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Abstract 

 

It has been recognised that the ability to communicate the meaning of 

concepts and their intent within and across system boundaries, for supporting 

key decisions in product design and manufacture, is impaired by the semantic 

interoperability issues that are presently encountered. This work contributes to 

the field of semantic interoperability in product design and manufacture. An 

attribution is made to the understanding and application of relevant concepts 

coming from the computer science world, notably ontology-based 

approaches, to help resolve semantic interoperability problems. 

 

A novel ontological approach, identified as the Semantic Manufacturing 

Interoperability Framework (SMIF), has been proposed following an 

exploration of the important requirements to be satisfied. The framework, built 

on top of a Common Logic-based ontological formalism, consists of a 

manufacturing foundation to capture the semantics of core feature-based 

design and manufacture concepts, over which the specialisation of domain 

models can take place. Furthermore, the framework supports the mechanisms 

for allowing the reconciliation of semantics, thereby improving the knowledge 

sharing capability between heterogeneous domains that need to interoperate 

and have been based on the same manufacturing foundation. 

 

This work also analyses a number of test case scenarios, where the 

framework has been deployed for fostering knowledge representation and 

reconciliation of models involving products with standard hole features and 

their related machining process sequences. The test cases have shown that 

the Semantic Manufacturing Interoperability Framework (SMIF) provides 

effective support towards achieving semantic interoperability in product design 

and manufacture. Proposed extensions to the framework are additionally 

identified so as to provide a view on imminent future work.   

 

Keywords: Ontology, Semantics, Interoperability, Common Logic, Knowledge 

Representation, Knowledge Sharing, Design and Manufacture. 



  
ii 

Acknowledgements 

 

This work has been supported through a research studentship funded by the 

Wolfson School of Mechanical and Manufacturing Engineering of 

Loughborough University. 

 

First of all, I seize this opportunity to express my utmost gratitude to my 

supervisor, Dr. Bob Young. Bob is a very knowledgeable person who has 

occupied a key position throughout my three years of research. Under his 

supervision, I have benefited immensely from his positive coaching skills, 

continuous encouragement and critical but constructive comments. Without 

his supervision, I would not have been able to achieve the overall progress in 

this work. I also wish to thank Prof. Anne-Françoise Cutting-Decelle, Prof. 

Osiris Canciglieri, Prof. Keith Case and Dr. Jenny Harding for their advice and 

views regarding my work during the various meetings we had. 

 

I wish to dedicate this work to my girlfriend, Luisa, who has constantly 

provided me with her moral support and motivation throughout my research 

and beyond…so baby, “quería decirte que no existen palabras para 

expresarte mi gratitud”. I also dedicate this work to my parents and brother, 

Veemal, who have always greatly supported and inspired me. My kind 

appreciation also goes to my friends Bara and Binoy for their encouragement 

and ideas, and to Uncle Robin and family. 

 

I would like to thank George, from the research group, for helping me on 

several occasions. Thanks also to other people from the research group 

notably Claire, Zahid and Najam for listening to my long presentations. My 

gratefulness is also directed to Emily Wrobel, from Ontology Works Inc., for 

every single help concerning IODE and logic programming. Finally, I wish to 

extend my gratitude to the “Ministerio de Asuntos Exteriores y de 

Cooperación” of Spain for giving me the chance to undertake a one-month 

intensive course in Barcelona under the funding of the “Beca MAEC-AECID”.  

 



  
iii 

Abbreviations 

 

