the Foundation Layer,
which are extended in the
Domain Ontology Layer

Combined semantic
technologies used
throughout the SMIF

Exploitation of the
Knowledge Framework
Language (KFL)

The Semantic
Reconciliation Layer

Specification of logic-
based semantic mapping
concepts and ontology
mapping processes in the
third framework layer

The Semantic
Reconciliation and
Interoperability Evaluation
layers

Framework Components

A number of viewpoints have been considered in
the various test cases including GD & T, design
entity information, machining entity information,
design function and process planning.

Test Cases

Defined relations supported in the heavyweight
manufacturing ontological foundation have been
reused during the implementation of the various
domain models in the test cases.

The semantics from the Foundation Layer have
been reused and extended for the construction of
domain models in test cases 1 and 2. These
domain models occur across system domains.

The implementation of the SMIF using the IODE
platform has been useful for enabling the
deployment of the various test cases.

The maintained use of the Common Logic-based
KFL provides a highly expressive formalism to
encode ontology-based content and discrete
knowledge in KBs. Appendix B also supports the
motivation for the use of KFL.

Commitment of the test case ontologies to the
Foundation Layer help reduce relation
mismatches via the controlled specialisation
approach. Semantic mapping concepts have
helped to identify possible semantic mismatches.

The three modes in which semantic mapping
concepts can occur have been tested in test
cases 2, 3 and 4. Reconciliation has been shown
at the class, function and instance levels of
domain models.

The use of the Interoperability Evaluation
assistant interface and the query tool in IODE
enable rapid query responses to be obtained. The
Interoperability Evaluation Assistant has been
optimised for use with the SMIF components.

(A4)

(B4)

(C4)

(D4)

(E4)

(F4)

(G4)

(H4)

Figure 8-48 Implications of the Test Cases on the Semantic Requirements

215

It has been possible using the set of core concepts from the Foundation Layer

to develop the “Machining Hole Feature Ontology A” and “Machining Hole

Feature Ontology B” domain models, which reside across system domains

(C4) (Requirement 3). Furthermore, the implementation of all the levels of the

SMIF using the IODE platform, as providing a suite of semantic technologies,

has enabled the deployment and reconciliation of the test case domain

models (D4) (Requirement 4). It has also been possible via the

implementation of the four test cases to satisfy the sub-requirements of

Requirement 4 (refer to labels (E4) to (H4) on Figure 8-48).

The first test case has focused on the integrity-driven specialisation of a

“Machining Hole Feature Ontology A” and during the process, it has been

possible to prove that the first aspect of the research hypothesis is feasible.

Overall, Test Case 1 has demonstrated that the specification of a heavyweight

manufacturing ontological foundation provides a basis for the integrity-driven

specialisation of domain models. The understanding has also been applied to

“Design Hole Feature Ontology A”, “Machining Hole Feature Ontology B” as

well as the “ISO Tolerance Band Model”. Test cases 2, 3 and 4 have

specifically looked at the second aspect of the research hypothesis. These

test cases have shown that the specification of a heavyweight manufacturing

ontological foundation also supports the capability to evaluate and verify

correspondences between pairs of domain models that have been specialised

from the heavyweight manufacturing ontological foundation.

The logic-based definitions of semantic mapping concepts is key to enabling

the interoperability evaluation and verification process. In the various test

cases, the verification part is included in the successful retrieval of semantic

mapping concepts, as these results already confirm that they have been

verified through deductive reasoning before being displayed. Furthermore,

this chapter has shown the importance of a system for aiding the

management and formulation of interoperable knowledge queries prior to

being executed. The significance of the Interoperability Evaluation Assistant

has been particularly pertinent in satisfying this purpose.

216

9 Discussions, Conclusions and Future Work

9.1 Introduction

The research work documented in this thesis has investigated a novel

ontology-based framework to support semantic interoperability in product

design and manufacture. The four levels of the Semantic Manufacturing

Interoperability Framework (SMIF) have been explored alongside the

interactions and mechanisms that hold between the different levels. The

deployment of an experimental system and conduction of a number of test

cases applied to the framework has culminated in a valuable understanding of

the potentials and limitations of the researched approach.

This chapter compiles the overall understanding developed in this research

and exposes a discussion of the outcome of the implemented framework with

respect to various issues and concerns in section 9.2. Section 9.3 provides

the concluding remarks to this work and section 9.4 proposes important

recommendations for future work.

9.2 Discussions

9.2.1 Ontology Development Methodology

The ontology development methodology applied to this research has

consisted of the Knowledge Engineering Methodology (Noy and McGuinness,

2001) accompanied by the use of IDEF5 schematics (Knowledge Based

Systems Inc., 1994) for graphically representing ontological content prior to

implementation. The two combined methods have proved adequate into

setting a strategic view on the ontology-based framework, for example,

through the investigation of requirements to support semantic interoperability

in product design and manufacture investigated in Chapter 3, as well as to

support the design and implementation of the various ontological structures.

217

The only probable issue with the actual state of IDEF5 schematics for

ontology development is that there is currently no commercially-available tool

which could be sourced for directly deriving Common Logic code from the

schematics. Therefore, at present, IDEF5 schematics only visually help the

ontology development process. An attractive step ahead would involve closely

interfaced ontology graphical tools in order to enhance the development of

ontologies using Common Logic-based formalisms.

9.2.2 Semantic Technologies

The alignment of the SMIF with the investigated requirements has been

documented in Chapter 4 (section 4.8). In this section, one of the

requirements is further reviewed, namely Requirement 4, which has been

restated next.

 Requirement 4: There is a need for harnessing the appropriate semantic

technologies in order to facilitate the formal capture of domain semantics

and to support shared meaning across domain ontologies.

Additional understanding gathered during the experimental implementation

and case study has shown distinct benefits in relationship to the above

requirement. These include the idea of supporting heavyweight semantics

using expressive Common Logic-based formalisms, such as KFL, and the

performance of semantic mapping mechanisms using the SMIF and its

implementation platform. One of the factors related to the performance of

semantic reconciliation is related to the time for processing semantic

alignments as well as the time spent in deductive reasoning during querying.

During implementation it was observed that the loading and saving of about

100 semantic mapping concepts, accompanied by heavyweight logic, took

about one minute to be performed. Querying procedures for resolving all

semantic mapping concepts, that hold between two cross-domain arguments,

in a single transaction took less or about 10 seconds to be processed. This

clearly indicates that an attractive direction for ontology matching exists when

218

weighted against other ontology mapping methods which may take several

minutes, hours or even days to complete a matching task (Shvaiko and

Euzenat, 2008). However, it should not be forgotten that the performance of

mapping is dependent on the size of the ontologies to be reconciled as well as

the size of the file containing the semantic alignments. Overall, opportunities

still remain for comparing various ontology mapping methods in terms of their

performance and exactness of semantic reconciliation processes as well as

their support for the evaluation and verification of interoperable knowledge.

9.2.3 Semantic Structures

In the context and scope of this work, a specific set of semantics of core

feature-based concepts arising in product design and manufacture has been

investigated. However, it is seen that the semantic structures have been

narrowed down to simple product representations, involving hole features and

process ordering semantics from PSL, in order to provide the ability to explore

all the levels of the SMIF. Hence, it is clear that the breadth of concepts

arising in the Foundation Layer needs to be expanded to embrace more

complex product lifecycle semantics, for example from (1) Product Life Cycle

Support (PLCS) (ISO 10303 AP239) and (2) the inclusion of other theories

supported in PSL.

PSL, for example, comprises concepts from various other theories like the

duration and ordering theories and resource theories (PSL Website, 2009).

The latter would be particularly relevant for capturing the semantics of

resource requirements in process execution sequences, where its extensions

would allow the definition of resource roles and the way resources are

consumed during the course of manufacturing process sequences. These

important aspects in the world of product design and manufacture have not

been considered in this work, and for this reason, a need is identified for

supporting similar core intuitions.

Furthermore, from the case study, it is evident that confined samples of

common hole features have been considered in the design and manufacturing

219

domains. It is well-known that an extensive range of hole features exist such

as gun-drilled holes, ground holes and electrical discharge machined holes.

Considerations for similar hole features would imply alternative

representations through the extension and application of the modelling

approach explored in the various domain models from the case study. Such

representations on real parts would not only imply understanding the

relationships between the hole features but also relationships between the

types of parts on which the hole features are designed and manufactured.

Hence, another attractive opportunity exists for incorporating additional core

semantics for capturing feature definitions in the context of design and

manufacturing part families. Studies in the area of part families and features

and their relationships would provide a suitable basis for formalising more

complex semantics between entity and manufacturing resource information as

well as process concepts with respect to the notion of part families. Figure 9-1

shows an IDEF5 schematic version of a significant portion of the original high-

level UML diagram proposed by Gunendran and Young (2008), identifying a

generic, yet meaningful interpretation of the need to reinforce relationship

semantics between manufacturing features within a part family context.

The branch of the diagram following “Machining Operation Sequence”,

“Machining Operation”, “Setup Sequence”, “Setup”, “Step Sequence” and

“Step”, provides the necessary details for part family manufacturing method

descriptions. The other branch corresponding to “Stage Sequence”, “Stage”,

“Step Sequence” and “Step”, on the other hand, supports the description of

manufacturing methods in relationship to manufacturing features. The main

observation made from the high-level model is that there is a need to

understand and define semantic relationships between the classes

“Machining Operation Sequence” (A) and “Stage Sequence” (B) and to

establish the conditional relationships between different kinds of information

sets (Gunendran and Young, 2008) such as the influential semantics between

the class “Stage Sequence” (B) and “Setup Sequence” (C).

220

Feature

Range

Manufacturing

Feature

Range

Machining

Operation

Sequence

Machining

Operation

has

Part Family

Manufacturing

Part Family

Range

has Machine Tool

Range

has

Setup

Sequence

h
a

s

Stage

Sequence

in
fl
u

e
n

c
e

Stage
has

u
s
e

Setup

Step

Sequence

has

has

 has

h
a

s

Step
has

Fixture

Range

use

Cutting Tool

Range

u
s
e

has

Figure 9-1 The Need for Capturing Relationship Semantics between Part Families and
Features (Adapted from Gunendran and Young (2008))

In the context of the Foundation Layer, visible associations can be made

between the foundation class “Artifact” and “Part Family” (D). Moreover, the

foundation class “Feature” neatly maps to the “Feature Range” (E) concept,

thereby implying that the Foundation Layer is able to support extensions to

accommodate part family semantics as well. It should not be forgotten,

however, that the proposed heavyweight manufacturing ontological foundation

in this work has focused on a restricted set of product viewpoints. Therefore,

from a product lifecycle perspective, the expansion of foundation semantics

should also be attuned to the representation of core operation, service and

disposal semantics across system boundaries.

9.2.4 Knowledge Bases

The current approach taken during the proposal and implementation of the

framework has witnessed the interoperation at the instance level of domain

models, i.e. at the KB level, between systems that use the same type of KB.

(A)

(B)

(C)

(D)

(E)

221

For example, in the various test cases, the Object Management System

(OMS) KB had been deployed, and reconciliation has taken place between

OMSs of the same sort (with their reasoning engine all based on Java SQL).

An issue is likely to emerge in the situation that different types of KBs are

developed from the same or different domain ontologies. This understanding

is illustrated in Figure 9-2 at the KB level (F).

An initial concern is linked to the interoperation of multiple KBs that have been

based on the same domain ontology (see label (G) on Figure 9-2). This is

because different KBs naturally imply different applied computational

principles. This issue is further aggravated when different KBs, coming from

heterogeneous domain ontologies require interoperation (H). It is, therefore,

necessary to explore the related implications in more detail, as the mentioned

situation is bound to happen in supply chain premises and collaborative

product development. A possible direction in order to tackle similar problems

would require a solid understanding of the software technologies and platform

independent and specific structures innate to the various KBs that are being

deployed, and that need to interoperate.

Domain Ontology Layer

Foundation Layer

Common Logic-Based Formalism

Heavyweight Manufacturing

Ontological Foundation

KB Level (F)

(H)

(G)

Figure 9-2 Developing Multiple KBs from the Same Domain Ontologies

222

9.2.5 Knowledge Sharing

In concurrent engineering and collaborative supply chain premises,

knowledge sharing remains a relatively delicate aspect as far as inter-system

interoperability is concerned. In many situations, due to data protection

agreements, intellectual property rights, trust and security issues linked to

proprietary information, the sharing of knowledge across domain ontologies

and their related KBs may not always be a straightforward task.

Specifically for this purpose, the “simple merging process” explored in the

Semantic Reconciliation Layer may not provide an optimal ontology mapping

process. Two possible approaches could be applied in order to remedy the

problem. The first involves keeping different domain ontologies and KBs in

their distinct OMSs so that full control on sensitive ontological content is

maintained. Then using Application Programming Interfaces (APIs), semantic

mapping concepts would be applied to relevant portions of the domain models

to be reconciled. The understanding is pictured in Figure 9-3, where for

example, the two domain models “Machining Hole Feature Ontology A” and

“Machining Hole Feature Ontology B” have remained distinct to their OMSs.

Protection on appropriate ontological content would be supported in each

model and semantic mapping concepts would interface only with the

allowable cross-domain arguments for reconciliation.

The second way of ensuring that only the relevant ontological content and KB

objects are reconciled between two domains, is to prune sensitive semantic

Semantic
Mapping
Concepts

Figure 9-3 Interfacing Semantic Mapping Concepts to Domain Models
without Undergoing the Simple Merging Process

223

structures prior to undergoing the simple merging process. In this way only

specific portions of the domain models would undergo reconciliation and

knowledge sharing.

At present, the Interoperability Evaluation Layer supports useful methods for

discovering and interpreting cross-domain correspondences. However,

because the interoperability discovery process is dependent on a view of what

is to be reconciled between domains in the first place, there is a need to

include a way for reporting established cross-domain correspondences. A

possible way for so doing would be to support the compilation of an evaluation

report, post-interoperability evaluation and verification at the fourth level of the

SMIF. On the other hand, the interpretation of cross-domain semantic

mapping concepts would prove more effective if accompanied by diagrams in

the ontological environment itself. Unfortunately, the current status of the

IODE ontological environment does not allow pictures nor hyperlinks to

pictures to be referenced in the informal remarks for interpreting semantic

mapping concepts.

9.2.6 Positioning of the Framework

The literature review in Chapter 2 has identified the importance of positioning

the concepts proposed in this research according to the Model Driven

Architecture (MDA) and Model Driven Interoperability (MDI). Based on an

understanding of MDA and MDI related to the various concepts developed in

the SMIF, Figure 9-4 depicts the relevant MDI view on the investigated

ontology-based framework for supporting semantic interoperability in product

design and manufacture.

The diagram first shows that the investigated requirements for supporting

semantic interoperability in product design and manufacture (Chapter 3) fall at

the CIM level (I). This is because the strategic nature of the requirements

remains at a high-level for identifying the intended expectations of the

developed framework.

224

The development of the Foundation Layer can be established at the PIM level

of the MDA (J). It is evident, from the ontology development methodology

adopted, that IDEF5 schematics used to model the fundamental semantics of

the heavyweight manufacturing ontological foundation provide a platform-

independent way of representing ontological content. However, because KFL-

based semantics have been added to the Foundation Layer, this implies that

the PIM level is accompanied by a Platform Description Model (PDM). A PDM

is used to specify the architecture for implementation and relevant

technologies being harnessed. In this case, the PDM occurs as the

consequence of the dependence of KFL on the configuration of the IODE

implementation platform. Had the Common Logic Interchange Format (CLIF)

been purely used, this would have implied that the Foundation Layer would

have resided at a standalone PIM level without the related PDM.

Figure 9-4 Model Driven Interoperability View on the Research
Framework

Platform
Independent
Model (PIM)

Platform
Description

Model (PDM)

Platform
Specific Model

(PSM)

Domain X

Platform
Independent
Model (PIM)

Platform
Description

Model (PDM)

Platform
Specific Model

(PSM)

Platform
Independent
Model (PIM)

Platform
Description

Model (PDM)

Platform
Specific Model

(PSM)

Platform
Independent
Model (PIM)

Platform
Description

Model (PDM)

Computation
Independent
Model (PIM)

Domain Y
Mapping Concepts

IODE Implementation Level

Requirements

Foundation

Layer

(I)

(J)

(K) (L)
(M)

(N)

225

The combination of the PIM and PDM for the Foundation Layer has then been

exploited to develop other PIMs and PDMs, during specialisation into domain

models such as two virtual ontologies “Domain X” (K) and “Domain Y” (L).

Semantic mapping concepts (M) constitute the interoperability models for

reconciling between pairs of domain models. The Foundation Layer, domain

models and models for semantic mapping concepts are driven to the PSM

level (N) during implementation in IODE. One important observation to be

made is that the various models have been implemented under the same

implementation environment (i.e. IODE), which to some extent contributes to

the ability to interoperate at the PSM level. Different platform-specific models

using different implementation environments would lead to the heterogeneous

KB issue identified previously in section 9.2.4.

Based on an understanding of the SMIF and its implementation, it also

becomes possible to position the framework in relation to other interoperability

frameworks. The SMIF, as opposed to interoperability frameworks such as

IDEAS interoperability framework (Chen et al, 2004), the Framework for

Enterprise Interoperability (CEN/ISO 11354, 2008), the Zachman Framework

(The Zachman Framework Website, 2009) and The Open Group Architecture

Framework (TOGAF) (TOGAF Website, 2009), does not aim at providing a

novel way of redefining general concepts for interoperability. This is because,

the SMIF remains focused at the issue of semantic interoperability in design

and manufacture. Figure 9-5 positions the main concepts of the SMIF, using

the Framework for Enterprise Interoperability as a benchmark.

As can be seen in the picture, the main concepts explored in the SMIF fall

under three main blocks as a result of (1) considerations for unified processes

using PSL, (2) considerations for unified entity information semantics at the

unified (product) data level and (3) the harnessing of appropriate semantic

technologies to support integrated technological advances.

226

Compared to other similar approaches attuned specifically to semantic

interoperability such as the eCOIN framework (Firat et al, 2007), the approach

explored by Patil et al (2005) and that of Gupta and Gurumoorthy (2008), the

SMIF has contributed to the identification and application of more formal ways

(heavyweight Common Logic-driven) for capturing knowledge, starting at a

low level of abstraction, including the geometry, dimensional and process

sequencing semantics. In addition to this, more effective methods have been

investigated in order to achieve meaningful interoperable knowledge sharing

between domain models during their reconciliation. The interpretation of the

interoperable knowledge, backed by tractable reasoning, overtakes the simple

mapping relations used, for instance, in OWL-based reconciliation and

reasoning.

More recently, an initial proposal for a future SC4 architecture has been

realised (Leal et al, 2009). Interestingly, the structure of this future

architecture bears some striking similarities to the fundamental concepts

explored in the SMIF. The underlying understanding behind this proposed

architecture is portrayed in Figure 9-6. The architecture is composed of:

Semantic
Tech

PSL

approaches

barriers

concerns

c
o

n
c

e
p

tu
a

l

te
c
h

n
o

lo
g

ic
a
l

o
rg

a
n
is

a
ti
o

n
a
l

business

process

service

data
 integrated

unified

 federated

Entity
Info

Figure 9-5 Positioning the Key SMIF Concepts in the Framework
for Enterprise Interoperability

227

 Natural language terms and their definitions related to the concepts within

the SC4 standards (O).

 The ontology-driven formalised representation of the more general

concepts covered by the SC4 standards, referred to as “resource parts”

(P). This is analogous to the semantics of core concepts in the Foundation

Layer of the SMIF.

 The ontology-driven formalised representation of the more discipline-

specific concepts covered by the SC4 standards, referred to as “domain

extensions” (Q). In the context of the SMIF, this understanding is reflected

in the Domain Ontology Layer.

 A set of implementation technology solutions for specific use cases that

are mapped to and from the elements in the formal ontological

representations, examples of which are called “constrained exchange

subsets” (R) and “web service definitions” (S) (Leal et al, 2009). When

viewed from the SMIF approach, this may involve the development of

multiple domain KBs from domain models, thereby resulting in the plural

nature of PSMs. This aspect, however, has not been probed into in the

current research framework, but the necessary implications have been

identified in section 9.2.4.

 Appropriately-formalised mappings and/or references between the terms

and definitions, ontology-driven representations and implementation

technology solutions (T). In the SMIF, the definition of semantic mapping

concepts to support interoperable knowledge sharing, provides a useful

means of performing the required mappings.

It is further to be noted that during the proposal of the above-mentioned SC4

architecture, references have been made to possible modelling languages

such as OWL, CL, UML, XML Schema and the Web Service Description

Language (WSDL). This clearly illustrates that Common Logic-based

knowledge representation formalisms have been acknowledged as forming

part of the category of ontological formalisms that possess attractive

capabilities to address the requirements of future standards-based integration

architectures.

228

9.2.7 Potential Industrial Applications

There exist wide-ranging potential applications of the proposed Semantic

Manufacturing Interoperability Framework (SMIF) in manufacturing

enterprises. At present, the relevance of ontologies in industry is obvious as

several enterprises like DaimlerChrysler are, for example, adopting ontology-

driven methods to support a range of design activities (Lukibanov, 2005).

Figure 9-7 illustrates a possible configuration of the SMIF with respect to its

interactions with elements of wider design and manufacturing systems in

PLM, within individual manufacturing enterprises. Domain ontologies that

derive from the Foundation Layer of the SMIF could be interfaced with CAE

applications, for example, a CAD environment could be linked to a domain

ontology that fully captures the semantics in solid modelling (see label (U) on

Figure 9-7). The KB related to the domain ontology would be used as a

repository for storing, accessing, updating and creating parts information.

Resource

Parts (P)

Domain

Extensions (Q)

Constrained
Exchange
Subsets

(R)

Web
Service

Definitions

 (S)

Terms and Definitions for People (O)

(T)

OWL + Named Graphs
CL, and other dictionary languages

XML Schema + Schematron
OWL + SWRL

WSDL

Figure 9-6 Future SC4 Architecture Based on Ontology
Representations of Engineering Data (Adapted from Leal et al (2009))

229

In addition, rigorous heavyweight semantics from PSL could be exploited

towards monitoring shop-floor activities such as automated machining and

assembly sequences following process planning (V). This is one example

where the applied importance of ICs would be witnessed. These ICs would

ensure that correct and complete information is captured and adequate

procedures carried out. Extensions to the framework aided through the set up

Figure 9-7 Visualising the SMIF within Integrated and Interoperability-Driven PLM

SMIF supports semantic interoperability across multi-disciplinary teams

Product
lifecycle

environment
supports

integration

Knowledge sharing

Semantic Reconciliation Layer /

Interoperability Evaluation Layer

Design teams Manufacturing teams

Solid modelling

KB

CAD environment

Foundation

Layer

KB

Process planning
application

Process planning

KB

Resource library
application

Manufacturing
resources

Other domain
models

KB

Other applications

Domain Ontology

Layer
(U)

(V)

(W)

(Y)

(W)
(X)

(Z) (Z)

230

of interfaces with PLM environments (W) would potentially help support not

only the integration (X), but also the level of semantic interoperability required

in effectively sharing knowledge across multi-disciplinary teams involved in

collaborative PLM (Y).

The SMIF approach could further be integrated as part of a knowledge

management initiative for building large repositories of design and

manufacture knowledge. Knowledge would be accessed via shared

ontologies and mapping mechanisms would be present for comparing various

information sources for effectively clarifying intent and sharing knowledge.

The ability to create and reuse meaningful best practice knowledge in

computational form could also be supported, as this constitutes a powerful

asset for the utilisation of historical as well as future information gathered

during the continuous evolution of company structures. Additionally, Web-

based company applications could be linked to the appropriate levels of the

SMIF to support information searches and user-defined queries (Z).

It is to be noted that unless appropriate user interfaces are supported for

building such queries, adequate training of users would be required for

interacting with an ontological platform such as IODE. In terms of

performance, the use of IODE Object Management Systems (OMSs) would

not provide a scalable approach to the creation of large KBs. This is because

an IODE OMS is limited to the number of knowledge elements stored. Hence,

this clearly implies that for meeting the needs of large design and

manufacture KBs, industry-robust KBs would be required. In addition to this,

important concerns are likely to remain notably in terms of the costs involved

in carrying out technology change procedures and the general acceptance of

the approach.

231

9.3 Conclusions

The Semantic Manufacturing Interoperability Framework (SMIF) investigated

in this work has supported a further step towards the overall improvement of

interoperability for effectively sharing knowledge across decision support

systems. It has been possible through the proposal, thorough investigation

and relevant testing of the framework, to achieve the aim of progressing

knowledge on ontology-based approaches to support semantic interoperability

applied to the field of product design and manufacture.

Sections 9.2 and 9.4 of this chapter document the relevant proposition for

extensions and modifications to the SMIF in order to support future work,

thereby meeting the sixth and final objective of this work (see Chapter 1

section 1.3.1). Furthermore, the various objectives set at the beginning of the

thesis have been met (refer to cross-references between the objectives in

Chapter 1 section 1.3.1 to the occurrence of their achievement at various

points throughout the thesis). This clearly suggests that the research

methodology undertaken in this work has successfully supported the

achievement of the aim of this research.

Figure 9-8 depicts a diagram that summarises the key aspects of the SMIF

with respect to the relevance of automation at various stages namely:

ontology development, semantic reconciliation and interoperable knowledge

discovery. It is clear from the concepts explored in this work that the process

of ontology development is semi-automatic, especially since the knowledge

engineer and the ontological environment are the prime agents in ontology

building and deployment. Moreover, the first two stages of the semantic

reconciliation phase, notably that of context adjustment and the simple

merging of domain models, are semi-automatic processes.

Context adjustment of domain models, as witnessed in some of the test cases

(see test cases 2 and 4 in Chapter 8) is essentially a manual process. The

simple merging process as part of semantic reconciliation is a semi-automatic

stage as it requires the user choosing the necessary ontology and instance

232

files to be processed by the ontological environment. The semantic alignment

process is entirely automated, as a result of logic-based definitions for

semantic mapping concepts, which automatically align cross-domain content.

The final phase related to interoperable knowledge discovery is semi-

automatic as it relies on appropriate user actions and interactions with

interfaces for creating and running queries as well as for browsing the results

of queries.

This view on the current state of automation of the main phases involved in

the SMIF illustrates that there exist potentials for enhancing the performance

of the framework by automating relevant processes. The ontology

development and knowledge discovery phases are very likely to remain semi-

automatic as user interactions are unavoidable. However, additional tools and

methods need to be integrated with the SMIF implementation environment in

order to support automatic context adjustment and simple merging.

In the knowledge discovery phase, it has been witnessed that the query tool in

IODE supports the rapid processing of complex Common Logic-based queries

performed on a single workstation. However, in rare cases when queries are

not well-formed by the user, this may result in excessive memory

consumption in trying to retrieve a possible answer to an inaccurate query. In

other situations, it may be impossible to reach the result of a query based on

Context
adjustment

Simple
merging

Semantic
alignment

Semantic Reconciliation
Phase

Query
building and
execution

Results and
browsing

Knowledge
Discovery Phase

Ontology
Development Phase

Semi-automatic Semi-automatic Semi-automatic
Automatic

Figure 9-8 The Relevance of Automation in the SMIF

233

deductive reasoning especially if certain facts do not exist in a KB. This

consequently implies that in industrial settings, adequate user training would

be required in order to interact with the various elements of the SMIF.

The issue of processing time is likely to have a repercussion during

collaborative activities between different agents. Therefore, it is still important

to understand the extent to which the processing time remains beneficial

across a collaborative environment. It is possible that there would be a need

for optimisation which would result in higher performance, thereby enabling

multiple queries to be performed from various workstations, whose query tools

are simultaneously linked to the same KB found on a server. Figure 9-9

identifies a possible configuration of a server based system for querying

against a KB. The potentials of Graphical Processing Units (GPUs) may be

required for their high computing power, in order to compensate for the lower

speed of Central Processing Units (CPUs) against GPUs.

Based on the observations made during the discussions section of this

chapter, a number of concerns have been depicted. The primary observation

is that framework extensions are required. These extensions should

accommodate further types of generic intuitions towards more defined product

lifecycle semantics, altogether captured within the heavyweight manufacturing

ontological foundation. Moreover, there is a need for refining the Domain

Ontology Layer to include a clear demarcation between domain ontologies

over which several platform-specific KBs could be established.

KB on server

CPU -> GPU CPU -> GPU

CPU -> GPU CPU -> GPU

Figure 9-9 A Server-Based Configuration for Multiple Interacting Workstations

234

Hence, supporting the continuous evolution of the SMIF would help foster a

leap towards intelligent automated paper-free knowledge sharing. The overall

benefits would promote the enhancement of knowledge management

strategies. On the whole, a progression of the framework shall continue to

provide a competitive edge related to (1) the use of effective foundation

ontology approaches to support knowledge capture and (2) the application of

semantic methods for knowledge sharing across decision support systems in

product design and manufacture.

9.4 Recommendations for Future Work

The discussions section of this chapter has helped orientate appropriate

attention onto relevant areas where future work could apply. First of all, it

would be highly desirable to explore an extended heavyweight manufacturing

ontological foundation which would capture more complicated feature ranges

such as pockets, splines, complex closed profiles, etc. Moreover, to enable

the unambiguous definition of manufacturing features, the semantics of part

families would deserve attention. An engaging starting point would consist of

a mapping of the high-level diagram proposed by Gunendran and Young

(2008) (see Figure 9-1) to foundation semantics, or vice versa.

Future work should also concentrate on identifying the different nuances

within the Foundation Layer. At present, the Foundation Layer consists of two

blocks namely the Common Logic-based ontological formalism over which the

heavyweight manufacturing ontological foundation is established. However,

this heavyweight foundation, during expansion and implementation would

inevitably lead to different levels of conceptualisations within a single

foundation. Figure 9-10 summarises this understanding and exemplifies the

idea behind having different harmonised nuances within a single foundation.

From the figure, it becomes clear that some meta-ontology is bound to exist,

such as the Ontology Works ULO, at the bottommost section of the

Foundation Layer, over which the main ontological formalism is built. Generic

intuitions need to be developed to capture broad concepts that cut across

235

several more specific product lifecycle intuitions. Such extensible generic

concepts may include (1) the Process Specification Language (PSL) as a

basis for describing processes of various sorts, (2) the Core Product Model

(CPM) for capturing generic product model information, (3) generic models

such as the model of measures (Ontology Works Inc., 2009) implementing

NIST‟s publication on the International System of Units (SI) (Taylor and

Thompson, 2008), (4) models of events featuring the participation semantics

of objects in relation to events and (5) the temporal model based on the

Temporal Interval Calculus of J.F. Allen (Ontology Works Inc., 2009).

Based on the view that different foundation levels of conceptualisation would

arise as a result of an expansion of the Foundation Layer, this would

necessarily imply that the methods for facilitating the reconciliation and

verification across different domain extensions would also require evolvement.

On the other hand, to further explore the application-oriented benefits of using

heavyweight ontological approaches, it would be a challenging task to

experience with the programming of application interfaces between, for

example, CAD/CAM software and the KBs supported by domain ontologies

developed from the Foundation Layer. In this way a concrete opportunity

would arise to test the true potentials of ICs for articulating user inputs,

Ontology Works Upper Level Ontology (ULO)

Knowledge Framework Language (KFL)

PSL CPM Measure
Model

Event
Model

Temporal
Model

Generic Intuitions

Product Lifecycle Intuitions

Design Manufacture Operate Dispose

Figure 9-10 Expansion of Levels of Conceptualisation within a
Single Product Lifecycle Foundation

236

providing intelligent suggestions and preventing unwanted actions from being

committed during the use of ontology-driven CAD/CAM environments.

Finally, there is still a need to conduct test cases, applied to the SMIF, based

on comprehensive industrial scenarios. These scenarios would bring

considerable value to the applicability of the proposed framework within an

industrial setting. Possible case studies originating, for example, from the

aerospace and automotive industries would help support the breadth of

product lifecycle concepts required for further testing the Semantic

Manufacturing Interoperability Framework.

237

Publications

 Chungoora, N. and Young, R.I.M., 2008a. Semantic interoperability

requirements for manufacturing knowledge sharing. In: Mertins, K.,

Ruggaber, R., Popplewell, K. and Xu, X., eds. Enterprise interoperability

III: new challenges and industrial approaches. pp. 411-422. London, UK:

Springer-Verlag.

 Chungoora, N. and Young, R.I.M., 2008b. Ontology mapping to support

semantic interoperability in product design and manufacture. In:

Proceedings of the 1st International Workshop on Model Driven

Interoperability for Sustainable Information Systems (MDISIS’08) in

Conjunction with the CAiSE’08 Conference. 340, pp. 1-15. Montpellier,

France. Available at:

 http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-340/

 Young, R.I.M., Gunendran, G., Chungoora, N., Harding, J. and Case, K.,

2009. Enabling interoperable manufacturing knowledge sharing in PLM. In:

Proceedings of the 6th International Product Lifecycle Management

Conference. Bath, UK: University of Bath.

 Chungoora, N., Canciglieri, O.J. and Young, R.I.M. Semantic

manufacturing knowledge sharing: a case study based on lightweight and

heavyweight ontological approaches. Computers in Industry. [submitted for

review].

 Chungoora, N. and Young, R.I.M. The configuration of design and

manufacture knowledge models from a heavyweight ontological

foundation. International Journal of Production Research. [submitted for

review].

 Chungoora, N. and Young, R.I.M. A framework to support semantic

interoperability in product design and manufacture. Submitted for review

in: 20th CIRP Design Conference.

238

References

Abouel Nasr, E.S. and Kamrani, A.K., 2006. A new methodology for extracting

manufacturing features from CAD system. Computers and Industrial

Engineering, 51, pp. 389-415.

Adobe Photoshop. [Online] Available at: http://www.adobe.com

Adobe Flash. [Online] Available at: http://www.adobe.com

Advanced and Innovative Models and Tools for the development of Semantic-

based systems for Handling, Acquiring and Processing knowledge Embedded

in multidimensional digital objects. [Online] Available at: http://www.aimatshape.net/

Aifaoui, N., Deneux, D. and Soenen, R., 2006. Feature-based interoperability

between design and analysis processes. Journal of Intelligent Manufacturing,

17, pp. 13-27.

Al-Ashaab, A.H., 1994. A manufacturing model to capture injection moulding

process capabilities to support design for manufacture. Ph.D. Loughborough,

UK: Loughborough University.

Al-Ashaab, A.H., Rodriguez, K., Molina, A., Cardenas, M., Aca, J., Saeed, M.

and Abdalla, H. 2003. Internet-based collaborative design for an injection-

moulding system. Concurrent Engineering Research And Applications, 11, pp.

289-299.

AMICE, 1993. CIMOSA – Open System Architecture for CIM. 2nd ed. Berlin,

Germany: Springer-Verlag.

Anderl, R., 1997. Trends in product modelling. In: Proceedings of the 11th

International Conference on Engineering Design. pp. 113-120. Tampere

University of Technology.

http://www.aimatshape.net/

239

Ang, D.S., 1998. Identifications of part families and bottleneck parts in cellular

manufacturing. Industrial Management and Data Systems, 98(1), pp. 3-7.

Baader, F., Horrocks, I. and Sattler, U., 2007. Description Logics. In: van

Harmelen, F., Lifschitz, V. and Porter, B., eds. Handbook of Knowledge

Representation. Elsevier.

Bach, T.L., Dieng-Kuntz, R. and Gandon, F., 2004. On ontology matching

problems for building a corporate semantic web in a multi-communities

organization. In: Proceedings of the 6th International Conference on Enterprise

Information Systems. Porto, Portugal.

Balogun, O., Hawisa, H. and Tannock, J., 2004. Knowledge management for

manufacturing - the product and process database. Journal of Manufacturing

Technology Management, 15(7), pp. 575-584.

Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L.,

Patel-Schneider, P.F. and Stein, L.A., 2004. OWL Web Ontology Language

Reference. [Online] W3C Recommendation. World Wide Web Consortium.

Available at: http://www.w3.org/TR/owl/ref/

Bock, C., 2006. Interprocess Communication in the Process Specification

Language. [Online] NISTIR 7348. NIST: Gaithersburg, MD, USA. Available at:

www.mel.nist.gov/psl/pubs.html

Bock, C. and Gruninger, M., 2005. PSL: a semantic domain for flow models.

Software and Systems Modelling Journal, 4, pp. 209-231.

Borgo, S. and Leitão, P., 2008. Foundations for a core ontology of

manufacturing. In: Ontologies: a handbook of principles, concepts and

applications in information systems. Springer.

Bourey, J.-P., 2007. Model Driven Interoperability and Service-Oriented

Architecture. PowerPoint Presentation. IMS Seminar: Zurich, Switzerland.

240

Bourey, J.P., Grangel, R., Doumeingts, G. and Berre, A., 2006. INTEROP

NoE - Deliverable DTG2.2 - Report on Model Interoperability.

Brunetti, G. and Golob, B., 2000. A feature-based approach towards an

integrated product model including conceptual design information. Computer

Aided Design. 32(14), pp. 877-887.

Brunnermeier, S.B. and Martin, S.A., 2002. Interoperability costs in us

automotive supply chain. Supply Chain Management: An International

Journal. 7(2), pp. 71-82.

Canciglieri, O.J., 1999. Product model based translation mechanism to

support multiple viewpoints in the design for manufacture of injection moulded

products. Ph.D. Loughborough, UK: Loughborough University.

Canciglieri, O.J. and Young, R.I.M., 2003. Information sharing in multi-

viewpoint injection moulding design and manufacturing. International Journal

of Production Research. 41(7), pp. 1565-1586.

CEN/ISO 11354, 2008. Requirements for establishing manufacturing

enterprise process interoperability - Part 1 - Framework for Enterprise

Interoperability.

Chan, F.T.S., Lau, K.W., Chan, P.L.Y. and Choy, K.L., 2006. Two-stage

approach for machine-part grouping and cell layout problems. Robotics and

Computer-Integrated Manufacturing. 22(3), pp. 217-238.

Chandra, C. and Kamrani, A.K., 2003. Knowledge management for

consumer-focussed product design. Journal of Intelligent Manufacturing. 14,

pp. 557-580.

Chang, X. and Terpenny, J., 2009. Ontology-based data integration and

decision support for product e-design. Robotics and Computer-Integrated

Manufacturing. 25, pp. 863-870.

241

Chaudhri, V.K., Farquhar, A., Fikes, R., Karp, P.D. and Rice, J.P., 1998.

OKBC: a programmatic foundation for knowledge base interoperability. In:

Proceedings of the 15th National Conference on Artificial Intelligence AAAI-98

and the 10th Conference on Innovative Applications of Artificial Intelligence

IAAI-98, pp. 600-607.

Chen, D. and Doumeingts, G., 1996. The GRAI-GIM reference model,

architecture and methodology. In: Bernus, P. et al, eds. Architectures for

enterprise integration. London: Chapman and Hall.

Chen, D., Doumeingts, G. and Vernadat, F., 2008. Architectures for enterprise

integration and interoperability: past, present and future. Computers in

Industry. Vol. 59, pp. 647-659.

Chen, D., Knothe, T. and Zelm, M., 2004. ATHENA integrated project and the

mapping to International Standard ISO 15704. In: Proceedings of the

International Conference on Enterprise Integration Modelling Technology, pp.

9-11. Valencia, Spain.

Chen, W. and Stuckenschmidt, H., 2008. Towards industrial strength

knowledge bases for Product Lifecycle Management. In: Proceedings of the

16th European Conference on Information System – Special Track on

Semantic Web and Information Systems.

Cheng, J., Gruninger, M., Sriram, R.D and Law, K.H, 2003. Process

Specification Language for project scheduling information exchange.

International Journal of IT in Architecture, Engineering and Construction. 1(4),

pp. 307-328.

Chin, K.S., Zhao, Y. and Mok, C.K., 2002. STEP based multi-view integrated

product modelling for concurrent engineering. International Journal of

Advanced Manufacturing Technology. pp. 896-906.

242

Cho, J., Han, S. and Kim, H., 2006. Meta-ontology for automated information

integration of parts libraries. Computer Aided Design. 38, pp. 713-725.

Chungoora, N. and Young, R.I.M., 2008a. Semantic interoperability

requirements for manufacturing knowledge sharing. In: Mertins, K., Ruggaber,

R., Popplewell, K. and Xu, X., eds. Enterprise interoperability III: new

challenges and industrial approaches. pp. 411-422. London: Springer-Verlag.

Chungoora, N. and Young, R.I.M., 2008b. Ontology mapping to support

semantic interoperability in product design and manufacture. In: Proceedings

of the 1st International Workshop on Model Driven Interoperability for

Sustainable Information Systems (MDISIS’08) in Conjunction with the

CAiSE’08 Conference. 340, pp. 1-15. Montpellier, France. [Online] Available

at: http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-340/

Cingil, I. and Dogac, A., 2001. An architecture for supply chain integration and

automation on the internet. Distributed and Parallel Databases. 10, pp. 59-

102.

Cochrane, S.D., 2006. Manufacturing knowledge verification in design support

system. Ph.D. Loughborough, UK: Loughborough University.

Corcho, O., 2005. A layered declarative approach to ontology translation with

knowledge preservation. Frontiers in Artificial Intelligence and Applications.

116. Netherlands: IOS Press.

Costa, C.A, Salvador, V.L, Meira, L.M., Rechden, G.F. and Koliver, C., 2007.

Product ontology supporting information exchanging in global furniture

industry. In: Goncalves, R.J. et al., eds. Enterprise interoperability II: new

challenges and approaches. pp. 278-280. London, UK: Springer-Verlag.

243

Cutting-Decelle, A.F., Bourey, J.-P., Grangel, R. and Young, R.I.M., 2006.

Ontology based communications through model driven tools - the MDA

approach feasibility of the approach in urban engineering projects. In: COST

C21 1st Workshop on Ontologies for Urban Development – Interfacing Urban

Information Systems. Geneva, Switzerland.

Cutting-Decelle, A.F., Dubois, A.M. and Dubois, J.E., 2002. An information

system for the building industries: a communication approach based on

industrial components. Data Science Journal. 1(2), pp. 257-270.

Dartigues, C., Ghodous, P., Gruninger, M., Pallez, D. and Sriram, R., 2007.

CAD/CAP integration using feature ontology. Concurrent Engineering

Research and Applications. 15(2), pp. 237-249.

Das, B., Cutting-Decelle, A.F., Young, R.I.M., Case, K., Rahimifard, S.,

Anumba, C.J. and Bouchlaghem, N., 2007. Towards the understanding of the

requirements of a communication language to support process interoperation

in cross-disciplinary supply chains. International Journal of Computer

Integrated Manufacturing. 20(4), pp. 396-410.

Delugach, H.S., 2005. Common Logic in support of metadata and ontologies.

PowerPoint Presentation. Open Forum 2005 on Metadata Registries. [Online]

Available at: http://common-logic.org/docs/cl/Berlin_OpenForum_Delugach.ppt

Didonet del Fabro, M., Albert, P., Bézevin, J. and Jouault, F., 2008. Industrial-

strength rule interoperability using model driven engineering. Research

Report Version 1. France: Institut de Recherche en Informatique et en

Automatique, Rennes.

Doerr, M., Hunter, J. and Lagoze, C., 2003. Towards a core ontology for

information integration. Journal of Digital Information. 4(1).

http://common-logic.org/docs/cl/Berlin_OpenForum_Delugach.ppt

244

Elvesæter, B., Hahn, A., Berre, A.-J. and Neple, T., 2006. Towards an

interoperability framework for model-driven development of software systems.

In: Konstantas, D., Bourrières, J.-P., Léonard, M. and Boudjilida, N., eds.

Interoperability of enterprise software and applications. pp. 409-420. London,

UK: Springer-Verlag.

Euzenat, J., Mocan, A. and Scharffe, F., 2008. Ontology alignment: an

ontology management perspective. In: Hepp, M., De Leenheer, P., de Moor,

A. and Sure, Y., eds. Ontology management - semantic web, semantic web

services and business applications. Boston, USA: Springer, SPVU.

Euzenat, J. and Shvaiko, P., 2007. Ontology Matching. Berlin Heidelberg:

Springer-Verlag.

Euzenat, J. and Valtchev, P., 2004. Similarity-based ontology alignment in

OWL-lite. In: Proceedings of the 15th European Conference on Artificial

Intelligence. Valencia, Spain.

Farquhar, A., Fikes, R. and Rice, J., 1997. The Ontolingua server: a tool for

collaborative ontology construction. International Journal of Human Computer

Studies. 46(6), pp. 707-727.

Feng, S.C. and Song, E.Y., 2003. A manufacturing process information model

for design and process planning integration. Journal of Manufacturing

Systems. 22(1).

Fenves, S.J., Foufou, S., Bock, C. and Sriram, R.D., 2005. CPM: a core

product model for product data. Journal of Computing and Information

Science in Engineering. 5, pp. 238-246.

Fenves, S.J., Foufou, F., Bock, C., Sudarsan, R., Bouillon, N. and Sriram,

R.D., 2004. CPM2: a revised Core Product Model for representing design

information. NISTIR 7185. USA: National Institute of Standards and

Technology.

245

Fernández-Breis, J.T. and Martínez-Béjar, R., 2002. A cooperative framework

for integrating ontologies. International Journal of Human-Computer Studies.

56, pp. 665-720.

Fernández-López, M. and Gómez-Pérez, A., 2002. Overviews and analysis of

methodologies for building ontologies. The Knowledge Engineering Review.

17(2), pp. 129-156.

Fiorentini, X., Gambino, I., Liang, V.-C., Rachuri, S., Mani, M. and Bock, C.,

2007. An ontology for assembly representation. NISTIR 7436. USA: National

Institute of Standards and Technology.

Firat, A., Madnick, S., and Grosof, B., 2007. Contextual alignment of

ontologies in the eCOIN semantic interoperability framework. Information

Technology Management. 8, pp. 47-63.

Fowler, J., 1996. STEP for data management, exchange and sharing. Great

Britain: Technology Appraisals.

Gangemi, A., Guarino, N., Masolo, C., Oltramari, A. and Schneider, L., 2002.

Sweetening ontologies with DOLCE. In: Proceedings of the 13th International

Conference on Knowledge Engineering and Knowledge Management

(EKAW02). LNCS 2473, pp. 166-182. Siguenza, Spain.

Genesereth, M.R. and Fikes, R.E., 1992. Knowledge Interchange Format.

Version 3.0. Reference Manual. Technical Report Logic-92-1. California:

Stanford University.

Giachetti, R.E., 1999. A standard manufacturing information model to support

design for manufacturing in virtual enterprises. Journal of Intelligent

Manufacturing. 10, pp. 49-60.

246

Gnägi, H.R., Morf, A. and Staub, P., 2006. Semantic interoperability through

the definition of conceptual model transformations. In: Proceedings of the 9th

AGILE Conference on Geographic Information Science. Visegrád, Hungary.

Gómez-Pérez, A., Fernández-López, M. and Corcho, O., 2004. Ontological

engineering: with examples from the areas of knowledge management, e-

commerce and the semantic web. London, UK: Springer-Verlag.

Grenon, P., 2003. Nuts in BFO‟s nutshell: revisions to the bi-categorial

axiomatisation of BFO. INFOMIS Reports. ISSN 1611-4019. Germany:

University of Leipzig.

Gruber, T.R., 1992. Ontolingua: a mechanism to support portable ontologies.

Knowledge Systems. AI Laboratory (KSL-91-66).

Gruber, T.R., 1993. A translation approach to portable ontology specification.

Knowledge Acquisition. 5(2), pp. 199-220.

Gruninger, M. and Fox, M.S., 1994. An activity ontology for enterprise

modelling. In: Workshop on Enabling Technologies – Infrastructures for

Collaborative Enterprises. West Virginia University, USA.

Gruninger, M. and Kopena, J., 2005. Semantic integration through invariants.

AI Magazine. 26(1), pp. 11-20.

Gu, P., 1994. A feature representation scheme for supporting integrated

manufacturing. Computers and Industrial Engineering. 26(1), pp. 55-71.

Gunendran, A.G. and Young, R.I.M., 2006. An information and knowledge

framework for multi-perspective design and manufacture. International Journal

of Computer Integrated Manufacturing. 19(4), pp. 326-338.

247

Gunendran, A.G., Young, R.I.M., Cutting-Decelle, A.F. and Bourey, J.P.,

2007. Organising manufacturing information for engineering interoperability.

In: Proceedings of the Interoperability for Enterprise Software and

Applications Conference. Madeira Island, Portugal.

Gunendran, A.G. and Young, R.I.M., 2008. Methods for the capture and reuse

of manufacturing best practice in Product Lifecycle Management. In:

Proceedings of the 5th International conference on Product Lifecycle

Management. Seoul, Korea.

Gupta, R.K. and Gurumoorthy, B., 2008. A feature-based framework for

semantic interoperability of product models. Journal of Mechanical

Engineering. 54(6), pp. 446-457.

Halpin, T., 1999. UML data models from an ORM perspective: Part 1 - 10.

Journal of Conceptual Modelling.

Hameed, A., Preece, A. and Sleeman, D., 2004. Ontology reconciliation. In:

Staab, S. and Studer, R., eds. Handbook on Ontologies. pp. 231-250.

International Handbooks on Information Systems. Springer.

Harold, E.R. and Means, W.S., 2004. XML in a Nutshell. 3rd ed. Sebastopol,

CA, USA: O‟Reilly Media Inc.

ISO 286-2, 1988. Tables of standard tolerance grades and limit deviations for

holes and shafts.

ISO/IEC 10746-3, 1996. Information technology - open distributed processing

- reference model: architecture.

ISO 18629, 2005. Industrial automation systems and integration - Process

Specification Language (PSL).

248

ISO 10303-224, 2006. STEP - mechanical product definition for process

planning using machining features.

ISO 10303-239, 2005. STEP - product data representation and exchange,

application protocol: Product Life Cycle Support (PLCS).

ISO/IEC 24707, 2007. Information technology - Common Logic (CL): a

framework for a family of logic-based languages.

Kalfoglou, Y. and Schorlemmer, M., 2002. Information-flow-based ontology

mapping. In: On the Move to Meaningful Internet Systems 2002: CoopIS,

DOA and ODBASE. LNCS 2519, pp. 1132-1151. Springer.

Kalfoglou, Y. and Schorlemmer, M., 2003. Ontology mapping: the state of the

art. Knowledge Engineering Review. 18(1), pp. 1-31.

Kalpakjian, S., 2001. Manufacturing engineering and technology. 4th ed. New

Jersey, USA: Prentice Hall Inc.

Kendall, E.F., Frankel, D.S., Hayes, P.J. and McGuinness, D.L., 2004. Simple

Common Logic: a constraint language for the ODM. In: Proceedings of the 1st

International Workshop on the Model-Driven Semantic Web.

Kent, R.E., 2000. The information flow foundation for conceptual knowledge

organization. In: Proceedings of the 6th International Conference of the

International Society for Knowledge Organization. Toronto, Canada.

Kim, K.-Y., Manley, D.G. and Yang, H., 2006. Ontology-based assembly

design and information sharing for collaborative product development.

Computer-Aided Design. 38, pp. 1233-1250.

Kiryakov, A.K., Simov, K. Iv. and Dimitrov, M., 2001a. OntoMap: ontologies for

lexical semantics. In: Proceedings of the Euro Conference Recent Advances

on Natural Language Processing. pp. 142-148. Bulgaria.

249

Kiryakov, A.K., Simov, K. Iv. and Dimitrov, M., 2001b. OntoMap: portal for

upper-level ontologies. In: Proceedings of the 2nd International Conference

on Formal Ontology in Information Systems. Ogunquit, Maine, USA.

Klein, M., 2001. Combining and relating ontologies: an analysis of problems

and solutions. In: Proceedings of the International Joint Conference on

Artificial Intelligence Workshop on Ontologies and Information Sharing. pp.53-

62. Seattle, USA.

Knowledge Based Systems Inc., 1994. Information Integration for Concurrent

Engineering (IICE): IDEF5 method report. Texas, USA. [Online] Available at:

http://www.idef.com/pdf/Idef5.pdf

Kugathasan, P. and McMahon, C., 2001. Multiple viewpoint models for

automotive body-in-white design. International Journal of Production

Research. 39(8), pp. 1698-1705.

Labrou, Y., 2002. Agents and ontologies for e-business. The Knowledge

Engineering Review. 17(1), pp. 81-85.

Lassila, O. and Swick, R.R., 1999. Resource Description Framework (RDF)

model and syntax specification. W3C Recommendation. World Wide Web

Consortium. Cambridge, MA, USA.

Lazenberger, M., Sampson, J.J., Rester, M., Naudet, Y. and Latour, T., 2008.

Visual ontology alignment for knowledge sharing and reuse. Journal of

Knowledge Management. 12(6), pp. 102-120.

Leal, D., Price, D., Barnard Feeney, A. and Bock, C., 2009. Future SC4

architecture PWI overview and plan. In: 57th ISO TC 184 SC4 Plenary

Meeting. Approved Resolution by ISO TC 184 SC4. Parksville, Canada.

250

Lee, G., Eastman, C.M., Sacks, R. and Navathe, S.B., 2006. Grammatical

rules for specifying information for automated product data modelling.

Advanced Engineering Informatics. 20, pp. 155-170.

Leitão, P., Colombo, A. and Restivo, F., 2005. ADACOR - a collaborative

production automation and control architecture. IEEE Intelligent System.

20(1), pp. 58-66.

Lenat, D.B. and Guha, R.V., 1990. Building large knowledge-based systems:

representation and inference in the Cyc project. Boston, USA: Addison-

Wesley.

Li, Y., Lu, Y., Liao, W. and Lin, Z., 2006. Representation and share of part

feature information in web-based parts library. Expert Systems with

Application. 31, pp. 697-704.

Lin, H.K. and Harding, J.A., 2007. A manufacturing engineering ontology

model on the semantic web for inter-enterprise collaboration. Computers in

Industry. 58(5), pp. 428-437.

Liping, Z., Guangyao, L., Yongquan, L. and Jing, S., 2007. Design of ontology

mapping framework and improvement of similarity computation. Journal of

Systems Engineering and Electronics. 18(3), pp. 641-645.

Liu, S., 2004. Manufacturing information and knowledge models to support

global manufacturing coordination. Ph.D. Loughborough, UK: Loughborough

University.

Liu, S. and Young, R.I.M., 2004. Utilising information and knowledge models

to support global manufacturing coordination decisions. International Journal

of Computer Integrated Manufacturing. 17(4), pp. 479-492.

251

Loss, L., Rabelo, R. J. and Pereira-Klen, A. A., 2005. For an intelligent

decision support system for supply chain management. In: Proceedings of the

38th CIRP International Seminar on Manufacturing Systems. Brazil.

Lukibanov, O., 2005. Use of ontologies to support design activities at

DaimlerChrysler. In: Proceedings of the International Protégé Conference.

Madrid, Spain.

Lyons, J., 1977. Semantics. 1. Cambridge, Great Britain: Cambridge

University Press.

Ma, Y.-S., Britton, G.A., Tor, S.B. and Jin, L.Y., 2007. Associative assembly

design features - concept, implementation and application. International

Journal of Advanced Manufacturing Technology. 32, pp. 434-444.

Madhavan, J., Bernstein, P.A., Domingos, P. and Halevy, A., 2002.

Representing and reasoning about mappings between domain models. In:

Proceedings of the 18th National Conference on Artificial Intelligence.

Edmonton, Alberta, Canada.

Maedche, A. and Staab, S., 2000. Semi-automatic engineering of ontologies

from texts. In: Proceedings of the 12th International Conference on Software

Engineering and Knowledge Engineering. pp. 231-239. Chicago, IL, USA.

Maedche, A., Motik, B., Silva, N. and Volz, R., 2002. A MApping FRAmework

for distributed ontologies. In: Proceedings of the 13th International Conference

on Knowledge Engineering and Knowledge Management, Ontologies and the

Semantic Web. LNCS 2473, pp. 235-250.

Markovits, H., 2004. The development of deductive reasoning. In: Sternberg,

R.J. and Leighton, J.P., eds. The Nature of Reasoning. pp. 313-338.

Cambridge, UK: Cambridge University Press.

252

Martino, T.D. and Giannini, F., 1998. Feature-based product modelling in

concurrent engineering. In: Proceedings of the 10th International Conference

on Information Technology in the Product Realisation Process. Trento, Italy.

Mäs, S., Wang, F. and Reinhardt, W., 2005. Using ontologies for integrity

constraint definition. In: Proceedings of the 4th International Symposium on

Spatial Date Quality. Beijing, China.

Masolo, C., Borgo, S., Gangemi, A., Guarino, N. and Oltramari, A., 2003.

WonderWeb Deliverable D18 - Ontology Library. Laboratory for Applied

Ontology - ISTC-CNR. Trento, Italy.

McGuinness, D., Fikes, R., Rice, J. and Wilder, S., 2000. An environment for

merging and testing large ontologies. In: Proceedings of the 17th International

Conference on Principles of Knowledge Representation and Reasoning.

Colorado, USA.

MDA GUIDE, 2003. MDA Guide. Version 1.0.1. Document Number:

omg/2003-06-01.

Mertins, K., Ruggaber, R., Popplewell, K. and Xu, X., 2008. Preface. In:

Mertins, K. et al, eds. Enterprise interoperability III: new challenges and

industrial approaches. pp. v-vi. London, UK: Springer-Verlag.

Microsoft Office FrontPage. [Online] Available at:

http://office.microsoft.com/en-gb/frontpage/default.aspx

Microsoft Office Visio. [Online] Available at:

http://office.microsoft.com/en-gb/visio/default.aspx

Miller, G.A., 1995. WordNet: a lexical database for English. Communications

of the ACM. 3(4), pp. 39-41.

253

Mitra, P. and Wiederhold, G., 2002. Resolving terminological heterogeneity in

ontologies. In: Proceedings of the Workshop on Ontologies and Semantic

Interoperability at the 15th European Conference on Artificial Intelligence. pp.

45-50. Lyon, France.

Mitra., P., Noy, N.F. and Jaiswal, A.R., 2004. OMEN: a probabilistic ontology

mapping tool. In: Workshop on Meaning Coordination and Negotiation at the

3rd International Conference on the Semantic Web. Hiroshima, Japan.

Mizoguchi, R., Vanwelkenhuysen, J. and Ikeda, M., 1995. Task ontology for

reuse of problem solving knowledge. In: Mars, N., ed. Towards very large

knowledge bases: knowledge building and knowledge sharing. pp. 46-57.

Amsterdam, Netherlands: IOS Press.

Moalla, N., Ouzrout, Y., Neubert, G. and Bouras, A., 2008. Model-driven

interoperability to enhance product data quality. In: Proceedings of the 1st

International Workshop on Model Driven Interoperability for Sustainable

Information Systems (MDISIS’08) in Conjunction with the CAiSE’08

Conference. 340, pp. 121-133. Montpellier, France. [Online] Available at:

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-340/

Molina, A., Ellis, T.I.A., Young, R.I.M. and Bell, R., 1995. Modelling

manufacturing capability to support concurrent engineering. Concurrent

Engineering Research and Applications. 3(1), pp. 29-42.

Nassehi, A., Liu, R. and Newman, S.T., 2007. A new software platform to

support feature-based process planning for interoperable STEP-NC

manufacture. International Journal of Computer Integrated Manufacturing.

20(7), pp. 669-683.

Neumann, G., Backofen, R., Baur, J., Becker, M. and Braun, C., 1997. An

information extraction core system for real world German text processing. In:

Proceedings of the ANLP-97, Washington, USA.

254

Notepad++. [Online] Available at: http://notepad-plus.sourceforge.net/uk/site.htm

Noy, N.F., Fergerson, R.W. and Musen, M.A., 2000. The knowledge model of

Protégé-2000: combining interoperability and flexibility. In: Proceedings of the

12th European Workshop on Knowledge Acquisition, Modelling and

Management. LNCS 1937, pp. 17-32.

Noy, N.F. and McGuinness, D.L., 2001. Ontology development 101: a guide

to creating your first ontology. Knowledge Systems Laboratory. [Online]

Available at: http://www.ksl.stanford.edu/KSL_Abstracts/KSL-01-05.html

Noy, N.F. and Musen, M.A., 2000. PROMPT: algorithm and tool for

automated ontology merging and alignment. In: Proceedings of the 17th

National Conference on Artificial Intelligence. Austin, TX, USA.

Noy, N.F. and Musen, M.A., 2003. The PROMPT suite: interactive tools for

ontology merging and mapping. International Journal of Human-Computer

Studies. 59, pp. 983-1024.

Noy, N.F. and Stuckenschmidt, H., 2005. Ontology alignment: an annotated

bibliography. In: Kalfoglou, Y., Schorlemmer, M., Sheth, A., Staab, S. and

Uschold, M., eds. Semantic Interoperability and Integration. Dagstuhl,

Germany: Dagstuhl Seminar Proceedings.

Nurmilaakso, J.-M., 2004. Supply chain scheduling and distributed parallel

simulation. Journal of Manufacturing Technology Management. 15(8), pp.

756-770.

Ontology Works Inc. [Online] Available at: http://www.ontologyworks.com

Otto, H.E., 2001. From concepts to consistent object specifications -

translation of a domain-oriented feature framework into practice. Journal of

Computer Science and Technology. 16(3), pp. 208-230.

255

PABADIS‟ PROMISE (Plant Automation based on Distributed Systems,

Product-oriented Manufacturing Systems for Re-Configurable Enterprises),

2006. Development of product and production process description language:

development of manufacturing ontology (PABADIS‟ PROMISE Ontology).

Work Package 3 Task 3.1. [Online] Available at:

http://www.uni-magdeburg.de/iaf/cvs/pabadispromise/dokumente/Del_3_1_Final.pdf

Pakalnickiene, E. and Nemuraite, L., 2007. Checking of conceptual models

with integrity constraints. Information Technology and Control. 36(3).

Panetto, H., Scannapieco, M. and Zelm, M., 2004. INTEROP NoE –

interoperability research for networked enterprises applications and software.

In: Meersman, R. et al, eds. On the Move to Meaningful Internet Systems.

OTM 2004 Workshops. LNCS 3292, pp. 866-882. Berlin Heidelberg: Springer.

Patil, L., Dutta, D. and Sriram, R., 2005. Ontology-based exchange of product

data semantics. IEEE Transactions on Automation Science and Engineering.

2(3), pp. 213-225.

Pease, R.A. and Niles, I., 2002. IEEE Standard Upper Ontology: a progress

report. The Knowledge Engineering Review. 17(1), pp. 65-70.

Pouchard, L., Ivezic, N. and Schlenoff, C., 2000. Ontology engineering for

distributed collaboration in manufacturing. In: Proceedings of the AIS2000

Artificial Intelligence and Simulation Conference. Tuscon, Arizona, USA.

Pretorius, A.J., 2004. Ontologies - introduction and overview. In: Chapter 2 of

MSc Thesis (Unpublished Version). Brussels, Belgium: Vrije Universiteit

Brussel.

Process Specification Language (PSL). [Online] Available at:

http://www.mel.nist.gov/psl

256

Protégé (Ontology Editor and Knowledge Acquisition System). [Online]

Available at: www.protege.stanford.edu

Rabe, M. and Gocev, P., 2008. Semantic web framework for rule-based

generation of knowledge and simulation of manufacturing systems. In:

Mertins, K., Ruggaber, R., Popplewell, K. and Xu, X., eds. Enterprise

interoperability III: new challenges and industrial approaches. pp. 397-409.

London, UK: Springer-Verlag.

Ray, S.R, 2004. NIST’s Semantic Approach to Standards and Interoperability.

PowerPoint Presentation. [Online] Available at:

http://ontolog.cim3.net/file/resource/presentation/NIST_Semantics--SteveRay_20040212a.ppt

Ray, S.R. and Jones, A.T., 2003. Manufacturing interoperability. In:

Proceedings of the 10th ISPE International Conference. pp. 535-540. Madeira

Island, Portugal.

Ray, S.R. and Jones, A.T., 2006. Manufacturing interoperability. Journal of

Intelligent Manufacture. 17, pp. 681-688.

Rector, A.L., 2003. Modularisation of domain ontologies implemented in

Description Logics and related formalisms including OWL. In: Proceedings of

the 2nd International Conference on Knowledge Capture. pp. 121-128. Florida,

USA.

Research Triangle Institute, 1999. Interoperability cost analysis of the U.S.

automotive supply chain. 99-1 Planning report prepared for the National

Institute of Standards and Technology. [Online] Available at:

http://www.nist.gov/director/prog-ofc/report99-1.pdf

Rodriguez, K. and Al-Ashaab, A., 2005. Knowledge web-based system

architecture for collaborative product development. Computers in Industry. 56,

pp. 125-140.

257

Ruggaber, R., 2006. ATHENA – Advanced Technologies for Interoperability of

Heterogeneous Enterprise Networks and their Applications. In: Konstantas,

D., Bourrières, J.-P., Léonard, M. and Boudjilida, N., eds. Interoperability of

enterprise software and applications. pp. 459-460. London, UK: Springer-

Verlag.

Schlenoff, C., Gruninger, M., Ciocoiu, M., Lee, J., 1999. The essence of the

Process Specification Language. Special Issue on Modelling and Simulation

of Manufacturing Systems in the Transactions of the Society for Computer

Simulation.

SCRA, 2006. STEP Application Handbook - ISO 10303 Version 3. [Online]

Available at: http://www.tc184-sc4.org/

Semantic Web Rule Language (SWRL). [Online] Available at:

http://www.w3.org/Submission/SWRL/

Semantic Web Rule Language (SWRL) Built-Ins. [Online] Available at:

http://www.daml.org/rules/proposal/builtins.html#8.1

Seo, W., Lee, S., Kim, K., Kim, B.-I. and Lee, J.Y., 2006. Product data

interoperability based on a layered reference ontology. In: Proceedings of the

1st Asian Semantic Web Conference. pp. 573-587. Beijing, China.

Shah, J.J., 1995. Parametric and feature-based CAD/CAM - concepts,

techniques and applications. New York, USA: Wiley.

Shvaiko, P. and Euzenat, J., 2008. Ten challenges for ontology matching. In:

Proceedings of the 7th International Conference on Ontologies, Databases

and Applications of Semantics. Monterrey, Mexico.

Siemens PLM Software Website. [Online] Available at:

http://www.plm.automation.siemens.com/en_gb/products/nx/

258

Simpson, T.W., 2004. Product platform design and customization - status and

promise. Artificial intelligence for engineering design, analysis and

manufacturing. 18(2), pp. 3-20.

Studer, R., Benjamins, V.R. and Fensel, D., 1998. Knowledge engineering:

principles and methods. Data and Knowledge Engineering. 25, pp. 161-197.

Stumme, G. and Maedche, A., 2001a. Ontology merging for federated

ontologies on the semantic web. In: Proceedings of the International

Workshop for Foundations of Models for Information Integration. Viterbo, Italy.

Stumme, G. and Maedche, A., 2001b. FCA-Merge: bottom-up merging of

ontologies. In: Proceedings of the 7th International Conference on Artificial

Intelligence. pp. 225-230. Seattle, WA.

Stumme, G., Taouil, R., Bastide, Y., Pasquier, N. and Lakhal, L., 2000. Fast

computation of concept lattices using data mining techniques. In: Proceedings

of the 7th International Workshop on Knowledge Representation Meets

Databases. pp. 21-22. Berlin.

Subrahmanian, E., Rachuri, S., Fenves, S.J., Foufou, S. and Sriram, R.D.,

2005. Challenges in supporting product design and manufacturing in a

networked economy: a PLM perspective. In: Proceedings of the International

Conference on Product Lifecycle Management. pp. 495-506.

Sudarsan, R., Fenves, S.J., Sriram, R.D. and Wang, F., 2005. A product

information modelling framework for Product Lifecycle Management.

Computer Aided Design. 37, pp. 1399-1411.

Szykman, S., Fenves, S., Keirouz, W. and Shooter, S., 2001. A foundation for

interoperability in next-generation product development systems. Computer

Aided Design. 33(7), pp. 545-559.

259

Tam, S., Lee, W.B., Chung, W.W.C. and Lau, H.C.W., 2000. An object-based

process planning and scheduling model in a product design environment.

Logistics Information Management. 13(4), pp. 191-200.

Taylor, B.N. and Thompson, A., eds., 2008. The international system of units.

National Institute of Standards and Technology (NIST) Special Publication

330.

TC184/SC4. Setting the standards for industrial data. [Online] Available at:

http://www.tc184-sc4.org/

The Open Group Architecture Framework (TOGAF). [Online] Available at:

http://www.togaf.org/

The Zachman Enterprise Framework. [Online] Available at:

http://www.zachmaninternational.com/

Thomas, H., Markscheffel, B. and Redmann, T., 2008. From subject to

concept clouds - why semantic mapping is necessary. In: Proceedings of the

1st International Conference on Knowledge Federation. Croatia: Inter

University Centre Dubrovnik.

Van Heijst, G., Schreiber, A.Th. and Wielinga, B.J., 1997. Using explicit

ontologies in KBS development. International Journal of Human-Computer

Studies. 45, pp. 183-292.

Vetere, G. and Lenzerini, P., 2005. Models for semantic interoperability in

Service-Oriented Architectures. IBM Systems Journal. 44(4), pp. 887-903.

Visser, P.R.S, Jones, D.M, Bench-Capon, T.J.M and Shave, M.J.R., 1997. An

analysis of ontology mismatches: heterogeneity vs. interoperability. In: AAAI

1997 Spring Symposium on Ontological Engineering. Stanford, USA.

260

Vujasinovic, M., Ivezic, N., Kulvatunyou, B. and Barkmeyer, E., 2007. An

industrial validation of a semantic-mediation architecture. USA: National

Institute of Standards and Technology. [Online] Available at:

http://www.mel.nist.gov/msidlibrary/doc/IEEE_validation.pdf

Wang, F., Fenves, S.J., Sudarsan, R. and Sriram, R.D., 2003. Towards

modelling the evolution of product families. In: Proceedings of the

International Design Engineering Technical Conferences and Computers and

Information in Engineering Conference/. Chicago, Illinois, USA.

Wang, H.H., Noy, N., Rector, A., Musen, M., Redmond, T., Rubin, D., Tu, S.,

Tudorache, T., Drummond, N., Horridge, M. and Seidenberg, J., 2006.

Frames and OWL side by side. In: 9th International Protégé Conference.

Stanford, California.

Web Ontology Language (OWL). [Online] Available at:

http://www.w3.org/TR/owl-features/

Westkämper, E., Schmidt, T. and Wiendahl, H.H., 2000. Production planning

and control with learning technologies - simulation and optimisation of

complex production processes. In: Leondes, G., ed. Knowledge-based

systems. New York Academic Press.

Wei, S., Qin-yi, M., Tian-yi, G., 2009. An ontology-based manufacturing

design system. Information Technology Journal. 8(5), pp. 643-656.

Wikipedia - The Free Encyclopaedia. [Online] Available at:

http://www.wikipedia.org

Williams, T.J., 1994. The Purdue Enterprise Reference Architecture.

Computers in Industry. 24(2-3), pp. 141-158.

261

Yang, D., Dong, M. and Miao, R., 2008. Development of a product

configuration system with an ontology-based approach. Computer-Aided

Design. 40, pp. 863-878.

Yang, M. and Yang, J., 2008. Machine-part cell formation in group technology

using a modified ART1 method. European Journal of Operational Research.

188(1), pp. 140-152.

Yang, Q.Z. and Zhang, Y., 2006. Semantic interoperability in building design:

methods and tools. Computer Aided Design. 38, pp. 1099-1112.

Ye, Y., Yang, D., Jiang, Z. and Tong, L., 2008. Ontology-based semantic

models for supply chain management. International Journal of Advanced

Manufacturing Technology. 37, pp. 1250-1260.

Yongtao, H. and Jingying, M., 2006. A knowledge-based auto-reasoning

methodology in hole-machining process planning. Computers in Industry. 57,

pp. 297-304.

Young, R.I.M. and Bell, R., 1993. Design by features - advantages and

limitations in machine planning integration. International Journal of Computer

Integrated Manufacturing. 6(1-2), pp. 105-112.

Young, R.I.M., Gunendran, G., Chungoora, N., Harding, J. and Case, K.,

2009. Enabling interoperable manufacturing knowledge sharing in PLM. In:

Proceedings of the 6th International Product Lifecycle Management

Conference. Bath, UK: University of Bath.

Young, R.I.M., Gunendran, A.G., Cutting-Decelle, A.F. and Gruninger, M.,

2007. Manufacturing knowledge sharing in PLM: a progression towards the

use of heavy weight ontologies. International Journal of Production Research,

45(7), pp.1505-1519.

262

Zhao, J., Cheung, W.M. and Young, R.I.M., 1999. A consistent manufacturing

data model to support virtual enterprise. International Journal of Agile

Management Systems. 1(3), pp. 150-158.

Zhou, X., Qiu, Y., Hua, G., Wang, H., Ruan, X., 2007. A feasible approach to

the integration of CAD and CAPP. Computer-Aided Design. 39, pp. 324-338.

263

APPENDICES

264

Determine the domain and scope of the ontology Strategic
Dimension

Consider reusing other ontologies/methods

List down important terms in the ontology

Define classes and class hierarchy

Define other ontological structures

Instantiate the ontology

Perform relevant ontological tests

Structural
Dimension

A The Knowledge Engineering Methodology and

IDEF5 Schematics for Ontology Development

A.1 The Knowledge Engineering Methodology

The Knowledge Engineering Methodology has been prescribed by Noy and

McGuinness (2001) and consists of a stepwise approach in the process of

developing ontologies. The diagram in Figure A-1 illustrates a typical ontology

development process following the Knowledge Engineering Methodology and

applied to this research work.

The first stage in the process is concerned with the specification of the

domain and scope of the ontology. Some questions that need to be asked at

this stage are, for example:

 What should the domain and scope of the ontology cover?

 Who are the parties involved in exploiting the ontology?

 For what types of questions should the concepts developed in the ontology

support answers to?

This first strategic dimension of the Knowledge Engineering Methodology is

generally accompanied by the definition of competency questions to be

Figure A-1 The Knowledge Engineering Methodology (Adapted
from Noy and McGuinness (2001))

265

answered after the ontology development process is performed. These

competency questions form part of a checklist for assessing whether the

objectives of the ontology have been achieved or not.

The second stage in the process involves the consideration for reusing other

ontologies and/or methods. This process also forms part of the strategic view

on the ontology. For example, in this research work, the Process Specification

Language ontology has been reused and formalised in the framework under

development. In this way, the time taken to develop an ontology can be

shortened.

The third process considers the enumeration of vital terms to go in the

ontology. It is important to list down the terms, concepts, verbs and

statements that fall within the scope of the ontology intended to be modelled.

This acts as a mind-map which can later be refined as the structural

dimension of the ontology is tackled.

As part of the structural dimension of an ontology, and subsequently a KB

based on the ontology, classes and the class hierarchy are first defined.

These capture the taxonomy, or backbone, of main concepts in the ontology.

Next, other ontological structures are modelled. These involve relations of the

required arities in order to bind classes together to create statements.

Ontological functions, which are a special case of relations, are also defined

at this stage. Relevant axioms governing the way in which ontological content

is to be formally interpreted are also specified.

The next stage consists of populating the ontology with instances of the

developed classes, and using the ontological structures to create fact

sentences, in order to capture discrete knowledge in the KB supported by the

ontology.

Relevant ontological tests are performed in order to investigate the extent to

which the initially-set competency questions are met.

266

A.2 IDEF5 Schematics

At present, the graphical representation of ontological content is partly

dependent on the implementation platform in which an ontology is being

modelled. There is currently no de facto ontology representation schematics

in order to aid the visual communication of ontological content. Diagrams

provided in the Unified Modelling Language (UML), for example, UML class

diagrams or EXPRESS-G schematics could be exploited towards the

graphical representation of ontologies. However, the unique issue with similar

diagrams is that they do not allow the complete representation of certain types

of relations, notably higher-arity relations.

After careful scrutiny, it was discovered that the IDEF5 schematic language

(Knowledge Based Systems Inc., 1994) serves as a very suitable candidate

for allowing the informal representation of ontological content in the form of

schematics with a clear set of primitive semantics. Figure A-2 identifies the

primitive symbols from the IDEF5 schematic language exploited in this work.

Note that because no commercial tool is currently available for drawing IDEF5

schematics, a Microsoft Visio template has been constructed for optimising

the reuse of symbols in the IDEF5 schematic language.

An overview on how the various symbols are put together to represent

ontological content is next identified. Figure A-3 illustrates how a taxonomy of

Figure A-2 Microsoft Visio Template and Symbols Used in the IDEF5 Schematic
Language

267

classes is organised by using “kind symbols” and the “2-place second order

relation symbol” with or without labelling (note that the relation without the

“sup” labelling assumes the same semantics as with the “sup” labelling. Both

refer to the notion of “has super-class”). In the event that a certain class

possesses a hidden taxonomy of its own, this is represented using the symbol

“kind with hidden classification”.

IDEF5 schematics can also be used to capture statements about how classes

are bound together through relations of various arities. Figure A-4 depicts a

binary relation (of arity 2) named “occurrence_of” which binds the classes

“Activity_Occurrence” and “Activity”, read in the direction of the arrows. In the

figure, two alternative ways of representing the same information is illustrated.

Relations of higher arities can readily be captured using the IDEF5 schematic

language. The diagram portrayed in Figure A-5 exemplifies a ternary relation

(of arity 3), called “participates_in”, which involves three argument classes to

one relation. The way in which the relation is read follows the order in which

the numbers appear in the relation. In this case the interpretation would state

sup sup

C

Object

Origin

Activity
Activity_

Occurrence

Timepoint

Figure A-3 Representing a Taxonomy of Classes
Using IDEF5 Schematics

Activity_

Occurrence
Activity

occurrence_of Activity_

Occurrence
occurrence_of Activity

Figure A-4 Alternative Ways of Representing a Binary Relation between Two Classes
Using IDEF5 Schematics

268

that the class “Object” in the first argument position “participates_in” the class

“Activity_Occurrence” in the second argument position at the class

“Timepoint” in the third argument position.

Instances are organised using the “2-place second order relation symbol” with

the directive “inst” as a label to the relation. The “inst” labelling captures the

“instance-of” relation that holds between classes and their individuals. Figure

A-6 illustrates two instances of the class “Timepoint” namely “inf-“ and “inf+”.

Similar to the way in which classes can be bound to relations, individuals

(instances) can also be stated as being bound to the relations inherited from

the classes that the individuals instantiate. Overall, IDEF5 schematics provide

an attractive way of organising and representing ontological content prior to

implementation in a suitable ontological environment. In other words, IDEF5

schematics help obtain a platform independent model of ontological

information, which an important facet in Model Driven Architectures.

1

2

3

participates_in

Activity_

Occurrence

C

Object Timepoint

Figure A-5 Representing a Ternary Relation among Three Classes Using
IDEF5 Schematics

in
st

in
st

inf- inf+

Timepoint

Figure A-6 Organising Instances of Classes Using IDEF5 Schematics

269

B Justification of the Chosen Common Logic-Based

Ontological Formalism

B.1 Introduction

The present capability that ontology-based approaches offer to formally

represent and share product design and manufacture semantics is partly

dependent on the choice of ontology representation formalism. Since there

currently exists a spectrum of these formalisms, it is an important requirement

to understand which family of formalisms allows the expressive capture and

representation of product design and manufacture semantics (see

Requirement 4a, section 3.3.4.1). The aim of this chapter is to justify the

choice of the Common Logic-based formalism used throughout this work, as a

viable direction to meet the semantic interoperability needs across product

design and manufacture. In order to establish this direction, two recognised

heavyweight ontological formalisms are first explored and tested, namely:

 Frames and First Order Logic (Gómez-Pérez et al, 2004). In this case,

Protégé Frames with its first order constraint language PAL (Protégé

Axiom Language) are investigated in section B.2.

 Description Logics (Gómez-Pérez et al, 2004). In this case, the Web

Ontology Language (OWL) with the rule language SWRL (Semantic Web

Rule Language) are investigated in section B.3.

The main focus of investigating the two above-mentioned ontological

formalisms is to identify their potentials and limitations for expressively

capturing and representing entity information and process semantics, a

significant requirement which the framework concept needs to satisfy. In the

explorations, sample ontologies are constructed following the knowledge

engineering methodology prescribed by Noy and McGuiness (2001). Section

B.4 then covers the main reasons why Common Logic-based formalisms

possess better semantic capabilities compared to the two analysed

formalisms. Finally, section B.5 summarises this appendix.

270

B.2 An Exploration of Frames with a First Order Constraint

Language

B.2.1 Aim of Investigation

The aim of this exploration is to comprehensively evaluate the capabilities and

suitability of Frames with a first order constraint language as ontological

formalism to model heavyweight entity information and process semantics.

Following the knowledge engineering methodology (Noy and McGuiness,

2001), a number of competency questions have been identified. The

significance of the competency questions is such that at the discussion stage,

these questions can be checked against the observations made in order to

propose appropriate recommendations. In this first study, the following list of

competency questions has been formulated:

 Is Frames with a first order constraint language sufficiently expressive to

support the representation of entity information semantics?

 Is Frames with a first order constraint language sufficiently expressive to

support the representation of process semantics?

 Is it possible using Frames with a first order constraint language to specify

entity information and process semantic relationships?

B.2.2 Objectives

A number of objectives has been identified in order to meet the aim of the

investigation:

 Firstly, it is required to verify the extent to which the semantics of different

contexts can be captured in a Machining Hole Feature Ontology. Basic

entity information semantics are being considered partly from an external

source (Canciglieri, 1999) and a view on STEP 10303-224, whilst selected

Process Specification Language (PSL) concepts provide the fundamental

process semantics.

271

 To use Protégé Frames with the Protégé Axiom Language (PAL) as

heavyweight ontological formalism in the Protégé version 3.4 ontology

environment (Protégé Website, 2009). This is primarily because the

Protégé environment is consensually regarded as the most mature tool for

knowledge modelling (PABADIS‟ PROMISE Deliverable 3.1, 2006).

B.2.3 Machining Hole Feature Ontology

A number of reasons account for the choice of a Machining Hole Feature

Ontology in the first instance. The main one lies in the fact that the test

ontology acts as a suitable starting point as it regroups three contexts (not be

to be confused with namespaces in this case). These contexts involve a

manufacturing process viewpoint to capture process semantics and a feature

representation coupled with a geometry context to capture entity information

semantics of hole features from a machining and GD & T viewpoint. The

second reason is concerned with feature information serving as the bridge to

a high level integration between design, analysis, process planning and

manufacturing (Zhou et al, 2007), hence implying that certain relationships

can be captured between process and entity information semantics in the test

ontology.

B.2.3.1 Entity Information Semantics

Several classes and their respective taxonomy, relationships to other classes,

ontological functions and instances have been defined for capturing entity

information semantics following the ontology development procedure. Figure

B-1 which follows identifies a screenshot of the Machining Hole Feature

Ontology developed in the Protégé environment. A number of ontological

entities are highlighted in the diagram along with short comments detailing the

nature of these entities.

Consider the concrete class “Simple Hole” (A) found in the hierarchy of the

abstract class “Machining Hole Feature” (B). The latter can purposely be

made abstract so as to imply that it cannot have direct instances or

272

individuals, meaning any machining hole feature should in fact exist as an

instance of one of the concrete subclasses of the abstract class. Instances

are regarded as being the most specific concepts represented in a knowledge

base (Noy and McGuiness, 2001). In the figure, for example, it is possible to

depict an instance of “Simple Hole” named “Hole 13.00” (C).

The ontological formalism under investigation also allows binary relations to

be captured. Binary relations are ontological entities that bind two sets of

classes or arguments together. The “hasDimension” (D) relation in Figure B-1

is an example of a binary relation defined to relate the class “Simple Hole” (A)

to a union of the classes “Diameter” (E) and “Depth” (F). An example of an

ontological function is the parameter called “Name” (G), whose value is of

type string. This function (in the ontological sense) works very similar to

attributes in Object-Oriented languages.

In
s
ta

n
c
e

-o
f

Binary
Relation

Function

(A)

(B)

(C)

(D)

(E)

(F)

(G)

Figure B-1 Entity Information Semantics in the Machining Hole Feature Ontology

273

So far, the types of entity information semantic structures exposed remain

lightweight in nature. In order to account for heavyweight semantics in the

ontology, an additional axiom layer is required. The capability to do so is

dependent on the specification of axioms or integrity constraints using the

Protégé Axiom Language (PAL). This constraint language accommodates first

order semantics which is very expressive.

The underlying philosophy of PAL is model-checking (Protégé Website, 2009)

and hence, PAL-formalised integrity constraints are used in the heavyweight

approach to restrict the interpretation of ontological entities. These constraints

are primarily written to ascertain that the semantic structures are carefully

respected when knowledge is asserted in the ontology and are an essential

asset for the capture of semantics and intent. In order to verify whether

asserted ontological knowledge violates or conforms to semantics, integrity

constraints can be processed and a number of results are retained in the

event that these constraints are infringed. In other words, integrity constraints

contribute to the semantic integrity and enrichment of ontologies.

In the Machining Hole Feature Ontology, a number of integrity constraints

have been specified. The expression listed next (Expression B-1) gives an

example of a simple integrity constraint axiom whose purpose is to ensure

that all instances of the class “Simple Hole” (A) are only allowed to have

exactly two allowable related dimensional parameters and it is compulsory

that these parameters include one instance of the class “Diameter” (E) and

one instance of the class “Depth” (F) (see Figure B-1). If, for example, an

instance of “Simple Hole” were asserted as having (1) more than two related

dimensional parameters or (2) a combination of two dimensional parameters

that did not comprise of a diameter and a depth or (3) no dimensional

parameters at all, then an execution of the PAL constraint would show that

this instance violates the constrained semantics captured in the integrity

constraint.

274

B.2.3.2 Process Semantics

A number of relevant ontological entities are considered for the definition of

machining process semantics. Some of these notions derive from PSL since

the latter explicitly and clearly defines the concepts intrinsic to manufacturing

process information (Schlenoff et al, 1999). Hence, for describing the

semantics of machining sequences, it is necessary to characterise processes

such as “Centre Drilling” (H) (see Figure B-2) in terms of their beginning and

completion times. In Figure B-2, two binary relations are present namely

“hasStartTime” (I) and “hasEndTime” (J), which directly relate instances of the

concrete subclasses of “Hole Machining Operation” (K) to instances of the

class “Timepoint” (L). Another binary relation named “precedes” (M) has been

defined with the intention of permitting the specification of precedence

relationships over processes. From Figure B-2, it can also be seen that there

is the notion of the class “Timepoint” (L) and a binary relation named “before”

(N) that only holds between timepoints and provides linear ordering over

timepoints. A timepoint instance also has a floated value type hence the

“hasValue” (O) ontological function.

To attempt at capturing some of the heavyweight axioms governing the

relation “before” (N) from PSL, PAL statements are written. Expression B-2

identifies one axiom that constraints the “before” (N) relation by assigning an

irreflexive property to the relation. This expression informally states that if

(defrange ?hole :FRAME „Simple Hole‟)
(defrange ?dia :FRAME „Diameter‟)
(defrange ?depth :FRAME „Depth‟)
(forall ?hole
 (=> (instance-of ?hole „Simple Hole‟)
 (and (= (number-of-slot-values hasDiameter ?hole) 2))
 (exists ?dia (exists ?depth
 (and (instance-of ?dia „Diameter‟)
 (instance-of ?depth „Depth‟)
 (hasDimension ?hole ?dia)
 (hasDimension ?hole ?depth)))))))

Expression B-1 A Simple Integrity Constraint Written in the Protégé
Axiom Language (PAL)

275

there is a timepoint, then this timepoint can never happen before itself.

Furthermore, a second axiom placed on the “before” (N) relation depicts the

transitive nature of the relation i.e. if a timepoint ?t1 is before another

timepoint ?t2 which is before another timepoint ?t3, then it is evident that ?t1

is before ?t3. The statement in Expression B-3 captures the transitive property

of the relation.