ADACOR  ADAptive holonic COntrol aRchitecture 

AP  Application Protocol 

API  Application Programming Interface 

BFO  Basic Formal Ontology 

CAD  Computer Aided Design 

CAE  Computer Aided Engineering 

CAM  Computer Aided Manufacturing 

CAPP  Computer Aided Process Planning 

CIM  Computer Independent Model 

CIMOSA Computer Integrated Manufacturing Open System Architecture 

CL  Common Logic 

CLIF  Common Logic Interchange Format 

CPM  Core Product Model 

DIFF  Domain Independent Form Feature 

DL  Description Logic 

DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering 

eCOIN extended COntext INterchange 

FCA  Formal Concept Analysis 

FOL  First Order Logic 

IC  Integrity Constraint 

ICT  Information and Communications Technology 

IDEF  Icam DEFinition 

IODE  Integrated Ontology Development Environment 

KB   Knowledge Base 

KBE  Knowledge Based Engineering 

KFL  Knowledge Framework Language 

KIF  Knowledge Interchange Format 

GD & T Geometric Dimensioning and Tolerancing 

GPU  Graphical Processing Unit 

MAFRA ontology MApping FRAmework 

MANDATE MANufacturing management DATa interchangE 



  
iv 

MDA  Model Driven Architecture 

MDI  Model Driven Interoperability 

MSE  Manufacturing System Engineering 

OKBC  Open Knowledge Base Connectivity 

OMS  Object Management System 

OWL  Web Ontology Language 

PAL  Protégé Axiom Language 

PDM  Product Data Management 

PDM  Platform Description Model 

PERA  Purdue Enterprise Reference Architecture 

PFEM  Product Family Evolution Model 

PIM  Platform Independent Model 

PLIB  Parts LIBrary 

PLM  Product Lifecycle Management 

PSL  Process Specification Language 

PSM  Platform Specific Model 

PSRL  Product Semantic Representation Language 

RDF  Resource Description Framework 

RDF(S) Resource Description Framework Schema 

RM-ODP Reference Model of Open Distributed Processing 

SCL  Simple Common Logic 

SMES  Saarbrucken Message Extraction System 

SMIF  Semantic Manufacturing Interoperability Framework 

STEP  STandard for the Exchange of Product model data 

SUO  Standard Upper Ontology 

SWRL  Semantic Web Rule Language 

TOGAF The Open Group Architecture Framework 

UI   User Interface 

ULO  Upper Level Ontology 

UML  Unified Modelling Language 

URI  Uniform Resource Identifier 

W3C  World Wide Web Consortium 

WSDL  Web Service Description Language 

XML   eXtensible Markup Language 



  
v 

Table of Contents 

 

1 Introduction........................................................................................................................... 1 

1.1 Research Context ............................................................................................................ 1 

1.2 Research Hypothesis ....................................................................................................... 3 

1.3 Research Strategy ........................................................................................................... 5 

1.3.1 Aim and Objectives ................................................................................................ 5 

1.3.2 Research Methodology .......................................................................................... 6 

1.3.3 Research Scope ..................................................................................................... 7 

1.3.4 Thesis Structure ..................................................................................................... 8 

 

2 Enabling Interoperable Manufacturing Knowledge Systems: a State-of-the-Art Review

 ................................................................................................................................................ 9 

2.1 Introduction ...................................................................................................................... 9 

2.2 Interoperability of Information and Knowledge ................................................................ 9 

2.2.1 Interoperability Definitions and Concerns .............................................................. 9 

2.2.2 Semantic Interoperability and Knowledge Sharing .............................................. 10 

2.3 Ontology-Driven Interoperability .................................................................................... 11 

2.3.1 Ontology Definitions ............................................................................................. 11 

2.3.2 Lightweight and Heavyweight Ontologies ............................................................ 13 

2.3.3 Ontological Formalisms ....................................................................................... 14 

2.3.4 Foundation Ontologies ......................................................................................... 15 

2.3.5 Ontologies in Manufacturing Engineering ............................................................ 18 

2.3.6 Ontology Mapping ................................................................................................ 20 

2.4 Model Driven Architecture and Interoperability .............................................................. 24 

2.5 Standards-Based Approaches to Interoperability .......................................................... 27 

2.6 Information Modelling in Product Design and Manufacture ........................................... 29 

2.6.1 Product Models .................................................................................................... 29 

2.6.2 Manufacturing Models .......................................................................................... 30 

2.6.3 Integrating Product and Manufacturing Models ................................................... 31 

2.6.4 Features and Part Families .................................................................................. 32 

2.7 Interoperability Architectures and Frameworks ............................................................. 33 

2.8 Summary ........................................................................................................................ 38 

 

3 Requirements to Support Semantic Interoperability in Product Design and 

Manufacture ........................................................................................................................ 40 

3.1 Introduction .................................................................................................................... 40 