Function

Relation to
Other

Processes

Relation to
Timepoints

(H)

(I)

(J)

(K)

(L)

(M)

(N)

(O)

Figure B-2 Process Semantics in the Machining Hole Feature Ontology

(defrange ?t1 :FRAME Timepoint)
(forall ?t1

(=> (instance-of ?t1 Timepoint)
 (not (before ?t1 ?t1))))

Expression B-2 Irreflexive Axiom for the
“before” Relation

276

B.2.3.3 Entity Information and Process Semantic Relationships

As previously discussed in section 3.3.2 (Requirement 2), providing semantic

relationships among viewpoints conveys the capability to link entity

information semantics to process semantics in a knowledgeable way. For

example, in manufacturing, the dimensional and tolerance parameters of

features have a direct influence on the choice of machining processes.

In order to further explore this understanding in the “Machining Hole Feature

Ontology” using Protégé Frames and PAL, a binary relation called

“canBeManufacturedUsing” (P) has been defined (see Figure B-3). This

relation binds the subclasses of “Machining Hole Feature” (B) to subclasses

of “Hole Machining Operation” (K) so that it can, for example, be stated that

an instance “Hole 13.00” (C) of the class “Simple Hole” (A) can be

manufactured using some instance of the class “Drilling” (Q).

To support the knowledge which leads to the decision of which machining

operation can be used to manufacture a certain machining hole feature,

knowledge contained in tables from ISO Tolerance Band and machining

processes associated with ISO IT Tolerance Grade (ISO 286-2, 1988) are

exploited. Figure B-4 briefly demonstrates this knowledge acquisition process

facilitated through the heavyweight formalisation of a relevant subset of the

knowledge using PAL statements.

(defrange ?t1 :FRAME „Timepoint‟)
(defrange ?t2 :FRAME „Timepoint‟)
(defrange ?t3 :FRAME „Timepoint‟)
(forall ?t1 (forall ?t2 (forall ?t3
 (=> (and (before ?t1 ?t2)
 (before ?t2 ?t3))
 (before ?t1 ?t3)))))

Expression B-3 Transitive Axiom for the
“before” Relation

277

The main reason which accounts for the use of information from ISO IT

Tolerance Grade is because ISO Tolerance Band tables provide different

ranges of dimensions and tolerances that different IT Grades can achieve.

These IT Grades are reflected in the machining process table relating various

machining processes and their corresponding IT Grade capabilities (see

Figure B-4). For example, knowing that a reaming process can achieve

nominal dimensions and dimensional tolerances in the range between IT5 and

IT9 both inclusive (R), then if the diameter of an instance of “Simple Hole” (A)

is between 10 mm (exclusive) and 18 mm (inclusive) (S) with an absolute

value for the diameter tolerance between 0.008 mm and 0.043 mm both

inclusive (T) based on ISO Tolerance Band tables, this would imply that the

simple hole feature fits the reaming process criteria (U).

Figure B-3 Example of a Semantic Relationship between Entity Information and
Process Semantics

Binary
Relation

(A)

(B)

(C)

(P)

(K)

(Q)

(V)

(W)

278

Figure B-5 illustrates the result of evaluating the PAL constraint. The query

responses clearly show that two instances of “Simple Hole” (A) conform to the

formalised reaming constraint. This further implies that any instance of the

class “Simple Hole” (A) that satisfies the reaming constraint can in fact exist

as a “Reamed Hole” (V) which can in turn be produced by some defined

“Reaming” process (W) (see Figure B-3). Such information can additionally be

asserted in the ontology.

(R)

(S)

(T)

(U)

Figure B-4 Formalising Heavyweight Semantic Relationships across Contexts Using
the Protégé Axiom Language (PAL)

Figure B-5 Example of Query Responses Processed from a PAL Constraint

279

B.2.4 Discussions

The basic, primarily lightweight, representation of entity information and

process semantics and their corresponding relationships is achievable

through the specification of classes and their taxonomy accompanied by

relations and ontological functions that hold for specific classes and between

classes respectively. Furthermore, it is evident that the specification of an

ontological axiom layer provides the additional heavyweight semantic

structures needed to constrain and verify the interpretation of semantics at

computational level. This axiom layer provides an enhanced basis for

capturing semantically-enriched ontological concepts, formalised as a set of

integrity constraints written in the Protégé Axiom Language (PAL).

Competency questions set in section B.2.1 are reviewed next.

 Is Frames with a first order constraint language sufficiently expressive to

support the representation of entity information semantics?

It is possible to conclude that Frames with a first order constraint language

can be used to capture and represent the most critical types of entity

information semantics, from a research scope point of view. However, the

extent to which this ontological formalism is able to model more complex

entity information semantics is debatable. For example, the ontological

formalism only allows the representation of binary relations, which are

relations that hold between two sets of classes. This could pose a problem if a

relation should hold between three sets of classes. As an example, suppose a

relation needs to be defined to express the positional tolerance of a feature.

Then, it is very likely that this relation needs to encompass three sets of

classes namely (1) the feature that holds the (2) positional tolerance with

respect to some (3) toleranced dimension. Such a relation is referred to as a

ternary relation as it involves three arguments. Higher-arity relations, i.e.

relations with three arguments or more, cannot be captured using Frames

with a first order constraint language.

280

 Is Frames with a first order constraint language sufficiently expressive to

support the representation of process semantics?

To an appreciable extent, some of the very basic ontological entities

fundamental for expressing process semantics have been represented. The

ontological formalism allows some relations, pertinent to the description of

manufacturing process sequences, to be defined. For example, it has been

possible to probe into a subset of the semantics of the “before” (N) relation.

However, more complex semantics from PSL cannot be represented since

they involve, to a large extent, higher-arity relations and functions (in the

ontological sense). Therefore, this where it is primarily perceived that

heavyweight Frames with a first order constraint language does not provide

sufficient expressivity. The issue with capturing PSL-based process semantics

is further scrutinised in section B.3.

 Is it possible using Frames with a first order constraint language to specify

entity information and process semantic relationships?

It has been possible to gather an understanding that as long as the defined

relationships between entity information and process semantics remain binary

relations, the ontological formalism is proficient. The investigation has shown

that complex integrity constraints (see Figure B.4) can be specified using

PAL. However, in certain cases, if PAL statements involve several different

variables to be processed, then query time and responses tend to breakdown.

This applies to any PAL constraint, viewed as being overly complex, although

the latter could be syntactically sound. This drawback, however, is likely to be

related to a limitation of the ontological environment itself rather than the

ontological formalism.

281

B.3 An Exploration of OWL with a Rule Language

B.3.1 Aim of Investigation

The previous exploration suggests that process semantics based on the

Process Specification Language (PSL) are the most intricate and difficult to

capture and formalise compared to entity information semantics and semantic

relationships across viewpoints. Hence, the investigation explained in this

section is fully dedicated to the formalisation of PSL semantics, by exploiting

another heavyweight ontological formalism namely the Web Ontology

Language (OWL) with the Semantic Web Rule Language (SWRL) (W3C

Website, 2009). It is to be noted that previous work indicates that OWL is

capable of modelling entity information semantics (AIM@SHAPE Product

Design Ontology, 2004; Kim et al, 2006; Chungoora and Young, 2008b) and,

therefore, this exploration only targets the core issue of process semantics. In

this study, a single key competency question is present:

 Is OWL with SWRL sufficiently expressive to support the representation of

PSL-based process semantics?

B.3.2 Objectives

The objectives identified in order to meet the aim of the investigation are:

 It is essential to understand to what extent can PSL semantics be captured

using OWL and SWRL. This is to be tested through the formalisation of

concepts from the PSL Core theory involving PSL primitives and axioms.

 To use a combination of OWL Full, Description Logic-based ontological

formalism, with SWRL in the Protégé OWL ontology development

environment (Protégé version 3.4). Throughout this study, for simplicity,

only the term OWL and SWRL are used.

282

B.3.3 Modelling PSL Core Semantics Using OWL with SWRL

B.3.3.1 PSL Core Original Semantics

The purpose of PSL Core is to axiomatise a set of intuitive semantic primitives

that is adequate for describing the fundamental concepts of manufacturing

processes (PSL Website, 2009). There are four kinds of entities that are

required for describing process semantics namely:

 Activities which are reusable behaviours in the domain.

 Activity occurrences which are runtime executions of activities.

 Timepoints which provide a linear ordering of the points at which activity

occurrences are taking place.

 Objects which are entity information semantics that are neither activities,

nor activity occurrences nor timepoints.

PSL Core (refer to Appendix C if needed) consists of (1) a primitive and

defined lexicon that identifies the basic semantic structures i.e. classes,

relations, ontological functions and individuals, (2) a series of axioms that

ensure semantic integrity of the ontology and (3) supporting definitions that

provide rules for inference purposes (not investigated in this study as they are

essentially axioms too). The following section, therefore, demonstrates how

OWL with SWRL can be employed to attempt at modelling PSL semantics.

B.3.3.2 Classes and Binary Relations

OWL allows all PSL classes and binary relations (called properties in OWL) to

be easily captured in the ontology. Note that at this stage, only the purely

lightweight semantics are under consideration. Figure B-6 identifies the four

classes and five binary relations that exist in PSL Core.

283

B.3.3.3 Ternary Relations Approximation to Binary Relations

Since OWL only allows binary relations that hold between two sets of classes,

i.e. two arguments, to be represented, ternary relations from PSL Core cannot

be exactly represented in the OWL ontology. The most obvious and probably

closest approximation to a ternary relation in OWL can be obtained by

specifying the relation to be binary in nature. Such a binary relation

approximation to a ternary relation has one domain (A) to reflect one

argument to the relation, with a range consisting of a union of two classes (B)

to reflect the other two class arguments to the relation (see Figure B-7). It is

also possible to break down a ternary relation to form two separate binary

relations, but this aspect is not discussed in this study.

Figure B-7 depicts how the original semantics from the ternary relation

“participates_in” should be interpreted versus a binary relation approximation

of the “participates_in” relation specified in OWL. The ternary “participates_in”

relation has been illustrated using a simple IDEF5 schematic. The figure also

shows all the other binary relations that are used to approximate ternary

relations from the original PSL Core ontology.

Figure B-6 Classes and Binary Relations from PSL Core in OWL

284

B.3.3.4 Unary Functions Approximation to Binary Relations

Functions in ontological terms may be regarded as being particular traits that

can hold for the individuals of classes in order to denote individuals from other

classes. Two unary functions are present in original PSL Core semantics and

they are (1) “beginof” and (2) “endof”. In the informal semantics of PSL Core,

it is said that the begin of and end of activity occurrences or objects are

timepoints. So, for example, the beginning of an activity occurrence

“Drill_Hole_1” can be used to denote a specific timepoint i.e. (beginof

Drill_Hole_1) denotes some timepoint ?t, although ?t does not need to be

identified in the ontology since “beginof” “Drill_Hole_1” is known.

Functions like “beginof” and “endof” that are used to define the individuals of a

class using individuals from another class cannot be specified in OWL.

However, OWL does account for datatype properties which are very similar to

unary functions used to associate float, integer, string and other types of

values to individuals of classes. Due to the inability to model PSL functions in

OWL, approximations to these have to be made. In the investigated OWL

version of PSL Core, the original “beginof” and “endof” unary functions are

Figure B-7 Example of a Ternary Relation Approximation to a Binary
Relation in OWL

IDEF5 Schematic
of a Ternary
Relation in PSL

(A) (B)

285

modelled as binary relations. Figure B-8 next illustrates how these binary

relations in OWL attempt to capture the semantics behind unary functions,

although original semantics are not preserved.

B.3.3.5 Individuals

Two individuals are present from PSL Core theory and they are “inf-“ and

“inf+”. These are instances of the class “Timepoint” and are used in the theory

to refer to the timepoints that are before and after all other timepoints

respectively. Figure B-9 below shows the two individuals of the class

“Timepoint”. Note that they have been renamed to “inf_minus” (C) and

“inf_plus” (D) respectively because the symbol “+” cannot be used in the

name string of an individual in the Protégé OWL environment.

Figure B-8 Example of a Unary Function Approximation to a Binary Relation
in OWL

Figure B-9 Capturing Individuals from PSL Core in OWL

(C)

(D)

286

B.3.3.6 PSL Core Axioms

Until now, only the modelling of basic ontological structures of the PSL Core

ontology have been explained. Heavyweight ontology development involves,

apart from basic ontological structures, axioms or rules that are formalised to

ensure the semantic integrity of the ontology.

Although OWL can be used to capture some notions of integrity constraints as

necessary and necessary and sufficient conditions of classes, the

representation of more complex constraints is either not straightforward or

cannot be formalised. SWRL, on the other hand, has specifically been

developed for adding an extra logic layer to OWL ontologies and to an extent

allows more complex rules to be captured where these axioms are written in

Horn-type logic. In the Protégé OWL ontology editor, a number of SWRL built-

ins have been developed to improve the reasoning infrastructures of OWL

ontologies. Documented next is a detailed account of how OWL with SWRL

can be used to model the axioms from PSL Core.

Axiom 1 The before relation only holds between timepoints.

The semantics from the logical expression that governs Axiom 1 can readily

be satisfied through the specification of the domain and range of the binary

relation "before". The domain is the class “Timepoint” as well as the range.

Axiom 2 The before relation is total ordering.

This axiom states that if there are any two timepoints, then in the domain,

these two timepoints can either be the same individuals, or take place before

each other. OWL on its own cannot be used to specify such an axiom, and,

therefore, in this case, SWRL is used to write it. However, this axiom cannot

be captured in a single statement in SWRL primarily because SWRL does not

support disjunctions of atoms i.e. logical statements involving “or”. So, three

SWRL statements have to be written in Expression B-4 in order to capture the

single axiom.

287

Axiom 3 The before relation is irreflexive.

This axiom states that an instance of the class “Timepoint” cannot be before

itself. In order to capture this axiom in SWRL, the statement has to be worked

around to preserve original semantics. This is because SWRL does not

support negation as failure in its rules i.e. logical statements involving “not”.

The rule listed in Expression B-5 approximates PSL Core Axiom 3 and

captures the fact that if one timepoint ?t1 is before a timepoint ?t2, then ?t1

must be different from ?t2.

Axiom 4 The before relation is transitive.

This axiom can be fully captured in OWL on its own because of its support for

relations as having transitive properties.

Axiom 5 The timepoint inf_minus is before all other timepoints.

This axiom has to be slightly worked around in SWRL due to the fact that

SWRL does not support negation as failure e.g. to imply that the timepoint ?t

is not the individual “inf_minus”, the “tbox:notEqualTo” built-in in used in the

expression below (Expression B-6) to convey the same semantics.

Axiom 6 Every other timepoint is before inf_plus.

For the same reason as in Axiom 5, a minor work around results in the SWRL

statement listed next (Expression B-7), with original semantics preserved.

Timepoint(?t1) ^ Timepoint(?t2) → sameAs(?t1, ?t2)
Timepoint(?t1) ^ Timepoint(?t2) → before(?t1, ?t2)
Timepoint(?t1) ^ Timepoint(?t2) → before(?t2, ?t1)

Expression B-4 SWRL Expression for PSL Core Axiom 2

Timepoint(?t1) ^ Timepoint(?t2) ^ before(?t1, ?t2) →
differentFrom(?t1, ?t2)

Expression B-5 SWRL Expression for PSL Core Axiom 3

Timepoint(?t) ^ tbox:notEqualTo(?t, inf_minus) →
before(inf_minus, ?t)

Expression B-6 SWRL Expression for PSL Core Axiom 5

288

Axiom 7 Given any timepoint ?t other than inf_minus and inf_plus, there is a timepoint
between inf_minus and ?t.

The original axiom is used to imply the existence of some timepoint ?u that

always lies between the timepoint inf_minus and another timepoint ?t. In

OWL, it is not possible to refer to instance values like “inf_minus” within

existential restrictions. When SWRL is used to formalise the semantics of

Axiom 7, Expression B-8 is captured where the semantics of the SWRL

expression differs slightly from the original version because SWRL

expressions cannot accommodate existential quantification.

Axiom 8 Given any timepoint ?t other than inf_plus and inf_minus, there is a timepoint
between ?t and inf_plus.

The same problem and partial solution to the problem is encountered in

Axiom 8 as in Axiom 7. Expression B-9 listed next exposes the SWRL rule.

Axiom 9 Everything is either an activity, activity occurrence, timepoint or object.

In the PSL Core theory, Axiom 9 implies that only the classes “Activity”,

“Activity_Occurrence”, “Timepoint” and “Object” are instantiable. This can

readily be accounted for in OWL.

Timepoint(?t) ^ tbox:notEqualTo(?t, inf_plus) →
before(?t, inf_plus)

Expression B-7 SWRL Expression for PSL Core Axiom 6

Timepoint(?t) ^ Timepoint(?u) ^ tbox:notEqualTo(?t, ?u) ^
tbox:notEqualTo(?t, inf_plus) ^ tbox:notEqualTo(?t, inf_minus) ^
tbox:notEqualTo(?u, inf_plus) ^ tbox:notEqualTo(?u, inf_minus) →
between(?u, inf_minus) ^ between(?u, ?t)

Expression B-8 SWRL Expression for PSL Core Axiom 7

Timepoint(?t) ^ Timepoint(?u) ^ tbox:notEqualTo(?t, ?u) ^
tbox:notEqualTo(?t, inf_plus) ^ tbox:notEqualTo(?t, inf_minus) ^
tbox:notEqualTo(?u, inf_plus) ^ tbox:notEqualTo(?u, inf_minus) →
between(?u, inf_plus) ^ between(?u, ?t)

Expression B-9 SWRL Expression for PSL Core Axiom 8

289

Axiom 10 Objects, activities, activity occurrences, and timepoints are all distinct kinds
of things.

The specification of disjointness among the classes “Activity”,

“Activity_Occurrence”, “Timepoint” and “Object” ensures that this axiom is

satisfied (see Figure B-10). OWL supports the specification of disjoint classes.

Axiom 11 The occurrence relation only holds between activities and activity
occurrences.

The semantics from the logical expression that governs Axiom 11 can readily

be satisfied through the specification of the domain and range of the binary

relation "occurrence_of", where the domain is the class “Activity_Occurrence”

while the range being the class “Activity”.

Axiom 12 Every activity occurrence is an occurrence of some activity.

Although the original axiom involves an existential quantifier, yet, a necessary

condition to the class “Activity_Occurrence” can be specified in OWL, and this

fully preserves original semantics. The figure next (Figure B-10) identifies how

it can be made compulsory that the specification of an instance of the class

“Activity_Occurrence” needs to be accompanied by the specification of an

“occurrence_of” some instance of “Activity”.

Axiom 13 An activity occurrence is associated with a unique activity.

By specifying that the "occurrence_of" relation is a functional binary relation,

this axiom can be captured in OWL, thereby preserving the semantics that the

original Axiom 13 carries.

Figure B-10 Adding a Necessary Condition to
Capture PSL Core Axiom 12

290

Axiom 14 The begin and end of an activity occurrence or object are timepoints.

Since OWL does not support the capture of functions, with the “beginof” and

“endof” unary functions approximated to binary relations, a specification of the

domain of both relations to be the class “Timepoint” with the range being the

union of the classes “Activity_Occurrence” and “Object” attempts to capture

the semantics of Axiom 14 (see Figure B-8). However, the approximation only

provides an acceptable work around of the original axiom.

Axiom 15 The begin point of every activity occurrence is before or equal to its end
point.

By treating the unary functions “beginof” and “endof” as relations, the

semantics of Axiom 15 can be covered using SWRL. The SWRL statement is

identified next (Expression B-10).

Axiom 16 The participates_in relation only holds between objects, activity
occurrences, and timepoints, respectively.

Since the original “participates_in” ternary relation is approximated to a binary

relation to allow implementation in OWL Full with SWRL, a specification of the

domain and range of the relation ensures that it holds between the three

classes “Object”, “Activity_Occurrence” and “Timepoint”. However, the initial

ternary relation semantics are lost in the approximation process.

Axiom 17 An object can participate in an activity occurrence only at those timepoints
at which both the object exists and the activity is occurring

This axiom informally states that if an object ?x is participating in an activity

occurrence ?occ at a timepoint ?t, then it means that ?x exists at this

timepoint ?t and that the activity occurrence ?occ is occurring at the same

timepoint ?t. With “participates_in” approximated to a binary relation, the full

semantics of the axiom can be captured in SWRL as follows (Expression B-

11).

Activity_Occurrence(?occ) ^ Timepoint(?t1) ^ Timepoint(?t2)
^ beginof(?t1, ?occ) ^ endof(?t2, ?occ) → beforeEq(?t1, ?t2)

Expression B-10 SWRL Expression for PSL Core Axiom 15

291

B.3.4 Verification of the OWL with SWRL Model of PSL Core

In order to delimit OWL used in conjunction with SWRL to model the PSL

Core ontology, a simple scenario has been explored where a few individuals

have been instantiated with some basic fact sentences asserted to these

instances. Figure B-11 provides an IDEF5 schematic that depicts all the

individuals defined with all relations asserted among them.

Figure B-11 IDEF5 Schematic of Asserted Instances in the OWL with SWRL-Formalised
PSL Core Ontology

before inf_minus
Centre_Drill

_Start

before

Centre_Drill

_Finish
before Drill_Start

before Drill_Finish

before

Counterbore

_Start

Counterbore

_Finish

before

before inf_plus

Centre_Drill

_Cylinder

Drill_Hole_1

Counterbore

_Hole_2

endof

endof

endof

beginof

beginof

beginof

Centre_Drill

occurrence_of

Drill

occurrence_of

Counterbore

occurrence_of

Cylinder

participates_in

p
a
rticip

a
te

s_
in

Instances of Timepoint

Instance of Object

Instances of Activity_Occurrence

Instances of Activity

Centre Drill -> Drill -> Counterbore

(E)

(F)

(G)

(H) (I)

(J)

Object(?x) ^ Activity_Occurrence(?occ) ^ Timepoint(?t) ^
participates_in(?x, ?occ) ^ participates_in(?x, ?t) →
exists_at(?x, ?t) ^ is_occurring_at(?occ, ?t)

Expression B-11 SWRL Expression for PSL Axiom 17

292

The scenario highlighted is based on a typical machining process sequence

for the creation of a standard counterbore hole on a cylindrical part. The

sequence informally consists of an execution of “Centre_Drill” (E) followed by

an execution of “Drill” (F) followed by an execution of “Counterbore” (G). The

instance “Cylinder” (H) initially participates in “Centre_Drill_Cylinder” (E) at the

timepoint “Centre_Drill_Start” (I). Each activity occurrence is then sequentially

carried out.

B.3.4.1 Expected Results

Based on the scenario identified in Figure B-11, it is clear that certain key

results are expected on running SWRL rules that attempt to model the

relevant PSL axioms. In this section, three of these axioms are considered

although during the actual experiment, all axioms have been evaluated. The

three axioms are:

 Axiom 5: The timepoint inf_minus is before all other timepoints.

 Axiom 8: Given any timepoint ?t other than inf_plus and inf_minus, there is

a timepoint between ?t and inf_plus.

 Axiom 17: An object can participate in an activity occurrence only at those

timepoints at which both the object exists and the activity is occurring.

On running the SWRL rule that models Axiom 5, it is expected that the rule

engine would identify that the timepoint “inf_minus”, is before all the defined

timepoints that have been instantiated e.g. logically, before(inf_minus,

Counterbore_Finish), although this fact has not been asserted in the first

place. Similarly, on evaluating Axiom 8, the inference engine should be able

to depict a series of inferred facts, for example, between(Drill_Start,

Centre_Drill_Finish) and between(Drill_Start, Counterbore_Start). Note that

the original “between” ternary relation has been approximated to a binary

relation in the OWL-based PSL Core ontology.

While the expected list of results on running axioms 5 and 8 is likely to consist

of more than six derived facts due to the different combinations of

293

possibilities, the expected result on running Axiom 17 should consist of

exactly two facts derived from the asserted information. The facts should

include: exists_at(Cylinder, Centre_Drill_Start) and

is_occurring_at(Centre_Drill_Cylinder, Centre_Drill_Start).

B.3.4.2 Actual Results

Figure B-12 next illustrates some of the results obtained after the rule engine

has been executed for PSL Core axioms 5, 8 and 17 formalised in SWRL. All

the results retrieved for axioms 5 and 17 have been shown in the figure. Due

to an extensive list of 36 results that has been obtained on running Axiom 8,

only a subset of these results containing six inferred facts over the timepoint

“Drill_Start” (J) (see Figure B-11) has been shown.

B.3.5 Discussions

The actual results related to the execution of SWRL rules that model PSL

Core axioms all agree with the expected results. This implies that, the

semantics carried by SWRL rules can be used to infer new consequent

Axiom 5

Axiom 8

Axiom 17

Figure B-12 Sample Results Obtained from the Evaluation of PSL Core Axioms
Formalised in SWRL

294

knowledge from existing asserted facts in a heavyweight ontology of process

semantics. Furthermore, SWRL in Protégé OWL is accompanied by a set of

more than 220 built-ins including built-ins for comparison, maths built-ins,

built-ins for querying an OWL TBox and many more (SWRL Built-ins, 2009).

These predefined SWRL built-ins can readily be exploited by the user to

formulate different types of rules, for instance, in this current exploration, the

“tbox:notEqualTo” built-in has been used to distinguish two separate

instances in SWRL expressions.

During the execution of SWRL rules, it is important that the user runs them

one at a time. However, if a SWRL rule has to be run and the antecedent of

that rule involves the consequent of another SWRL rule, then both rules have

to be executed concurrently. At one stage of the experiment, all SWRL rules

that model axioms in PSL Core were simultaneously processed. This not only

resulted in an extensive and confusing list of more than 150 inferred facts, but

also led to unexpected behaviours and some incorrectly-derived facts. When

SWRL rules were run individually or in small batches, this problem did not

occur. The initial competency question set in section B.3.1 is answered next.

 Is OWL with SWRL sufficiently expressive to support the representation of

PSL-based process semantics?

OWL used in conjunction with SWRL increases the logic expressiveness of

Description Logic-based approaches to model heavyweight manufacturing

ontologies. SWRL is highly effective as a rule language to drive knowledge

inferences and with a competent rule engine, it compensates for the lower

ability that OWL reasoners currently have to infer information over instances

of classes. However, SWRL is not purposely a constraint language and,

therefore, its support for PSL Core axioms used as integrity constraints falls

slightly behind. In the experiment, it has nevertheless been shown that it is

possible to infer from SWRL rules that attempt to model PSL Core axioms.

Additionally, it is the user‟s task to ensure that axioms are properly identified

in an ontology thereby ascertaining the correct way to interpret the derived

facts after executing rules.

295

OWL with SWRL as a heavyweight ontological formalism is not able to

capture higher-arity relations present in the PSL Core theory, although

workarounds are possible. However, having to approximate higher-arity

relations and ontological functions to binary relations inevitably leads to a loss

of original semantics. Such an approximation can lead to ambiguously-defined

instances and the issue is inevitably carried forward to the SWRL logic layer,

thereby producing incorrectly-derived facts. Thus, it can be extrapolated that

OWL with SWRL is sufficiently robust to support heavyweight semantics as

long as these structures do not involve higher-arity relations and functions (in

the ontological sense). Unfortunately, to meet the requirements of the

Semantic Manufacturing Interoperability Framework in this work, it is evident

that a more powerful formalism is required to address the formal semantics of

the PSL ontology.

B.4 Motivation for a Common Logic-Based Ontological

Formalism

From a semantic point of view, it has been demonstrated that there is one

major issue in relation to Frames with a first order constraint language and

OWL with a rule language as possible ontological formalisms to be used

within the framework. This issue is concerned with the inability of these two

knowledge representation formalisms to fully capture and represent the

semantics from the Process Specification Language (PSL). Since PSL

constitutes a fundamental element of the framework concept, it is thus

necessary to identity a suitable ontological formalism, which helps support the

semantic needs throughout the four layers of the framework.

Based on an understanding of the explored ontological formalisms, it is

possible to extrapolate that Common Logic-based formalisms are favoured.

This is because Common Logic is a First Order Logic language for knowledge

interchange that provides a core semantic framework for logic together with

the basis for a set of syntactic forms (dialects) all sharing a common

semantics (Delugach, 2005). Furthermore, the PSL ontology is available in a

296

number of first order formats including the Common Logic Interchange Format

(CLIF) (PSL Website, 2009). This implies that in order to replicate the exact

semantics of PSL from its CLIF form, it is necessary to identify a suitable

Common Logic-based formalism that is either completely CLIF-based or has

equal semantic potentials to CLIF.

After careful scrutiny, it was decided that the Knowledge Framework

Language (KFL) developed by Ontology Works Inc. (Ontology Works Inc.,

2009) constitutes an ideal candidate. KFL is a Common Logic-based

ontological formalism that provides expressive logic in which to encode the

subject matter ontology (Ontology Works Inc., 2009). Broadly speaking,

Common Logic is a logical framework intended for information exchange and

transmission and has some novel features, chief among them being a syntax

that is signature-free, while preserving a first-order model theory (ISO/IEC

24707, 2007). This clearly implies that KFL as an ontological formalism is able

to provide the necessary syntax and expressive first-order semantics for

developing the heavyweight manufacturing ontological foundation as well as

to support the semantic considerations needed in the other layers of the

SMIF.

B.5 Summary

The arguments discussed in this appendix have revealed that the ability to

support the semantic needs of the ontology-based Semantic Manufacturing

Interoperability Framework (SMIF) is directly dependent on the choice of

ontological formalism. This is particularly significant for allowing PSL-based

process semantics to be fully captured and exploited in the framework. The

choice of the Knowledge Framework Language (KFL) used in this work has

been justified based on an exploration of the capabilities and limitations of two

other known heavyweight ontological methods (sections B.2 and B.3) and an

assessment of the acknowledged benefits of Common Logic (section B.4).

In the first place, an investigation of Frames with a first order constraint

language (Protégé Frames and Protégé Axiom Language) has been carried

297

out. A sample “Machining Hole Feature Ontology” regrouping different

viewpoints across product design and manufacture has been tested to reveal

the ability of the formalism to model simple entity information semantics,

process semantics and semantic relationships between entities and

processes. The main conclusion derived from this experiment has pointed

towards important limitations of the ontological formalism for capturing and

representing PSL-type process semantics.

This has constructively led to a second experiment, which this time uses the

formalism OWL with SWRL, to attempt at maximising the formal heavyweight

representation of PSL semantics. The exploration involving OWL with SWRL

has shown that this particular formalism, as part of Semantic Web

technologies, is not rigorous enough to model PSL semantics. Furthermore, it

has become evident that several workarounds and approximations need to be

made, which lead to a loss of original PSL semantics. Thus, the second

exploration has been a turning point for enabling the identification of a suitable

ontological formalism with enhanced expressivity, capable of replicating

higher-arity relations and ontological functions from PSL.

A brief account of the key benefits of Common Logic, in addition to a view on

the resources available for research purposes, have decisively pointed

towards KFL as best-fit ontological formalism. Hence, throughout the four

levels of the SMIF explained in chapters 5 and 6, Common Logic-based KFL

is exploited to provide the syntax and first order semantics necessary for the

specification of relevant concepts, definitions and integrity constraints.

298

C Foundation Layer

Context Declaration

:Ctx Foundation
:Inst UserContext
:supCtx TopUserCtx
:name "Foundation Context"
:rem "This context enfolds the Process Specification Language (ISO 18629), and adapted
concepts from ISO 10303 AP224 and the Core Product Model developed by NIST."

:Use Foundation

C.1 Process Specification Language (PSL)

C.1.1 PSL Core

The purpose of PSL Core is to axiomatise a set of intuitive semantic primitives

that is adequate for describing the fundamental concepts of manufacturing

processes. It is based on the following intuitions (PSL Website, 2009):

 There are four kinds of entities required for reasoning about processes

namely activities, activity occurrences, timepoints, and objects.

 Activities may have multiple occurrences, or there may exist activities that

do not occur at all.

 Timepoints are linearly ordered, forwards into the future, and backwards

into the past.

 Activity occurrences and objects are associated with unique timepoints

that mark the begin and end of the occurrence or object.

The following set of figures capture the IDEF5 schematics for the concepts

present in PSL and the coding used during implementation. A list of the

relevant implemented axioms is also displayed. Figure C-1 illustrates the

initial organisation of PSL Core classes. Notice the class “Origin” which

provides a root class for defining the taxonomy and is only present in order to

keep the taxonomy tidy.

299

Classes

:Prop Origin
:Inst Property
:sup Top
:name "Origin"
:rem "This abstract class is at the root of the taxonomy of the concepts explored in the
Foundation Layer."

:Prop Object
:Inst Property
:sup Origin
:name "Object"
:rem "(Object ?x) is TRUE in an interpretation of the Foundation Layer if and only if ?x is a
member of the set of objects in the universe of discourse of the interpretation. An object is
anything that is not a timepoint, nor an activity nor an activity-occurrence. Intuitively, an object
is a concrete or abstract thing that can participate in an activity. Objects can come into
existence and go out of existence at certain points in time. In such cases, an object has a
begin and an end point. In some contexts it may be useful to consider some ordinary objects
as having no such points either."

:Prop Activity
:Inst Property
:sup Origin
:name "Activity"
:rem "(Activity ?a) is TRUE in an interpretation of the Foundation Layer if and only if ?a is a
member of the set of activities in the universe of discourse of the interpretation. Intuitively,
activities can be considered to be reusable behaviours within the domain."

:Prop Activity_Occurrence
:Inst Property
:sup Origin
:name "Activity Occurrence"
:rem "(Activity_Occurrence ?occ) is TRUE in an interpretation of the Foundation Layer if and
only if ?occ is a member of the set of activity occurrences in the universe of discourse of the
interpretation. An activity occurrence is associated with a unique activity and begins and ends
at specific points in time. Although there may exist activities that have no activity occurrence,
all activity occurrences must be associated with an activity."

:Prop Timepoint
:Inst Property
:sup Origin
:name "Timepoint"
:rem "(Timepoint ?t) is TRUE in an interpretation of the Foundation Layer if and only if ?t is a
member of the set of timepoints in the universe of discourse of the interpretation. Timepoints
form an infinite linear ordering with endpoints at infinity."

C

Object

Origin

Activity
Activity_

Occurrence

Timepoint

Figure C-1 PSL Core Classes

300

Relations

:Rel before
:Inst BinaryRel
:Inst IrreflexiveBR ;;; Axiom 3
:Inst TransitiveBR ;;; Axiom 4
:Sig Timepoint Timepoint
:name "before"
:rem "(before ?t1 ?t2) is TRUE in an interpretation of the Foundation Layer if and only if the
timepoint ?t1 is earlier than ?t2 in the linear ordering over timepoints in the interpretation."

:Rel occurrence_of
:Inst BinaryRel
:Sig Activity_Occurrence Activity
:name "occurrence_of"
:rem "(occurrence_of ?occ ?a) is TRUE in an interpretation of the Foundation Layer if and
only if ?occ is a particular occurrence of the activity ?a. occurrence_of is the basic relation
between activities and activity occurrences. Every activity occurrence is associated with a
unique activity. An activity may have no occurrences or multiple occurrences."

:Rel participates_in
:Inst TernaryRel
:Sig Object Activity_Occurrence Timepoint
:name "participates_in"

Activity_

Occurrence
Activity

occurrence_of

Activity_

Occurrence
Activity

is_occurring_at

2

1

3

between
Timepoint

Timepoint

Timepoint

Timepoint Timepoint
before

Timepoint Timepoint
beforeEq

Timepoint
exists_at

C

Object

Timepoint

Timepoint

Timepoint
2

1

3

betweenEq

1

2

3

participates_in

Activity_

Occurrence

C

Object Timepoint

Figure C-2 PSL Core Relations

301

:rem "(participates_in ?x ?occ ?t) is TRUE in an interpretation of the Foundation Layer if and
only if ?x plays some role that is not pre-specified in an occurrence of the activity occurrence
?occ at the timepoint ?t in the interpretation. An object can participate in an activity
occurrence only at those timepoints at which both the object exists and the activity is
occurring."

:Rel between
:Inst TernaryRel
:Sig Timepoint Timepoint Timepoint
:name "between"
:rem "(between ?t2 ?t1 ?t3) is TRUE in an interpretation of the Foundation Layer if and only if
?t1 is strictly less than ?t3 and strictly greater than ?t2 in the linear ordering over timepoints in
the interpretation."

:Rel beforeEq
:Inst BinaryRel
:Sig Timepoint Timepoint
:name "beforeEq"
:rem "(beforeEq ?t1 ?t2) is TRUE in an interpretation of the Foundation Layer if and only if ?t1
is less or equal to ?t2 in the linear ordering over timepoints in the interpretation."

:Rel betweenEq
:Inst TernaryRel
:Sig Timepoint Timepoint Timepoint
:name "betweenEq"
:rem "(betweenEq ?t2 ?t1 ?t3) is TRUE in an interpretation of the Foundation Layer if and
only if ?t1 is less or equal to ?t3 and greater or equal to ?t2 in the linear ordering over
timepoints in the interpretation."

:Rel exists_at
:Inst BinaryRel
:Sig Object Timepoint
:name "exists_at"
:rem "The object exists at the given timepoint."

:Rel is_occurring_at
:Inst BinaryRel
:Sig Activity_Occurrence Timepoint
:name "is_occurring_at"
:rem "The specified activity occurrence is occurring at the specified timepoint."

Functions

:Fun beginof
:Inst UnaryFun
:Sig Activity_Occurrence -> Timepoint
:name "beginof"
:rem "If ?x is an activity occurence in the universe of discourse of an interpretation of the
Foundation Layer, then (beginof ?x) has the value ?t if and only if ?t is the timepoint at which
the activity occurrence ?x begins. If ?x is an object in the universe of discourse of an
interpretation of the Foundation Layer, then (beginof ?x) has the value ?x if and only if ?t is
the timepoint at which the object ?x becomes possible to participate in an activity."

:Fun endof
:Inst UnaryFun
:Sig Activity_Occurrence -> Timepoint
:name "endof"

302

:rem "If ?x is an activity occurrence in the universe of discourse of an interpretation of the
Foundation Layer, then (endof ?x) has the value ?x if and only if ?t is the timepoint at which
the activity occurrence ?x ends. If ?x is an object in the universe of discourse of an
interpretation of the Foundation Layer, then (endof ?x) has the value ?x if and only if ?t is the
timepoint at which the object ?x becomes no longer possible to participate in an activity."

Individuals

(Timepoint Foundation.inf-)
(RootCtx.rem Foundation.inf- "(= ?t inf-) is TRUE in an interpretation of the Foundation Layer
if and only if ?t is the unique timepoint that is before all other timepoints in the linear ordering

Timepoint
RootCtx.returnProp

beginof

in
s
t

RootCtx.

UnaryFun

1

2

3

RootCtx.argProp

1

Activity_

Occurrence

Timepoint
RootCtx.returnProp

endof

in
s
t

RootCtx.

UnaryFun

1

2

3

RootCtx.argProp

1

Activity_

Occurrence

Figure C-3 PSL Core Functions

in
st

in
st

inf- inf+

Timepoint

Figure C-4 PSL Core Individuals

303

over timepoints in the universe of discourse of the interpretation. inf- plays the role of negative
infinity. It is needed to specify objects that have not been created.")

(Timepoint Foundation.inf+)
(RootCtx.rem Foundation.inf+ "(= ?t inf+) is TRUE in an interpretation of the Foundation Layer
if and only if ?t is the unique timepoint that is after all other timepoints in the linear ordering
over timepoints in the universe of discourse of the interpretation. inf+ plays the role of positive
infinity. It is needed to specify objects that are never destroyed.")

Axioms

 (=> (Foundation.before ?t1 ?t2)
 (and (Timepoint ?t1)
 (Timepoint ?t2)))
:IC hard "The before relation only holds between timepoints."

 (=> (and (Timepoint ?t)
 (/= ?t Foundation.inf-))
 (Foundation.before Foundation.inf- ?t))
:IC weak "The timepoint inf- is before all other timepoints."

 (=> (and (Timepoint ?t)
 (/= ?t Foundation.inf+))
 (Foundation.before ?t Foundation.inf+))
:IC weak "Every other timepoint is before inf+."

 (or (Activity ?x)
 (Activity_Occurrence ?x)
 (Timepoint ?x)
 (Object ?x))
:IC hard "Everything is either an activity, activity occurrence, timepoint or object."

 (and (=> (Activity ?x)
 (not (or (Activity_Occurrence ?x) (Object ?x) (Timepoint ?x))))
 (=> (Activity_Occurrence ?x)
 (not (or (Object ?x) (Timepoint ?x))))
 (=> (Object ?x)
 (not (Timepoint ?x))))
:IC hard "Objects, activities, activity occurrences, and timepoints are all distinct kinds
of things."

(=> (occurrence_of ?occ ?a)
 (and (Activity ?a)
 (Activity_Occurrence ?occ)))
:IC hard "The occurrence relation only holds between activities and activity
occurrences."

(=> (Activity_Occurrence ?occ)
 (exists (?a)
 (and (Activity ?a)
 (occurrence_of ?occ ?a))))
:IC hard "Every activity occurrence is an occurrence of some activity."

 (=> (and (Activity ?a1)
 (Activity ?a2)
 (Activity_Occurrence ?occ)
 (occurrence_of ?occ ?a1)

304

 (occurrence_of ?occ ?a2))
 (= ?a1 ?a2))
:IC hard "An activity occurrence is associated with a unique activity."

(=> (and (Activity_Occurrence ?occ)
 (Activity ?a)
 (occurrence_of ?occ ?a))
 (and (Timepoint (beginof ?occ))
 (Timepoint (endof ?occ))))
:IC hard "The begin and end of an activity occurrence are timepoints."

 (=> (and (Activity_Occurrence ?occ)
 (Timepoint (beginof ?occ))
 (Timepoint (endof ?occ)))
 (beforeEq (beginof ?occ) (endof ?occ)))
:IC hard "The begin point of every activity occurrence is before or equal to its end
point."

 (=> (participates_in ?x ?occ ?t)
 (and (Object ?x)
 (Activity_Occurrence ?occ)
 (Timepoint ?t)))
:IC hard "The participates_in relation only holds between objects, activity occurrences,
and timepoints, respectively."

 (=> (and (Object ?x)
 (Activity_Occurrence ?occ)
 (Timepoint ?t)
 (participates_in ?x ?occ ?t))
 (and (exists_at ?x ?t)
 (is_occurring_at ?occ ?t)))
:IC hard "An object can participate in an activity occurrence only at those timepoints at
which both the object exists and the activity is occurring."

Definitions

(<= (between ?t1 ?t2 ?t3)
 (and (Timepoint ?t1)
 (Timepoint ?t2)
 (Timepoint ?t3)
 (Foundation.before ?t1 ?t2)
 (Foundation.before ?t2 ?t3)))
:rem "Timepoint ?t2 is between timepoints ?t1 and ?t3 if and only if ?t1 is before ?t2
and ?t2 is before ?t3."

 (<= (beforeEq ?t1 ?t2)
 (and (Timepoint ?t1)
 (Timepoint ?t2)
 (or (Foundation.before ?t1 ?t2)
 (= ?t1 ?t2))))
:rem "Timepoint ?t1 is beforeEq Timepoint ?t2 if and only if ?t1 is before or equal to
?t2."

 (<= (betweenEq ?t1 ?t2 ?t3)
 (and (Timepoint ?t1)
 (Timepoint ?t2)
 (Timepoint ?t3)

305

 (beforeEq ?t1 ?t2)
 (beforeEq ?t2 ?t3)))
:rem "Timepoint ?t2 is between or equal to timepoints ?t1 and ?t3 if and only if ?t1 is
before or equal to ?t2, and ?t2 is before or equal to ?t3."

 (<= (exists_at ?x ?t)
 (and (Object ?x)
 (Timepoint (beginof ?x))
 (Timepoint (endof ?x))
 (Timepoint ?t)
 (betweenEq (beginof ?x) ?t (endof ?x))))
:rem "An object exists at a timepoint ?t if and only if ?t is between or equal its begin
and end points."

(<= (is_occurring_at ?occ ?t)
 (and (Activity_Occurrence ?occ)
 (Timepoint (beginof ?occ))
 (Timepoint (endof ?occ))
 (Timepoint ?t)
 (betweenEq (beginof ?occ) ?t (endof ?occ))))
:rem "An activity is occurring at a timepoint t1 if and only if t1 is between or equal to the
activity occurrence’s begin and end points."

C.1.2 PSL Outer-Core

PSL Outer-Core introduces new terminology and concepts that extend PSL

Core in order to provide more logical expressiveness to PSL semantics.

C.1.2.1 Theory of Subactivities

Relations

:Rel subactivity
:Inst BinaryRel
:Inst PartialOrderBR ;;; Axioms 2,3 and 4
:Sig Activity Activity
:name "subactivity"
:rem "(subactivity ?a1 ?a2) is TRUE in an interpretation of the Foundation Layer if and only if
activity ?a1 is a subactivity of activity ?a2. The subactivity relation forms a discrete partial
ordering over the set of activities."

Activity Activity
subactivity

Activity primitive
1

Figure C-5 Theory of Subactivities Relations

306

:Rel primitive
:Inst UnaryRel
:Sig Activity
:name "primitive"
:rem "(primitive ?a) is TRUE in an interpretation of the Foundation Layer if and only if the
activity ?a has no subactivities except for itself."

Axioms

 (=> (subactivity ?a1 ?a2)
 (and (Activity ?a1)
 (Activity ?a2)))
:IC hard "subactivity is a relation over activities."

 (=> (and (Activity ?a1)
 (Activity ?a2)
 (/= ?a1 ?a2)
 (subactivity ?a1 ?a2))
 (exists (?a3)
 (and (Activity ?a3)
 (/= ?a3 ?a1)
 (subactivity ?a1 ?a3)
 (subactivity ?a3 ?a2))))
:IC hard "The subactivity relation is a discrete ordering, so every activity has a
downwards successor in the ordering."

(=> (and (Activity ?a1)
 (Activity ?a2)
 (/= ?a1 ?a2)
 (Activity ?a4)
 (subactivity ?a1 ?a2)
 (subactivity ?a1 ?a4)
 (subactivity ?a4 ?a3)
 (exists (?a3)
 (and (Activity ?a3)
 (/= ?a3 ?a1)
 (subactivity ?a1 ?a3)
 (subactivity ?a3 ?a2))))
 (or (= ?a4 ?a1)
 (= ?a4 ?a3)))
:IC hard "The subactivity relation is a discrete ordering, so every activity has a
downwards successor in the ordering."

 (=> (and (Activity ?a1)
 (Activity ?a2)
 (/= ?a1 ?a2)
 (subactivity ?a1 ?a2))
 (exists (?a3)
 (and (Activity ?a3)
 (/= ?a3 ?a2)
 (subactivity ?a1 ?a3)
 (subactivity ?a3 ?a2))))
:IC hard "The subactivity relation is a discrete ordering, so every activity has an
upwards successor in the ordering."

(=> (and (Activity ?a1)
 (Activity ?a2)
 (/= ?a1 ?a2)
 (Activity ?a4)

307

 (subactivity ?a1 ?a2)
 (subactivity ?a3 ?a4)
 (subactivity ?a4 ?a2)
 (exists (?a3)
 (and (Activity ?a3)
 (/= ?a3 ?a2)
 (subactivity ?a1 ?a3)
 (subactivity ?a3 ?a2))))
 (or (= ?a4 ?a2)
 (= ?a4 ?a3)))
:IC hard "The subactivity relation is a discrete ordering, so every activity has an
upwards successor in the ordering."

Definitions

 (<= (primitive ?a)
 (and (Activity ?a)
 (Activity ?a1)
 (subactivity ?a1 ?a)
 (= ?a1 ?a)
 (not (exists (?a2)
 (and (Activity ?a2)
 (subactivity ?a2 ?a)
 (/= ?a2 ?a1)
 (/= ?a2 ?a))))))
:rem "An activity is primitive if and only if it has no subactivities except for itself."

C.1.2.2 Theory of Occurrence Trees

Relations

:Rel earlier
:Inst BinaryRel

Activity_

Occurrence

Activity_

Occurrence

earlier Activity_

Occurrence
initial

1

Activity
Activity_

Occurrence

poss

Activity_

Occurrence

Activity_

Occurrence

precedes

Activity_

Occurrence

Activity_

Occurrence

earlierEq

Activity_

Occurrence
legal

1

Activity_

Occurrence
arboreal

1

Activity generator
1

Figure C-6 Theory of Occurrence Trees Relations

308

:Inst IrreflexiveBR ;;; Axiom 2
:Inst TransitiveBR ;;; Axiom 3
:Sig Activity_Occurrence Activity_Occurrence
:name "earlier"
:rem "(earlier ?occ1 ?occ2) is TRUE in an interpretation of the Foundation Layer if and only if
the two activity occurrences ?occ1 and ?occ2 are on the same branch of the tree and ?occ1
is closer to the root of the tree than ?occ2. In interpretations of Occurrence Trees, the set of
all sequences of activity occurrences forms a tree; the earlier relation specifies the partial
ordering over the activity occurrences in this tree."

:Rel initial
:Inst UnaryRel
:Sig Activity_Occurrence
:name "initial"
:rem "(initial ?occ) is TRUE in an interpretation of the Foundation Layer if and only if the
activity occurrence ?occ is the root of an occurrence tree."

:Rel legal
:Inst UnaryRel
:Sig Activity_Occurrence
:name "legal"
:rem "(legal ?occ) is TRUE in an interpretation of the Foundation Layer if and only if the
activity occurrence ?occ is an element of the legal occurrence tree."

:Rel precedes
:Inst BinaryRel
:Sig Activity_Occurrence Activity_Occurrence
:name "precedes"
:rem "(precedes ?occ1 ?occ2) is TRUE in an interpretation of the Foundation Layer if and
only if the activity occurrence ?occ1 is earlier than the activity occurrence ?occ2 in the
occurrence tree and such that all activity occurrences between them correspond to activities
that are possible. This relation specifies the sub-tree of the occurrence tree in which every
activity occurrence is the occurrence of an activity that is possible."

:Rel earlierEq
:Inst BinaryRel
:Sig Activity_Occurrence Activity_Occurrence
:name "earlierEq"
:rem "(earlierEq ?occ1 ?occ2) is TRUE in an interpretation of the Foundation Layer if and only
if the two activity occurrences ?occ1 and ?occ2 are on the same branch of the tree and ?occ1
is closer to the root of the tree than ?occ2, or ?occ1 and ?occ2 are the same activity
occurrences."

:Rel poss
:Inst BinaryRel
:Sig Activity Activity_Occurrence
:name "poss"
:rem "(poss ?a ?occ2) is TRUE in an interpretation of the Foundation Layer if and only if the
activity ?a has a legal occurrence that is a successor of the activity occurrence ?occ in the
occurrence tree."

:Rel generator
:Inst UnaryRel
:Sig Activity
:name "generator"
:rem "(generator ?a) is TRUE in an interpretation of the Occurrence Tree Theory if and only if
?a is an activity whose occurrences are elements of the occurrence tree."

:Rel arboreal
:Inst UnaryRel

309

:Sig Activity_Occurrence
:rem "(arboreal ?s) is TRUE in an interpretation of the Occurrence Tree Theory if and only if
?s is an element of the occurrence tree."

Functions

:Fun successor
:Inst BinaryFun
:Sig Activity Activity_Occurrence -> Activity_Occurrence
:name "successor"
:rem "(= ?occ2 (successor ?a ?occ1)) is TRUE in an interpretation of the Occurrence Tree
Theory if and only if ?occ2 denotes the occurrence of ?a that follows consecutively after the
activity occurrence ?occ in the occurrence tree."

Axioms

 (=> (earlier ?s1 ?s2)
 (and (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)))
:IC hard "The earlier relation is restricted to arboreal activity occurrences (that is,
activity occurrences that are elements of the occurrence tree)."

 (=> (and (Activity_Occurrence ?s)
 (initial ?s))
 (and (arboreal ?s)
 (not (exists (?sp)
 (and (Activity_Occurrence ?sp)
 (earlier ?sp ?s))))))
:IC hard "No occurrence in the occurrence tree is earlier than an initial occurrence."

 (=> (and (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (earlier ?s1 ?s2))
 (exists (?sp)

in
st

Activity_

Occurrence

R
o
o
tC

tx.re
tu

rn
P

ro
p

successor

RootCtx.

BinaryFun

1

2

3

RootCtx.argProp

1

Activity
1

2

3

RootCtx.argProp

2

Activity_

Occurrence

Figure C-7 Theory of Occurrence Trees Functions

310

 (and (Activity_Occurrence ?sp)
 (initial ?sp)
 (earlierEq ?sp ?s1))))
:IC hard "Every branch of the occurrence tree has an initial occurrence."

 (=> (and (Activity ?a)
 (Activity_Occurrence ?s)
 (occurrence_of ?s ?a)
 (generator ?a))
 (arboreal ?s))
:IC hard "There is an initial occurrence of each activity."

 (=> (and (Activity ?a)
 (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (initial ?s1)
 (initial ?s2)
 (occurrence_of ?s1 ?a)
 (occurrence_of ?s2 ?a))
 (= ?s1 ?s2))
:IC hard "No two initial activity occurrences in the occurrence tree are occurrences of
the same activity."

(=> (and (Activity ?a)
 (Activity_Occurrence ?o)
 (Activity_Occurrence (successor ?a ?o))
 (occurrence_of (successor ?a ?o) ?a))
 (and (generator ?a)
 (arboreal ?o)))
:IC hard "The successor of an arboreal activity occurrence is an occurrence of a
generator activity."

(=> (and (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (earlier ?s1 ?s2))
 (exists (?a ?s3)
 (and (Activity ?a)
 (Activity_Occurrence ?s3)
 (generator ?a)
 (= ?s2 (successor ?a ?s3)))))
:IC weak "Every non-initial activity occurrence is the successor of another activity
occurrence."

 (=> (and (Activity ?a)
 (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (Activity_Occurrence (successor ?a ?s2))
 (generator ?a)
 (earlierEq ?s1 ?s2))
 (earlier ?s1 (successor ?a ?s2)))
:IC hard "An occurrence ?s1 is earlier than the successor occurrence of ?s2 if and only
if the occurrence ?s2 is later than ?s1."

 (=> (and (Activity_Occurrence ?s)
 (legal ?s))
 (arboreal ?s))
:IC hard "The legal relation restricts arboreal activity occurrences."

 (=> (and (Activity_Occurrence ?s1)

311

 (Activity_Occurrence ?s2)
 (legal ?s1)
 (earlier ?s2 ?s1))
 (legal ?s2))
:IC hard "If an activity occurrence is legal, all earlier activity occurrences in the
occurrence tree are also legal."

 (=> (and (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (earlier ?s1 ?s2))
 (and (Timepoint (beginof ?s2))
 (Timepoint (endof ?s1))
 (Foundation.before (endof ?s1) (beginof ?s2))))
:IC hard "The endof an activity occurrence is before the beginof the successor of the
activity occurrence."

Definitions

 (<= (precedes ?s1 ?s2)
 (and (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (earlier ?s1 ?s2)
 (legal ?s2)))
:rem "An activity occurrence ?s1 precedes another activity occurrence ?s2 if and only
if ?s1 is earlier than ?s2 in the occurrence tree and ?s2 is legal."

 (<= (earlierEq ?s1 ?s2)
 (and (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (arboreal ?s1)
 (arboreal ?s2)
 (or (earlier ?s1 ?s2)
 (= ?s1 ?s2))))
:rem "An activity occurrence ?s1 is earlierEq than an activity occurrence ?s2 if and
only if it is either earlier than ?s2 or it is equal to ?s2."

(<= (poss ?a ?s)
 (and (Activity ?a)
 (Activity_Occurrence ?s)
 (Activity_Occurrence (successor ?a ?s))
 (legal (successor ?a ?s))))
:rem "An activity is poss at some occurrence if and only if the successor occurrence of
the activity is legal."

 (<= (generator ?a)
 (and (Activity ?a)
 (exists (?s)
 (and (Activity_Occurrence ?s)
 (initial ?s)
 (occurrence_of ?s ?a)))))
:rem "An activity is a generator if and only if it has an initial occurrence in the
occurrence tree."

 (<= (arboreal ?s)
 (and (Activity_Occurrence ?s)
 (exists (?sp)
 (and (Activity_Occurrence ?sp)
 (earlier ?s ?sp)))))

312

:rem "An activity occurrence is arboreal if and only if it is an element of an occurrence
tree."

C.1.2.3 Theory of Discrete States

Classes

:Prop State
:Inst Type
:sup Object
:name "State"
:rem "(state ?f) is TRUE in an interpretation of the Foundation Layer if and only if ?f is a
member of the set of states in the universe of discourse of the interpretation. States are a
subcategory of object. They intuitively represent properties and relationships in the domain
that can change as the result of the occurrence of activities."

Relations

:Rel holds
:Inst BinaryRel
:Sig State Activity_Occurrence
:name "holds"
:rem "(holds ?f ?occ) is TRUE in an interpretation of the Foundation Layer if and only if the
state ?f is true after the activity occurrence ?occ."

:Rel prior
:Inst BinaryRel
:Sig State Activity_Occurrence
:name "prior"
:rem "(prior ?f ?occ) is TRUE in an interpretation of the Foundation Layer if and only if the
state ?f is true prior to the activity occurrence ?occ."

State

C

Object

Figure C-8 Theory of Discrete State Classes

State
Activity_

Occurrence

holds

State
Activity_

Occurrence

prior

Figure C-9 Theory of Discrete States Relations

313

Axioms

 (=> (State ?f)
 (Object ?f))
:IC hard "States are objects."

(=> (holds ?f ?occ)
 (and (State ?f)
 (Activity_Occurrence ?occ)
 (arboreal ?occ)))
:IC hard "The holds relation is only between states and arboreal activity occurrences."

 (=> (prior ?f ?occ)
 (and (State ?f)
 (Activity_Occurrence ?occ)
 (arboreal ?occ)))
:IC hard "The prior relation is only between states and arboreal activity occurrences."

 (=> (and (Activity_Occurrence ?occ1)
 (Activity_Occurrence ?occ2)
 (initial ?occ1)
 (initial ?occ2)
 (State ?f)
 (prior ?f ?occ2))
 (prior ?f ?occ1))
:IC hard "All initial occurrences agree on the states that hold prior to them."

(=> (and (State ?f)
 (Activity_Occurrence ?occ)
 (Activity ?a)
 (Activity_Occurrence (successor ?a ?occ))
 (holds ?f ?occ)
 (generator ?a))
 (prior ?f (successor ?a ?occ)))
:IC hard "A state holds after an arboreal activity occurrence if and only if it holds prior
to the successor occurrence."

 (=> (and (State ?f)
 (Activity_Occurrence ?occ1)
 (holds ?f ?occ1))
 (exists (?occ2)
 (and (Activity_Occurrence ?occ2)
 (earlierEq ?occ2 ?occ1)
 (holds ?f ?occ2)
 (or (initial ?occ2)
 (not (prior ?f ?occ2))))))
:IC hard "If a fluent holds after some activity occurrence, then there exists an earliest
activity occurrence along the branch where the fluent holds."

(=> (and (State ?f)
 (Activity_Occurrence ?occ1)
 (holds ?f ?occ1)
 (exists (?occ2)
 (and (Activity_Occurrence ?occ2)
 (earlierEq ?occ2 ?occ1)
 (holds ?f ?occ2)
 (or (initial ?occ2)
 (not (prior ?f ?occ2)))))
 (Activity_Occurrence ?occ3)
 (earlier ?occ2 ?occ3)

314

 (earlier ?occ3 ?occ1))
 (holds ?f ?occ3))
:IC hard "If a fluent holds after some activity occurrence, then there exists an earliest
activity occurrence along the branch where the fluent holds."

 (=> (and (State ?f)
 (Activity_Occurrence ?occ1)
 (arboreal ?occ1)
 (not (holds ?f ?occ1)))
 (exists (?occ2)
 (and (Activity_Occurrence ?occ2)
 (earlierEq ?occ2 ?occ1)
 (not (holds ?f ?occ2))
 (or (initial ?occ2)
 (prior ?f ?occ2)))))
:IC hard "If a fluent does not hold after some activity occurrence, then there exists an
earliest activity occurrence along the branch where the fluent does not hold."

(=> (and (State ?f)
 (Activity_Occurrence ?occ1)
 (arboreal ?occ1)
 (not (holds ?f ?occ1))
 (exists (?occ2)
 (and (Activity_Occurrence ?occ2)
 (earlierEq ?occ2 ?occ1)
 (not (holds ?f ?occ2))
 (or (initial ?occ2)
 (prior ?f ?occ2))))
 (Activity_Occurrence ?occ3)
 (earlier ?occ2 ?occ3)
 (earlier ?occ3 ?occ1))
 (holds ?f ?occ3))
:IC hard "If a fluent does not hold after some activity occurrence, then there exists an
earliest activity occurrence along the branch where the fluent does not hold."

 (=> (and (State ?f)
 (Activity_Occurrence ?s1)
 (holds ?f ?s1))
 (exists (?s2)
 (and (Activity_Occurrence ?s2)
 (holds ?f ?s2)
 (earlierEq ?s2 ?s1))))
:IC hard "If a fluent holds, there exists an earliest activity occurrence where it holds."

(=> (and (State ?f)
 (Activity_Occurrence ?s1)
 (holds ?f ?s1)
 (Activity_Occurrence ?s2)
 (holds ?f ?s2)
 (earlierEq ?s2 ?s1)
 (Activity_Occurrence ?s3)
 (holds ?f ?s3))
 (not (earlier ?s3 ?s2)))
:IC hard "If a fluent holds, there exists an earliest activity occurrence where it holds."

315

C.1.2.4 Theory of Atomic Activities

Relations

:Rel atomic
:Inst UnaryRel
:Sig Activity
:name "atomic"
:rem "(atomic ?a) is TRUE in an interpretation of the Foundation Layer if and only if either ?a
is primitive or it is the concurrent superposition of a set of primitive activities."

Functions

:Fun conc
:Inst BinaryFun
:Sig Activity Activity -> Activity
:name "conc"
:rem "(= ?a3 (conc ?a1 ?a2)) is TRUE in an interpretation of the Foundation Layer if and only
if ?a3 is the atomic activity that is the concurrent superposition of the two atomic activities ?a1
and ?a2."

Axioms

 (=> (and (Activity ?a)
 (primitive ?a))
 (atomic ?a))
:IC hard "Primitive activities are atomic."

Activity atomic
1

Figure C-10 Theory of Atomic Activities Relations

in
st

Activity

R
o
o
tC

tx.re
tu

rn
P

ro
p

conc

RootCtx.

BinaryFun

1

2

3

RootCtx.argProp

1

Activity
1

2

3

RootCtx.argProp

2

Activity

Figure C-11 Theory of Atomic Activities Functions

316

 (=> (and (Activity ?a)
 (Activity ?a1)
 (Activity (conc ?a ?a))
 (= ?a1 (conc ?a ?a)))
 (= ?a ?a1)) ;;; Work Around
:IC weak "The function conc is idempotent."

 (= (conc ?a1 ?a2) (conc ?a2 ?a1))
:IC weak "The function conc is commutative."

 (and (= ?a4 (conc ?a2 ?a3))
 (= ?a5 (conc ?a1 ?a2))
 (= (conc ?a1 ?a4) (conc ?a5 ?a3))) ;;; Work Around
:IC weak "The function conc is associative."

 (=> (and (Activity ?a1)
 (Activity ?a2)
 (Activity ?a3)
 (atomic ?a1)
 (atomic ?a2)
 (= ?a3 (conc ?a1 ?a2))
 (= ?a2 ?a3))
 (subactivity ?a1 ?a2)) ;;; Work Around
:IC hard "An atomic activity ?a1 is a subactivity of an atomic activity ?a2 if and only if
?a2 is an idempotent for ?a1."

 (=> (and (Activity ?a1)
 (Activity ?a2)
 (atomic ?a2)
 (subactivity ?a1 ?a2)
 (/= ?a1 ?a2))
 (exists (?a3)
 (and (Activity ?a3)
 (atomic ?a3)
 (= ?a2 (conc ?a1 ?a3))
 (not (exists (?a4)
 (and (Activity ?a4)
 (atomic ?a4)
 (subactivity ?a4 ?a1)
 (subactivity ?a4 ?a3)))))))
:IC hard "An atomic action has a proper subactivity if and only if there exists another
atomic activity which can be concurrently aggregated."

 (=> (and (Activity ?a)
 (Activity ?b0)
 (Activity ?b1)
 (atomic ?a)
 (atomic ?b0)
 (atomic ?b1)
 (subactivity ?a (conc ?b0 ?b1))
 (not (primitive ?a)))
 (exists (?a0 ?a1)
 (and (Activity ?a0)
 (Activity ?a1)
 (subactivity ?a0 ?a)
 (subactivity ?a1 ?a)
 (= ?a (conc ?a0 ?a1)))))
:IC hard "The semilattice of atomic activities is distributive."

317

 (=> (and (Activity ?a)
 (generator ?a))
 (atomic ?a))
:IC hard "Only atomic activities can be generator activities. Equivalently, only
occurrences of atomic activities can be elements of an occurrence tree."

 (=> (atomic ?a)
 (Activity ?a))
:IC hard "Atomic activities are activities."

C.1.2.5 Theory of Complex Activities

Relations

:Rel min_precedes
:Inst TernaryRel
:Sig Activity_Occurrence Activity_Occurrence Activity
:name "min_precedes"
:rem "(min_precedes ?s1 ?s2 ?a) is TRUE in an interpretation of the Foundation Layer if and
only if ?s1 and ?s2 are subactivity occurrences in the activity tree for ?a, and ?s1 precedes
?s2 in the subtree. Any occurrence of an activity ?a corresponds to an activity tree (which is a
subtree of the occurrence tree). The activity occurrences within this subtree are the
subactivity occurrences of the occurrence of ?a."

:Rel root
:Inst BinaryRel
:Sig Activity_Occurrence Activity
:name "root"

Activity_

Occurrence
Activity

root

Activity_

Occurrence

Activity_

Occurrence

Activity
1

2

3

min_precedes

Activity_

Occurrence
Activity

leaf

Activity_

Occurrence

Activity_

Occurrence

Activity

1

2 3

next_subocc

Activity_

Occurrence

Activity_

Occurrence

Activity
1

2

3

sibling

Activity

Activity_

Occurrence

Activity_

Occurrence
1

2

3

do

Activity_

Occurrence

Activity

Activity

1

2 3

subtree

Figure C-12 Theory of Complex Activities Relations

318

:rem "(root ?s ?a) is TRUE in an interpretation of the Foundation Layer if and only if the
activity occurrence ?s is the root of an activity tree for ?a."

:Rel do
:Inst TernaryRel
:Sig Activity Activity_Occurrence Activity_Occurrence
:name "do"
:rem "(do ?a ?s1 ?s2) is TRUE in an interpretation of the Foundation Layer if and only if ?s1 is
the root of an activity tree and ?s2 is a leaf of the same activity tree such that both activity
occurrences are elements of the same branch of the activity tree."

:Rel leaf
:Inst BinaryRel
:Sig Activity_Occurrence Activity
:name "leaf"
:rem "(leaf ?s ?a) is TRUE in an interpretation of the Foundation Layer if and only if the
activity occurrence ?s is the leaf of an activity tree for ?a."

:Rel next_subocc
:Inst TernaryRel
:Sig Activity_Occurrence Activity_Occurrence Activity
:name "next_subocc"
:rem "(next_subocc ?s1 ?s2 ?a) is TRUE in an interpretation of the Foundation Layer if and
only if ?s1 precedes ?s2 in the tree and there does not exist a subactivity occurrence that is
between them in the tree."

:Rel subtree
:Inst TernaryRel
:Sig Activity_Occurrence Activity Activity
:name "subtree"
:rem "(subtree ?s ?a1 ?a2) is TRUE in an interpretation of the Foundation Layer if and only if
every atomic subactivity occurrence in the activity tree for ?a1 is an element of the activity
tree for ?a2."

:Rel sibling
:Inst TernaryRel
:Sig Activity_Occurrence Activity_Occurrence Activity
:name "sibling"
:rem "(sibling ?s1 ?s2 ?a) is TRUE in an interpretation of the Foundation Layer if and only if
the atomic subactivity occurrences ?s1 and ?s2 are siblings in an activity tree for ?a where
they either have a common predecessor in the activity tree or they are both roots of activity
trees that have a common predecessor in the occurrence tree."

Axioms

 (=> (and (Activity ?a)
 (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (min_precedes ?s1 ?s2 ?a))
 (exists (?a1 ?a2)
 (and (Activity ?a1)
 (Activity ?a2)
 (atomic ?a2)
 (subactivity ?a1 ?a)
 (subactivity ?a1 ?a2)
 (occurrence_of ?s1 ?a2))))
:IC hard "Occurrences in the activity tree for an activity correspond to atomic
subactivity occurrences of the activity."

319

(=> (and (Activity ?a)
 (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (min_precedes ?s1 ?s2 ?a))
 (exists (?a2 ?a3)
 (and (Activity ?a2)
 (Activity ?a3)
 (atomic ?a3)
 (subactivity ?a2 ?a)
 (subactivity ?a2 ?a3)
 (occurrence_of ?s2 ?a3))))
:IC hard "Occurrences in the activity tree for an activity correspond to atomic
subactivity occurrences of the activity."

 (=> (and (Activity ?a)
 (Activity_Occurrence ?s)
 (root ?s ?a))
 (exists (?a2 ?a3)
 (and (Activity ?a2)
 (Activity ?a3)
 (atomic ?a3)
 (subactivity ?a2 ?a3)
 (subactivity ?a2 ?a)
 (occurrence_of ?s ?a3))))
:IC hard "Root occurrences in the activity tree correspond to atomic subactivity
occurrences of the activity."

 (=> (and (Activity ?a)
 (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (min_precedes ?s1 ?s2 ?a))
 (exists (?s3)
 (and (Activity_Occurrence ?s3)
 (root ?s3 ?a)
 (min_precedes ?s3 ?s2 ?a))))
:IC hard "All activity trees have a root subactivity occurrence."

 (=> (and (Activity ?a)
 (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (min_precedes ?s1 ?s2 ?a))
 (not (root ?s2 ?a)))
:IC hard "No subactivity occurrences in an activity tree occur earlier than the root
subactivity occurrence."

 (=> (and (Activity ?a)
 (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (min_precedes ?s1 ?s2 ?a))
 (precedes ?s1 ?s2))
:IC hard "An activity tree is a subtree of the occurrence tree."

 (=> (and (Activity ?a)
 (Activity_Occurrence ?s)
 (root ?s ?a))
 (legal ?s))
:IC hard "Root occurrences are elements of the occurrence tree."

 (=> (and (Activity ?a1)
 (Activity ?a2)

320

 (atomic ?a1)
 (subactivity ?a2 ?a1)
 (/= ?a2 ?a1)
 (Activity_Occurrence ?s)
 (occurrence_of ?s ?a1)
 (legal ?s))
 (root ?s ?a2))
:IC hard "Every legal atomic activity occurrence is an activity tree containing only one
occurrence."

 (=> (and (Activity ?a)
 (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (min_precedes ?s1 ?s2 ?a))
 (exists (?s3)
 (and (Activity_Occurrence ?s3)
 (next_subocc ?s1 ?s3 ?a))))
:IC hard "Activity trees are discrete."

(=> (and (Activity ?a)
 (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (Activity_Occurrence ?s3)
 (min_precedes ?s1 ?s2 ?a)
 (min_precedes ?s1 ?s3 ?a)
 (precedes ?s2 ?s3))
 (min_precedes ?s2 ?s3 ?a))
:IC hard "Subactivity occurrences on the same branch of the occurrence tree are on the
same branch of the activity tree."

(=> (and (Activity ?a1)
 (Activity ?a1)
 (Activity_Occurrence ?s)
 (subtree ?s ?a1 ?a2))
 (not (subactivity ?a2 ?a1)))
:IC hard "The activity tree for a complex subactivity occurrence is a subtree of the
activity tree for the activity occurrence."

 (=> (and (Activity ?a)
 (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (min_precedes ?s1 ?s2 ?a))
 (not (atomic ?a)))
:IC hard "Only complex activities can be arguments to the min_precedes relation."

 (=> (and (Activity ?a)
 (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (Activity_Occurrence ?s3)
 (min_precedes ?s2 ?s1 ?a)
 (min_precedes ?s3 ?s1 ?a)
 (precedes ?s2 ?s3))
 (min_precedes ?s2 ?s3 ?a))
:IC hard "Subactivity occurrences on the same branch of the activity tree are linearly
ordered by the min_precedes relation."

321

Definitions

 (<= (leaf ?s ?a)
 (and (Activity ?a)
 (Activity_Occurrence ?s)
 (or (root ?s ?a)
 (exists (?s1)
 (and (Activity_Occurrence ?s1)
 (min_precedes ?s1 ?s ?a)
 (not (exists (?s2)
 (and (Activity_Occurrence ?s2)
 (min_precedes ?s ?s2 ?a)))))))))
:rem "An occurrence is the leaf of an activity tree if and only if there exists an earlier
atomic subactivity occurrence but there does not exist a later atomic subactivity
occurrence."

 (<= (do ?a ?s1 ?s2)
 (and (Activity ?a)
 (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (root ?s1 ?a)
 (leaf ?s2 ?a)
 (or (min_precedes ?s1 ?s2 ?a)
 (= ?s1 ?s2))))
:rem "The do relation specifies the initial and final atomic subactivity occurrences of an
occurrence of an activity."

 (<= (next_subocc ?s1 ?s2 ?a)
 (and (Activity ?a)
 (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (min_precedes ?s1 ?s2 ?a)
 (not (exists (?s3)
 (and (Activity_Occurrence ?s3)
 (min_precedes ?s1 ?s3 ?a)
 (min_precedes ?s3 ?s2 ?a))))))
:rem "An activity occurrence ?s2 is the next subactivity occurrence after ?s1 in an
activity tree for ?a if and only of ?s1 precedes ?s2 in the tree and there does not exist a
subactivity occurrence that is between them in the tree."

 (<= (subtree ?s1 ?a1 ?a2)
 (and (Activity ?a1)
 (Activity_Occurrence ?s1)
 (root ?s1 ?a1)
 (exists (?s2 ?s3)
 (and (Activity_Occurrence ?s2)
 (Activity_Occurrence ?s3)
 (root ?s2 ?a2)
 (min_precedes ?s1 ?s2 ?a1)
 (min_precedes ?s1 ?s3 ?a1)
 (not (min_precedes ?s2 ?s3 ?a2))))))
:rem "The activity tree for ?a1 with root occurrence ?s1 contains an activity tree for ?a2
as a subtree if and only if every atomic subactivity occurrence in the activity tree for
?a2 is an element of the activity tree for ?a1, and there is an atomic subactivity
occurrence in the activity tree for ?a1 that is not in the activity tree for ?a2."

 (<= (sibling ?s1 ?s2 ?a)
 (and (Activity ?a)
 (Activity_Occurrence ?s1)

322

 (Activity_Occurrence ?s2)
 (or (exists (?s3)
 (and (Activity_Occurrence ?s3)
 (next_subocc ?s3 ?s1 ?a)
 (next_subocc ?s3 ?s2 ?a)))
 (and (root ?s1 ?a)
 (root ?s2 ?a)
 (or (and (initial ?s1)
 (initial ?s2))
 (exists (?s4 ?a1 ?a2)
 (and (Activity ?a1)
 (Activity ?a2)
 (Activity_Occurrence ?s4)
 (= ?s1 (successor ?a1 ?s4))
 (= ?s2 (successor ?a2 ?s4)))))))))
:rem "The atomic subactivity occurrences ?s1 and ?s2 are siblings in an activity tree
for ?a if and only if they either have a common predecessor in the activity tree or they
are both roots of activity trees that have a common predecessor in the occurrence
tree."

C.1.2.6 Theory of Activity Occurrences

Relations

Activity_

Occurrence

Activity_

Occurrence

subactivity_occurrence

Activity_

Occurrence

Activity_

Occurrence

Activity
1

2

3

iso_occ

Activity_

Occurrence

Activity_

Occurrence

Activity
1

2

3

hom

Activity_

Occurrence

Activity_

Occurrence

Activity
1

2

3

mono

Activity_

Occurrence

Activity_

Occurrence

root_occ

Activity_

Occurrence

Activity_

Occurrence

leaf_occ

Activity_

Occurrence

Activity_

Occurrence

same_grove

Figure C-13 Theory of Activity Occurrences Relations

323

:Rel subactivity_occurrence
:Inst BinaryRel
:Inst TransitiveBR ;;; Axiom 9
:Sig Activity_Occurrence Activity_Occurrence
:name "subactivity_occurrence"
:rem "(subactivity_occurrence ?occ1 ?occ2) is TRUE in an interpretation of the Foundation
Layer if and only if the branch corresponding to the activity occurrence ?occ1 is a subset of
the branch corresponding to activity occurrence ?occ2."

:Rel mono
:Inst TernaryRel
:Sig Activity_Occurrence Activity_Occurrence Activity
:name "mono"
:rem "(mono ?occ1 ?occ2 ?a) is TRUE in an interpretation of the Foundation Layer if and only
if there is a one-to-one mapping between branches of an activity tree for ?a that maps the
atomic subactivity occurrence ?s1 to the atomic subactivity occurrence ?s2."

:Rel iso_occ
:Inst TernaryRel
:Sig Activity_Occurrence Activity_Occurrence Activity
:name "iso_occ"
:rem "(iso_occ ?occ1 ?occ2 ?a) is TRUE in an interpretation of the Foundation Layer if and
only if both ?occ1 and ?occ2 are occurrences of an atomic activity that contain a common
subactivity."

:Rel hom
:Inst TernaryRel
:Sig Activity_Occurrence Activity_Occurrence Activity
:name "hom"
:rem "(hom ?occ1 ?occ2 ?a) is TRUE in an interpretation of the Foundation Layer if and only
if there is a mapping between branches of an activity tree for ?a that maps the atomic
subactivity occurrence ?s1 to the atomic subactivity occurrence ?s2."

:Rel root_occ
:Inst BinaryRel
:Sig Activity_Occurrence Activity_Occurrence
:name "root_occ"
:rem "(root_occ ?occ1 ?occ2) is TRUE in an interpretation of the Foundation Layer if and only
if activity occurrence ?occ1 is the root occurrence in the branch of the activity tree for ?a
corresponding to the activity occurrence ?occ2."

:Rel leaf_occ
:Inst BinaryRel
:Sig Activity_Occurrence Activity_Occurrence
:name "leaf_occ"
:rem "(leaf_occ ?occ1 ?occ2) is TRUE in an interpretation of the Foundation Layer if and only
if activity occurrence ?occ1 is the leaf occurrence in the branch of the activity tree for ?a
corresponding to the activity occurrence ?occ2."

:Rel same_grove
:Inst BinaryRel
:Sig Activity_Occurrence Activity_Occurrence
:name "same_grove"
:rem "(same_grove ?occ1 ?occ2) is TRUE in an interpretation of the Foundation Layer if and
only if activity occurrences ?occ1 and ?occ2 of ?a correspond to branches in the same
activity tree for ?a."

324

Axioms

 (=> (subactivity_occurrence ?o1 ?o2)
 (and (Activity_Occurrence ?o1)
 (Activity_Occurrence ?o2)))
:IC hard "The subactivity_occurrence relation is between activity occurrences."

 (=> (and (Activity ?a)
 (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (min_precedes ?s1 ?s2 ?a))
 (exists (?occ)
 (and (Activity_Occurrence ?occ)
 (occurrence_of ?occ ?a)
 (subactivity_occurrence ?s1 ?occ)
 (subactivity_occurrence ?s2 ?occ))))
:IC hard "There exists an occurrence of an activity ?a for every branch of an activity
tree for ?a. All atomic subactivity occurrences on the branch are subactivity
occurrences of the occurrence of ?a."

 (=> (and (Activity ?a)
 (Activity_Occurrence ?s)
 (root ?s ?a)
 (not (atomic ?a)))
 (exists (?occ)
 (and (Activity_Occurrence ?occ)
 (occurrence_of ?occ ?a)
 (subactivity_occurrence ?s ?occ))))
:IC hard "There exists an occurrence of an activity ?a for every branch of an activity
tree for ?a. All root subactivity occurrences on the branch are subactivity occurrences
of the occurrence of ?a."

 (=> (and (Activity ?a)
 (Activity_Occurrence ?occ)
 (occurrence_of ?occ ?a)
 (not (atomic ?a)))
 (exists (?s)
 (and (Activity_Occurrence ?s)
 (root ?s ?a)
 (subactivity_occurrence ?s ?occ))))
:IC hard "Every occurrence of a complex activity ?a contains an atomic subactivity
occurrence that is the root of an activity tree for ?a."

 (=> (and (Activity ?a)
 (Activity_Occurrence ?occ1)
 (Activity_Occurrence ?occ2)
 (occurrence_of ?occ1 ?a)
 (occurrence_of ?occ2 ?a)
 (/= ?occ1 ?occ2)
 (not (atomic ?a)))
 (exists (?s)
 (and (Activity_Occurrence ?s)
 (arboreal ?s)
 (subactivity_occurrence ?s ?occ1)
 (not (subactivity_occurrence ?s ?occ2)))))
:IC hard "Distinct occurrences of an activity correspond to distinct branches of an
activity tree."

325

 (=> (and (Activity ?a)
 (Activity_Occurrence ?occ)
 (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (occurrence_of ?occ ?a)
 (arboreal ?s1)
 (arboreal ?s2)
 (subactivity_occurrence ?s1 ?occ)
 (subactivity_occurrence ?s2 ?occ))
 (or (min_precedes ?s1 ?s2 ?a)
 (min_precedes ?s2 ?s1 ?a)
 (= ?s1 ?s2)))
:IC weak "All atomic subactivity occurrences of a complex activity occurrence are
elements of the same branch of the activity tree."

 (=> (and (Activity ?a)
 (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (Activity_Occurrence ?occ)
 (min_precedes ?s1 ?s2 ?a)
 (occurrence_of ?occ ?a)
 (subactivity_occurrence ?s2 ?occ))
 (subactivity_occurrence ?s1 ?occ))
:IC hard "All elements of the same branch of an activity tree are atomic subactivity
occurrences of the same activity occurrences."

 (=> (and (Activity ?a1)
 (Activity ?a2)
 (Activity_Occurrence ?occ1)
 (Activity_Occurrence ?occ2)
 (occurrence_of ?occ1 ?a1)
 (occurrence_of ?occ2 ?a2)
 (not (atomic ?a1))
 (subactivity_occurrence ?occ1 ?occ2))
 (subactivity ?a1 ?a2))
:IC hard "The subactivity_occurrence relation preserves the subactivity relation."

 (=> (and (Activity ?a1)
 (Activity ?a2)
 (Activity_Occurrence ?occ1)
 (Activity_Occurrence ?occ2)
 (occurrence_of ?occ1 ?a1)
 (occurrence_of ?occ2 ?a2)
 (subactivity ?a1 ?a2)
 (/= ?a1 ?a2)
 (not (subactivity_occurrence ?occ1 ?occ2)))
 (exists (?s)
 (and (Activity_Occurrence ?s)
 (subactivity_occurrence ?s ?occ2)
 (not (subactivity_occurrence ?s ?occ1)))))
:IC hard "Occurrences of subactivities are subactivity occurrences if the occurrences
satisfy branch containment."

 (=> (and (Activity ?a)
 (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (mono ?s1 ?s2 ?a))
 (hom ?s1 ?s2 ?a))
:IC hard "The mono relation is a branch homomorphism."

326

 (=> (and (Activity ?a)
 (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (hom ?s1 ?s2 ?a)
 (not (mono ?s1 ?s2 ?a)))
 (exists (?s3)
 (and (Activity_Occurrence ?s3)
 (or (and (min_precedes ?s3 ?s2 ?a)
 (mono ?s1 ?s3 ?a))
 (and (min_precedes ?s3 ?s1 ?a)
 (mono ?s2 ?s3 ?a))))))
:IC hard "If an atomic subactivity occurrence is mapped in a branch homomorphism,
then there exists another atomic subactivity occurrence that is mono with it."

 (=> (and (Activity ?a)
 (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (Activity_Occurrence ?s3)
 (mono ?s1 ?s2 ?a)
 (mono ?s3 ?s2 ?a))
 (not (or (min_precedes ?s1 ?s3 ?a)
 (min_precedes ?s3 ?s1 ?a))))
:IC hard "The mono relation is restricted to one-to-one homomorphisms between
different branches of the activity tree."

 (=> (and (Activity ?a)
 (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (mono ?s1 ?s2 ?a))
 (mono ?s2 ?s1 ?a))
:IC soft "The mono relation is symmetric on activity occurrences."

 (=> (and (Activity ?a)
 (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (Activity_Occurrence ?s3)
 (mono ?s1 ?s2 ?a)
 (mono ?s2 ?s3 ?a))
 (mono ?s1 ?s3 ?a))
:IC soft "The mono relation is transitive on activity occurrences."

Definitions

 (<= (iso_occ ?s1 ?s2 ?a)
 (and (Activity ?a)
 (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (exists (?a1 ?a2 ?a3)
 (and (Activity ?a1)
 (Activity ?a2)
 (Activity ?a3)
 (atomic ?a1)
 (atomic ?a2)
 (atomic ?a3)
 (subactivity ?a3 ?a)
 (occurrence_of ?s1 (conc ?a1 ?a3))
 (occurrence_of ?s2 (conc ?a2 ?a3))))))

327

:rem "Two activity occurrences are occurrence isomorphic if and only if they are
occurrences of atomic activities that have a common subactivity with the complex
activity ?a."

(<= (iso_occ ?s1 ?s2 ?a)
 (and (Activity ?a)
 (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (exists (?a1 ?a2 ?a3)
 (and (Activity ?a1)
 (Activity ?a2)
 (Activity ?a3)
 (atomic ?a1)
 (atomic ?a2)
 (atomic ?a3)
 (subactivity ?a3 ?a)
 (occurrence_of ?s1 (conc ?a1 ?a3))
 (occurrence_of ?s2 (conc ?a2 ?a3))))
 (Activity ?a4)
 (subactivity ?a4 (conc ?a3 ?a1))
 (subactivity ?a4 (conc ?a3 ?a2))
 (subactivity ?a4 ?a)
 (not (subactivity ?a3 ?a4))))
:rem "Two activity occurrences are occurrence isomorphic if and only if they are
occurrences of atomic activities that have a common subactivity with the complex
activity ?a."
 (<= (hom ?s1 ?s2 ?a)
 (and (Activity ?a)
 (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (exists (?occ1 ?occ2)
 (and (Activity_Occurrence ?occ1)
 (Activity_Occurrence ?occ2)
 (iso_occ ?s1 ?s2 ?a)
 (not (min_precedes ?s1 ?s2 ?a))
 (not (min_precedes ?s2 ?s1 ?a))
 (subactivity_occurrence ?s1 ?occ1)
 (subactivity_occurrence ?s2 ?occ2)
 (occurrence_of ?occ1 ?a)
 (occurrence_of ?occ2 ?a)))))
:rem "For every two occurrences of the same activity on different branches of an
activity tree, there exist homomorphic occurrences on those branches."

 (<= (root_occ ?s ?occ)
 (and (Activity_Occurrence ?s)
 (Activity_Occurrence ?occ)
 (exists (?a)
 (and (Activity ?a)
 (occurrence_of ?occ ?a)
 (subactivity_occurrence ?s ?occ)
 (root ?s ?a)))))
:rem "An occurrence ?occ is the root occurrence of an occurrence of ?a if and only if it
is a subactivity occurrence and it is the root of an activity tree for ?a."

 (<= (leaf_occ ?s ?occ)
 (and (Activity_Occurrence ?s)
 (Activity_Occurrence ?occ)
 (exists (?a)
 (and (Activity ?a)
 (occurrence_of ?occ ?a)

328

 (subactivity_occurrence ?s ?occ)
 (leaf ?s ?a)))))
:rem "An occurrence ?occ is the leaf occurrence of an occurrence of ?a if and only if it
is a subactivity occurrence and it is the leaf of an activity tree for ?a."

 (<= (same_grove ?occ1 ?occ2)
 (and (Activity_Occurrence ?occ1)
 (Activity_Occurrence ?occ1)
 (Activity_Occurrence ?s1)
 (Activity_Occurrence ?s2)
 (exists (?a)
 (and (Activity ?a)
 (occurrence_of ?occ1 ?a)
 (occurrence_of ?occ2 ?a)
 (root_occ ?s1 ?occ1)
 (root_occ ?s2 ?occ2)
 (or (and (initial ?s1)
 (initial ?s2))
 (exists (?s4 ?a1 ?a2)
 (and (= ?s1 (successor ?a1 ?s4))
 (= ?s2 (successor ?a2 ?s4)))))))))
:rem "Two complex activity occurrences are in the same grove if and only if they are
occurrences of the same activity and their root occurrences are siblings."