3.2 Semantic Interoperability in Product Design and Manufacture ..................................... 40 

3.3 Semantic Interoperability Issues and Requirements ..................................................... 42 



  
vi 

3.3.1 View-Specific Semantics in Design and Manufacture ......................................... 42 

3.3.2 Semantic Relationships between Viewpoints ...................................................... 44 

3.3.3 Semantics of Core Concepts across System Domain Boundaries ...................... 45 

3.3.4 Harnessing Semantic Technologies to Assist Semantic Interoperability ............. 46 

3.3.4.1 Knowledge Representation Formalisms ................................................. 47 

3.3.4.2 Resolution of Semantic Mismatches ....................................................... 48 

3.3.5 Concepts for Ontology Matching .......................................................................... 49 

3.3.6 Performance of Methods for Semantic Reconciliation ......................................... 51 

3.4 Summary of Requirements ............................................................................................ 51 

 

4 A Novel Framework to Support Semantic Interoperability in Product Design and 

Manufacture ........................................................................................................................ 54 

4.1 Introduction .................................................................................................................... 54 

4.2 Semantic Manufacturing Interoperability Framework (SMIF) ........................................ 55 

4.3 Foundation Layer ........................................................................................................... 57 

4.3.1 Heavyweight Manufacturing Ontological Foundation .......................................... 58 

4.4 Domain Ontology Layer ................................................................................................. 60 

4.4.1 Part Family Semantics ......................................................................................... 61 

4.4.2 Manufacturing Process Semantics ...................................................................... 61 

4.5 Semantic Reconciliation Layer ...................................................................................... 62 

4.5.1 Semantic Mapping Concepts ............................................................................... 63 

4.5.2 Ontology Mapping Process Concepts.................................................................. 65 

4.6 Interoperability Evaluation Layer ................................................................................... 65 

4.6.1 Interoperability Evaluation through Queries ......................................................... 66 

4.6.2 Interoperability Evaluation Assistant .................................................................... 67 

4.7 System Boundaries and Assumptions ........................................................................... 67 

4.8 Aligning the Framework with Semantic Requirements .................................................. 69 

4.9 Summary ........................................................................................................................ 71 

 

5 Foundation and Domain Ontology Layers ....................................................................... 73 

5.1 Introduction .................................................................................................................... 73 

5.2 Foundation Layer ........................................................................................................... 73 

5.2.1 Process Semantics .............................................................................................. 74 

5.2.2 Entity Information Semantics ............................................................................... 75 

5.2.2.1 Core Entities and Core Properties .......................................................... 77 

5.2.2.2 Measure and Geometry Items ................................................................ 79 

5.2.2.3 Shape Aspects ........................................................................................ 82 

5.2.2.4 Features and Artifacts ............................................................................. 85 

5.2.2.5 Transition Features ................................................................................. 87 

5.2.2.6 Dimensional Tolerances ......................................................................... 88 



  
vii 

5.2.3 Flow Objects ........................................................................................................ 89 

5.2.4 Summary of Foundation Layer ............................................................................. 92 

5.3 Domain Ontology Layer ................................................................................................. 93 

5.3.1 Domain Specialisation of Foundation Semantics ................................................ 95 

5.3.1.1 Contexts for Domain Models ................................................................... 95 

5.3.1.2 Ontological Relationships between Foundation and Domain Ontology 

Layers ..................................................................................................... 96 

5.3.1.3 The Flexible Specialisation Approach ..................................................... 98 

5.3.1.4 The Controlled Specialisation Approach ............................................... 101 

5.3.1.5 Integrity Constraints and the Domain Ontology Layer .......................... 103 

5.3.1.6 Instantiation and Discrete Knowledge Representation ......................... 106 

5.3.2 Summary of Domain Ontology Layer ................................................................. 110 

5.4 Summary ...................................................................................................................... 111 

 

6 Semantic Reconciliation and Interoperability Evaluation Layers ............................... 112 

6.1 Introduction .................................................................................................................. 112 

6.2 Semantic Reconciliation Layer .................................................................................... 112 

6.2.1 Ontology Mapping Process Concepts................................................................ 114 

6.2.1.1 Domain Context Adjustment Process ................................................... 114 

6.2.1.2 Simple Ontology Merging Process ........................................................ 115 

6.2.1.3 Semantic Alignment Process ................................................................ 117 

6.2.2 Semantic Mapping Concepts ............................................................................. 118 

6.2.2.1 Semantic Mapping Concepts Based on Foundation Semantics ........... 119 

6.2.2.2 Semantic Mapping Concepts Based on Known Cross-Domain 

Correspondences .................................................................................. 123 

6.2.2.3 Semantic Mapping Concepts Based on External Domains .................. 126 

6.2.3 Summary of Semantic Reconciliation Layer ...................................................... 128 

6.3 Interoperability Evaluation Layer ................................................................................. 129 

6.3.1 Interoperable Knowledge Queries ..................................................................... 130 

6.3.1.1 Querying Cross-Domain Arguments over Known Semantic Mapping 

Relations ............................................................................................... 131 

6.3.1.2 Querying Semantic Mapping Relations over Known Cross-Domain 

Arguments ............................................................................................. 133 

6.3.1.3 Verification of Reconciliation Correspondences ................................... 134 

6.3.2 Assisting Knowledge Querying Procedures ....................................................... 136 

6.3.3 Summary of Interoperability Evaluation Layer ................................................... 137 

6.4 Summary ...................................................................................................................... 138 

 

 

 



  
viii 

7 Experimental System Development ............................................................................... 139 

7.1 Introduction .................................................................................................................. 139 

7.2 Design of the Experimental System............................................................................. 140 

7.3 Implementation of the Experimental System ............................................................... 141 

7.3.1 Implementation of the Foundation Layer ........................................................... 142 

7.3.1.1 Implementation of PSL Core and PSL Outer-Core ............................... 143 

7.3.1.2 Implementation Issues with PSL Process Semantics ........................... 144 

7.3.1.3 Exploring the Implemented Foundation Layer ...................................... 147 

7.3.2 Implementation of the Domain Ontology Layer ................................................. 148 

7.3.3 Implementation of the Semantic Reconciliation Layer ....................................... 150 

7.3.3.1 Semantic Mapping Concepts for Reconciling Classes ......................... 151 

7.3.3.2 Semantic Mapping Concepts for Reconciling Instances ...................... 152 

7.3.3.3 Semantic Mapping Concepts for Reconciling Ontological Functions ... 152 

7.3.4 Implementation of the Interoperability Evaluation Layer .................................... 154 

7.3.4.1 Interoperability Evaluation Assistant ..................................................... 154 

7.3.4.2 The Query Tool in IODE ....................................................................... 157 

7.3.4.3 Logically Verifying Query Results ......................................................... 158 

7.4 Summary ...................................................................................................................... 159 

 

8 Case Study ........................................................................................................................ 161 

8.1 Introduction .................................................................................................................. 161 

8.2 Overview of Test Cases ............................................................................................... 161 

8.2.1 The Arrangement of Test Cases in the Case Study .......................................... 161 

8.2.2 Case Study Boundaries and Assumptions ........................................................ 163 

8.3 Test Case 1: Integrity-Driven Specialisation of a Machining Hole Feature Ontology .. 164 

8.3.1 Aim and Objectives ............................................................................................ 164 

8.3.2 Machining Hole Feature Ontology A .................................................................. 165 

8.3.2.1 Entity Information Semantics ................................................................ 165 

8.3.2.2 Machining Process Semantics and Relationships to Entities ............... 168 

8.3.2.3 Warnings and Errors in Loading the Machining Hole Feature Ontology A

 .............................................................................................................. 170 

8.3.2.4 Instantiating Entity Information Concepts ............................................. 171 

8.3.2.5 Identifying Incorrect and Missing Entity Information Knowledge .......... 172 

8.3.2.6 Instantiating Machining Process Concepts ........................................... 174 

8.3.2.7 Identifying Incorrect and Missing Process Knowledge ......................... 176 

8.3.3 Discussions and Validation of Results ............................................................... 177 

8.4 Test Case 2: Reconciliation Using Semantic Mapping Concepts Based on Foundation 

Semantics .................................................................................................................... 179 