329

C.2 Entity Information Semantics

C.2.1 Core Entities and Core Properties

Classes

:Prop Core_Entity
:Inst Property
:sup Object
:name "Core Entity"
:rem "(Core_Entity ?coreEnt) is TRUE in an interpretation of the Foundation Layer if and only
if Core_Entity is an abstract kind of object from which the Artifact and Feature classes are
specialised."

:Prop Core_Property
:Inst Property
:sup Object
:name "Core Property"
:rem "(Core_Property ?coreProp) is TRUE in an interpretation of the the Foundation Layer if
and only if Core_Property is an abstract kind of object from which a number of subclasses are
specialised."

:Prop Material
:Inst Property
:sup Core_Property

C

Core_Entity

C

Core_

Property

C

Object Core_Entity

Artifact

C

Feature

C

Shape_

Aspect

Dimensional_

Tolerance
Function

C

Measure_

Item

C

Geometry_

Item

Core_

Property
Material

Figure C-14 Core_Entity and Core_Property Classes

330

:name "Material"
:rem "(Material ?m) is TRUE in an interpretation of the Foundation Layer if and only if ?m is a
member of a set of materials. Materials describe the internal composition of features with
positive geometry and the internal composition of artifacts."

:Prop Function
:Inst Property
:sup Core_Property
:name "Function"
:rem "(Function ?func) is TRUE in an interpretation of the Foundation Layer if and only if
?func is a member of a set of functions. Functions are intended behaviours that represent
aspects of what features and artifacts are supposed to do."

Relations

:Rel holds_material
:Inst BinaryRel
:Sig Core_Entity Material
:name "holds_material"
:rem "(holds_material ?coreEnt ?m) is TRUE in an interpretation of the Foundation Layer if
and only if the core entity ?coreEnt is composed of the material ?m."

:Rel holds_function
:Inst BinaryRel
:Sig Core_Entity Function
:name "holds_function"
:rem "(holds_function ?coreEnt ?func) is TRUE in an interpretation of the Foundation Layer if
and only if the core entity ?coreEnt has an intended function ?func."

Axioms

 (=> (Core_Entity ?coreEnt)
 (Object ?coreEnt))
:IC hard "Core entities are objects."

 (=> (Core_Property ?coreProp)
 (Object ?coreProp))
:IC hard "Core properties are objects."

 (=> (Material ?m)
 (Core_Property ?m))
:IC hard "Materials are core properties."

Function
holds_function

C

Core_Entity

Material
holds_material

C

Core_Entity

Figure C-15 Core_Entity and Core_Property Relations

331

 (=> (Function ?func)
 (Core_Property ?func))
:IC hard "Functions are core properties."

 (=> (Core_Entity ?coreEnt)
 (exists (?func)
 (and (Function ?func)
 (holds_function ?coreEnt ?func))))
:IC soft "Every core entity holds some function."

C.2.2 Geometry and Measure Items

Classes

:Prop Geometry_Item
:Inst Property
:sup Core_Property
:name "Geometry Item"
:rem "(Geometry_Item ?geo) is TRUE in an interpretation of the Foundation Layer if and only
if Geometry_Item is an abstract kind of Core_Property where an instance of Geometry_Item
?geo can only exist as an instance of one of the instantiable subclasses of Geometry_Item."

:Prop Point
:Inst Property
:sup Geometry_Item
:name "Point"
:rem "(Point ?pt) is TRUE in an interpretation of the Foundation Layer if and only if ?pt is a
member of a set of points described in terms of a position in space relative to the X, Y and Z
Cartesian axes."

:Prop Vector_Direction
:Inst Property
:sup Geometry_Item
:name "Vector Direction"
:rem "(Vector_Direction ?v) is TRUE in an interpretation of the Foundation Layer if and only if
?v is a member of a set of vector directions stated in terms of a position in space relative to
the X, Y and Z Cartesian axes. Vector directions are unitless."

:Prop Placement
:Inst Property
:sup Geometry_Item
:name "Placement"

Measure_

Item

Length_

Measure

Angle_

Measure

Point

Geometry_

Item

Placement

Vector_

Direction

Figure C-16 Geometry_Item and Measure_Item Classes

332

:rem "(Placement ?p) is TRUE in an interpretation of the Foundation Layer if and only if ?p is
a member of a set of placements. A placement is the direction and location of the basic shape
of a part, feature on a part or of the components of a feature which are profile objects and
path objects."

:Prop Measure_Item
:Inst Property
:sup Core_Property
:name "Measure Item"
:rem "(Measure_Item ?mea) is TRUE in an interpretation of the Foundation Layer if and only if
Measure_Item is an abstract kind of Core_Property where an instance of Measure_Item
?mea can only exist as an instance of one of the instantiable subclasses of Measure_Item."

:Prop Length_Measure
:Inst Property
:sup Measure_Item
:name "Length Measure"
:rem "(Length_Measure ?length) is TRUE in an interpretation of the Foundation Layer if and
only if ?length is a member of a set of length measures."

:Prop Angle_Measure
:Inst Property
:sup Measure_Item
:name "Angle Measure"
:rem "(Angle_Measure ?angle) is TRUE in an interpretation of the Foundation Layer if and
only if ?angle is a member of a set of angle measures."

Relations

:Rel is_oriented_at
:Inst TernaryRel
:Sig Placement Point Vector_Direction
:name "is_oriented_at"
:rem "(is_oriented_at ?p ?pt ?v) is TRUE in an interpretation of the Foundation Layer if and
only if the placement ?p is specified relative to a point ?pt in space which is the origin of the
vector direction ?v."

Functions

:Fun coordinates
:Inst TernaryFun
:Sig Length_Measure Length_Measure Length_Measure -> Point
:name "coordinates"
:rem "(= ?pt (coordinates ?length1 ?length2 ?length3)) is TRUE in an interpretation of the
Foundation Layer if and only if ?pt is the point whose coordinates are given by length

Placement

Point

Vector_

Direction
1

2

3

is_oriented_at

Figure C-17 Geometry_Item and Measure_Item Relations

333

measures ?length1, ?length2 and ?length3 relative to the X, Y and Z Cartesian axes
respectively."

:Fun direction
:Inst TernaryFun
:Sig RealNumber RealNumber RealNumber -> Vector_Direction
:name "direction"
:rem "(= ?v (direction ?real1 ?real2 ?real3)) is TRUE in an interpretation of the Foundation
Layer if and only if ?v is the vector direction whose direction is given by real numbers ?real1,
?real2 and ?real3 relative to the X, Y and Z Cartesian axes respectively."

:Fun mm
:Inst UnaryFun
:Sig RealNumber -> Length_Measure
:name "millimetre"
:rem "(= ?length (mm ?real)) is TRUE in an interpretation of the Foundation Layer if and only
if ?length is a length measure whose value in millimeters is given by a real number ?real."

:Fun degree
:Inst UnaryFun
:Sig RealNumber -> Angle_Measure
:name "degree"
:rem "(= ?angle (degree ?real)) is TRUE in an interpretation of the Foundation Layer if and
only if ?angle is angle measure whose value in degrees is given by a real number ?real."

in
st

Vector_

Direction

R
o
o
tC

tx
.r

e
tu

rn
P

ro
p

direction

RootCtx.

TernaryFun

1

2

3

RootCtx.argProp

1

RootCtx.

RealNumber

1

2

3

R
o

o
tC

tx
.a

rg
P

ro
p

2

RootCtx.

RealNumber

1

23

R
ootC

tx.argProp

3

RootCtx.

RealNumber

in
st

Point

R
o
o
tC

tx
.r

e
tu

rn
P

ro
p

coordinates

RootCtx.

TernaryFun

1

2

3

RootCtx.argProp

1

Length_

Measure

1

2

3

R
o

o
tC

tx
.a

rg
P

ro
p

2

Length_

Measure

1

23

R
ootC

tx.argProp

3

Length_

Measure

Length_

Measure

RootCtx.returnProp
mm

in
s
t

RootCtx.

UnaryFun

1

2

3

RootCtx.argProp

1

RootCtx.

RealNumber

334

Axioms

 (=> (Geometry_Item ?geo)
 (Core_Property ?geo))
:IC hard "Geometry items are core properties."

 (=> (Geometry_Item ?geo)
 (exists (?class)
 (and (RootCtx.sup ?class Geometry_Item)
 (RootCtx.inst ?geo ?class)
 (/= ?class Geometry_Item))))
:IC hard "Any instance of geometry item can only be an instance of one of its
subclasses."

 (and (=> (Point ?geo)
 (not (or (Vector_Direction ?geo) (Placement ?geo))))
 (=> (Vector_Direction ?geo)
 (not (Placement ?geo))))
:IC hard "Points, vector directions and placements are all distinct kinds of things."

 (=> (is_oriented_at ?p ?pt ?v)
 (and (Placement ?p)
 (Point ?pt)
 (Vector_Direction ?v)))
:IC hard "The orientation relation only holds between placements, points and vector
directions."

 (=> (Measure_Item ?mea)
 (Core_Property ?mea))
:IC hard "Measure items are core properties."

 (=> (Measure_Item ?mea)
 (exists (?class)
 (and (RootCtx.sup ?class Measure_Item)
 (RootCtx.inst ?mea ?class)
 (/= ?class Measure_Item))))
:IC hard "Any instance of measure item can only be an instance of one of its
subclasses."

Angle_

Measure

RootCtx.returnProp
degree

in
s
t

RootCtx.

UnaryFun

1

2

3

RootCtx.argProp

1

RootCtx.

RealNumber

Figure C-18 Geometry_Item and Measure_Item Functions

335

 (=> (Length_Measure ?mea)
 (not (Angle_Measure ?mea)))
:IC hard "Length measures and angle measures are all distinct kinds of things."

 (=> (Length_Measure ?length)
 (exists (?real)
 (and (RootCtx.RealNumber ?real)
 (= ?length (Foundation.mm ?real)))))
:IC hard "Every length measure is given by some unit of measurement and some real
value."

 (=> (Angle_Measure ?angle)
 (exists (?real)
 (and (RootCtx.RealNumber ?real)
 (= ?angle (Foundation.degree ?real)))))
:IC hard "Every angle measure is given by some unit of measurement and some real
value."

 (=> (Point ?pt)
 (exists (?length1 ?length2 ?length3)
 (and (Length_Measure ?length1)
 (Length_Measure ?length2)
 (Length_Measure ?length3)
 (= ?pt (coordinates ?length1 ?length2 ?length3)))))
:IC hard "Every point is given by some x, y and z coordinates."

 (=> (Vector_Direction ?v)
 (exists (?real1 ?real2 ?real3)
 (and (RootCtx.RealNumber ?real1)
 (RootCtx.RealNumber ?real2)
 (RootCtx.RealNumber ?real3)
 (= ?v (direction ?real1 ?real2 ?real3)))))
:IC hard "Every vector direction is given by some x, y and z direction ratio."

 (=> (and (is_oriented_at ?p ?pt1 ?v1)
 (is_oriented_at ?p ?pt2 ?v2))
 (and (= ?pt1 ?pt2)
 (= ?v1 ?v2)))
:IC hard "A placement is associated with a unique point and a unique vector direction."

 (=> (Placement ?p)
 (exists (?pt ?v)
 (and (Point ?pt)
 (Vector_Direction ?v)
 (is_oriented_at ?p ?pt ?v))))
:IC hard "Every placement is oriented at some point and vector direction."

C.2.3 Shape Aspects

Classes

:Prop Shape_Aspect
:Inst Property
:sup Core_Property
:name "Shape Aspect"

336

:rem "(Shape_Aspect ?sa) is TRUE in an interpretation of the Foundation Layer if and only if
Shape_Aspect is an abstract kind of Core_Property where an instance of Shape_Aspect ?sa
can only exist as an instance of one of the instantiable subclasses of Shape_Aspect."

:Prop Circular_Closed_Profile
:Inst Property
:sup Shape_Aspect
:name "Circular Closed Profile"
:rem "(Circular_Closed_Profile ?ccp) is TRUE in an interpretation of the Foundation Layer if
and only if ?ccp is a member of a set of circular closed profiles. A circular closed profile is an
enclosed 2D area which is defined according to its diameter. The orientation is at the centre
of the circular arc."

:Prop Rectangular_Closed_Profile
:Inst Property
:sup Shape_Aspect
:name "Rectangular Closed Profile"
:rem "(Rectangular_Closed_Profile ?rcp) is TRUE in an interpretation of the Foundation Layer
if and only if ?rcp is a member of a set of rectangular closed profiles. A rectangular closed
profile is an enclosed area bounded by four sides with opposite sides equal in length and
corners at 90 degrees. The orientation is at the centre of the rectangle."

:Prop Linear_Path
:Inst Property
:sup Shape_Aspect
:name "Linear Path"
:rem "(Linear_Path ?lin) is TRUE in an interpretation of the Foundation Layer if and only if ?lin
is a member of a set of linear paths. A linear path defines a direction of travel along a line and
is defined according to the length of the path."

:Prop Linear_Profile
:Inst Property
:sup Shape_Aspect
:name "Linear Profile"
:rem "(Linear_Profile ?lp) is TRUE in an interpretation of the Foundation Layer if and only if
?lp is a member of a set of linear profiles. A linear profile can be regarded as being an open
profile that involves exactly two connected points in a straight line with a specified length."

:Prop Taper
:Inst Property
:sup Shape_Aspect
:name "Taper"
:rem "(Taper ?tap) is TRUE in an interpretation of the Foundation Layer if and only if ?tap is a
member of a set of tapers. A taper is a type of shape aspect which represents a constant
change in shape of a feature or a part. A taper starts at the location of placement of a feature
and is applied to the entire feature."

:Prop Transition_Feature
:Inst Property
:sup Shape_Aspect
:name "Transition Feature"
:rem "(Transition_Feature ?tf) is TRUE in an interpretation of the Foundation Layer if and only
if Transition_Feature is an abstract kind of Shape_Aspect where an instance of
Transition_Feature ?tf can only exist as an instance of one of the instantiable subclasses of
Transition_Feature."

337

Relations

:Rel holds_placement
:Inst BinaryRel
:Sig Shape_Aspect Placement
:name "holds_placement"
:rem "(holds_placement ?sa ?p) is TRUE in an interpretation of the Foundation Layer if and
only if the shape aspect ?sa holds a placement ?p. A shape aspect may have one and only
one placement."

:Rel measures
:Inst BinaryRel
:Sig Shape_Aspect Measure_Item
:name "measures"
:rem "(measures ?sa ?measure) is TRUE in an interpretation of the Foundation Layer if and
only if the shape aspect ?sa has ?measure as its measure representation item."

Circular_

Closed_

Profile

C

Transition_

Feature

Rectangular_

Closed_

Profile

Linear

Profile

Linear_

Path

Taper

Shape_

Aspect

Figure C-19 Shape_Aspect Classes

Placement
holds_placement

C

Shape_

Aspect

Measure_

Item

measures

C

Shape_

Aspect

sweeps

C

Shape_

Aspect

C

Shape_

Aspect

Linear_

Profile

Point

Point
1

2

3

meets

Circular_

Closed_

Profile

through
1

Circular_

Closed_

Profile

blind
1

Figure C-20 Shape_Aspect Relations

338

:Rel sweeps
:Inst BinaryRel
:Sig Shape_Aspect Shape_Aspect
:name "sweeps"
:rem "(sweeps ?sa1 ?sa2) is TRUE in an interpretation of the Foundation Layer if and only if
the shape aspect ?sa1 is a linear path or taper that sweeps another existing shape aspect
?sa2 to produce a 3D feature."

:Rel meets
:Inst TernaryRel
:Sig Linear_Profile Point Point
:name "meets"
:rem "(meets ?lp ?pt1 ?pt2) is TRUE in an interpretation of the Foundation Layer if and only if
the linear profile ?lp meets the points ?pt1 and ?pt2 forming a straight line."

:Rel blind
:Inst UnaryRel
:Sig Circular_Closed_Profile
:name "blind"
:rem "(blind ?ccp) is TRUE in an interpretation of the Foundation Layer if and only if the
circular closed profile ?ccp describes a blind hole bottom condition of a round hole feature. A
blind hole bottom condition is one where the hole feature does not go through the material
completely."

:Rel through
:Inst UnaryRel
:Sig Circular_Closed_Profile
:name "through"
:rem "(through ?ccp) is TRUE in an interpretation of the Foundation Layer if and only if the
circular closed profile ?ccp describes a through hole bottom condition of a round hole feature.
A through hole bottom condition is one where the hole feature goes through the material
completely."

Axioms

 (=> (Shape_Aspect ?sa)
 (Core_Property ?sa))
:IC hard "Shape aspects are core properties."

 (=> (Shape_Aspect ?sa)
 (exists (?class)
 (and (RootCtx.sup ?class Shape_Aspect)
 (RootCtx.inst ?sa ?class)
 (/= ?class Shape_Aspect))))
:IC hard "Any instance of shape aspect can only be an instance of one of its
subclasses."

 (and (=> (Circular_Closed_Profile ?sa)
 (not (or (Rectangular_Closed_Profile ?sa) (Linear_Path ?sa) (Linear_Profile ?sa)
(Taper ?sa) (Transition_Feature ?sa))))
 (=> (Rectangular_Closed_Profile ?sa)
 (not (or (Linear_Path ?sa) (Linear_Profile ?sa) (Taper ?sa) (Transition_Feature
?sa))))
 (=> (Linear_Path ?sa)
 (not (or (Linear_Profile ?sa) (Taper ?sa) (Transition_Feature ?sa))))
 (=> (Linear_Profile ?sa)
 (not (or (Taper ?sa) (Transition_Feature ?sa))))
 (=> (Taper ?sa)

339

 (not (Transition_Feature ?sa))))
:IC hard "Circular closed profiles, rectangular closed profiles, linear paths, linear
profiles, tapers and transition features are all distinct kinds of things."

 (=> (holds_placement ?sa ?p)
 (and (Shape_Aspect ?sa)
 (Placement ?p)))
:IC hard "The relation holds_placement only holds between shape aspects and
placements."

 (=> (and (holds_placement ?sa ?p1)
 (holds_placement ?sa ?p2))
 (= ?p1 ?p2))
:IC hard "A shape aspect is associated with a unique placement."

 (=> (meets ?lp ?pt1 ?pt2)
 (and (Linear_Profile ?lp)
 (Point ?pt1)
 (Point ?pt2)
 (/= ?pt1 ?pt2)))
:IC hard "The relation meets only holds between linear profiles and two distinct points."

 (=> (meets ?lp ?pt1 ?pt2)
 (meets ?lp ?pt2 ?pt1))
:IC soft "The relation meets is symmetric over linear profiles and points."

 (=> (and (Linear_Profile ?lp)
 (Point ?pt))
 (not (meets ?lp ?pt ?pt)))
:IC hard "The relation meets is irreflexive on points."

 (=> (measures ?sa ?mea)
 (and (Shape_Aspect ?sa)
 (Measure_Item ?mea)))
:IC hard "The relation measures only holds between shape aspects and measure items."

 (=> (sweeps ?sa1 ?sa2)
 (and (or (Linear_Path ?sa1)
 (Taper ?sa1))
 (Shape_Aspect ?sa2)
 (not (or (Linear_Path ?sa2)
 (Taper ?sa2)))))
:IC hard "The relation sweeps holds over shape aspects that are linear paths or tapers
and other shape aspects."

 (=> (blind ?ccp)
 (Circular_Closed_Profile ?ccp))
:IC hard "The relation blind only holds for circular closed profiles."

 (=> (through ?ccp)
 (Circular_Closed_Profile ?ccp))
:IC hard "The relation through only holds for circular closed profiles."

 (=> (Circular_Closed_Profile ?ccp)
 (exists (?length)
 (and (Length_Measure ?length)
 (measures ?ccp ?length))))
:IC hard "Every circular closed profile has an associated length measure which
represents the diameter of the profile."

340

 (=> (Circular_Closed_Profile ?ccp)
 (exists (?p)
 (and (Placement ?p)
 (holds_placement ?ccp ?p))))
:IC hard "Every circular closed profile has an associated placement."

 (=> (Rectangular_Closed_Profile ?rcp)
 (exists (?length1 ?length2)
 (and (Length_Measure ?length1)
 (Length_Measure ?length2)
 (measures ?rcp ?length1)
 (measures ?rcp ?length2))))
:IC hard "Every rectangular closed profile has two associated length measures which
represent the width and breadth of the profile."

 (=> (Rectangular_Closed_Profile ?rcp)
 (exists (?p)
 (and (Placement ?p)
 (holds_placement ?rcp ?p))))
:IC hard "Every rectangular closed profile has an associated placement."

 (=> (Linear_Path ?lin)
 (exists (?length)
 (and (Length_Measure ?length)
 (measures ?lin ?length))))
:IC hard "Every linear path has an associated length measure which represents the
distance of the linear path."

 (=> (Linear_Path ?lin)
 (exists (?p)
 (and (Placement ?p)
 (holds_placement ?lin ?p))))
:IC hard "Every linear path has an associated placement."

 (=> (Linear_Path ?lin)
 (exists (?sa)
 (and (Shape_Aspect ?sa)
 (sweeps ?lin ?sa))))
:IC hard "Every linear path has an associated shape aspect that the linear path sweeps."

 (=> (Linear_Profile ?lp)
 (exists (?length)
 (and (Length_Measure ?length)
 (measures ?lp ?length))))
:IC hard "Every linear profile has an associated length measure which represents the
length of the profile."

 (=> (Linear_Profile ?lp)
 (exists (?pt1 ?pt2)
 (and (Point ?pt1)
 (Point ?pt2)
 (meets ?lp ?pt1 ?pt2))))
:IC hard "Every linear profile meets two distinct points."

 (=> (Taper ?tap)
 (exists (?angle)
 (and (Angle_Measure ?angle)
 (measures ?tap ?angle))))
:IC hard "Every taper has an associated angle measure which represents the taper
angle."

341

 (=> (Taper ?tap)
 (exists (?p)
 (and (Placement ?p)
 (holds_placement ?tap ?p))))
:IC hard "Every taper has an associated placement."

 (=> (Taper ?tap)
 (exists (?sa)
 (and (Shape_Aspect ?sa)
 (sweeps ?tap ?sa))))
:IC hard "Every taper has an associated shape aspect that the taper sweeps."

C.2.4 Features and Artifacts

Classes

:Prop Artifact
:Inst Property
:sup Core_Entity
:name "Artifact"
:rem "(Artifact ?art) is TRUE in an interpretation of the Foundation Layer if and only if ?art is a
member of a set of artifacts in the universe of discourse of the interpretation. Intuitively,
artifacts represent a distinct entity in a product whether that entity is a component, part,
subassembly or assembly. Artifacts can involve intuitions about part families."

:Prop Feature
:Inst Property
:sup Core_Entity
:name "Feature"
:rem "(Feature ?f) is TRUE in an interpretation of the Foundation Layer if and only if ?f is a
member of a set of features. A feature represents a portion or element of interest of an
artifact‟s form."

:Prop Round_Hole
:Inst Property
:sup Feature
:name "Round Hole"
:rem "(Round_Hole ?hole) is TRUE in an interpretation of the Foundation Layer if and only if
?hole is a member of a set of round holes. A round hole is regarded as the removal of a
volume of cylindrical shape from a part. A round hole has its orientation at a point in the
bottom of the hole with the direction pointing out of the hole through the axis. A round hole
may be tapered."

Block

Feature

Cylinder

Round_

Hole

Figure C-21 Feature Classes

342

:Prop Block
:Inst Property
:sup Feature
:name "Block"
:rem "(Block ?b) is TRUE in an interpretation of the Foundation Layer if and only if ?b is a
member of a set of blocks. A block specifies the representation of a feature that is a
rectangular volume defined as a rectangular closed profile swept along a linear path. The
orientation of a block is at the centre point of the rectangular closed profile with the direction
pointing out of the block along the axis of the rectangular closed profile."

:Prop Cylinder
:Inst Property
:sup Feature
:name "Cylinder"
:rem "(Cylinder ?c) is TRUE in an interpretation of the Foundation Layer if and only if ?c is a
member of a set of cylinders. A cylinder specifies the representation of a feature that is a
cylindrical volume defined as a circular closed profile swept along a linear path. The
orientation of the cylinder is at the centre point of the circular closed profile with the direction
pointing out of the cylinder along the axis of the circular closed profile."

Relations

:Rel holds_shape
:Inst BinaryRel
:Sig Feature Shape_Aspect
:name "holds_shape"

holds_feature

sub_artifact_of

holds_shape

C

Feature

C

Shape_

Aspect

Placement
holds_orientation

C

Feature

Linear_

Profile

holds_axis

C

Feature
element_of

C

Feature

C

Feature

Artifact

C

Feature

ArtifactArtifact

1

2

3

predecessor

C

Feature

C

Feature

C

Feature

compound
1

base
1

C

Feature

C

Feature

Figure C-22 Feature and Artifact Relations

343

:rem "(holds_shape ?f ?sa) is TRUE in an interpretation of the Foundation Layer if and only if
the feature ?f has a related shape aspect ?sa that is used towards the definition of the feature
?f."

:Rel compound
:Inst UnaryRel
:Sig Feature
:name "compound"
:rem "(compound ?f) is TRUE in an interpretation of the Foundation Layer if and only if the
feature ?f is a compound feature that is the union of more than one feature to create a more
complex feature definition."

:Rel element_of
:Inst BinaryRel
:Inst ReflexiveBR
:Sig Feature Feature
:name "element_of"
:rem "(element_of ?f1 ?f) is TRUE in an interpretation of the Foundation Layer if and only if
the feature ?f1 is an element of a compound feature ?f."

:Rel base
:Inst UnaryRel
:Sig Feature
:name "base"
:rem "(base ?f) is TRUE in an interpretation of the Foundation Layer if and only if the feature
?f is an element of a compound feature such that ?f is the base feature from which other
element features are aggregated."

:Rel predecessor
:Inst TernaryRel
:Sig Feature Feature Feature
:name "predecessor"
:rem "(predecessor_of ?f1 ?f2 ?f) is TRUE in an interpretation of the Foundation Layer if and
only if the feature ?f1 is an element of a compound feature ?f, the latter having the highest
precedence over ?f2, a second element of the compound feature ?f."

:Rel holds_feature
:Inst BinaryRel
:Sig Artifact Feature
:name "holds_feature"
:rem "(holds_feature ?art ?f) is TRUE in an interpretation of the Foundation Layer if and only if
the artifact ?art holds a given feature ?f. This is the basic relation between artifacts and
features."

:Rel sub_artifact_of
:Inst BinaryRel
:Inst IrreflexiveBR
:Inst TransitiveBR
:Sig Artifact Artifact
:name "sub_artifact_of"
:rem "(sub_artifact_of ?sub ?art) is TRUE in an interpretation of the Foundation Layer if and
only if the artifact ?sub is a sub-artifact of the artifact ?art."

:Rel holds_orientation
:Inst BinaryRel
:Sig Feature Placement
:name "holds_orientation"
:rem "(holds_orientation ?f ?p) is TRUE in an interpretation of the Foundation Layer if and
only if the feature ?f holds an orientation given by a placement ?p. The orientation of a feature
corresponds to the placement of one of the shape aspects that make up the feature."

344

:Rel holds_axis
:Inst BinaryRel
:Sig Feature Linear_Profile
:name "holds_axis"
:rem "(holds_axis ?f ?lp) is TRUE in an interpretation of the Foundation Layer if and only if the
feature ?f holds an axis given by the linear profile ?lp."

Axioms

 (=> (and (Feature ?f)
 (Artifact ?art))
 (and (Core_Entity ?f)
 (Core_Entity ?art)))
:IC hard "Features and artifacts are core entities."

 (and (=> (Round_Hole ?f)
 (not (or (Block ?f) (Cylinder ?f))))
 (=> (Block ?f)
 (not (Cylinder ?f))))
:IC hard "Round holes, blocks and cylinders are all distinct kinds of things."

 (=> (holds_shape ?f ?sa)
 (and (Feature ?f)
 (Shape_Aspect ?sa)))
:IC hard "The relation holds_shape only holds between features and shape aspects."

 (=> (compound ?f)
 (Feature ?f))
:IC hard "The relation compound only holds for features."

 (=> (element_of ?f1 ?f)
 (and (Feature ?f1)
 (Feature ?f)))
:IC hard "The element_of relation only holds between features."

 (=> (base ?f)
 (Feature ?f))
:IC hard "The relation base only holds for features."

 (=> (predecessor ?f1 ?f2 ?f)
 (and (Feature ?f1)
 (Feature ?f2)
 (Feature ?f)
 (compound ?f)))
:IC hard "The relation predecessor only holds between features."

 (=> (and (Feature ?f1)
 (Feature ?f))
 (not (predecessor ?f1 ?f1 ?f)))
:IC hard "The relation predecessor is irreflexive."

 (=> (and (predecessor ?f1 ?f2 ?f)
 (predecessor ?f2 ?f3 ?f))
 (predecessor ?f1 ?f3 ?f))
:IC soft "The relation predecessor is transitive on compound features."

345

 (=> (holds_feature ?art ?f)
 (and (Feature ?f)
 (Artifact ?art)))
:IC hard "The holds_feature relation only holds between artifacts and features."

 (=> (sub_artifact_of ?sub ?art)
 (and (Artifact ?sub)
 (Artifact ?art)))
:IC hard "The sub_artifact_of relation only holds between artifacts."

 (=> (holds_orientation ?f ?p)
 (and (Feature ?f)
 (Placement ?p)))
:IC hard "The relation holds_orientation only holds between features and placements."

 (=> (and (Feature ?f)
 (Placement ?p1)
 (Placement ?p2)
 (holds_orientation ?f ?p1)
 (holds_orientation ?f ?p2))
 (= ?p1 ?p2))
:IC hard "A feature is associated with a unique placement."

 (=> (holds_axis ?f ?lp)
 (and (Feature ?f)
 (Linear_Profile ?lp)))
:IC hard "The relation holds_axis on holds between features and linear profiles."

 (=> (compound ?f)
 (exists (?f1 ?f2)
 (and (Feature ?f1)
 (Feature ?f2)
 (/= ?f1 ?f2)
 (element_of ?f1 ?f)
 (element_of ?f2 ?f))))
:IC hard "If a feature is compound, then there should exist any two features that are
elements of the compound feature."

(=> (compound ?f)
 (exists (?f1)
 (and (Feature ?f1)
 (base ?f1)
 (element_of ?f1 ?f))))
:IC hard "If a feature is compound, then there exists a base feature that is an element of
the compound feature."

 (=> (and (compound ?f)
 (base ?f1)
 (element_of ?f1 ?f))
 (not (exists (?f2)
 (and (Feature ?f2)
 (predecessor ?f2 ?f1 ?f)))))
:IC hard "No feature can be a predecessor of a base feature in a compound feature."

 (=> (and (compound ?f)
 (base ?f1)
 (element_of ?f1 ?f))
 (exists (?f2)
 (and (Feature ?f2)
 (element_of ?f2 ?f)

346

 (predecessor ?f1 ?f2 ?f))))
:IC hard "Every feature stated to be a base feature implies the existence of another
feature which the base feature precedes on a compound feature."

 (=> (and (Artifact ?art)
 (Round_Hole ?hole)
 (holds_feature ?art ?hole))
 (exists (?f)
 (and (Feature ?f)
 (holds_feature ?art ?f)
 (not (Round_Hole ?f)))))
:IC hard "An artifact can only hold a round hole provided it holds another feature that is
not a round hole i.e. a round hole cannot be the sole feature describing an artifact."

 (=> (Artifact ?art)
 (exists (?m)
 (and (Material ?m)
 (holds_material ?art ?m))))
:IC soft "Every artifact holds some material that describes its internal composition."

 (=> (and (Cylinder ?c)
 (Circular_Closed_Profile ?ccp)
 (Linear_Path ?lin)
 (holds_shape ?c ?ccp)
 (holds_shape ?c ?lin)
 (holds_placement ?ccp ?p1)
 (sweeps ?lin ?ccp))
 (exists (?p2)
 (and (holds_orientation ?c ?p2)
 (= ?p1 ?p2))))
:IC hard "The orientation of a cylinder corresponds to the placement of its circular
closed profile that its linear path sweeps."

(=> (and (Cylinder ?c)
 (Circular_Closed_Profile ?ccp1)
 (Linear_Path ?lin)
 (Length_Measure ?length1)
 (holds_shape ?c ?ccp1)
 (holds_shape ?c ?lin)
 (sweeps ?lin ?ccp1)
 (measures ?ccp1 ?length1))
 (exists (?ccp2 ?length2)
 (and (Circular_Closed_Profile ?ccp2)
 (Length_Measure ?length2)
 (holds_shape ?c ?ccp2)
 (measures ?ccp2 ?length2)
 (= ?length1 ?length2))))
:IC hard "For any cylinder the diameter of its circular closed profile that its linear path
sweeps is the same as the diameter of its other existing circular closed profile."

 (=> (and (Block ?b)
 (Rectangular_Closed_Profile ?rcp)
 (Linear_Path ?lin)
 (holds_shape ?b ?rcp)
 (holds_shape ?b ?lin)
 (holds_placement ?rcp ?p1)
 (sweeps ?lin ?rcp))
 (exists (?p2)
 (and (holds_orientation ?b ?p2)
 (= ?p1 ?p2))))

347

:IC hard "The orientation of a block corresponds to the placement of its rectangular
closed profile that its linear path sweeps."

 (=> (Cylinder ?c)
 (exists (?ccp1 ?ccp2)
 (and (Circular_Closed_Profile ?ccp1)
 (Circular_Closed_Profile ?ccp2)
 (/= ?ccp1 ?ccp2)
 (holds_shape ?c ?ccp1)
 (holds_shape ?c ?ccp2))))
:IC hard "Every cylinder holds exactly two circular closed profiles."

 (=> (Cylinder ?c)
 (exists (?lin)
 (and (Linear_Path ?lin)
 (holds_shape ?c ?lin))))
:IC hard "Every cylinder holds exactly one linear path."

 (=> (and (Cylinder ?c)
 (Circular_Closed_Profile ?ccp1)
 (Circular_Closed_Profile ?ccp2)
 (Point ?pt1)
 (Point ?pt2)
 (Vector_Direction ?v1)
 (Vector_Direction ?v2)
 (holds_shape ?c ?ccp1)
 (holds_shape ?c ?ccp2)
 (holds_placement ?ccp1 ?p1)
 (holds_placement ?ccp2 ?p2)
 (is_oriented_at ?p1 ?pt1 ?v1)
 (is_oriented_at ?p2 ?pt2 ?v2))
 (exists (?lp)
 (and (Linear_Profile ?lp)
 (holds_axis ?c ?lp)
 (meets ?lp ?pt1 ?pt2))))
:IC soft "Every cylinder may hold an axis which meets the centre points of the two
circular closed profiles of the cylinder."

(=> (Block ?b)
 (exists (?rcp1 ?rcp2 ?rcp3 ?rcp4 ?rcp5 ?rcp6)
 (and (Rectangular_Closed_Profile ?rcp1)
 (Rectangular_Closed_Profile ?rcp2)
 (Rectangular_Closed_Profile ?rcp3)
 (Rectangular_Closed_Profile ?rcp4)
 (Rectangular_Closed_Profile ?rcp5)
 (Rectangular_Closed_Profile ?rcp6)
 (holds_shape ?b ?rcp1)
 (holds_shape ?b ?rcp2)
 (holds_shape ?b ?rcp3)
 (holds_shape ?b ?rcp4)
 (holds_shape ?b ?rcp5)
 (holds_shape ?b ?rcp6))))
:IC hard "Every block holds six rectangular closed profiles."

 (=> (Block ?b)
 (exists (?lin)
(and (Linear_Path ?lin)
 (holds_shape ?b ?lin))))
:IC hard "Every block holds exactly one linear path."

348

 (=> (and (Round_Hole ?hole)
 (Circular_Closed_Profile ?ccp)
 (Linear_Path ?lin)
 (holds_shape ?hole ?ccp)
 (holds_shape ?hole ?lin)
 (sweeps ?lin ?ccp))
 (exists (?p)
 (and (Placement ?p)
 (holds_placement ?ccp ?p)
 (holds_placement ?lin ?p))))
:IC hard "For a given round hole, the placement of the linear path is the same as the
placement of one of the circular closed profiles that its linear path sweeps."

 (=> (and (Round_Hole ?hole)
 (Placement ?p1)
 (holds_orientation ?hole ?p1)
 (Circular_Closed_Profile ?ccp)
 (or (blind ?ccp)
 (through ?ccp))
 (holds_shape ?hole ?ccp)
 (holds_placement ?ccp ?p2))
 (= ?p1 ?p2))
:IC hard "The orientation of a round hole corresponds to the placement of either the
blind or through circular closed profile of the hole."

 (=> (and (Round_Hole ?hole)
 (Circular_Closed_Profile ?ccp1)
 (Circular_Closed_Profile ?ccp2)
 (holds_shape ?hole ?ccp1)
 (holds_shape ?hole ?ccp2)
 (or (blind ?ccp2)
 (through ?ccp2))
 (RealNumber ?real1)
 (RealNumber ?real2)
 (measures ?ccp1 (mm ?real1))
 (measures ?ccp2 (mm ?real2))
 (ltNum ?real2 ?real1))
 (exists (?tap)
 (and (Taper ?tap)
 (sweeps ?tap ?ccp1))))
:IC soft "If the nominal diameter of a blind or through circular closed profile of a round
hole is less than that of the diameter of the other circular closed profile for the same
hole, then a taper parameter that sweeps the non-blind or non-through circular closed
profile may be specified."

 (=> (Round_Hole ?hole)
 (exists (?ccp1 ?ccp2)
 (and (Circular_Closed_Profile ?ccp1)
 (Circular_Closed_Profile ?ccp2)
 (/= ?ccp1 ?ccp2)
 (holds_shape ?hole ?ccp1)
 (holds_shape ?hole ?ccp2))))
:IC hard "Every round hole feature can hold exactly two circular closed profiles."

 (=> (Round_Hole ?hole)
 (exists (?lin)
 (and (Linear_Path ?lin)
 (holds_shape ?hole ?lin))))
:IC hard "Every round hole feature can hold exactly one linear path."

349

 (=> (and (Round_Hole ?hole)
 (Circular_Closed_Profile ?ccp1)
 (holds_shape ?hole ?ccp1)
 (blind ?ccp1))
 (not (exists (?ccp2)
 (and (Circular_Closed_Profile ?ccp2)
 (holds_shape ?hole ?ccp2)
 (through ?ccp2)))))
:IC hard "Every round hole that holds a blind circular closed profile cannot have a
through circular closed profile."

 (=> (and (Round_Hole ?hole)
 (Circular_Closed_Profile ?ccp1)
 (holds_shape ?hole ?ccp1)
 (through ?ccp1))
 (not (exists (?ccp2)
 (and (Circular_Closed_Profile ?ccp2)
 (holds_shape ?hole ?ccp2)
 (blind ?ccp2)))))
:IC hard "Every round hole that holds a through circular closed profile cannot have a
blind circular closed profile."

 (=> (and (Round_Hole ?hole)
 (Circular_Closed_Profile ?ccp1)
 (Circular_Closed_Profile ?ccp2)
 (Point ?pt1)
 (Point ?pt2)
 (Vector_Direction ?v1)
 (Vector_Direction ?v2)
 (holds_shape ?hole ?ccp1)
 (holds_shape ?hole ?ccp2)
 (holds_placement ?ccp1 ?p1)
 (holds_placement ?ccp2 ?p2)
 (is_oriented_at ?p1 ?pt1 ?v1)
 (is_oriented_at ?p2 ?pt2 ?v2))
 (exists (?lp)
 (and (Linear_Profile ?lp)
 (holds_axis ?hole ?lp)
 (meets ?lp ?pt1 ?pt2))))
:IC soft "Every round hole feature may hold an axis which meets the centre points of
the two circular closed profiles of the hole feature."

Definitions

(<= (holds_function ?art ?func)
 (and (Feature ?f)
 (Artifact ?art)
 (Function ?func)
 (holds_feature ?art ?f)
 (holds_function ?f ?func)))
:rem "An artifact ?art can hold some function ?func that derives from its feature ?f that
holds the function ?func."

350

C.2.5 Transition Features

Classes

:Prop Constant_Radius_Edge_Round
:Inst Property
:sup Transition_Feature
:name "Constant Radius Edge Round"
:rem "(Constant_Radius_Edge_Round ?edge) is TRUE in an interpretation of the Foundation
Layer if and only if ?edge is a member of a set of constant radius edge rounds. A constant
radius edge round intuitively is a type of transition feature that is a convex circular arc
transition of constant radius between two intersecting surfaces where the blend surface
produced is tangent to both of the adjacent surface edges."

:Prop Constant_Radius_Fillet
:Inst Property
:sup Transition_Feature
:name "Constant Radius Fillet"
:rem "(Constant_Radius_Fillet ?fill) is TRUE in an interpretation of the Foundation Layer if
and only if ?fill is a member of a set of constant radius fillets. A constant radius fillet intuitively
is a type of transition feature that is a concave circular arc transition of constant radius
between two intersecting surfaces. The blend surface may be tangent to both of the adjacent
surfaces edges."

:Prop Chamfer
:Inst Property
:sup Transition_Feature
:name "Chamfer"
:rem "(Chamfer ?chf) is TRUE in an interpretation of the Foundation Layer if and only if ?chf is
a member of a set of chamfers. A chamfer intuitively is a type of transition feature that is a
transition between two joining non-coplanar surfaces, having a flat orthogonal cross-section.
A chamfer description requires an offset length from one face and an offset length from a
second face, which forms an angle with respect to the first face."

Relations

:Rel is_offset_at
:Inst TernaryRel
:Sig Transition_Feature Length_Measure Shape_Aspect
:name "is_offset_at"

Constant_

Radius_

Edge_

Round

Transition_

Feature

Constant_

Radius_

Fillet

Chamfer

Figure C-23 Transition Feature Classes

351

:rem "(is_offset_at ?tf ?length ?sa) is TRUE in an interpretation of the Foundation Layer if and
only if the transition feature ?tf is offset at a given length measure ?length with respect to a
given shape aspect ?sa."

:Rel is_angled_at
:Inst TernaryRel
:Sig Transition_Feature Angle_Measure Shape_Aspect
:name "is_angled_at"
:rem "(is_angled_at ?tf ?angle ?sa) is TRUE in an interpretation of the Foundation Layer if
and only if the transition feature ?tf is angled at a given angle measure ?angle with respect to
a given shape asepct ?sa."

:Rel blends
:Inst BinaryRel
:Sig Transition_Feature Shape_Aspect
:name "blends"
:rem "(blends ?tf ?sa) is TRUE in an interpretation of the Foundation Layer if and only if the
transition feature ?tf blends the shape aspects ?sa."

Axioms

(=> (Transition_Feature ?tf)
 (Shape_Aspect ?tf))
:IC hard "Transition features are shape aspects."

 (=> (Transition_Feature ?tf)
 (exists (?class)
 (and (RootCtx.sup ?class Transition_Feature)
 (RootCtx.inst ?tf ?class)
 (/= ?class Transition_Feature))))
:IC hard "Any instance of transition feature can only be an instance of one of its
subclasses."

 (and (=> (Constant_Radius_Edge_Round ?tf)
 (not (or (Constant_Radius_Fillet ?tf) (Chamfer ?tf))))
 (=> (Constant_Radius_Fillet ?tf)
 (not (Chamfer ?tf))))
:IC hard "Constant radius edge rounds, constant radius fillets and chamfers are all
distinct kinds of things."

blends

C

Transition_

Feature

C

Shape_

Aspect

1

2

3

is_offset_at

C

Shape_

Aspect

C

Transition_

Feature

Length_

Measure

1

2

3

is_angled_at

C

Shape_

Aspect

C

Transition_

Feature

Angle_

Measure

Figure C-24 Transition_Feature Relations

352

 (=> (is_offset_at ?tf ?length ?sa)
 (and (Transition_Feature ?tf)
 (Length_Measure ?length)
 (Shape_Aspect ?sa)))
:IC hard "The relation is_offset_at only holds between transition features, length
measures and shape aspects."