8.4.1 Aim and Objectives ............................................................................................ 179 

8.4.2 Machining Hole Feature Ontology B .................................................................. 180 



  
ix 

8.4.3 Reconciliation Scenarios .................................................................................... 183 

8.4.3.1 Reconciliation at the Class Level .......................................................... 183 

8.4.3.2 Reconciliation at the Function Level ..................................................... 184 

8.4.3.3 Reconciliation at the Instance Level ..................................................... 184 

8.4.4 Ontology Mapping Process ................................................................................ 185 

8.4.5 Interoperability Evaluation and Verification ........................................................ 187 

8.4.5.1 Discovery of Semantic Mapping Concepts at the Class Level ............. 187 

8.4.5.2 Discovery of Semantic Mapping Concepts at the Function Level ........ 190 

8.4.5.3 Discovery of Semantic Mapping Concepts at the Instance Level ......... 191 

8.4.6 Discussions and Validation of Results ............................................................... 194 

8.5 Test Case 3: Reconciliation Using Semantic Mapping Concepts Based on an External 

Domain ......................................................................................................................... 195 

8.5.1 Aim and Objectives ............................................................................................ 195 

8.5.2 ISO Tolerance Band Model as External Domain ............................................... 195 

8.5.3 Reconciliation Scenario ..................................................................................... 197 

8.5.4 Interoperability Evaluation and Verification ........................................................ 198 

8.5.5 Discussions and Validation of Results ............................................................... 202 

8.6 Test Case 4: Reconciliation Using Semantic Mapping Concepts Based on Known Cross 

Domain Correspondences ........................................................................................... 203 

8.6.1 Aim and Objectives ............................................................................................ 203 

8.6.2 Design Hole Feature Ontology A ....................................................................... 203 

8.6.3 Reconciliation Scenarios .................................................................................... 206 

8.6.3.1 Reconciliation at the Class Level .......................................................... 207 

8.6.3.2 Reconciliation at the Function Level ..................................................... 207 

8.6.3.3 Reconciliation at the Instance Level ..................................................... 208 

8.6.4 Interoperability Evaluation and Verification ........................................................ 208 

8.6.4.1 Discovery of Semantic Mapping Concepts at the Class Level ............. 208 

8.6.4.2 Discovery of Semantic Mapping Concepts at the Function Level ........ 211 

8.6.4.3 Discovery of Semantic Mapping Concepts at the Instance Level ......... 211 

8.6.5 Discussions and Validation of Results ............................................................... 213 

8.7 Summary of Chapter .................................................................................................... 213 

 

9 Discussions, Conclusions and Future Work ................................................................. 216 

9.1 Introduction .................................................................................................................. 216 

9.2 Discussions .................................................................................................................. 216 

9.2.1 Ontology Development Methodology ................................................................. 216 

9.2.2 Semantic Technologies ...................................................................................... 217 

9.2.3 Semantic Structures ........................................................................................... 218 

9.2.4 Knowledge Bases .............................................................................................. 220 

9.2.5 Knowledge Sharing ............................................................................................ 222 



  
x 

9.2.6 Positioning of the Framework ............................................................................ 223 

9.2.7 Potential Industrial Applications ......................................................................... 228 

9.3 Conclusions ................................................................................................................. 231 

9.4 Recommendations for Future Work ............................................................................. 234 

 

Publications ......................................................................................................................... 237 

References ........................................................................................................................... 238 

 

A The Knowledge Engineering Methodology and IDEF5 Schematics for Ontology 

Development ..................................................................................................................... 264 

A.1 The Knowledge Engineering Methodology .................................................................. 264 

A.2 IDEF5 Schematics ....................................................................................................... 266 

 

B Justification of the Chosen Common Logic-Based Ontological Formalism ............. 269 

B.1 Introduction .................................................................................................................. 269 

B.2 An Exploration of Frames with a First Order Constraint Language ............................. 270 

B.2.1 Aim of Investigation ............................................................................................ 270 

B.2.2 Objectives .......................................................................................................... 270 

B.2.3 Machining Hole Feature Ontology ..................................................................... 271 

B.2.3.1 Entity Information Semantics ................................................................ 271 