 (=> (is_angled_at ?tf ?angle ?sa)
 (and (Transition_Feature ?tf)
 (Angle_Measure ?angle)
 (Shape_Aspect ?sa)))
:IC hard "The relation is_angled_at only holds between transition features, angle
measures and shape aspects."

 (=> (blends ?tf ?sa)
 (and (Transition_Feature ?tf)
 (Shape_Aspect ?sa)))
:IC hard " The relation blends only holds between transition features and shape
aspects."

 (=> (Transition_Feature ?tf)
 (not (exists (?p)
 (and (Placement ?p)
 (holds_placement ?tf ?p)))))
:IC hard "Transition features are shape aspects that do not have placements."

 (=> (Constant_Radius_Edge_Round ?edge)
 (exists (?length)
 (and (Length_Measure ?length)
 (measures ?edge ?length))))
:IC hard "Every constant radius edge round is a transition feature with exactly one
length measure which represents the radius of curvature of the transition area."

 (=> (Constant_Radius_Edge_Round ?edge)
 (exists (?sa1 ?sa2)
 (and (Shape_Aspect ?sa1)
 (Shape_Aspect ?sa2)
 (/= ?sa1 ?sa2)
 (blends ?edge ?sa1)
 (blends ?edge ?sa2))))
:IC hard "Every constant radius edge round is a transition feature with exactly two
blended shape aspects."

 (=> (Constant_Radius_Fillet ?fill)
 (exists (?length)
 (and (Length_Measure ?length)
 (measures ?fill ?length))))
:IC hard "Every constant radius fillet is a transition feature with exactly one length
measure which represents the radius of curvature of the transition area."

 (=> (Constant_Radius_Fillet ?fill)
 (exists (?sa1 ?sa2)
 (and (Shape_Aspect ?sa1)
 (Shape_Aspect ?sa2)
 (/= ?sa1 ?sa2)
 (blends ?fill ?sa1)
 (blends ?fill ?sa2))))
:IC hard "Every constant radius fillet is a transition feature with exactly two blended
shape aspects."

353

 (=> (Constant_Radius_Fillet ?fill)
 (exists (?sa ?length)
 (and (Shape_Aspect ?sa)
 (Length_Measure ?length)
 (blends ?fill ?sa)
 (is_offset_at ?fill ?length ?sa))))
:IC hard "Every constant radius fillet has an offset dimension specification from the
shape aspect that it blends."

 (=> (Chamfer ?chf)
 (exists (?sa1 ?sa2)
 (and (Shape_Aspect ?sa1)
 (Shape_Aspect ?sa2)
 (/= ?sa1 ?sa2)
 (blends ?chf ?sa1)
 (blends ?chf ?sa2))))
:IC hard "Every chamfer is a transition feature with exactly two blended shape aspects."

 (=> (Chamfer ?chf)
 (exists (?sa ?length)
 (and (Shape_Aspect ?sa)
 (Length_Measure ?length)
 (blends ?chf ?sa)
 (is_offset_at ?chf ?length ?sa))))
:IC hard "Every chamfer has an offset dimension specification from the shape aspect
that it blends."

 (=> (Chamfer ?chf)
 (exists (?sa ?angle)
 (and (Shape_Aspect ?sa)
 (Angle_Measure ?angle)
 (blends ?chf ?sa)
 (is_angled_at ?chf ?angle ?sa))))
:IC soft "Every chamfer may have an angle measure specification from the shape
aspect that the chamfer blends."

 (=> (and (Round_Hole ?hole)
 (Circular_Closed_Profile ?ccp)
 (Linear_Path ?lin)
 (holds_shape ?hole ?ccp)
 (holds_shape ?hole ?lin)
 (blind ?ccp)
 (Transition_Feature ?tf)
 (blends ?tf ?ccp)
 (blends ?tf ?lin))
 (or (Chamfer ?tf)
 (Constant_Radius_Fillet ?tf)))
:IC hard "Only chamfers and fillets can be transition features that blend the blind
circular closed profile and the linear path of a round hole."

 (=> (and (Round_Hole ?hole)
 (Linear_Path ?lin)
 (holds_shape ?hole ?lin)
 (Feature ?f)
 (Shape_Aspect ?sa)
 (holds_shape ?f ?sa)
 (/= ?hole ?f)
 (Transition_Feature ?tf)
 (blends ?tf ?lin)
 (blends ?tf ?sa))

354

 (or (Chamfer ?tf)
 (Constant_Radius_Edge_Round ?tf)))
:IC hard "Only chamfers and edge rounds can be transition features that blend the
linear path of a round hole and some other shape aspect from another feature."

 (=> (and (Cylinder ?c)
 (Circular_Closed_Profile ?ccp)
 (Linear_Path ?lin)
 (holds_shape ?c ?ccp)
 (holds_shape ?c ?lin)
 (Transition_Feature ?tf)
 (blends ?tf ?ccp)
 (blends ?tf ?lin))
 (or (Chamfer ?tf)
 (Constant_Radius_Edge_Round ?tf)))
:IC hard "Only chamfers and edge rounds can be transition features that blend the
linear path and the circular closed profile of a cylinder."

 (=> (and (Block ?b)
 (Rectangular_Closed_Profile ?rcp1)
 (Rectangular_Closed_Profile ?rcp2)
 (holds_shape ?b ?rcp1)
 (holds_shape ?b ?rcp2)
 (Transition_Feature ?tf)
 (blends ?tf ?rcp1)
 (blends ?tf ?rcp2))
 (or (Chamfer ?tf)
 (Constant_Radius_Edge_Round ?tf)))
:IC hard "Only chamfers and edge rounds can be transition features that blend two of
the rectangular closed profiles of a block."

C.2.6 Dimensional Tolerances

Classes

:Prop Dimensional_Tolerance
:Inst Property
:sup Core_Property
:name "Dimensional Tolerance"
:rem "(Dimensional_Tolerance ?dtol) is TRUE in an interpretation of the Foundation Layer if
and only if ?dtol is a member of a set of dimensional tolerances."

Relations

:Rel holds_size_tolerance
:Inst TernaryRel
:Sig Shape_Aspect Dimensional_Tolerance Measure_Item
:name "holds_size_tolerance"
:rem "(holds_size_tolerance ?sa ?dtol ?mea) is TRUE in an interpretation of the Foundation
Layer if and only if the shape aspect ?sa holds a given dimensional size tolerance ?dtol with
respect to the toleranced measure item ?mea of ?sa."

:Rel holds_location_tolerance
:Inst QuaternaryRel
:Sig Feature Dimensional_Tolerance Measure_Item Feature

355

:name "holds_location_tolerance"
:rem "(holds_location_tolerance ?f1 ?dtol ?mea ?f2) is TRUE in an interpretation of the
Foundation Layer if and only if the feature ?f1 holds a given dimensional location tolerance
?dtol with respect to the toleranced measure item ?mea that separates feature ?f1 from
another feature ?f2."

Functions

:Fun tolerance_value
:Inst BinaryFun
:Sig Measure_Item Measure_Item -> Dimensional_Tolerance
:name "tolerance_value"
:rem "(= ?dtol (tolerance_value ?mea1 ?mea2)) is TRUE in an interpretation of the
Foundation Layer if and only if ?dtol is the dimensional tolerance whose lower-bound value
(or minimum value) is given by the measure item ?mea1 and whose upper-bound value (or
maximum value) is given by the measure item ?mea2."

1

2

3

holds_size_tolerance

C

Measure_

Item

C

Shape_

Aspect

Dimensional_

Tolerance

1

2

3

4

holds_

location_

tolerance

C

Feature

Dimensional_

Tolerance

C

Measure_

Item

C

Feature

Figure C-25 Dimensional_Tolerance Relations

in
st

Dimensional_

Tolerance

R
o
o
tC

tx.re
tu

rn
P

ro
p

tolerance_

value

RootCtx.

BinaryFun

1

2

3

RootCtx.argProp

1

Measure_

Item
1

2

3

RootCtx.argProp

2

Measure_

Item

Figure C-26 Dimensional_Tolerance Functions

356

Axioms

(=> (Dimensional_Tolerance ?dtol)
 (Core_Property ?dtol))
:IC hard "Dimensional tolerances are core properties."

 (=> (holds_size_tolerance ?sa ?dtol ?mea)
 (and (Shape_Aspect ?sa)
 (Dimensional_Tolerance ?dtol)
 (Measure_Item ?mea)))
:IC hard "The holds_size_tolerance relation only holds between shape aspects,
dimensional tolerances and measure items."

 (=> (holds_location_tolerance ?f1 ?dtol ?mea ?f2)
 (and (Feature ?f1)
 (Feature ?f2)
 (Dimensional_Tolerance ?dtol)
 (Measure_Item ?mea)))
:IC hard "The holds_location_tolerance relation only holds between features,
dimensional tolerances and measure items."

 (=> (and (Dimensional_Tolerance ?dtol)
 (RootCtx.RealNumber ?real1)
 (RootCtx.RealNumber ?real2)
 (or (= ?dtol (tolerance_value (Foundation.mm ?real1) (Foundation.mm ?real2)))
 (= ?dtol (tolerance_value (Foundation.degree ?real1) (Foundation.degree
?real2)))))
 (ltNum ?real1 ?real2))
:IC hard "The lowerbound value of a dimensional tolerance is always numerically less
than that of its upperbound value."

 (=> (and (Dimensional_Tolerance ?dtol)
 (RootCtx.RealNumber ?real1)
 (RootCtx.RealNumber ?real2))
 (not (or (= ?dtol (tolerance_value (Foundation.mm ?real1) (Foundation.degree ?real2)))
 (= ?dtol (tolerance_value (Foundation.degree ?real1) (Foundation.mm ?real2))))))
:IC hard "Both the lowerbound value and upperbound value of a dimensional tolerance
have the same unit of measurement function."

 (=> (Dimensional_Tolerance ?dtol)
 (exists (?mea1 ?mea2)
 (and (Measure_Item ?mea1)
 (Measure_Item ?mea2)
 (= ?dtol (tolerance_value ?mea1 ?mea2)))))
:IC hard "Every dimensional tolerance is given by some lowerbound and upperbound
measure value."

 (=> (and (Circular_Closed_Profile ?ccp)
 (Length_Measure ?length)
 (measures ?ccp ?length)
 (Dimensional_Tolerance ?stol1)
 (Dimensional_Tolerance ?stol2)
 (holds_size_tolerance ?ccp ?stol1 ?length)
 (holds_size_tolerance ?ccp ?stol2 ?length))
 (= ?stol1 ?stol2))
:IC hard "A circular closed profile can only hold a unique size tolerance."

357

 (=> (and (Rectangular_Closed_Profile ?rcp)
 (Length_Measure ?length1)
 (Length_Measure ?length2)
 (measures ?rcp ?length1)
 (measures ?rcp ?length2)
 (Dimensional_Tolerance ?stol1)
 (Dimensional_Tolerance ?stol2)
 (holds_size_tolerance ?rcp ?stol1 ?length1)
 (holds_size_tolerance ?rcp ?stol2 ?length2))
 (or (= ?stol1 ?stol2)
 (/= ?stol1 ?stol2)))
:IC hard "A rectangular closed profile can hold only two size tolerances."

 (=> (and (Linear_Path ?lin)
 (Length_Measure ?length)
 (measures ?lin ?length)
 (Dimensional_Tolerance ?stol1)
 (Dimensional_Tolerance ?stol2)
 (holds_size_tolerance ?lin ?stol1 ?length)
 (holds_size_tolerance ?lin ?stol2 ?length))
 (= ?stol1 ?stol2))
:IC hard "A linear path can only hold a unique size tolerance."

 (=> (and (Taper ?tap)
 (Angle_Measure ?angle)
 (measures ?tap ?angle)
 (Dimensional_Tolerance ?stol1)
 (Dimensional_Tolerance ?stol2)
 (holds_size_tolerance ?tap ?stol1 ?angle)
 (holds_size_tolerance ?tap ?stol2 ?angle))
 (= ?stol1 ?stol2))
:IC hard "A taper can only hold a unique size tolerance."

 (=> (and (Linear_Profile ?lp)
 (Length_Measure ?length)
 (measures ?lp ?length)
 (Dimensional_Tolerance ?stol1)
 (Dimensional_Tolerance ?stol2)
 (holds_size_tolerance ?lp ?stol1 ?length)
 (holds_size_tolerance ?lp ?stol2 ?length))
 (= ?stol1 ?stol2))
:IC hard "A linear profile can only hold a unique size tolerance."

 (=> (and (Round_Hole ?hole)
 (Circular_Closed_Profile ?ccp1)
 (Circular_Closed_Profile ?ccp2)
 (Dimensional_Tolerance ?stol1)
 (Length_Measure ?length1)
 (Length_Measure ?length2)
 (holds_shape ?hole ?ccp1)
 (holds_shape ?hole ?ccp2)
 (measures ?ccp1 ?length1)
 (measures ?ccp2 ?length2)
 (holds_size_tolerance ?ccp1 ?stol1 ?length1)
 (not (exists (?stol2)
 (and (Dimensional_Tolerance ?stol2)
 (holds_size_tolerance ?ccp2 ?stol2 ?length2)
 (/= ?stol1 ?stol2)))))
 (holds_size_tolerance ?ccp2 ?stol1 ?length2))

358

:IC soft "If one of the circular closed profiles of a round hole has a size tolerance while
the other does not, then the same size tolerance may apply to the non-toleranced
circular closed profile of the hole."

 (=> (and (Cylinder ?c)
 (Circular_Closed_Profile ?ccp1)
 (Circular_Closed_Profile ?ccp2)
 (Dimensional_Tolerance ?stol1)
 (Length_Measure ?length1)
 (Length_Measure ?length2)
 (holds_shape ?c ?ccp1)
 (holds_shape ?c ?ccp2)
 (measures ?ccp1 ?length1)
 (measures ?ccp2 ?length2)
 (holds_size_tolerance ?ccp1 ?stol1 ?length1)
 (not (exists (?stol2)
 (and (Dimensional_Tolerance ?stol2)
 (holds_size_tolerance ?ccp2 ?stol2 ?length2)
 (/= ?stol1 ?stol2)))))
 (holds_size_tolerance ?ccp2 ?stol1 ?length2))
:IC soft "If one of the circular closed profiles of a cylinder has a size tolerance while the
other does not, then the same size tolerance may apply to the non-toleranced circular
closed profile of the cylinder."

359

C.3 Flow Objects

Relations

:Rel flow_object
:Inst UnaryRel
:Sig Object
:name "flow_object"
:rem "(flow_object ?flow) is TRUE in an interpretation of the Foundation Layer if and only if
?flow is an object that participates as a precondition and/or postcondition on activity
occurrences."

:Rel explicit
:Inst UnaryRel
:Sig Object
:name "explicit"
:rem "(explicit ?flow) is TRUE in an interpretation of the Foundation Layer if and only if the
flow object ?flow has been explicitly defined using the relevant necessary conditions. The
?flow object must be an explicitly defined shape aspect, feature or artifact that the user
asserts."

:Rel implicit
:Inst UnaryRel
:Sig Object
:name "implicit"
:rem "(implicit ?flow) is TRUE in an interpretation of the Foundation Layer if and only if the
flow object ?flow has not been explicitly defined using the relevant necessary conditions. The
?flow object is not an explicitly defined shape aspect, feature or artifact that the user asserts."

:Rel input
:Inst BinaryRel
:Sig Object Activity_Occurrence
:name "input"
:rem "(input ?flow ?occ) is TRUE in an interpretation of the Foundation Layer if and only if the
flow object ?flow is a precondition to an activity occurrence ?occ, which demands that the flow
object ?flow is made available to the activity occurrence ?occ in a given way."

:Rel output
:Inst BinaryRel
:Sig Object Activity_Occurrence

input

C

Object
Activity_

Occurrence

output

C

Object
Activity_

Occurrence

flow_object
1

C

Object

implicit
1

C

Object

explicit
1

C

Object

Figure C-27 Flow_Object Relations

360

:name "output"
:rem "(output ?flow ?occ) is TRUE in an interpretation of the Foundation Layer if and only if
the flow object ?flow is a postcondition from an activity occurrence ?occ, where the flow
object ?flow can participate in other activity occurrences."

Axioms

 (=> (flow_object ?flow)
 (Object ?flow))
:IC hard "The relation flow_object only holds for objects."

 (=> (input ?flow ?occ)
 (and (Object ?flow)
 (flow_object ?flow)
 (Activity_Occurrence ?occ)))
:IC hard "The input relation only holds between flow objects and activity occurrences."

(=> (output ?flow ?occ)
 (and (Object ?flow)
 (flow_object ?flow)
 (Activity_Occurrence ?occ)))
:IC hard "The output relation only holds between flow objects and activity occurrences."

 (=> (explicit ?flow)
 (and (Object ?flow)
 (flow_object ?flow)))
:IC hard "The relation explicit only holds for flow objects."

 (=> (implicit ?flow)
 (and (Object ?flow)
 (flow_object ?flow)))
:IC hard "The relation implicit only holds for flow objects."

 (=> (and (Object ?flow)
 (flow_object ?flow)
 (Activity_Occurrence ?occ2)
 (input ?flow ?occ2))
 (or (exists (?occ1 ?a)
 (and (Activity_Occurrence ?occ1)
 (Activity ?a)
 (output ?flow ?occ1)
 (or (min_precedes ?occ1 ?occ2 ?a)
 (next_subocc ?occ1 ?occ2 ?a))
 (/= ?occ1 ?occ2)))
 (exists (?occ)
 (and (Activity_Occurrence ?occ)
 (input ?flow ?occ)
 (subactivity_occurrence ?occ2 ?occ)
 (/= ?occ2 ?occ)))))
:IC hard "An activity occurrence that depends on an input flow object must be either
executed after another activity occurrence has provided the input as an output flow
object or participate in a complex activity occurrence that requires the flow object as
an input."

 (=> (and (Object ?flow)
 (flow_object ?flow))
 (or (Shape_Aspect ?flow)
 (Feature ?flow)

361

 (Artifact ?flow)))
:IC hard "A flow object is a shape aspect, feature or artifact."

 (=> (and (Object ?flow)
 (flow_object ?flow))
 (or (explicit ?flow)
 (implicit ?flow)))
:IC hard "A flow object is either an explicitly or implicitly defined object."

 (=> (and (Object ?flow)
 (flow_object ?flow)
 (implicit ?flow))
 (not (explicit ?flow)))
:IC hard "An implicit flow object cannot be an explicitly defined object."

 (=> (and (Object ?flow)
 (flow_object ?flow)
 (explicit ?flow))
 (not (implicit ?flow)))
:IC hard "An explicit flow object cannot be an implicitly defined object."

362

C.4 Controlled Specialisation Approach

Relations

:Rel holdsArg
:Inst TernaryRel
:Sig Relation PosInt Property
:name "holdsArg"
:rem "(holdsArg ?rel ?posInt ?prop) applies if and only if the relation ?rel is an applicable
relation that holds for a given argument position ?posInt the argument ?prop. holdsArg is a
system relation that binds semantic mapping relations to cross-domain arguments in the order
that they appear."

Axioms

(=> (and (RootCtx.Relation ?rel)
 (RootCtx.withinContext ?rel Foundation)
 (not (RootCtx.Property ?rel)))
 (not (exists (?subrel)
 (and (RootCtx.Relation ?subrel)
 (RootCtx.supRel ?subrel ?rel)))))
:IC hard "Subsumptions involving foundation relations are not permitted."

RootCtx.

Relation

RootCtx.

PosInt

RootCtx.

Property
1

2

3

holdsArg

Figure C-28 holdsArg Ternary Relation

363

D Domain Ontology Layer

D.1 Machining Hole Feature Ontology A

Context Declaration

:Ctx machiningHoleFeatureOntologyA
:Inst UserContext
:supCtx TopUserCtx
:name "Context for the Machining Hole Feature Ontology A"
:rem "This context explores the integrity-driven domain ontology development for hole
features defined from a machining process viewpoint using the semantics from the
Foundation Layer."

:Use machiningHoleFeatureOntologyA

Classes

:Prop Housing_Part_Family
:Inst Property
:sup Foundation.Artifact
:name "Housing_Part_Family"
:rem "A housing part family is a type of artifact which is manufactured through a series of
turning and hole making machining processes."

:Prop Centre_Drilled_Hole
:Inst Property
:sup Foundation.Round_Hole
:name "Centre_Drilled_Hole"
:rem "A centre drilled hole is a round hole feature which is machined using a centre drilling
process."

:Prop Counterbore
:Inst Property
:sup Foundation.Round_Hole
:name "Counterbore"
:rem "A counterbore is a round hole feature which is machined using a counterboring
process."

:Prop Counterbore_Hole
:Inst Property
:sup Foundation.Feature
:name "Counterbore_Hole"
:rem "A counterbore hole is a compound hole feature which is machined using a sequence of
centre-drilling, followed by drilling, followed by counterboring processes."

:Prop Drilled_Hole
:Inst Property
:sup Foundation.Round_Hole
:name "Drilled_Hole"
:rem "A drilled hole is a round hole feature which is machined using a sequence of centre-
drilling, followed by drilling processes."

364

:Prop Turned_Boss
:Inst Property
:sup Foundation.Cylinder
:name "Turned_Boss"
:rem "A turned boss is a cylindrical feature which makes up a housing and is machined using
turning processes."

:Prop Turned_Flange
:Inst Property
:sup Foundation.Cylinder
:name "Turned_Flange"
:rem "A turned flange is a cylindrical feature which makes up a housing and is machined
using turning processes."

:Prop Reamed_Hole
:Inst Property
:sup Foundation.Round_Hole
:name "Reamed_Hole"
:rem "A reamed hole is a round hole feature which is machined using a sequence of centre-
drilling, followed by drilling, followed by reaming processes."

:Prop Drilled_Hole_Depth
:Inst Property
:sup Foundation.Length_Measure
:name "Drilled_Hole_Depth"
:rem "A drilled hole depth is the length measure for the overall depth of a drilled hole."

:Prop Drilled_Hole_Diameter
:Inst Property
:sup Foundation.Length_Measure
:name "Drilled_Hole_Diameter"
:rem "A drilled hole diameter is the length measure for the diameter of a drilled hole."

:Prop Counterbore_Depth
:Inst Property
:sup Foundation.Length_Measure
:name "Counterbore_Depth"
:rem "A counterbore depth is the length measure for the depth of a counterbore."

:Prop Counterbore_Diameter
:Inst Property
:sup Foundation.Length_Measure
:name "Counterbore_Diameter"
:rem "A counterbore diameter is the length measure for the diameter of a counterbore."

:Prop Reamed_Hole_Depth
:Inst Property
:sup Foundation.Length_Measure
:name "Reamed_Hole_Depth"
:rem "A reamed hole depth is the length measure for the overall depth of a reamed hole."

:Prop Reamed_Hole_Diameter
:Inst Property
:sup Foundation.Length_Measure
:name "Reamed_Hole_Diameter"
:rem "A reamed hole diameter is the length measure for the diameter of a reamed hole."

:Prop Centre_Drilling
:Inst Property
:sup Foundation.Activity

365

:name "Centre_Drilling"
:rem "A centre drilling activity is a reusable process behaviour whose occurrences produce
centre-drilled holes as outputs. An occurrence of a centre drilling activity, for which a centre
drilled hole is output, is an atomic activity occurrence."

:Prop Counterboring
:Inst Property
:sup Foundation.Activity
:name "Counterboring"
:rem "A counterboring activity is a reusable process behaviour whose occurrences produce
centre-drilled holes as outputs. An occurrence of a counterboring activity, for which a
counterbore is output, is an atomic activity occurrence."

:Prop Drilling
:Inst Property
:sup Foundation.Activity
:name "Drilling"
:rem "A drilling activity is a reusable process behaviour whose occurrences produce drilled
holes as outputs. An occurrence of a drilling activity, for which a drilled hole is output, is an
atomic activity occurrence."

:Prop Reaming
:Inst Property
:sup Foundation.Activity
:name "Reaming"
:rem "A reaming activity is a reusable process behaviour whose occurrences produce reamed
holes as outputs. An occurrence of a reaming activity, for which a reamed hole is output, is an
atomic activity occurrence."

:Prop Counterbore_Hole_Making
:Inst Property
:sup Foundation.Activity
:name "Counterbore_Hole_Making"
:rem "A counterbore hole making activity is a reusable process behaviour whose occurrences
produce counterbore holes as outputs. An occurrence of a counterbore hole making activity,
for which a counterbore hole is output, is a complex process sequence involving an
occurrence of centre-drilling, followed by an occurrence of drilling, followed by an occurrence
of counterboring."

:Prop Reamed_Hole_Making
:Inst Property
:sup Foundation.Activity
:name "Reamed_Hole_Making"
:rem "A reamed hole making activity is a reusable process behaviour whose occurrences
produce reamed holes as outputs. An occurrence of a reamed hole making activity, for which
a reamed hole is output, is a complex process sequence involving an occurrence of centre-
drilling, followed by an occurrence of drilling, followed by an occurrence of reaming."

:Prop Aluminium
:Inst Property
:sup Foundation.Material
:name "Aluminium"
:rem "Aluminium is a material that represents the chemical element aluminium, which is a
silvery ductile metallic element found primarily in bauxite."

366

Functions

:Fun inch
:Inst UnaryFun
:Sig RealNumber -> Foundation.Length_Measure
:name "inch"
:rem "(= ?length (inch ?real)) is used to denote the value of a length measure in inches."

Axioms

(=> (Housing_Part_Family ?house)
 (exists (?flange ?boss ?cbore ?dhole ?rhole)
 (and (Turned_Flange ?flange)
 (Turned_Boss ?boss)
 (Counterbore_Hole ?cbore)
 (Drilled_Hole ?dhole)
 (Reamed_Hole ?rhole)
 (Foundation.holds_feature ?house ?flange)
 (Foundation.holds_feature ?house ?boss)
 (Foundation.holds_feature ?house ?cbore)
 (Foundation.holds_feature ?house ?dhole)
 (Foundation.holds_feature ?house ?rhole))))
:IC hard "Every housing has some compulsory turned flange, turned boss, counterbore
hole, drilled hole and reamed hole as features present on the housing."

(=> (Housing_Part_Family ?house)
 (exists (?al)
 (and (Aluminium ?al)
 (Foundation.holds_material ?house ?al))))
:IC hard "Every housing is made up of some aluminium material."

(=> (and (Centre_Drilled_Hole ?cDrillHole)
 (Foundation.flow_object ?cDrillHole))
 (exists (?cDrill ?cDrillOcc)
 (and (Centre_Drilling ?cDrill)
 (Foundation.Activity_Occurrence ?cDrillOcc)
 (Foundation.occurrence_of ?cDrillOcc ?cDrill)
 (Foundation.output ?cDrillHole ?cDrillOcc))))
:IC soft "Every centre drilled hole that is a flow object is an output from a potential
occurrence of a centre drilling activity."

(=> (Counterbore ?chole)
 (exists (?ccp1 ?ccp2 ?cdia1 ?cdia2)
 (and (Foundation.Circular_Closed_Profile ?ccp1)
 (Foundation.Circular_Closed_Profile ?ccp2)
 (Foundation.holds_shape ?chole ?ccp1)
 (Foundation.holds_shape ?chole ?ccp2)
 (Counterbore_Diameter ?cdia1)
 (Counterbore_Diameter ?cdia2)
 (Foundation.measures ?ccp1 ?cdia1)
 (Foundation.measures ?ccp2 ?cdia2)
 (= ?cdia1 ?cdia2))))
:IC hard "Every counterbore holds exactly two circular closed profiles of identical
counterbore diameter."

367

(=> (Counterbore ?chole)
 (exists (?lin ?cdepth)
 (and (Foundation.Linear_Path ?lin)
 (Foundation.holds_shape ?chole ?lin)
 (Counterbore_Depth ?cdepth)
 (Foundation.measures ?lin ?cdepth))))
:IC hard "Every counterbore holds exactly one linear path of counterbore depth."

(=> (and (Counterbore ?chole)
 (Foundation.flow_object ?chole))
 (exists (?cbore ?cboreOcc)
 (and (Counterboring ?cbore)
 (Foundation.Activity_Occurrence ?cboreOcc)
 (Foundation.occurrence_of ?cboreOcc ?cbore)
 (Foundation.output ?chole ?cboreOcc))))
:IC soft "Every counterbore that is a flow object is an output from a potential
occurrence of a counterboring activity."

(=> (Counterbore_Hole ?cbhole)
 (Foundation.compound ?cbhole))
:IC hard "A counterbore hole is a compound feature."

(=> (Counterbore_Hole ?cbhole)
 (exists (?dhole ?chole)
 (and (Drilled_Hole ?dhole)
 (Counterbore ?chole)
 (Foundation.element_of ?dhole ?cbhole)
 (Foundation.element_of ?chole ?cbhole))))
:IC hard "Every counterbore hole involves a drilled hole and a counterbore which are
elements of the counterbore hole."

(=> (and (Counterbore_Hole ?cbhole)
 (Drilled_Hole ?dhole)
 (Foundation.element_of ?dhole ?cbhole))
 (Foundation.base ?dhole))
:IC hard "The drilled hole of a counterbore hole is the base feature of the counterbore
hole."

(=> (and (Counterbore_Hole ?cbhole)
 (Drilled_Hole ?dhole)
 (Counterbore ?chole)
 (Foundation.element_of ?dhole ?cbhole)
 (Foundation.element_of ?chole ?cbhole)
 (Foundation.Circular_Closed_Profile ?ccp1)
 (Foundation.Circular_Closed_Profile ?ccp2)
 (Foundation.holds_shape ?dhole ?ccp1)
 (Foundation.holds_shape ?chole ?ccp2))
 (exists (?real1 ?real2)
 (and (RootCtx.RealNumber ?real1)
 (RootCtx.RealNumber ?real2)
 (Foundation.measures ?ccp1 (Foundation.mm ?real1))
 (Foundation.measures ?ccp2 (Foundation.mm ?real2))
 (/= ?real1 ?real2)
 (gtNum ?real2 ?real1))))
:IC hard "The counterbore element of a counterbore hole has a diameter value which is
always greater than that of the drilled hole element of the same counterbore hole."

(=> (and (Counterbore_Hole ?cbhole)
 (Drilled_Hole ?dhole)
 (Counterbore ?chole)

368

 (Foundation.element_of ?dhole ?cbhole)
 (Foundation.element_of ?chole ?cbhole)
 (Foundation.Linear_Path ?lin1)
 (Foundation.Linear_Path ?lin2)
 (Foundation.holds_shape ?dhole ?lin1)
 (Foundation.holds_shape ?chole ?lin2))
 (exists (?real1 ?real2)
 (and (RootCtx.RealNumber ?real1)
 (RootCtx.RealNumber ?real2)
 (Foundation.measures ?lin1 (Foundation.mm ?real1))
 (Foundation.measures ?lin2 (Foundation.mm ?real2))
 (/= ?real1 ?real2)
 (gtNum ?real1 ?real2))))
:IC hard "The drilled hole element of a counterbore hole has a depth value which is
always greater than that of the counterbore element of the same counterbore hole."

 (=> (and (Counterbore_Hole ?cbhole)
 (Foundation.flow_object ?cbhole))
 (exists (?cboreMake ?cboreMakeOcc)
 (and (Counterbore_Hole_Making ?cboreMake)
 (Foundation.Activity_Occurrence ?cboreMakeOcc)
 (Foundation.occurrence_of ?cboreMakeOcc ?cboreMake)
 (Foundation.output ?cbhole ?cboreMakeOcc))))
:IC soft "Every compound counterbore hole that is a flow object is an output from a
potential occurrence of a complex counterbore hole making activity."

(=> (Drilled_Hole ?dhole)
 (exists (?ccp1 ?ccp2 ?dhdia1 ?dhdia2)
 (and (Foundation.Circular_Closed_Profile ?ccp1)
 (Foundation.Circular_Closed_Profile ?ccp2)
 (Foundation.holds_shape ?dhole ?ccp1)
 (Foundation.holds_shape ?dhole ?ccp2)
 (Drilled_Hole_Diameter ?dhdia1)
 (Drilled_Hole_Diameter ?dhdia2)
 (Foundation.measures ?ccp1 ?dhdia1)
 (Foundation.measures ?ccp2 ?dhdia2)
 (= ?dhdia1 ?dhdia2))))
:IC hard "Every drilled hole holds exactly two circular closed profiles of identical drilled
hole diameter."

(=> (Drilled_Hole ?dhole)
 (exists (?lin ?dhdepth)
 (and (Foundation.Linear_Path ?lin)
 (Foundation.holds_shape ?dhole ?lin)
 (Drilled_Hole_Depth ?dhdepth)
 (Foundation.measures ?lin ?dhdepth))))
:IC hard "Every drilled hole holds exactly one linear path of drilled hole depth."

(=> (and (Drilled_Hole ?dhole)
 (Foundation.flow_object ?dhole))
 (exists (?drill ?drillOcc)
 (and (Drilling ?drill)
 (Foundation.Activity_Occurrence ?drillOcc)
 (Foundation.occurrence_of ?drillOcc ?drill)
 (Foundation.output ?dhole ?drillOcc))))
:IC soft "Every drilled hole that is a flow object is an output from a potential occurrence
of a drilling activity."

369

(=> (Reamed_Hole ?rhole)
 (exists (?ccp1 ?ccp2 ?rhdia1 ?rhdia2)
 (and (Foundation.Circular_Closed_Profile ?ccp1)
 (Foundation.Circular_Closed_Profile ?ccp2)
 (Foundation.holds_shape ?rhole ?ccp1)
 (Foundation.holds_shape ?rhole ?ccp2)
 (Reamed_Hole_Diameter ?rhdia1)
 (Reamed_Hole_Diameter ?rhdia2)
 (Foundation.measures ?ccp1 ?rhdia1)
 (Foundation.measures ?ccp2 ?rhdia2)
 (= ?rhdia1 ?rhdia2))))
:IC hard "Every reamed hole holds exactly two circular closed profiles of identical
reamed hole diameter."

(=> (Reamed_Hole ?rhole)
 (exists (?lin ?rhdepth)
 (and (Foundation.Linear_Path ?lin)
 (Foundation.holds_shape ?rhole ?lin)
 (Reamed_Hole_Depth ?rhdepth)
 (Foundation.measures ?lin ?rhdepth))))
:IC hard "Every reamed hole holds exactly one linear path of reamed hole depth."

(=> (and (Reamed_Hole ?rhole)
 (Foundation.Linear_Path ?lin)
 (Foundation.Circular_Closed_Profile ?ccp)
 (Foundation.through ?ccp)
 (Foundation.holds_shape ?rhole ?lin)
 (Foundation.holds_shape ?rhole ?ccp))
 (exists (?chf1 ?chf2)
 (and (Foundation.Chamfer ?chf1)
 (Foundation.Chamfer ?chf2)
 (Foundation.blends ?chf1 ?lin)
 (Foundation.blends ?chf2 ?lin))))
:IC hard "Every reamed hole that has a through hole bottom condition requires two
chamfers that blend the linear path of the reamed hole."

(=> (and (Reamed_Hole ?rhole)
 (Foundation.flow_object ?rhole))
 (exists (?rholeMake ?rholeMakeOcc ?ream ?reamOcc)
 (and (Reamed_Hole_Making ?rholeMake)
 (Reaming ?ream)
 (Foundation.Activity_Occurrence ?rholeMakeOcc)
 (Foundation.Activity_Occurrence ?reamOcc)
 (Foundation.occurrence_of ?rholeMakeOcc ?rholeMake)
 (Foundation.occurrence_of ?reamOcc ?ream)
 (Foundation.output ?rhole ?rholeMakeOcc)
 (Foundation.output ?rhole ?reamOcc))))
:IC soft "Every reamed hole that is a flow object is both an output from a potential
occurrence of a complex reamed hole making activity and an output from a potential
occurrence of an atomic reaming activity."

(=> (and (Centre_Drilling ?cdrill)
 (Foundation.Activity_Occurrence ?cdrillOcc)
 (Foundation.occurrence_of ?cdrillOcc ?cdrill)
 (Foundation.legal ?cdrillOcc)
 (Drilling ?drill))
 (Foundation.legal (Foundation.successor ?drill ?cdrillOcc)))
:IC soft "If an occurrence of centre drilling is allowed, then an occurrence of drilling
immediately after it may be allowed."

370

(=> (and (Drilling ?drill)
 (Foundation.Activity_Occurrence ?drillOcc)
 (Foundation.occurrence_of ?drillOcc ?drill)
 (Foundation.legal ?drillOcc)
 (Counterboring ?cboring))
 (Foundation.legal (Foundation.successor ?cboring ?drillOcc)))
:IC soft "If an occurrence of drilling is allowed, then an occurrence of counterboring
immediately after it may be allowed."

(=> (and (Drilling ?drill)
 (Foundation.Activity_Occurrence ?drillOcc)
 (Foundation.occurrence_of ?drillOcc ?drill)
 (Foundation.legal ?drillOcc)
 (Reaming ?ream))
 (Foundation.legal (Foundation.successor ?ream ?drillOcc)))
:IC soft "If an occurrence of drilling is allowed, then an occurrence of reaming
immediately after it may be allowed."

(=> (and (Counterbore_Hole_Making ?cboreMake)
 (Foundation.Activity_Occurrence ?cboreMakeOcc)
 (Foundation.occurrence_of ?cboreMakeOcc ?cboreMake))
 (exists (?cDrill ?drill ?cDrillOcc ?drillOcc)
 (and (Centre_Drilling ?cDrill)
 (Drilling ?drill)
 (Foundation.Activity_Occurrence ?cDrillOcc)
 (Foundation.Activity_Occurrence ?drillOcc)
 (Foundation.occurrence_of ?cDrillOcc ?cDrill)
 (Foundation.occurrence_of ?drillOcc ?drill)
 (Foundation.min_precedes ?cDrillOcc ?drillOcc ?cboreMake))))
:IC hard "An occurrence of centre drilling must precede an occurrence of drilling under
a complex occurrence of counterbore hole making. Other behaviours under the
complex counterbore hole making activity may occur in between."

(=> (and (Counterbore_Hole_Making ?cboreMake)
 (Foundation.Activity_Occurrence ?cboreMakeOcc)
 (Foundation.occurrence_of ?cboreMakeOcc ?cboreMake))
 (exists (?drill ?cbore ?drillOcc ?cboreOcc)
 (and (Drilling ?drill)
 (Counterboring ?cbore)
 (Foundation.Activity_Occurrence ?drillOcc)
 (Foundation.Activity_Occurrence ?cboreOcc)
 (Foundation.occurrence_of ?drillOcc ?drill)
 (Foundation.occurrence_of ?cboreOcc ?cbore)
 (Foundation.min_precedes ?drillOcc ?cboreOcc ?cboreMake))))
:IC hard "An occurrence of drilling must precede an occurrence of counterboring under
a complex occurrence of counterbore hole making. Other behaviours under the
complex counterbore hole making activity may occur in between."

(=> (and (Counterbore_Hole_Making ?cboreMake)
 (Foundation.Activity_Occurrence ?cboreMakeOcc)
 (Foundation.occurrence_of ?cboreMakeOcc ?cboreMake))
 (exists (?cDrill ?cDrillOcc)
 (and (Centre_Drilling ?cDrill)
 (Foundation.subactivity ?cDrill ?cboreMake)
 (Foundation.Activity_Occurrence ?cDrillOcc)
 (Foundation.occurrence_of ?cDrillOcc ?cDrill)
 (Foundation.subactivity_occurrence ?cDrillOcc ?cboreMakeOcc)
 (Foundation.root_occ ?cDrillOcc ?cboreMakeOcc))))
:IC hard "An occurrence of centre drilling under a complex occurrence of counterbore
hole making must be at the extreme beginning of the complex occurrence."

371

(=> (and (Counterbore_Hole_Making ?cboreMake)
 (Foundation.Activity_Occurrence ?cboreMakeOcc)
 (Foundation.occurrence_of ?cboreMakeOcc ?cboreMake))
 (exists (?cbore ?cboreOcc)
 (and (Counterboring ?cbore)
 (Foundation.subactivity ?cbore ?cboreMake)
 (Foundation.Activity_Occurrence ?cboreOcc)
 (Foundation.occurrence_of ?cboreOcc ?cbore)
 (Foundation.subactivity_occurrence ?cboreOcc ?cboreMakeOcc)
 (Foundation.leaf_occ ?cboreOcc ?cboreMakeOcc))))
:IC hard "An occurrence of counterboring under a complex occurrence of counterbore
hole making must be at the extreme end of the complex occurrence."

(=> (and (Reamed_Hole_Making ?rholeMake)
 (Foundation.Activity_Occurrence ?rholeMakeOcc)
 (Foundation.occurrence_of ?rholeMakeOcc ?rholeMake))
 (exists (?cDrill ?drill ?cDrillOcc ?drillOcc)
 (and (Centre_Drilling ?cDrill)
 (Drilling ?drill)
 (Foundation.Activity_Occurrence ?cDrillOcc)
 (Foundation.Activity_Occurrence ?drillOcc)
 (Foundation.occurrence_of ?cDrillOcc ?cDrill)
 (Foundation.occurrence_of ?drillOcc ?drill)
 (Foundation.min_precedes ?cDrillOcc ?drillOcc ?rholeMake))))
:IC hard "An occurrence of centre drilling must precede an occurrence of drilling under
a complex occurrence of reamed hole making. Other behaviours under the complex
reamed hole making activity may occur in between."

(=> (and (Reamed_Hole_Making ?rholeMake)
 (Foundation.Activity_Occurrence ?rholeMakeOcc)
 (Foundation.occurrence_of ?rholeMakeOcc ?rholeMake))
 (exists (?drill ?ream ?drillOcc ?reamOcc)
 (and (Drilling ?drill)
 (Reaming ?ream)
 (Foundation.Activity_Occurrence ?drillOcc)
 (Foundation.Activity_Occurrence ?reamOcc)
 (Foundation.occurrence_of ?drillOcc ?drill)
 (Foundation.occurrence_of ?reamOcc ?ream)
 (Foundation.min_precedes ?drillOcc ?reamOcc ?rholeMake))))
:IC hard "An occurrence of drilling must precede an occurrence of reaming under a
complex occurrence of reamed hole making. Other behaviours under the complex
reamed hole making activity may occur in between."

(=> (and (Reamed_Hole_Making ?rholeMake)
 (Foundation.Activity_Occurrence ?rholeMakeOcc)
 (Foundation.occurrence_of ?rholeMakeOcc ?rholeMake))
 (exists (?cDrill ?cDrillOcc)
 (and (Centre_Drilling ?cDrill)
 (Foundation.subactivity ?cDrill ?rholeMake)
 (Foundation.Activity_Occurrence ?cDrillOcc)
 (Foundation.occurrence_of ?cDrillOcc ?cDrill)
 (Foundation.subactivity_occurrence ?cDrillOcc ?rholeMakeOcc)
 (Foundation.root_occ ?cDrillOcc ?rholeMakeOcc))))
:IC hard "An occurrence of centre drilling under a complex occurrence of reamed hole
making must be at the extreme beginning of the complex occurrence."

(=> (and (Reamed_Hole_Making ?rholeMake)
 (Foundation.Activity_Occurrence ?rholeMakeOcc)
 (Foundation.occurrence_of ?rholeMakeOcc ?rholeMake))
 (exists (?ream ?reamOcc)

372

 (and (Reaming ?ream)
 (Foundation.subactivity ?ream ?rholeMake)
 (Foundation.Activity_Occurrence ?reamOcc)
 (Foundation.occurrence_of ?reamOcc ?ream)
 (Foundation.subactivity_occurrence ?reamOcc ?rholeMakeOcc)
 (Foundation.leaf_occ ?reamOcc ?rholeMakeOcc))))
:IC hard "An occurrence of reaming under a complex occurrence of reamed hole
making must be at the extreme end of the complex occurrence."

373

374

375

D.2 Design Hole Feature Ontology A

Context Declaration

:Ctx designHoleFeatureOntologyA
:Inst UserContext
:supCtx TopUserCtx
:name "Context for the Design Hole Feature Ontology A"
:rem "This context captures an ontology for hole features defined from a functional design
viewpoint using the semantics from the Foundation Layer."

:Use designHoleFeatureOntologyA

Classes

:Prop Housing_Part_Family
:Inst Property
:sup Foundation.Artifact
:name "Housing_Part_Family"
:rem "A housing part family is a type of artifact which is manufactured through a series of
turning and hole making machining processes."

:Prop Bolt_Hole
:Inst Property
:sup Foundation.Feature
:name "Bolt_Hole"
:rem "A bolt hole is a compound hole feature which is composed of a plain diameter hole and
a secondary hole."

:Prop Boss
:Inst Property
:sup Foundation.Cylinder
:name "Boss"
:rem "A boss is a cylinder of compound property which is composed of a cylinder and a round
hole."

:Prop External_Flange
:Inst Property
:sup Foundation.Cylinder
:name "External_Flange"
:rem "An external flange is a cylindrical feature which makes up a housing."

:Prop Locating_Pin_Hole
:Inst Property
:sup Foundation.Round_Hole
:name "Locating_Pin_Hole"
:rem "A locating pin hole is a round hole feature whose function is to provide an accurate
positioning of a housing."

:Prop Plain_Diameter_Hole
:Inst Property
:sup Foundation.Round_Hole
:name "Plain_Diameter_Hole"
:rem "A plain diameter hole is a round hole feature which may be a standalone hole or an
element of a bolt hole."

376

:Prop Secondary_Hole
:Inst Property
:sup Foundation.Round_Hole
:name "Secondary_Hole"
:rem "A secondary hole is a round hole feature which is an element of a bolt hole."

:Prop Boss_Height
:Inst Property
:sup Foundation.Length_Measure
:name "Boss_Height"
:rem "A boss height is the length measure for the height of a boss."

:Prop Boss_Diameter
:Inst Property
:sup Foundation.Length_Measure
:name "Boss_Diameter"
:rem "A boss diameter is the length measure for the diameter of a boss."

:Prop Flange_Thickness
:Inst Property
:sup Foundation.Length_Measure
:name "Flange_Thickness"
:rem "A flange thickness is the length measure for the height of an external flange."

:Prop Flange_Diameter
:Inst Property
:sup Foundation.Length_Measure
:name "Flange_Diameter"
:rem "A flange diameter is the length measure for the diameter of an external flange."

:Prop Primary_Depth
:Inst Property
:sup Foundation.Length_Measure
:name "Primary_Depth"
:rem "A primary depth is the length measure for the overall depth of a plain diameter hole or
locating pin hole."

:Prop Primary_Diameter
:Inst Property
:sup Foundation.Length_Measure
:name "Primary_Diameter"
:rem "A primary diameter is the length measure for the diameter of a plain diameter hole or
locating pin hole."

:Prop Secondary_Depth
:Inst Property
:sup Foundation.Length_Measure
:name "Secondary_Depth"
:rem "A secondary depth is the length measure for the depth of a secondary hole."

:Prop Secondary_Diameter
:Inst Property
:sup Foundation.Length_Measure
:name "Secondary_Diameter"
:rem "A secondary diameter is the length measure for the diameter of a secondary hole."

:Prop Aluminium
:Inst Property
:sup Foundation.Material
:name "Aluminium"

377

:rem "Aluminium is a material that represents the chemical element aluminium, which is a
silvery ductile metallic element found primarily in bauxite."

:Prop Design_Function
:Inst Property
:sup Foundation.Function
:name "Design_Function"
:rem "A design function represents the intended purpose of a core entity defined in the Design
Hole Feature Ontology A."

Functions

:Fun inch
:Inst UnaryFun
:Sig RealNumber -> Foundation.Length_Measure
:name "inch"
:rem "(= ?length (inch ?real)) is used to denote the value of a length measure in inches."

Axioms

(=> (and (Foundation.Feature ?f)
 (RootCtx.withinContext ?f designHoleFeatureOntologyA)
 (Foundation.Artifact ?art)
 (RootCtx.withinContext ?art designHoleFeatureOntologyA))
 (exists (?func1 ?func2)
 (and (Design_Function ?func1)
 (Design_Function ?func2)
 (Foundation.holds_function ?f ?func1)
 (Foundation.holds_function ?art ?func2))))
:IC hard "Every instance of feature and artifact in the Design Hole Feature Ontology A
holds some design function."

(=> (Housing_Part_Family ?house)
 (exists (?flange ?boss ?bhole ?phole ?lphole)
 (and (External_Flange ?flange)
 (Boss ?boss)
 (Bolt_Hole ?bhole)
 (Plain_Diameter_Hole ?phole)
 (Locating_Pin_Hole ?lphole)
 (Foundation.holds_feature ?house ?flange)
 (Foundation.holds_feature ?house ?boss)
 (Foundation.holds_feature ?house ?bhole)
 (Foundation.holds_feature ?house ?phole)
 (Foundation.holds_feature ?house ?lphole))))
:IC hard "Every housing has some compulsory external flange, boss, bolt hole, plain
diameter hole and locating pin hole as features present on the housing."

(=> (Housing_Part_Family ?house)
 (exists (?al)
 (and (Aluminium ?al)
 (Foundation.holds_material ?house ?al))))
:IC hard "Every housing is made up of some aluminium material."

(=> (Bolt_Hole ?bhole)
 (Foundation.compound ?bhole))
:IC hard "A bolt hole is a compound feature."

378

(=> (Bolt_Hole ?bhole)
 (exists (?phole ?shole)
 (and (Plain_Diameter_Hole ?phole)
 (Secondary_Hole ?shole)
 (Foundation.element_of ?phole ?bhole)
 (Foundation.element_of ?shole ?bhole))))
:IC hard "Every bolt hole involves a plain diameter hole and a secondary hole which are
elements of the bolt hole."

(=> (and (Bolt_Hole ?bhole)
 (Plain_Diameter_Hole ?phole)
 (Foundation.element_of ?phole ?bhole))
 (Foundation.base ?phole))
:IC hard "The plain diameter hole of a bolt hole is the base feature of the bolt hole."

(=> (and (Bolt_Hole ?bhole)
 (Plain_Diameter_Hole ?phole)
 (Secondary_Hole ?shole)
 (Foundation.element_of ?phole ?bhole)
 (Foundation.element_of ?shole ?bhole)
 (Foundation.Circular_Closed_Profile ?ccp1)
 (Foundation.Circular_Closed_Profile ?ccp2)
 (Foundation.holds_shape ?phole ?ccp1)
 (Foundation.holds_shape ?shole ?ccp2))
 (exists (?real1 ?real2)
 (and (RootCtx.RealNumber ?real1)
 (RootCtx.RealNumber ?real2)
 (Foundation.measures ?ccp1 (Foundation.mm ?real1))
 (Foundation.measures ?ccp2 (Foundation.mm ?real2))
 (/= ?real1 ?real2)
 (gtNum ?real2 ?real1))))
:IC hard "The secondary hole element of a bolt hole has a diameter value which is
always greater than that of the plain diameter hole element of the same bolt hole."

(=> (Boss ?boss)
 (Foundation.compound ?boss))
:IC hard "A boss is a compound feature."

(=> (Boss ?boss)
 (exists (?c ?rhole)
 (and (Foundation.Cylinder ?c)
 (Foundation.Round_Hole ?rhole)
 (Foundation.element_of ?c ?boss)
 (Foundation.element_of ?rhole ?boss))))
:IC hard "Every boss involves a cylinder and a round hole which are elements of the
boss."

(=> (and (Boss ?boss)
 (Foundation.Cylinder ?c)
 (Foundation.element_of ?c ?boss))
 (Foundation.base ?c))
:IC hard "The cylinder element of a boss is the base feature of the boss."

(=> (Boss ?boss)
 (exists (?ccp1 ?ccp2 ?bdia1 ?bdia2)
 (and (Foundation.Circular_Closed_Profile ?ccp1)
 (Foundation.Circular_Closed_Profile ?ccp2)
 (Foundation.holds_shape ?boss ?ccp1)
 (Foundation.holds_shape ?boss ?ccp2)
 (Boss_Diameter ?bdia1)

379

 (Boss_Diameter ?bdia2)
 (Foundation.measures ?ccp1 ?bdia1)
 (Foundation.measures ?ccp2 ?bdia2)
 (= ?bdia1 ?bdia2))))
:IC hard "Every boss holds exactly two circular closed profiles of identical boss
diameter."

(=> (Boss ?boss)
 (exists (?lin ?bheight)
 (and (Foundation.Linear_Path ?lin)
 (Foundation.holds_shape ?boss ?lin)
 (Boss_Height ?bheight)
 (Foundation.measures ?lin ?bheight))))
:IC hard "Every boss holds exactly one linear path of boss height."

(=> (External_Flange ?flange)
 (exists (?ccp1 ?ccp2 ?fdia1 ?fdia2)
 (and (Foundation.Circular_Closed_Profile ?ccp1)
 (Foundation.Circular_Closed_Profile ?ccp2)
 (Foundation.holds_shape ?flange ?ccp1)
 (Foundation.holds_shape ?flange ?ccp2)
 (Flange_Diameter ?fdia1)
 (Flange_Diameter ?fdia2)
 (Foundation.measures ?ccp1 ?fdia1)
 (Foundation.measures ?ccp2 ?fdia2)
 (= ?fdia1 ?fdia2))))
:IC hard "Every external flange holds exactly two circular closed profiles of identical
flange diameter."

(=> (External_Flange ?flange)
 (exists (?lin ?fdepth)
 (and (Foundation.Linear_Path ?lin)
 (Foundation.holds_shape ?flange ?lin)
 (Flange_Thickness ?fdepth)
 (Foundation.measures ?lin ?fdepth))))
:IC hard "Every external flange holds exactly one linear path of flange thickness."

(=> (Locating_Pin_Hole ?lphole)
 (exists (?ccp1 ?ccp2 ?phdia1 ?phdia2)
 (and (Foundation.Circular_Closed_Profile ?ccp1)
 (Foundation.Circular_Closed_Profile ?ccp2)
 (Foundation.holds_shape ?lphole ?ccp1)
 (Foundation.holds_shape ?lphole ?ccp2)
 (Primary_Diameter ?phdia1)
 (Primary_Diameter ?phdia2)
 (Foundation.measures ?ccp1 ?phdia1)
 (Foundation.measures ?ccp2 ?phdia2)
 (= ?phdia1 ?phdia2))))
:IC hard "Every locating pin hole holds exactly two circular closed profiles of identical
primary diameter."

(=> (Locating_Pin_Hole ?lphole)
 (exists (?lin ?phdepth)
 (and (Foundation.Linear_Path ?lin)
 (Foundation.holds_shape ?lphole ?lin)
 (Primary_Depth ?phdepth)
 (Foundation.measures ?lin ?phdepth))))
:IC hard "Every locating pin hole holds exactly one linear path of primary depth."

380

(=> (and (Locating_Pin_Hole ?lphole)
 (Foundation.Linear_Path ?lin)
 (Foundation.Circular_Closed_Profile ?ccp)
 (Foundation.through ?ccp)
 (Foundation.holds_shape ?lphole ?lin)
 (Foundation.holds_shape ?lphole ?ccp))
 (exists (?chf1 ?chf2)
 (and (Foundation.Chamfer ?chf1)
 (Foundation.Chamfer ?chf2)
 (Foundation.blends ?chf1 ?lin)
 (Foundation.blends ?chf2 ?lin))))
:IC hard "Every locating pin hole that has a through hole bottom condition requires two
chamfers that blend the linear path of the reamed hole."

(=> (Plain_Diameter_Hole ?phole)
 (exists (?ccp1 ?ccp2 ?phdia1 ?phdia2)
 (and (Foundation.Circular_Closed_Profile ?ccp1)
 (Foundation.Circular_Closed_Profile ?ccp2)
 (Foundation.holds_shape ?phole ?ccp1)
 (Foundation.holds_shape ?phole ?ccp2)
 (Primary_Diameter ?phdia1)
 (Primary_Diameter ?phdia2)
 (Foundation.measures ?ccp1 ?phdia1)
 (Foundation.measures ?ccp2 ?phdia2)
 (= ?phdia1 ?phdia2))))
:IC hard "Every plain diameter hole holds exactly two circular closed profiles of
identical primary diameter."

(=> (Plain_Diameter_Hole ?phole)
 (exists (?lin ?phdepth)
 (and (Foundation.Linear_Path ?lin)
 (Foundation.holds_shape ?phole ?lin)
 (Primary_Depth ?phdepth)
 (Foundation.measures ?lin ?phdepth))))
:IC hard "Every plain diameter hole holds exactly one linear path of primary depth."

(=> (Secondary_Hole ?shole)
 (exists (?ccp1 ?ccp2 ?sdia1 ?sdia2)
 (and (Foundation.Circular_Closed_Profile ?ccp1)
 (Foundation.Circular_Closed_Profile ?ccp2)
 (Foundation.holds_shape ?shole ?ccp1)
 (Foundation.holds_shape ?shole ?ccp2)
 (Secondary_Diameter ?sdia1)
 (Secondary_Diameter ?sdia2)
 (Foundation.measures ?ccp1 ?sdia1)
 (Foundation.measures ?ccp2 ?sdia2)
 (= ?sdia1 ?sdia2))))
:IC hard "Every secondary hole holds exactly two circular closed profiles of identical
secondary diameter."

(=> (Secondary_Hole ?shole)
 (exists (?lin ?sdepth)
 (and (Foundation.Linear_Path ?lin)
 (Foundation.holds_shape ?shole ?lin)
 (Secondary_Depth ?sdepth)
 (Foundation.measures ?lin ?sdepth))))
:IC hard "Every secondary hole holds exactly one linear path of secondary depth."

381

382

D.3 Machining Hole Feature Ontology B

Context Declaration

:Ctx machiningHoleFeatureOntologyB
:Inst UserContext
:supCtx TopUserCtx
:name "Context for the Machining Hole Feature Ontology B"
:rem "This context explores a domain ontology developed for hole features defined from a
machining process viewpoint using the semantics from the Foundation Layer."

:Use machiningHoleFeatureOntologyB

Classes

:Prop Crank_Pulley_Part_Family
:Inst Property
:sup Foundation.Artifact
:name "Crank_Pulley_Part_Family"
:rem "A crank pulley part family is a type of artifact which is is forged and then machined
using turning and boring operations."

:Prop Bored_Hole
:Inst Property
:sup Foundation.Round_Hole
:name "Bored_Hole"
:rem "A bored hole is a round hole feature which is machined using a sequence of rough and
finish boring operations."

:Prop Large_Bored_Hole
:Inst Property
:sup Foundation.Round_Hole
:name "Bored_Hole"
:rem "A large bored hole is a round hole feature which is machined using a sequence of
rough and finish boring operations."

:Prop Pulley_Core_Feature
:Inst Property
:sup Foundation.Feature
:name "Pulley_Core_Feature"
:rem "A pulley core feature is a compound feature which defines the central portion of a crank
pulley and is produced using turning and boring operations."

:Prop Pulley_End_Feature
:Inst Property
:sup Foundation.Cylinder
:name "Pulley_End_Feature"
:rem "A pulley end feature is a cylindrical feature which defines a portion of a crank pulley and
is machined using turning operations."

:Prop Bore_Hole_Making
:Inst Property
:sup Foundation.Activity
:name "Bore_Hole_Making"
:rem "A bore hole making activity is a machining operation whose occurrences may produce
both bored and large bored holes as outputs. An occurrence of a bored hole making activity,

383

which outputs a bored or large bored hole, consists of linear ordering semantics over rough
boring followed by finish boring."

:Prop Face_Turning
:Inst Property
:sup Foundation.Activity
:name "Face_Turning"
:rem "A face turning activity is a machining operation whose occurrences produce faces of on
a crank pulley."

:Prop Finish_Boring
:Inst Property
:sup Foundation.Activity
:name "Finish_Boring"
:rem "A finish boring activity is a machining operation whose occurrences produce bored and
larged bored holes."

:Prop Rough_Boring
:Inst Property
:sup Foundation.Activity
:name "Rough_Boring"
:rem "A rough boring activity is a machining operation whose occurrences always need to
precede occurrences of finish boring machining operations."

:Prop Mild_Steel
:Inst Property
:sup Foundation.Material
:name "Mild_Steel"
:rem "Mild steel is an alloy that contains between 0.16-0.29% carbon."

Functions

:Fun inches
:Inst UnaryFun
:Sig RealNumber -> Foundation.Length_Measure
:name "inches"
:rem "(= ?length (inches ?real)) is used to denote the value of a length measure in inches."

Axioms

(=> (Crank_Pulley_Part_Family ?pull)
 (exists (?core ?end1 ?end2)
 (and (Pulley_Core_Feature ?core)
 (Pulley_End_Feature ?end1)
 (Pulley_End_Feature ?end2)
 (Foundation.holds_feature ?pull ?core)
 (Foundation.holds_feature ?pull ?end1)
 (Foundation.holds_feature ?pull ?end2)
 (/= ?end1 ?end2))))
:IC hard "Every crank pulley consists of some pulley core feature and two distinct
pulley end features."

(=> (Crank_Pulley_Part_Family ?pull)
 (exists (?steel)
 (and (Mild_Steel ?steel)
 (Foundation.holds_material ?pull ?steel))))

384

:IC hard "Every crank pulley is made up of some mild steel material."

(=> (Pulley_Core_Feature ?core)
 (Foundation.compound ?core))
:IC hard "A pulley core feature is a compound feature."

(=> (Pulley_Core_Feature ?core)
 (exists (?lhole1 ?lhole2 ?bhole ?c)
 (and (Large_Bored_Hole ?lhole1)
 (Large_Bored_Hole ?lhole2)
 (/= ?lhole1 ?lhole2)
 (Bored_Hole ?bhole)
 (Foundation.Cylinder ?c)
 (Foundation.element_of ?lhole1 ?core)
 (Foundation.element_of ?lhole2 ?core)
 (Foundation.element_of ?bhole ?core)
 (Foundation.element_of ?c ?core))))
:IC hard "Every pulley core feature consists of two distinct large bored holes, a
minimum of one bored hole, and a cylinder which are elements of the pulley core
feature."

(=> (and (Pulley_Core_Feature ?core)
 (Foundation.Cylinder ?c)
 (Foundation.element_of ?c ?core))
 (Foundation.base ?c))
:IC hard "The cylinder element of a pulley core feature is the base feature of the pulley
core feature."

(=> (and (Bored_Hole ?bhole)
 (Foundation.flow_object ?bhole))
 (exists (?fbore ?fboreOcc)
 (and (Finish_Boring ?fbore)
 (Foundation.Activity_Occurrence ?fboreOcc)
 (Foundation.occurrence_of ?fboreOcc ?fbore)
 (Foundation.output ?bhole ?fboreOcc))))
:IC hard "Every bored hole that is a flow object is an output from a finish boring activity
occurrence."

(=> (and (Large_Bored_Hole ?lbhole)
 (Foundation.flow_object ?lbhole))
 (exists (?fbore ?fboreOcc)
 (and (Finish_Boring ?fbore)
 (Foundation.Activity_Occurrence ?fboreOcc)
 (Foundation.occurrence_of ?fboreOcc ?fbore)
 (Foundation.output ?lbhole ?fboreOcc))))
:IC hard "Every large bored hole that is a flow object is an output from a finish boring
activity occurrence."

(=> (and (Foundation.Circular_Closed_Profile ?ccp)
 (Foundation.flow_object ?ccp)
 (RootCtx.withinContext ?ccp machiningHoleFeatureOntologyB))
 (exists (?fturn ?fturnOcc)
 (and (Face_Turning ?fturn)
 (Foundation.Activity_Occurrence ?fturnOcc)
 (Foundation.occurrence_of ?fturnOcc ?fturn)
 (Foundation.output ?ccp ?fturnOcc))))
:IC hard "Every circular closed profile in machining hole feature ontology B that is a
flow object is an output from a face turning activity occurrence."

(=> (and (Finish_Boring ?fbore)

385

 (Foundation.Activity_Occurrence ?fboreOcc)
 (Foundation.occurrence_of ?fboreOcc ?fbore)
 (Foundation.legal ?fboreOcc))
 (exists (?rbore ?rboreOcc)
 (and (Rough_Boring ?rbore)
 (Foundation.Activity_Occurrence ?rboreOcc)
 (Foundation.occurrence_of ?rboreOcc ?rbore)
 (Foundation.legal ?rboreOcc)
 (Foundation.earlier ?rboreOcc ?fboreOcc))))
:IC hard "Every legal finish boring activity occurrence implies the existence of some
rough boring activity occurrence that is earlier than the finish boring activity
occurrence in the occurrence tree."

(=> (and (Bore_Hole_Making ?bholeMake)
 (Foundation.Activity_Occurrence ?bholeMakeOcc)
 (Foundation.occurrence_of ?bholeMakeOcc ?bholeMake))
 (exists (?rbore ?rboreOcc ?fbore ?fboreOcc)
 (and (Rough_Boring ?rbore)
 (Finish_Boring ?fbore)
 (Foundation.Activity_Occurrence ?rboreOcc)
 (Foundation.Activity_Occurrence ?fboreOcc)
 (Foundation.occurrence_of ?rboreOcc ?rbore)
 (Foundation.occurrence_of ?fboreOcc ?fbore)
 (Foundation.min_precedes ?rboreOcc ?fboreOcc ?bholeMake))))
:IC hard "An occurrence of rough boring must always precede an occurrence of finish
boring under a complex occurrence of bore hole making. Other behaviours under the
complex bore hole making activity may occur in between."

(=> (and (Bore_Hole_Making ?bholeMake)
 (Foundation.Activity_Occurrence ?bholeMakeOcc)
 (Foundation.occurrence_of ?bholeMakeOcc ?bholeMake))
 (exists (?rbore ?rboreOcc)
 (and (Rough_Boring ?rbore)
 (Foundation.subactivity ?rbore ?bholeMake)
 (Foundation.Activity_Occurrence ?rboreOcc)
 (Foundation.occurrence_of ?rboreOcc ?rbore)
 (Foundation.subactivity_occurrence ?rboreOcc ?bholeMakeOcc)
 (Foundation.root_occ ?rboreOcc ?bholeMakeOcc))))
:IC hard "An occurrence of rough boring at the root of the process sequence under a
complex occurrence of bore hole making is a precondition to the complex occurrence."

(=> (and (Bore_Hole_Making ?bholeMake)
 (Foundation.Activity_Occurrence ?bholeMakeOcc)
 (Foundation.occurrence_of ?bholeMakeOcc ?bholeMake))
 (exists (?fbore ?fboreOcc)
 (and (Finish_Boring ?fbore)
 (Foundation.subactivity ?fbore ?bholeMake)
 (Foundation.Activity_Occurrence ?fboreOcc)
 (Foundation.occurrence_of ?fboreOcc ?fbore)
 (Foundation.subactivity_occurrence ?fboreOcc ?bholeMakeOcc)
 (Foundation.leaf_occ ?fboreOcc ?bholeMakeOcc))))
:IC hard "An occurrence of finish boring at the leaf of the process sequence under a
complex occurrence of bore hole making is a post-condition to the complex
occurrence."

386

387

D.4 ISO Tolerance Band Model

Context Declaration

:Ctx isoToleranceBand
:Inst UserContext
:supCtx TopUserCtx
:name "ISO Tolerance Band Domain Context"
:rem "This context may be used to establish potential hole machining processes to produce
round holes of known nominal entry diameter and diameter tolerances. This context can also
be used to match the conformance of domain-defined hole making activity occurrences with
respect to the hole machining processes identified under the ISO Tolerance Band Model."

:Use isoToleranceBand

Relations

:Rel toleranceBandRelation_01
:Inst UnaryRel
:Sig Property
:name "toleranceBandRelation_01"
:rem "Based on the entry diameter and entry diameter size tolerance of the queried
Foundation.Round_Hole instance, it can be inferred that the feature can be produced using a
Honing machining process."
:limitationRem "This criteria is only satisfied under the ISO Tolerance Band domain model."

:Rel toleranceBandRelation_02
:Inst UnaryRel
:Sig Property
:name "toleranceBandRelation_02"
:rem "Based on the entry diameter and entry diameter size tolerance of the queried
Foundation.Round_Hole instance, it can be inferred that the feature can be produced using
an Internal Grinding machining process."
:limitationRem "This criteria is only satisfied under the ISO Tolerance Band domain model."

:Rel toleranceBandRelation_03
:Inst UnaryRel
:Sig Property
:name "toleranceBandRelation_03"
:rem "Based on the entry diameter and entry diameter size tolerance of the queried
Foundation.Round_Hole instance, it can be inferred that the feature can be produced using
an Internal Broaching machining process."
:limitationRem "This criteria is only satisfied under the ISO Tolerance Band domain model."

:Rel toleranceBandRelation_04
:Inst UnaryRel
:Sig Property
:name "toleranceBandRelation_04"
:rem "Based on the entry diameter and entry diameter size tolerance of the queried
Foundation.Round_Hole instance, it can be inferred that the feature can be produced using a
Reaming machining process."
:limitationRem "This criteria is only satisfied under the ISO Tolerance Band domain model."

:Rel toleranceBandRelation_05
:Inst UnaryRel

388

:Sig Property
:name "toleranceBandRelation_05"
:rem "Based on the entry diameter and entry diameter size tolerance of the queried
Foundation.Round_Hole instance, it can be inferred that the feature can be produced using a
Boring machining process."
:limitationRem "This criteria is only satisfied under the ISO Tolerance Band domain model."

:Rel toleranceBandRelation_06
:Inst UnaryRel
:Sig Property
:name "toleranceBandRelation_06"
:rem "Based on the entry diameter and entry diameter size tolerance of the queried
Foundation.Round_Hole instance, it can be inferred that the feature can be produced using a
Drilling machining process."
:limitationRem "This criteria is only satisfied under the ISO Tolerance Band domain model."

:Rel toleranceBandRelation_07
:Inst UnaryRel
:Sig Property
:name "toleranceBandRelation_07"
:rem "The queried Activity_Occurrence instance, which is a hole making occurrence, matches
the tolerance range capability of a Honing machining process."
:limitationRem "This criteria is only satisfied under the ISO Tolerance Band domain model."

:Rel toleranceBandRelation_08
:Inst UnaryRel
:Sig Property
:name "toleranceBandRelation_08"
:rem "The queried Activity_Occurrence instance, which is a hole making occurrence, matches
the tolerance range capability of a Internal Grinding machining process."
:limitationRem "This criteria is only satisfied under the ISO Tolerance Band domain model."

:Rel toleranceBandRelation_09
:Inst UnaryRel
:Sig Property
:name "toleranceBandRelation_09"
:rem "The queried Activity_Occurrence instance, which is a hole making occurrence, matches
the tolerance range capability of a Internal Broaching machining process."
:limitationRem "This criteria is only satisfied under the ISO Tolerance Band domain model."

:Rel toleranceBandRelation_10
:Inst UnaryRel
:Sig Property
:name "toleranceBandRelation_10"
:rem "The queried Activity_Occurrence instance, which is a hole making occurrence, matches
the tolerance range capability of a Reaming machining process."
:limitationRem "This criteria is only satisfied under the ISO Tolerance Band domain model."

:Rel toleranceBandRelation_11
:Inst UnaryRel
:Sig Property
:name "toleranceBandRelation_11"
:rem "The queried Activity_Occurrence instance, which is a hole making occurrence, matches
the tolerance range capability of a Boring machining process."
:limitationRem "This criteria is only satisfied under the ISO Tolerance Band domain model."

:Rel toleranceBandRelation_12
:Inst UnaryRel
:Sig Property
:name "toleranceBandRelation_12"

389

:rem "The queried Activity_Occurrence instance, which is a hole making occurrence, matches
the tolerance range capability of a Drilling machining process."
:limitationRem "This criteria is only satisfied under the ISO Tolerance Band domain model."

Definitions

 (<= (toleranceBandRelation_01 ?hole)
 (and (Foundation.Round_Hole ?hole)
 (Foundation.Circular_Closed_Profile ?ccp)
 (Foundation.holds_shape ?hole ?ccp)
 (not (Foundation.through ?ccp))
 (not (Foundation.blind ?ccp))
 (Foundation.measures ?ccp (Foundation.mm ?real))
 (Foundation.holds_size_tolerance ?ccp (Foundation.tolerance_value
(Foundation.mm ?realmin) (Foundation.mm ?realmax)) (Foundation.mm ?real))
 (or (and (RootCtx.inInterval ?real (RootCtx.interval ex 1 3 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -0.04 -0.02 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.02 0.04 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 3 6 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -0.05 -0.025 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.025 0.05 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 6 10 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -0.06 -0.025 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.025 0.06 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 10 18 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -0.08 -0.03 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.03 0.08 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 18 30 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -0.09 -0.04 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.04 0.09 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 30 50 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -0.11 -0.04 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.04 0.11 in))))))

(=> (toleranceBandRelation_01 ?hole)
 (RootCtx.holdsArg toleranceBandRelation_01 1 ?hole))

 (<= (toleranceBandRelation_02 ?hole)
 (and (Foundation.Round_Hole ?hole)
 (Foundation.Circular_Closed_Profile ?ccp)
 (Foundation.holds_shape ?hole ?ccp)
 (not (Foundation.through ?ccp))
 (not (Foundation.blind ?ccp))
 (Foundation.measures ?ccp (Foundation.mm ?real))
 (Foundation.holds_size_tolerance ?ccp (Foundation.tolerance_value
(Foundation.mm ?realmin) (Foundation.mm ?realmax)) (Foundation.mm ?real))
 (or (and (RootCtx.inInterval ?real (RootCtx.interval ex 1 3 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -0.10 -0.03 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.03 0.10 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 3 6 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -0.12 -0.04 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.04 0.12 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 6 10 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -0.15 -0.04 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.04 0.15 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 10 18 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -0.18 -0.05 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.05 0.18 in)))

390

 (and (RootCtx.inInterval ?real (RootCtx.interval ex 18 30 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -0.21 -0.6 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.06 0.21 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 30 50 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -0.25 -0.07 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.07 0.25 in))))))

(=> (toleranceBandRelation_02 ?hole)
 (RootCtx.holdsArg toleranceBandRelation_02 1 ?hole))

 (<= (toleranceBandRelation_03 ?hole)
 (and (Foundation.Round_Hole ?hole)
 (Foundation.Circular_Closed_Profile ?ccp)
 (Foundation.holds_shape ?hole ?ccp)
 (not (Foundation.through ?ccp))
 (not (Foundation.blind ?ccp))
 (Foundation.measures ?ccp (Foundation.mm ?real))
 (Foundation.holds_size_tolerance ?ccp (Foundation.tolerance_value
(Foundation.mm ?realmin) (Foundation.mm ?realmax)) (Foundation.mm ?real))
 (or (and (RootCtx.inInterval ?real (RootCtx.interval ex 1 3 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -0.25 -0.04 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.04 0.25 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 3 6 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -0.30 -0.05 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.05 0.30 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 6 10 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -0.36 -0.06 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.06 0.36 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 10 18 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -0.43 -0.08 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.08 0.43 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 18 30 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -0.52 -0.09 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.09 0.52 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 30 50 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -0.62 -0.11 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.11 0.62 in))))))

(=> (toleranceBandRelation_03 ?hole)
 (RootCtx.holdsArg toleranceBandRelation_03 1 ?hole))

 (<= (toleranceBandRelation_04 ?hole)
 (and (Foundation.Round_Hole ?hole)
 (Foundation.Circular_Closed_Profile ?ccp)
 (Foundation.holds_shape ?hole ?ccp)
 (not (Foundation.through ?ccp))
 (not (Foundation.blind ?ccp))
 (Foundation.measures ?ccp (Foundation.mm ?real))
 (Foundation.holds_size_tolerance ?ccp (Foundation.tolerance_value
(Foundation.mm ?realmin) (Foundation.mm ?realmax)) (Foundation.mm ?real))
 (or (and (RootCtx.inInterval ?real (RootCtx.interval ex 1 3 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -0.25 -0.04 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.04 0.25 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 3 6 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -0.30 -0.05 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.05 0.30 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 6 10 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -0.36 -0.06 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.06 0.36 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 10 18 in))

391

 (RootCtx.inInterval ?realmin (RootCtx.interval in -0.43 -0.08 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.08 0.43 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 18 30 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -0.52 -0.09 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.09 0.52 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 30 50 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -0.62 -0.11 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.11 0.62 in))))))

(=> (toleranceBandRelation_04 ?hole)
 (RootCtx.holdsArg toleranceBandRelation_04 1 ?hole))

 (<= (toleranceBandRelation_05 ?hole)
 (and (Foundation.Round_Hole ?hole)
 (Foundation.Circular_Closed_Profile ?ccp)
 (Foundation.holds_shape ?hole ?ccp)
 (not (Foundation.through ?ccp))
 (not (Foundation.blind ?ccp))
 (Foundation.measures ?ccp (Foundation.mm ?real))
 (Foundation.holds_size_tolerance ?ccp (Foundation.tolerance_value
(Foundation.mm ?realmin) (Foundation.mm ?realmax)) (Foundation.mm ?real))
 (or (and (RootCtx.inInterval ?real (RootCtx.interval ex 1 3 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -1.00 -0.06 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.06 1.00 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 3 6 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -1.20 -0.08 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.08 1.20 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 6 10 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -1.50 -0.09 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.09 1.50 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 10 18 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -1.80 -0.11 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.11 1.80 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 18 30 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -2.10 -0.13 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.13 2.10 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 30 50 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -2.50 -0.16 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.16 2.50 in))))))

(=> (toleranceBandRelation_05 ?hole)
 (RootCtx.holdsArg toleranceBandRelation_05 1 ?hole))

 (<= (toleranceBandRelation_06 ?hole)
 (and (Foundation.Round_Hole ?hole)
 (Foundation.Circular_Closed_Profile ?ccp)
 (Foundation.holds_shape ?hole ?ccp)
 (not (Foundation.through ?ccp))
 (not (Foundation.blind ?ccp))
 (Foundation.measures ?ccp (Foundation.mm ?real))
 (Foundation.holds_size_tolerance ?ccp (Foundation.tolerance_value
(Foundation.mm ?realmin) (Foundation.mm ?realmax)) (Foundation.mm ?real))
 (or (and (RootCtx.inInterval ?real (RootCtx.interval ex 1 3 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -1.00 -0.60 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.60 1.00 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 3 6 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -1.20 -0.75 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.75 1.20 in)))

392

 (and (RootCtx.inInterval ?real (RootCtx.interval ex 6 10 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -1.50 -0.90 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 0.90 1.50 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 10 18 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -1.80 -1.10 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 1.10 1.80 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 18 30 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -2.10 -1.30 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 1.30 2.10 in)))
 (and (RootCtx.inInterval ?real (RootCtx.interval ex 30 50 in))
 (RootCtx.inInterval ?realmin (RootCtx.interval in -2.50 -1.60 in))
 (RootCtx.inInterval ?realmax (RootCtx.interval in 1.60 2.50 in))))))

(=> (toleranceBandRelation_06 ?hole)
 (RootCtx.holdsArg toleranceBandRelation_06 1 ?hole))

 (<= (toleranceBandRelation_07 ?occ)
 (and (RootCtx.inst ?occ Foundation.Activity_Occurrence)
 (RootCtx.inst ?hole Foundation.Round_Hole)
 (Foundation.output ?hole ?occ)
 (toleranceBandRelation_01 ?hole)))

(=> (toleranceBandRelation_07 ?occ)
 (RootCtx.holdsArg toleranceBandRelation_07 1 ?occ))

 (<= (toleranceBandRelation_08 ?occ)
 (and (RootCtx.inst ?occ Foundation.Activity_Occurrence)
 (RootCtx.inst ?hole Foundation.Round_Hole)
 (Foundation.output ?hole ?occ)
 (toleranceBandRelation_02 ?hole)))

(=> (toleranceBandRelation_08 ?occ)
 (RootCtx.holdsArg toleranceBandRelation_08 1 ?occ))

 (<= (toleranceBandRelation_09 ?occ)
 (and (RootCtx.inst ?occ Foundation.Activity_Occurrence)
 (RootCtx.inst ?hole Foundation.Round_Hole)
 (Foundation.output ?hole ?occ)
 (toleranceBandRelation_03 ?hole)))

(=> (toleranceBandRelation_09 ?occ)
 (RootCtx.holdsArg toleranceBandRelation_09 1 ?occ))

 (<= (toleranceBandRelation_10 ?occ)
 (and (RootCtx.inst ?occ Foundation.Activity_Occurrence)
 (RootCtx.inst ?hole Foundation.Round_Hole)
 (Foundation.output ?hole ?occ)
 (toleranceBandRelation_04 ?hole)))

(=> (toleranceBandRelation_10 ?occ)
 (RootCtx.holdsArg toleranceBandRelation_10 1 ?occ))

 (<= (toleranceBandRelation_11 ?occ)
 (and (RootCtx.inst ?occ Foundation.Activity_Occurrence)
 (RootCtx.inst ?hole Foundation.Round_Hole)
 (Foundation.output ?hole ?occ)
 (toleranceBandRelation_05 ?hole)))

393

(=> (toleranceBandRelation_11 ?occ)
 (RootCtx.holdsArg toleranceBandRelation_11 1 ?occ))

 (<= (toleranceBandRelation_12 ?occ)
 (and (RootCtx.inst ?occ Foundation.Activity_Occurrence)
 (RootCtx.inst ?hole Foundation.Round_Hole)
 (Foundation.output ?hole ?occ)
 (toleranceBandRelation_06 ?hole)))

(=> (toleranceBandRelation_12 ?occ)
 (RootCtx.holdsArg toleranceBandRelation_12 1 ?occ))

394

E Semantic Reconciliation Layer

E.1 Semantic Mapping Concepts Based on Foundation

Semantics

A large number of semantic mapping concepts based on foundation

semantics has been explored in this work. As a consequence of this, only the

ones that appear and contribute to the definition of semantic mapping

concepts evaluated in Test Case 2 have been exposed in this section.

Context Declaration

:Ctx foundationMapping
:Inst UserContext
:supCtx TopUserCtx
:name "Foundation Mapping Context"
:rem "This context is used to define relevant semantic mapping concepts for use in the
Semantic Reconciliation Layer purely based on foundation semantics."

:Use foundationMapping

Reconciliation of Classes

:Rel classMappingRelation_018
:Inst BinaryRel
:Sig Property Property
:name "classMappingRelation_018"
:rem "There exists a correspondence between the class ?x in the DomainX context and the
class ?y in the DomainY context as a result of both ?x and ?y being subclasses of the
foundation class Foundation.Round_Hole. Both ?x and ?y capture the notion of a feature that
is of cylindrical or conical negative (removal) volume. It is necessary for instances of ?x and
?y be defined in terms of a first instance of Foundation.Circular_Closed_Profile swept along
an instance of Foundation.Linear_Path resulting in a second instance of
Foundation.Circular_Closed_Profile of identical or different dimensions. Every instance of ?x
and ?y may hold a Foundation.Linear_Profile axis."
:limitationRem "Without reference to the terms assigned to the concepts ?x and ?y, there
could potentially be class mismatches present. This is because ?x and ?y could have been
defined with a view on specific domain preferences, which vary across domains. Varying
levels of abstraction of the foundation class Foundation.Round_Hole in both domains could
also result in class mismatches."

(<= (classMappingRelation_018 ?x ?y)
 (and (RootCtx.sup ?x Foundation.Round_Hole)
 (RootCtx.withinContext ?x DomainX)
 (RootCtx.sup ?y Foundation.Round_Hole)
 (RootCtx.withinContext ?y DomainY)))

(=> (classMappingRelation_018 ?x ?y)
 (and (RootCtx.holdsArg classMappingRelation_018 1 ?x)

395

 (RootCtx.holdsArg classMappingRelation_018 2 ?y)))

:Rel classMappingRelation_022
:Inst BinaryRel
:Sig Property Property
:name "classMappingRelation_022"
:rem "There exists a correspondence between the class ?x in the DomainX context and the
class ?y in the DomainY context as a result of both ?x and ?y being subclasses of the
foundation class Foundation.Activity. Both ?x and ?y capture the notion of types of reusable
process behaviours. Instances of ?x and ?y may have multiple occurrences present as
instances of Foundation.Activity_Occurrence or present as instances of the subclasses of the
latter defined in DomainX and DomainY respectively."
:limitationRem "Without reference to the terms assigned to the concepts ?x and ?y, there
could potentially be class mismatches present. This is because ?x and ?y could have been
defined with a view on specific domain preferences, which vary across domains. Varying
levels of abstraction of the foundation class Foundation.Activity in both domains could also
result in class mismatches."

(<= (classMappingRelation_022 ?x ?y)
 (and (RootCtx.sup ?x Foundation.Activity)
 (RootCtx.withinContext ?x DomainX)
 (RootCtx.sup ?y Foundation.Activity)
 (RootCtx.withinContext ?y DomainY)))

(=> (classMappingRelation_022 ?x ?y)
 (and (RootCtx.holdsArg classMappingRelation_022 1 ?x)
 (RootCtx.holdsArg classMappingRelation_022 2 ?y)))

Reconciliation of Functions

:Rel pointerRelation_003
:Inst UnaryRel
:Sig UnaryFun
:name "pointerRelation_003"

(<= (pointerRelation_003 ?funx)
 (and (RootCtx.inst ?funx RootCtx.UnaryFun)
 (RootCtx.withinContext ?funx DomainX)
 (RootCtx.argProp ?funx 1 RootCtx.RealNumber)
 (RootCtx.returnProp ?funx Foundation.Length_Measure)))

:Rel pointerRelation_004
:Inst UnaryRel
:Sig UnaryFun
:name "pointerRelation_004"

(<= (pointerRelation_004 ?funy)
 (and (RootCtx.inst ?funy RootCtx.UnaryFun)
 (RootCtx.withinContext ?funy DomainY)
 (RootCtx.argProp ?funy 1 RootCtx.RealNumber)
 (RootCtx.returnProp ?funy Foundation.Length_Measure)))

:Rel functionMappingRelation_003
:Inst BinaryRel
:Sig UnaryFun UnaryFun
:name "functionMappingRelation_003"
:rem "There exists a correspondence between the ontological functions ?funx in the DomainX
context and ?funy in the DomainY context as a result of both ?funx and ?funy being used to

396

denote instances of the foundation class Foundation.Length_Measure. Both ?funx and ?funy
capture the intuition about units of measurement for qualifying lengths. It is a necessary
condition that all instances of Foundation.Length_Measure in DomainX and DomainY be
characterised by units of measurement with RootCtx.RealNumber values."
:limitationRem "Without reference to the terms assigned to the unit of measurement functions
?funx and ?funy, there could be a Concept and Term CT mismatch present. This occurs if
different terms are used to refer to two fundamentally different unit functions."
:exampleRem "(m 10) v/s (inch 0.5) In this case, the ontological functions are m and inch
which not only use different terms but are also conceptually different. However, the way in
which they denote instances of Foundation.Length_Measure is the same."

(<= (functionMappingRelation_003 ?funx ?funy)
 (and (pointerRelation_003 ?funx)
 (pointerRelation_004 ?funy)))

(=> (functionMappingRelation_003 ?funx ?funy)
 (and (RootCtx.holdsArg functionMappingRelation_003 1 ?funx)
 (RootCtx.holdsArg functionMappingRelation_003 2 ?funy)))

Reconciliation of Instances

:Rel pointerRelation_005
:Inst BinaryRel
:Sig Property Property
:name "pointerRelation_005"

(<= (pointerRelation_005 ?ccpx ?lengthx)
 (and (RootCtx.inst ?ccpx Foundation.Circular_Closed_Profile)
 (RootCtx.withinContext ?ccpx DomainX)
 (RootCtx.inst ?lengthx Foundation.Length_Measure)
 (Foundation.measures ?ccpx ?lengthx)))

:Rel pointerRelation_006
:Inst BinaryRel
:Sig Property Property
:name "pointerRelation_006"

(<= (pointerRelation_006 ?ccpy ?lengthy)
 (and (RootCtx.inst ?ccpy Foundation.Circular_Closed_Profile)
 (RootCtx.withinContext ?ccpy DomainY)
 (RootCtx.inst ?lengthy Foundation.Length_Measure)
 (Foundation.measures ?ccpy ?lengthy)))

:Rel pointerRelation_009
:Inst BinaryRel
:Sig Property Property
:name "pointerRelation_009"

(<= (pointerRelation_009 ?linx ?lengthx)
 (and (RootCtx.inst ?linx Foundation.Linear_Path)
 (RootCtx.withinContext ?linx DomainX)
 (RootCtx.inst ?lengthx Foundation.Length_Measure)
 (Foundation.measures ?linx ?lengthx)))

:Rel pointerRelation_010
:Inst BinaryRel
:Sig Property Property
:name "pointerRelation_010"

397

(<= (pointerRelation_010 ?liny ?lengthy)
 (and (RootCtx.inst ?liny Foundation.Linear_Path)
 (RootCtx.withinContext ?liny DomainY)
 (RootCtx.inst ?lengthy Foundation.Length_Measure)
 (Foundation.measures ?liny ?lengthy)))

:Rel pointerRelation_019
:Inst TernaryRel
:Sig Property Property Property
:name "pointerRelation_019"

(<= (pointerRelation_019 ?fx ?ptx ?vx)
 (and (RootCtx.inst ?fx Foundation.Feature)
 (RootCtx.withinContext ?fx DomainX)
 (RootCtx.inst ?px Foundation.Placement)
 (Foundation.holds_orientation ?fx ?px)
 (RootCtx.inst ?ptx Foundation.Point)
 (RootCtx.inst ?vx Foundation.Vector_Direction)
 (Foundation.is_oriented_at ?px ?ptx ?vx)))

:Rel pointerRelation_020
:Inst TernaryRel
:Sig Property Property Property
:name "pointerRelation_020"

(<= (pointerRelation_020 ?fy ?pty ?vy)
 (and (RootCtx.inst ?fy Foundation.Feature)
 (RootCtx.withinContext ?fy DomainY)
 (RootCtx.inst ?py Foundation.Placement)
 (Foundation.holds_orientation ?fy ?py)
 (RootCtx.inst ?pty Foundation.Point)
 (RootCtx.inst ?vy Foundation.Vector_Direction)
 (Foundation.is_oriented_at ?py ?pty ?vy)))

:Rel pointerRelation_027
:Inst BinaryRel
:Sig Property Property
:name "pointerRelation_027"

(<= (pointerRelation_027 ?holex ?edgex)
 (and (RootCtx.inst ?edgex Foundation.Constant_Radius_Edge_Round)
 (RootCtx.inst ?linx Foundation.Linear_Path)
 (RootCtx.inst ?holex Foundation.Round_Hole)
 (RootCtx.withinContext ?holex DomainX)
 (Foundation.blends ?edgex ?linx)
 (Foundation.holds_shape ?holex ?linx)))

:Rel pointerRelation_028
:Inst BinaryRel
:Sig Property Property
:name "pointerRelation_028"

(<= (pointerRelation_028 ?holey ?edgey)
 (and (RootCtx.inst ?edgey Foundation.Constant_Radius_Edge_Round)
 (RootCtx.inst ?liny Foundation.Linear_Path)
 (RootCtx.inst ?holey Foundation.Round_Hole)
 (RootCtx.withinContext ?holey DomainY)
 (Foundation.blends ?edgey ?liny)
 (Foundation.holds_shape ?holey ?liny)))

398

:Rel pointerRelation_029
:Inst BinaryRel
:Sig Property Property
:name "pointerRelation_029"

(<= (pointerRelation_029 ?holex ?chfx)
 (and (RootCtx.inst ?chfx Foundation.Chamfer)
 (RootCtx.inst ?linx Foundation.Linear_Path)
 (RootCtx.inst ?holex Foundation.Round_Hole)
 (RootCtx.withinContext ?holex DomainX)
 (Foundation.blends ?chfx ?linx)
 (Foundation.holds_shape ?holex ?linx)))

:Rel pointerRelation_030
:Inst BinaryRel
:Sig Property Property
:name "pointerRelation_030"

(<= (pointerRelation_030 ?holey ?chfy)
 (and (RootCtx.inst ?chfy Foundation.Chamfer)
 (RootCtx.inst ?liny Foundation.Linear_Path)
 (RootCtx.inst ?holey Foundation.Round_Hole)
 (RootCtx.withinContext ?holey DomainY)
 (Foundation.blends ?chfy ?liny)
 (Foundation.holds_shape ?holey ?liny)))

:Rel pointerRelation_035
:Inst UnaryRel
:Sig Property
:name "pointerRelation_035"

(<= (pointerRelation_035 ?occx)
 (and (RootCtx.inst ?occx Foundation.Activity_Occurrence)
 (RootCtx.withinContext ?occx DomainX)
 (RootCtx.inst ?holex Foundation.Round_Hole)
 (RootCtx.withinContext ?holex DomainX)
 (Foundation.output ?holex ?occx)))

:Rel pointerRelation_036
:Inst UnaryRel
:Sig Property
:name "pointerRelation_036"

(<= (pointerRelation_036 ?occy)
 (and (RootCtx.inst ?occy Foundation.Activity_Occurrence)
 (RootCtx.withinContext ?occy DomainY)
 (RootCtx.inst ?holey Foundation.Round_Hole)
 (RootCtx.withinContext ?holey DomainY)
 (Foundation.output ?holey ?occy)))

:Rel instanceMappingRelation_003
:Inst BinaryRel
:Sig Property Property
:name "instanceMappingRelation_003"
:rem "There exists a correspondence between the instances ?ccpx and ?ccpy as a result of
both being asserted instances of the foundation class Foundation.Circular_Close_Profile
declared in DomainX and DomainY respectively. ?ccpx has a nominal diameter which is
numerically smaller than that of ?ccpy."

399

(<= (instanceMappingRelation_003 ?ccpx ?ccpy)
 (and (pointerRelation_005 ?ccpx ?lengthx)
 (pointerRelation_006 ?ccpy ?lengthy)
 (RootCtx.inst ?lengthx Foundation.Length_Measure)
 (RootCtx.inst ?lengthy Foundation.Length_Measure)
 (= ?lengthx (Foundation.mm ?realx))
 (= ?lengthy (Foundation.mm ?realy))
 (ltNum ?realx ?realy)))

(=> (instanceMappingRelation_003 ?ccpx ?ccpy)
 (and (RootCtx.holdsArg instanceMappingRelation_003 1 ?ccpx)
 (RootCtx.holdsArg instanceMappingRelation_003 2 ?ccpy)))

:Rel instanceMappingRelation_008
:Inst BinaryRel
:Sig Property Property
:name "instanceMappingRelation_008"
:rem "There exists a correspondence between the instances ?linx and ?liny as a result of both
being asserted instances of the foundation class Foundation.Linear_Path declared in
DomainX and DomainY respectively. ?linx has a nominal sweeping distance which is
numerically greater than that of ?liny."

(<= (instanceMappingRelation_008 ?linx ?liny)
 (and (pointerRelation_009 ?linx ?lengthx)
 (pointerRelation_010 ?liny ?lengthy)
 (RootCtx.inst ?lengthx Foundation.Length_Measure)
 (RootCtx.inst ?lengthy Foundation.Length_Measure)
 (= ?lengthx (Foundation.mm ?realx))
 (= ?lengthy (Foundation.mm ?realy))
 (gtNum ?realx ?realy)))

(=> (instanceMappingRelation_008 ?linx ?liny)
 (and (RootCtx.holdsArg instanceMappingRelation_008 1 ?linx)
 (RootCtx.holdsArg instanceMappingRelation_008 2 ?liny)))

:Rel instanceMappingRelation_022
:Inst BinaryRel
:Sig Property Property
:name "instanceMappingRelation_022"
:rem "There exists a correspondence between the instances ?fx and ?fy as a result of both
being asserted instances of the foundation class Foundation.Feature declared in DomainX
and DomainY respectively. ?fx has a placement orientation which is spatially identical to that
of ?fy."

(<= (instanceMappingRelation_022 ?fx ?fy)
 (and (pointerRelation_019 ?fx ?ptx ?vx)
 (pointerRelation_020 ?fy ?pty ?vy)
 (RootCtx.inst ?ptx Foundation.Point)
 (RootCtx.inst ?pty Foundation.Point)
 (= ?ptx (Foundation.coordinates (Foundation.mm ?realptx1) (Foundation.mm
?realptx2) (Foundation.mm ?realptx3)))
 (= ?pty (Foundation.coordinates (Foundation.mm ?realpty1) (Foundation.mm
?realpty2) (Foundation.mm ?realpty3)))
 (RootCtx.inst ?vx Foundation.Vector_Direction)
 (RootCtx.inst ?vy Foundation.Vector_Direction)
 (= ?vx (Foundation.direction ?realvx1 ?realvx2 ?realvx3))
 (= ?vy (Foundation.direction ?realvy1 ?realvy2 ?realvy3))
 (eqNum ?realptx1 ?realpty1)
 (eqNum ?realptx2 ?realpty2)
 (eqNum ?realptx3 ?realpty3)

400

 (eqNum ?realvx1 ?realvy1)
 (eqNum ?realvx2 ?realvy2)
 (eqNum ?realvx3 ?realvy3)))

(=> (instanceMappingRelation_022 ?fx ?fy)
 (and (RootCtx.holdsArg instanceMappingRelation_022 1 ?fx)
 (RootCtx.holdsArg instanceMappingRelation_022 2 ?fy)))

:Rel instanceMappingRelation_023
:Inst BinaryRel
:Sig Property Property
:name "instanceMappingRelation_023"
:rem "There exists a correspondence between the instances ?fx and ?fy as a result of both
being asserted instances of the foundation class Foundation.Feature declared in DomainX
and DomainY respectively. ?fx has a placement orientation which is spatially different from
that of ?fy."

(<= (instanceMappingRelation_023 ?fx ?fy)
 (and (RootCtx.inst ?fx Foundation.Feature)
 (RootCtx.withinContext ?fx DomainX)
 (RootCtx.inst ?fy Foundation.Feature)
 (RootCtx.withinContext ?fy DomainY)
 (not (instanceMappingRelation_022 ?fx ?fy))))

(=> (instanceMappingRelation_023 ?fx ?fy)
 (and (RootCtx.holdsArg instanceMappingRelation_023 1 ?fx)
 (RootCtx.holdsArg instanceMappingRelation_023 2 ?fy)))

:Rel instanceMappingRelation_041
:Inst BinaryRel
:Sig Property Property
:name "instanceMappingRelation_041"
:rem "There exists a correspondence between the instances ?holex and ?holey as a result of
both being asserted instances of the foundation class Foundation.Round_Hole declared in
DomainX and DomainY respectively. ?holex and ?holey both share in common the property
of having Foundation.blind hole bottom conditions."

(<= (instanceMappingRelation_041 ?holex ?holey)
 (and (RootCtx.inst ?holex Foundation.Round_Hole)
 (RootCtx.withinContext ?holex DomainX)
 (RootCtx.inst ?ccpx Foundation.Circular_Closed_Profile)
 (Foundation.holds_shape ?holex ?ccpx)
 (Foundation.blind ?ccpx)
 (RootCtx.inst ?holey Foundation.Round_Hole)
 (RootCtx.withinContext ?holey DomainY)
 (RootCtx.inst ?ccpy Foundation.Circular_Closed_Profile)
 (Foundation.holds_shape ?holey ?ccpy)
 (Foundation.blind ?ccpy)))

(=> (instanceMappingRelation_041 ?holex ?holey)
 (and (RootCtx.holdsArg instanceMappingRelation_041 1 ?holex)
 (RootCtx.holdsArg instanceMappingRelation_041 2 ?holey)))

:Rel instanceMappingRelation_042
:Inst BinaryRel
:Sig Property Property
:name "instanceMappingRelation_042"
:rem "There exists a correspondence between the instances ?holex and ?holey as a result of
both being asserted instances of the foundation class Foundation.Round_Hole declared in

401

DomainX and DomainY respectively. ?holex and ?holey both share in common the property
of having Foundation.through hole bottom conditions."

(<= (instanceMappingRelation_042 ?holex ?holey)
 (and (RootCtx.inst ?holex Foundation.Round_Hole)
 (RootCtx.withinContext ?holex DomainX)
 (RootCtx.inst ?ccpx Foundation.Circular_Closed_Profile)
 (Foundation.holds_shape ?holex ?ccpx)
 (Foundation.through ?ccpx)
 (RootCtx.inst ?holey Foundation.Round_Hole)
 (RootCtx.withinContext ?holey DomainY)
 (RootCtx.inst ?ccpy Foundation.Circular_Closed_Profile)
 (Foundation.holds_shape ?holey ?ccpy)
 (Foundation.through ?ccpy)))

(=> (instanceMappingRelation_042 ?holex ?holey)
 (and (RootCtx.holdsArg instanceMappingRelation_042 1 ?holex)
 (RootCtx.holdsArg instanceMappingRelation_042 2 ?holey)))

:Rel instanceMappingRelation_043
:Inst BinaryRel
:Sig Property Property
:name "instanceMappingRelation_043"
:rem "There exists a correspondence between the instances ?holex and ?holey as a result of
both being asserted instances of the foundation class Foundation.Round_Hole declared in
DomainX and DomainY respectively. ?holex and ?holey do not share the same hole bottom
conditions."

(<= (instanceMappingRelation_043 ?holex ?holey)
 (and (RootCtx.inst ?holex Foundation.Round_Hole)
 (RootCtx.withinContext ?holex DomainX)
 (RootCtx.inst ?ccpx Foundation.Circular_Closed_Profile)
 (Foundation.holds_shape ?holex ?ccpx)
 (Foundation.blind ?ccpx)
 (RootCtx.inst ?holey Foundation.Round_Hole)
 (RootCtx.withinContext ?holey DomainY)
 (RootCtx.inst ?ccpy Foundation.Circular_Closed_Profile)
 (Foundation.holds_shape ?holey ?ccpy)
 (Foundation.through ?ccpy)))

(=> (instanceMappingRelation_043 ?holex ?holey)
 (and (RootCtx.holdsArg instanceMappingRelation_043 1 ?holex)
 (RootCtx.holdsArg instanceMappingRelation_043 2 ?holey)))

:Rel instanceMappingRelation_048
:Inst BinaryRel
:Sig Property Property
:name "instanceMappingRelation_048"
:rem "There exists a correspondence between the instances ?holex and ?holey as a result of
both being asserted instances of the foundation class Foundation.Round_Hole declared in
DomainX and DomainY respectively. ?holex has a nominal entry diameter which is
numerically smaller than that of ?holey."

(<= (instanceMappingRelation_048 ?holex ?holey)
 (and (RootCtx.inst ?ccpx Foundation.Circular_Closed_Profile)
 (not (Foundation.blind ?ccpx))
 (not (Foundation.through ?ccpx))
 (RootCtx.inst ?ccpy Foundation.Circular_Closed_Profile)
 (not (Foundation.blind ?ccpy))
 (not (Foundation.through ?ccpy))

402

 (instanceMappingRelation_003 ?ccpx ?ccpy)
 (RootCtx.inst ?holex Foundation.Round_Hole)
 (RootCtx.withinContext ?holex DomainX)
 (Foundation.holds_shape ?holex ?ccpx)
 (RootCtx.inst ?holey Foundation.Round_Hole)
 (RootCtx.withinContext ?holey DomainY)
 (Foundation.holds_shape ?holey ?ccpy)))

(=> (instanceMappingRelation_048 ?holex ?holey)
 (and (RootCtx.holdsArg instanceMappingRelation_048 1 ?holex)
 (RootCtx.holdsArg instanceMappingRelation_048 2 ?holey)))

:Rel instanceMappingRelation_054
:Inst BinaryRel
:Sig Property Property
:name "instanceMappingRelation_054"
:rem "There exists a correspondence between the instances ?holex and ?holey as a result of
both being asserted instances of the foundation class Foundation.Round_Hole declared in
DomainX and DomainY respectively. ?holex has a nominal hole bottom diameter which is
numerically smaller than that of ?holey."

(<= (instanceMappingRelation_054 ?holex ?holey)
 (and (RootCtx.inst ?ccpx Foundation.Circular_Closed_Profile)
 (RootCtx.inst ?ccpy Foundation.Circular_Closed_Profile)
 (instanceMappingRelation_003 ?ccpx ?ccpy)
 (or (instanceMappingRelation_041 ?holex ?holey)
 (instanceMappingRelation_042 ?holex ?holey)
 (instanceMappingRelation_043 ?holex ?holey))
 (RootCtx.inst ?holex Foundation.Round_Hole)
 (RootCtx.withinContext ?holex DomainX)
 (Foundation.holds_shape ?holex ?ccpx)
 (RootCtx.inst ?holey Foundation.Round_Hole)
 (RootCtx.withinContext ?holey DomainY)
 (Foundation.holds_shape ?holey ?ccpy)))

(=> (instanceMappingRelation_054 ?holex ?holey)
 (and (RootCtx.holdsArg instanceMappingRelation_054 1 ?holex)
 (RootCtx.holdsArg instanceMappingRelation_054 2 ?holey)))

:Rel instanceMappingRelation_059
:Inst BinaryRel
:Sig Property Property
:name "instanceMappingRelation_059"
:rem "There exists a correspondence between the instances ?holex and ?holey as a result of
both being asserted instances of the foundation class Foundation.Round_Hole declared in
DomainX and DomainY respectively. ?holex has a nominal hole depth which is numerically
greater than that of ?holey."

(<= (instanceMappingRelation_059 ?holex ?holey)
 (and (RootCtx.inst ?linx Foundation.Linear_Path)
 (RootCtx.inst ?liny Foundation.Linear_Path)
 (instanceMappingRelation_008 ?linx ?liny)
 (RootCtx.inst ?holex Foundation.Round_Hole)
 (RootCtx.withinContext ?holex DomainX)
 (Foundation.holds_shape ?holex ?linx)
 (RootCtx.inst ?holey Foundation.Round_Hole)
 (RootCtx.withinContext ?holey DomainY)
 (Foundation.holds_shape ?holey ?liny)))

403

(=> (instanceMappingRelation_059 ?holex ?holey)
 (and (RootCtx.holdsArg instanceMappingRelation_059 1 ?holex)
 (RootCtx.holdsArg instanceMappingRelation_059 2 ?holey)))

:Rel instanceMappingRelation_068
:Inst BinaryRel
:Sig Property Property
:name "instanceMappingRelation_068"
:rem "There exists a correspondence between the instances ?holex and ?holey as a result of
both being asserted instances of the foundation class Foundation.Round_Hole declared in
DomainX and DomainY respectively. ?holex and ?holey both have
Foundation.Transition_Feature instances that blend their entry and/or hole bottom surfaces.
These Foundation.Transition_Feature instances are, however, different for both ?holex and
?holey."

(<= (instanceMappingRelation_068 ?holex ?holey)
 (and (pointerRelation_027 ?holex ?edgex)
 (pointerRelation_030 ?holey ?chfy)
 (RootCtx.inst ?chfy Foundation.Chamfer)
 (RootCtx.inst ?edgex Foundation.Constant_Radius_Edge_Round)))

(<= (instanceMappingRelation_068 ?holex ?holey)
 (and (pointerRelation_029 ?holex ?chfx)
 (pointerRelation_028 ?holey ?edgey)
 (RootCtx.inst ?chfx Foundation.Chamfer)
 (RootCtx.inst ?edgey Foundation.Constant_Radius_Edge_Round)))

(=> (instanceMappingRelation_068 ?holex ?holey)
 (and (RootCtx.holdsArg instanceMappingRelation_068 1 ?holex)
 (RootCtx.holdsArg instanceMappingRelation_068 2 ?holey)))

:Rel instanceMappingRelation_070
:Inst BinaryRel
:Sig Property Property
:name "instanceMappingRelation_070"
:rem "There exists a correspondence between the instances ?fx and ?fy as a result of both
being asserted instances of the foundation class Foundation.Feature declared in DomainX
and DomainY respectively. ?fx and ?fy are both compound features which are composed of at
least two Foundation.Round_Hole instances defined in DomainX and DomainY respectively."
:limitationRem "It is not immediately possible to infer whether ?fx and ?fy have similar
geometric complexity based on the features that they aggregate."

(<= (instanceMappingRelation_070 ?fx ?fy)
 (and (RootCtx.inst ?fx Foundation.Feature)
 (RootCtx.inst ?fx1 Foundation.Round_Hole)
 (RootCtx.inst ?fx2 Foundation.Round_Hole)
 (Foundation.compound ?fx)
 (RootCtx.withinContext ?fx DomainX)
 (Foundation.element_of ?fx1 ?fx)
 (Foundation.element_of ?fx2 ?fx)
 (RootCtx.inst ?fy Foundation.Feature)
 (RootCtx.inst ?fy1 Foundation.Round_Hole)
 (RootCtx.inst ?fy2 Foundation.Round_Hole)
 (Foundation.compound ?fy)
 (RootCtx.withinContext ?fy DomainY)
 (Foundation.element_of ?fy1 ?fy)
 (Foundation.element_of ?fy2 ?fy)))

404

(=> (instanceMappingRelation_070 ?fx ?fy)
 (and (RootCtx.holdsArg instanceMappingRelation_070 1 ?fx)
 (RootCtx.holdsArg instanceMappingRelation_070 2 ?fy)))

:Rel instanceMappingRelation_071
:Inst BinaryRel
:Sig Property Property
:name "instanceMappingRelation_071"
:rem "There exists a correspondence between the instances ?occx and ?occy as a result of
both being asserted instances of the foundation class Foundation.Activity_Occurrence
declared in DomainX and DomainY respectively. ?occx and ?occy are both hole making
activity occurrences based on the reasoning that instances of Foundation.Round_Hole
defined in DomainX and DomainY respectively are Foundation.output from ?occx and ?occy."
:limitationRem "It is not immediately possible to infer whether ?occx and ?occy are the same
activity occurrences purely based on the fact that hole features are Foundation.output from
them. Explication mismatches could be present between the two instances as a result of
possible Concept C, Definiens D and Term T disagreements."

(<= (instanceMappingRelation_071 ?occx ?occy)
 (and (pointerRelation_035 ?occx)
 (pointerRelation_036 ?occy)))

(=> (instanceMappingRelation_071 ?occx ?occy)
 (and (RootCtx.holdsArg instanceMappingRelation_071 1 ?occx)
 (RootCtx.holdsArg instanceMappingRelation_071 2 ?occy)))

:Rel instanceMappingRelation_072
:Inst BinaryRel
:Sig Property Property
:name "instanceMappingRelation_072"
:rem "There exists a correspondence between the instances ?occx and ?occy as a result of
both being asserted instances of the foundation class Foundation.Activity_Occurrence
declared in DomainX and DomainY respectively. ?occx and ?occy are both complex
Foundation.Activity_Occurrence instances defined in DomainX and DomainY respectively.
Both ?occx and ?occy hold a number of subactivity occurrences."

(<= (instanceMappingRelation_072 ?occx ?occy)
 (and (RootCtx.inst ?occx Foundation.Activity_Occurrence)
 (RootCtx.withinContext ?occx DomainX)
 (RootCtx.inst ?occx1 Foundation.Activity_Occurrence)
 (Foundation.subactivity_occurrence ?occx1 ?occx)
 (RootCtx.inst ?occy Foundation.Activity_Occurrence)
 (RootCtx.withinContext ?occy DomainY)
 (RootCtx.inst ?occy1 Foundation.Activity_Occurrence)
 (Foundation.subactivity_occurrence ?occy1 ?occy)))

(=> (instanceMappingRelation_072 ?occx ?occy)
 (and (RootCtx.holdsArg instanceMappingRelation_072 1 ?occx)
 (RootCtx.holdsArg instanceMappingRelation_072 2 ?occy)))

:Rel instanceMappingRelation_074
:Inst BinaryRel
:Sig Property Property
:name "instanceMappingRelation_074"
:rem "There exists a correspondence between the instances ?occx and ?occy as a result of
both being asserted instances of the foundation class Foundation.Activity_Occurrence
declared in DomainX and DomainY respectively. ?occx and ?occy are both Foundation.initial
Foundation.Activity_Occurrence instances defined in DomainX and DomainY respectively.
This implies that both ?occx and ?occy are the very first occurrences in their respective
occurrence trees."

405

(<= (instanceMappingRelation_074 ?occx ?occy)
 (and (RootCtx.inst ?occx Foundation.Activity_Occurrence)
 (RootCtx.withinContext ?occx DomainX)
 (Foundation.initial ?occx)
 (RootCtx.inst ?occy Foundation.Activity_Occurrence)
 (RootCtx.withinContext ?occy DomainY)
 (Foundation.initial ?occy)))

(=> (instanceMappingRelation_074 ?occx ?occy)
 (and (RootCtx.holdsArg instanceMappingRelation_074 1 ?occx)
 (RootCtx.holdsArg instanceMappingRelation_074 2 ?occy)))

:Rel instanceMappingRelation_075
:Inst BinaryRel
:Sig Property Property
:name "instanceMappingRelation_075"
:rem "There exists a correspondence between the instances ?occx and ?occy as a result of
both being asserted instances of the foundation class Foundation.Activity_Occurrence
declared in DomainX and DomainY respectively. ?occx and ?occy are both
Foundation.arboreal and Foundation.legal Foundation.Activity_Occurrence instances defined
in DomainX and DomainY respectively. This implies that both ?occx and ?occy are allowable
occurrences in their respective occurrence trees."

(<= (instanceMappingRelation_075 ?occx ?occy)
 (and (RootCtx.inst ?occx Foundation.Activity_Occurrence)
 (RootCtx.withinContext ?occx DomainX)
 (Foundation.legal ?occx)
 (Foundation.arboreal ?occx)
 (RootCtx.inst ?occy Foundation.Activity_Occurrence)
 (RootCtx.withinContext ?occy DomainY)
 (Foundation.legal ?occy)
 (Foundation.arboreal ?occy)))

(=> (instanceMappingRelation_075 ?occx ?occy)
 (and (RootCtx.holdsArg instanceMappingRelation_075 1 ?occx)
 (RootCtx.holdsArg instanceMappingRelation_075 2 ?occy)))

:Rel instanceMappingRelation_077
:Inst BinaryRel
:Sig Property Property
:name "instanceMappingRelation_077"
:rem "There exists a correspondence between the instances ?fx and ?fy as a result of both
being asserted instances of the foundation class Foundation.Feature declared in DomainX
and DomainY respectively. ?fx and ?fy are both compound feature instances defined in
DomainX and DomainY respectively."
:limitationRem "It is not immediately possible to infer whether ?fx and ?fy involve counterbore
and/or countersunk compound hole features."

(<= (instanceMappingRelation_077 ?fx ?fy)
 (and (RootCtx.inst ?fx Foundation.Feature)
 (RootCtx.withinContext ?fx DomainX)
 (Foundation.compound ?fx)
 (RootCtx.inst ?fy Foundation.Feature)
 (RootCtx.withinContext ?fy DomainY)
 (Foundation.compound ?fy)))

(=> (instanceMappingRelation_077 ?fx ?fy)
 (and (RootCtx.holdsArg instanceMappingRelation_077 1 ?fx)
 (RootCtx.holdsArg instanceMappingRelation_077 2 ?fy)))

406

E.2 Semantic Mapping Concepts Based on Known Cross-

Domain Correspondences (Design and Machining Hole

Feature Ontology A)

Context Declaration

:Ctx domainMapping
:Inst UserContext
:supCtx TopUserCtx
:name "Domain Mapping Context"
:rem "This context is used to define relevant semantic mapping concepts based on known
cross-domain correspondences between the Design Hole Feature Ontology A and Machining
Hole Feature Ontology A."

:Use domainMapping

Reconciliation of Classes

:Rel classMappingRelation_001
:Inst BinaryRel
:Sig Property Property
:name "classMappingRelation_001"
:rem "The class ?x in the DomainX context is a conceptually similar class to the class ?y in
the DomainY context. The class ?x has been declared from a design function viewpoint
whereas the class ?y has been declared from a machining viewpoint."
:limitationRem "It is possible that there is a term and definiens mismatch between the classes
?x and ?y. This would arise in the event that different terms and semantic structures have
been chosen to refer to the classes ?x and ?y as a result of domain preferences."

(=> (classMappingRelation_001 ?x ?y)
 (and (RootCtx.holdsArg classMappingRelation_001 1 ?x)
 (RootCtx.holdsArg classMappingRelation_001 2 ?y)))

(<= (classMappingRelation_001 DomainX.Housing_Part_Family
 DomainY.Housing_Part_Family)
 (and (RootCtx.Property DomainX.Housing_Part_Family)
 (RootCtx.Property DomainY.Housing_Part_Family)))

(<= (classMappingRelation_001 DomainX.Bolt_Hole DomainY.Counterbore_Hole)
 (and (RootCtx.Property DomainX.Bolt_Hole)
 (RootCtx.Property DomainY.Counterbore_Hole)))

(<= (classMappingRelation_001 DomainX.Boss DomainY.Turned_Boss)
 (and (RootCtx.Property DomainX.Boss)
 (RootCtx.Property DomainY.Turned_Boss)))

(<= (classMappingRelation_001 DomainX.External_Flange DomainY.Turned_Flange)
 (and (RootCtx.Property DomainX.External_Flange)
 (RootCtx.Property DomainY.Turned_Flange)))

(<= (classMappingRelation_001 DomainX.Locating_Pin_Hole DomainY.Reamed_Hole)
 (and (RootCtx.Property DomainX.Locating_Pin_Hole)
 (RootCtx.Property DomainY.Reamed_Hole)))

407

(<= (classMappingRelation_001 DomainX.Plain_Diameter_Hole DomainY.Drilled_Hole)
 (and (RootCtx.Property DomainX.Plain_Diameter_Hole)
 (RootCtx.Property DomainY.Drilled_Hole)))

(<= (classMappingRelation_001 DomainX.Secondary_Hole DomainY.Counterbore)
 (and (RootCtx.Property DomainX.Secondary_Hole)
 (RootCtx.Property DomainY.Counterbore_Hole)))

(<= (classMappingRelation_001 DomainX.Primary_Depth DomainY.Drilled_Hole_Depth)
 (and (RootCtx.Property DomainX.Primary_Depth)
 (RootCtx.Property DomainY.Drilled_Hole_Depth)))

(<= (classMappingRelation_001 DomainX.Primary_Diameter
 DomainY.Drilled_Hole_Diameter)
 (and (RootCtx.Property DomainX.Primary_Depth)
 (RootCtx.Property DomainY.Drilled_Hole_Depth)))

(<= (classMappingRelation_001 DomainX.Secondary_Depth
 DomainY.Counterbore_Depth)
 (and (RootCtx.Property DomainX.Secondary_Depth)
 (RootCtx.Property DomainY.Counterbore_Depth)))

(<= (classMappingRelation_001 DomainX.Secondary_Diameter
 DomainY.Counterbore_Diameter)
 (and (RootCtx.Property DomainX.Secondary_Diameter)
 (RootCtx.Property DomainY.Counterbore_Diameter)))

(<= (classMappingRelation_001 DomainX.Primary_Depth
 DomainY.Reamed_Hole_Depth)
 (and (RootCtx.Property DomainX.Primary_Depth)
 (RootCtx.Property DomainY.Reamed_Hole_Depth)))

(<= (classMappingRelation_001 DomainX.Primary_Diameter
 DomainY.Reamed_Hole_Diameter)
 (and (RootCtx.Property DomainX.Primary_Depth)
 (RootCtx.Property DomainY.Reamed_Hole_Depth)))

:Rel classMappingRelation_002
:Inst BinaryRel
:Sig Property Property
:name "classMappingRelation_002"
:rem "From a feature geometry standpoint, the dimensional parameters that define
DomainX.Bolt_Hole instances differ from those of DomainY.Counterbore_Hole instances."

(<= (classMappingRelation_002 DomainX.Bolt_Hole DomainY.Counterbore_Hole)
 (and (RootCtx.Property DomainX.Bolt_Hole)
 (RootCtx.Property DomainY.Counterbore_Hole)))

(=> (classMappingRelation_002 ?x ?y)
 (and (RootCtx.holdsArg classMappingRelation_002 1 ?x)
 (RootCtx.holdsArg classMappingRelation_002 2 ?y)))

:Rel classMappingRelation_003
:Inst BinaryRel
:Sig Property Property
:name "classMappingRelation_003"
:rem "When applied to a DomainX.Bolt_Hole, a DomainX.Primary_Depth is the subtraction of
a DomainY.Counterbore_Depth from a DomainY.Drilled_Hole_Depth. In other words, a

408

Drilled_Hole_Depth is the addition of a DomainX.Secondary_Depth to a Primary_Depth for a
DomainY.Counterbore_Hole."

(<= (classMappingRelation_003 DomainX.Primary_Depth DomainY.Drilled_Hole_Depth)
 (and (RootCtx.Property DomainX.Primary_Depth)
 (RootCtx.Property DomainY.Drilled_Hole_Depth)))

(=> (classMappingRelation_003 ?x ?y)
 (and (RootCtx.holdsArg classMappingRelation_003 1 ?x)
 (RootCtx.holdsArg classMappingRelation_003 2 ?y)))

:Rel classMappingRelation_004
:Inst BinaryRel
:Sig Property Property
:name "classMappingRelation_004"
:rem "A DomainX.Boss in DomainX is a feature of compound property which consists of an
aggregation of a Foundation.Cylinder and a Foundation.Round_Hole, whereas a
DomainY.Turned_Boss in DomainY is not."

(<= (classMappingRelation_004 DomainX.Boss DomainY.Turned_Boss)
 (and (RootCtx.Property DomainX.Boss)
 (RootCtx.Property DomainY.Turned_Boss)))

(=> (classMappingRelation_004 ?x ?y)
 (and (RootCtx.holdsArg classMappingRelation_004 1 ?x)
 (RootCtx.holdsArg classMappingRelation_004 2 ?y)))

Reconciliation of Functions

:Rel pointerRelation_001
:Inst UnaryRel
:Sig UnaryFun
:name "pointerRelation_001"

(<= (pointerRelation_001 ?funx)
 (and (RootCtx.inst ?funx RootCtx.UnaryFun)
 (RootCtx.withinContext ?funx DomainX)
 (RootCtx.argProp ?funx 1 RootCtx.RealNumber)
 (RootCtx.returnProp ?funx Foundation.Length_Measure)))

:Rel pointerRelation_002
:Inst UnaryRel
:Sig UnaryFun
:name "pointerRelation_002"

(<= (pointerRelation_002 ?funy)
 (and (RootCtx.inst ?funy RootCtx.UnaryFun)
 (RootCtx.withinContext ?funy DomainY)
 (RootCtx.argProp ?funy 1 RootCtx.RealNumber)
 (RootCtx.returnProp ?funy Foundation.Length_Measure)))

:Rel functionMappingRelation_001
:Inst BinaryRel
:Sig Property Property
:name "functionMappingRelation_001"
:rem "The function ?funx in the DomainX context is equivalent to the function ?funy in the
DomainY context. There are no semantic mismatches between them."

409

(<= (functionMappingRelation_001 ?funx ?funy)
 (and (pointerRelation_001 ?funx)
 (pointerRelation_002 ?funy)))

(=> (functionMappingRelation_001 ?funx ?funy)
 (and (RootCtx.holdsArg functionMappingRelation_001 1 ?funx)
 (RootCtx.holdsArg functionMappingRelation_001 2 ?funy)))

Reconciliation of Instances

:Rel pointerRelation_003
:Inst TernaryRel
:Sig Property Property Property
:name "pointerRelation_003"

(<= (pointerRelation_003 ?x ?sax ?realx)
 (and (RootCtx.inst ?x Foundation.Feature)
 (RootCtx.withinContext ?x DomainX)
 (RootCtx.inst ?sax Foundation.Shape_Aspect)
 (Foundation.holds_shape ?x ?sax)
 (RootCtx.inst ?lengthx Foundation.Length_Measure)
 (= ?lengthx (Foundation.mm ?realx))
 (Foundation.measures ?sax (Foundation.mm ?realx))))

:Rel pointerRelation_004
:Inst TernaryRel
:Sig Property Property Property
:name "pointerRelation_002"

(<= (pointerRelation_004 ?y ?say ?realy)
 (and (RootCtx.inst ?y Foundation.Feature)
 (RootCtx.withinContext ?y DomainY)
 (RootCtx.inst ?say Foundation.Shape_Aspect)
 (Foundation.holds_shape ?y ?say)
 (RootCtx.inst ?lengthy Foundation.Length_Measure)
 (= ?lengthy (Foundation.mm ?realy))
 (Foundation.measures ?say (Foundation.mm ?realy))))

:Rel instanceMappingRelation_001
:Inst BinaryRel
:Sig Property Property
:name "instanceMappingRelation_001"
:rem "The Foundation.Round_Hole instance ?x in the DomainX context is an equivalent
individual to the Foundation.Round_Hole instance ?y in the DomainY context, in terms of the
nominal dimensional parameters that each instance carries. The instance ?x has been
declared from a design function viewpoint whereas the instance ?y has been declared from a
machining viewpoint."
:limitationRem "Dimensional tolerances and orientations carried by the instances ?x and ?y
have not been considered in the reasoning. Furthermore, is possible that there is a term and
definiens mismatch between the instances ?x and ?y. This would arise in the event that
different terms and semantic structures have been chosen to refer to the instances ?x and ?y
as a result of domain preferences."

(<= (instanceMappingRelation_001 ?x ?y)
 (and (pointerRelation_003 ?x ?sax1 ?realx1)
 (pointerRelation_004 ?y ?say1 ?realy1)
 (pointerRelation_003 ?x ?sax2 ?realx2)
 (pointerRelation_004 ?y ?say2 ?realy2)

410

 (RootCtx.inst ?x Foundation.Round_Hole)
 (RootCtx.inst ?y Foundation.Round_Hole)
 (RootCtx.inst ?sax1 Foundation.Circular_Closed_Profile)
 (RootCtx.inst ?say1 Foundation.Circular_Closed_Profile)
 (RootCtx.inst ?sax2 Foundation.Linear_Path)
 (RootCtx.inst ?say2 Foundation.Linear_Path)
 (eqNum ?realx1 ?realy1)
 (eqNum ?realx2 ?realy2)))

(=> (instanceMappingRelation_001 ?x ?y)
 (and (RootCtx.holdsArg instanceMappingRelation_001 1 ?x)
 (RootCtx.holdsArg instanceMappingRelation_001 2 ?y)))

:Rel instanceMappingRelation_002
:Inst BinaryRel
:Sig Property Property
:name "instanceMappingRelation_002"
:rem "The Foundation.Cylinder instance ?x in the DomainX context is an equivalent individual
to the Foundation.Cylinder instance ?y in the DomainY context, in terms of the nominal
dimensional parameters that each instance carries.The instance ?x has been declared from a
design function viewpoint whereas the instance ?y has been declared from a machining
viewpoint."
:limitationRem "Dimensional tolerances and orientations carried by the instances ?x and ?y
have not been considered in the reasoning. Furthermore, is possible that there is a term and
definiens mismatch between the instances ?x and ?y. This would arise in the event that
different terms and semantic structures have been chosen to refer to the instances ?x and ?y
as a result of domain preferences."

(<= (instanceMappingRelation_002 ?x ?y)
 (and (pointerRelation_003 ?x ?sax1 ?realx1)
 (pointerRelation_004 ?y ?say1 ?realy1)
 (pointerRelation_003 ?x ?sax2 ?realx2)
 (pointerRelation_004 ?y ?say2 ?realy2)
 (RootCtx.inst ?x Foundation.Cylinder)
 (RootCtx.inst ?y Foundation.Cylinder)
 (RootCtx.inst ?sax1 Foundation.Circular_Closed_Profile)
 (RootCtx.inst ?say1 Foundation.Circular_Closed_Profile)
 (RootCtx.inst ?sax2 Foundation.Linear_Path)
 (RootCtx.inst ?say2 Foundation.Linear_Path)
 (eqNum ?realx1 ?realy1)
 (eqNum ?realx2 ?realy2)))

(=> (instanceMappingRelation_002 ?x ?y)
 (and (RootCtx.holdsArg instanceMappingRelation_002 1 ?x)
 (RootCtx.holdsArg instanceMappingRelation_002 2 ?y)))

411

F Interoperability Evaluation Layer

F.1 Sitemap for the Interoperability Evaluation Assistant

Figure F-1 illustrates the sitemap for the Interoperability Evaluation Assistant.

The Interoperability Evaluation Assistant is a Web-based UI which enables

the user to retrieve the appropriate queries during the interoperable

knowledge discovery process at the fourth level of the SMIF.

Interoperability

Evaluation Assistant

Home

Semantic Mapping Concepts

Based on Foundation

Semantics – Instance Level

Semantic Mapping Concepts

Based on Foundation

Semantics – Class Level

Semantic Mapping Concepts

Based on Foundation

Semantics – Function Level

Semantic Mapping Concepts

Based on an External Domain

– ISO Tolerance Band Model

Semantic Mapping Concepts

Based on Known Cross Domain

Correspondences – Instance Level

Semantic Mapping Concepts

Based on Known Cross Domain

Correspondences – Class Level

Semantic Mapping Concepts

Based on Known Cross Domain

Correspondences – Function Level

Figure F-49 Sitemap for the Interoperability Evaluation Assistant

412

F.2 Java-Based Modules

The Interoperability Evaluation Assistant employs Java-based modules to

input the names of domain arguments and retrieve queries to evaluate all

cross-domain correspondences in a single transaction. These modules are

written in JavaScript and embedded in the HTML code of the relevant page on

the Web-based interface. Figure F-2 depicts the main panel of the

Interoperability Evaluation Assistant and a sample JavaScript code for one of

the Java-based modules appearing on the Homepage.

<div style="position: absolute; width: 250px; height: 114px; z-index: 11; left: 498px; top: 655px" id="layer62">
<html>
<head>
<title>Retrieve Semantic Mapping Concepts 1</title>
<script LANGUAGE="JavaScript" type="text/javascript">
function display1() {
 DispWin = window.open('','NewWin', 'toolbar=no,status=no,width=300,height=150')
 message = "(and (RootCtx.BinaryRel ?rel) (RootCtx.withinContext ?rel foundationMapping) (RootCtx.holdsArg
?rel 1 DomainX." + document.form1.domainx1.value;
 message += ") (RootCtx.holdsArg ?rel 2 DomainY." + document.form1.domainy1.value;
 message += "))";
 DispWin.document.write(message);
}
</script>
</head>
<body>
<form name="form1">
<p align="center">DomainX Arg:
<input TYPE="TEXT" SIZE="15" NAME="domainx1"><p align="center">
</p>
<p align="center">DomainY Arg:
<input TYPE="TEXT" SIZE="15" NAME="domainy1">
</p>
<p align="center">
<input TYPE="BUTTON" VALUE="Submit" onClick="display1();" style="float: centre"></p>
</form>
</body>
</html>
 <p> </div>

Figure F-2 Sample JavaScript Code for a Java-Based Module on the Homepage

413

Figure F-3 illustrates the page for building queries in order to evaluate cross-

domain correspondences based on the ISO Tolerance Band Model as an

external domain. A sample JavaScript code applicable to one of the Java-

based modules present on this page is also listed.

<div style="position: absolute; width: 382px; height: 114px; z-index: 11; left: 260px; top: 302px" id="layer62">
<html>
<head>
<title>Retrieve Semantic Mapping Concepts 1</title>
<script LANGUAGE="JavaScript" type="text/javascript">
function display1() {
 DispWin = window.open('','NewWin', 'toolbar=no,status=no,width=320,height=200')
 message = "(and (RootCtx.UnaryRel ?rel1) (RootCtx.UnaryRel ?rel2) (RootCtx.withinContext ?rel1
isoToleranceBand) (RootCtx.withinContext ?rel2 isoToleranceBand) (RootCtx.holdsArg ?rel1 1 DomainX." +
document.form1.domainx1.value;
 message += ") (RootCtx.holdsArg ?rel2 1 DomainY." + document.form1.domainy1.value;
 message += "))";
 DispWin.document.write(message);
}
</script>
</head>
<body>
<form name="form1">
<p align="center">Round Hole Instance in DomainX:
<input TYPE="TEXT" SIZE="15" NAME="domainx1"><p align="center">
</p>
<p align="center">Round Hole Instance in DomainY:
<input TYPE="TEXT" SIZE="15" NAME="domainy1">
</p>
<p align="center">
<input TYPE="BUTTON" VALUE="Submit" onClick="display1();" style="float: centre"></p>
</form>
</body>
</html>
 <p> </div>

Figure F-3 Sample JavaScript Code for a Java-Based Module on the ISO Tolerance
Band Model Page