B.2.3.2 Process Semantics ............................................................................... 274 

B.2.3.3 Entity Information and Process Semantic Relationships ...................... 276 

B.2.4 Discussions ........................................................................................................ 279 

B.3 An Exploration of OWL with a Rule Language ............................................................ 281 

B.3.1 Aim of Investigation ............................................................................................ 281 

B.3.2 Objectives .......................................................................................................... 281 

B.3.3 Modelling PSL Core Semantics Using OWL with SWRL ................................... 282 

B.3.3.1 PSL Core Original Semantics ............................................................... 282 

B.3.3.2 Classes and Binary Relations ............................................................... 282 

B.3.3.3 Ternary Relations Approximation to Binary Relations .......................... 283 

B.3.3.4 Unary Functions Approximation to Binary Relations ............................ 284 

B.3.3.5 Individuals ............................................................................................. 285 

B.3.3.6 PSL Core Axioms .................................................................................. 286 

B.3.4 Verification of the OWL with SWRL Model of PSL Core .................................... 291 

B.3.4.1 Expected Results .................................................................................. 292 

B.3.4.2 Actual Results ....................................................................................... 293 

B.3.5 Discussions ........................................................................................................ 293 

B.4 Motivation for a Common Logic-Based Ontological Formalism .................................. 295 

B.5 Summary ...................................................................................................................... 296 

 



  
xi 

C Foundation Layer ............................................................................................................. 298 

C.1 Process Specification Language (PSL) ....................................................................... 298 

C.1.1 PSL Core ............................................................................................................ 298 

C.1.2 PSL Outer-Core ................................................................................................. 305 

C.1.2.1 Theory of Subactivities .......................................................................... 305 

C.1.2.2 Theory of Occurrence Trees ................................................................. 307 

C.1.2.3 Theory of Discrete States ..................................................................... 312 

C.1.2.4 Theory of Atomic Activities .................................................................... 315 

C.1.2.5 Theory of Complex Activities ................................................................ 317 

C.1.2.6 Theory of Activity Occurrences ............................................................. 322 

C.2 Entity Information Semantics ....................................................................................... 329 

C.2.1 Core Entities and Core Properties ..................................................................... 329 

C.2.2 Geometry and Measure Items ........................................................................... 331 

C.2.3 Shape Aspects ................................................................................................... 335 

C.2.4 Features and Artifacts ........................................................................................ 341 

C.2.5 Transition Features ............................................................................................ 350 

C.2.6 Dimensional Tolerances .................................................................................... 354 

C.3 Flow Objects ................................................................................................................ 359 

C.4 Controlled Specialisation Approach ............................................................................. 362 

 

D Domain Ontology Layer ................................................................................................... 363 

D.1 Machining Hole Feature Ontology A ............................................................................ 363 

D.2 Design Hole Feature Ontology A ................................................................................. 375 

D.3 Machining Hole Feature Ontology B ............................................................................ 382 

D.4 ISO Tolerance Band Model ......................................................................................... 387 

 

E Semantic Reconciliation Layer ....................................................................................... 394 

E.1 Semantic Mapping Concepts Based on Foundation Semantics ................................. 394 

E.2 Semantic Mapping Concepts Based on Known Cross-Domain Correspondences 

(Design and Machining Hole Feature Ontology A) ...................................................... 406 

 

F Interoperability Evaluation Layer ................................................................................... 411 

F.1 Sitemap for the Interoperability Evaluation Assistant .................................................. 411 

F.2 Java-Based Modules ................................................................................................... 412 



  
1 

1 Introduction  

1.1 Research Context 

The rationale behind ensuring the seamless exchange of manufacturing 

knowledge within and across enterprise boundaries, is dominated by the need 

to speed up the production of goods and services at lower cost, while 

ensuring higher levels of quality and customisation (Mertins et al, 2008). In 

order to achieve such capabilities, manufacturing enterprises weave their 

Information and Communications Technology (ICT) infrastructures to their 

established knowledge management strategies and practices. This is 

particularly important so as to maximise the benefits of reusable knowledge 

residing in several business processes.  

 

Specifically in Product Lifecycle Management (PLM), knowledge which is 

shared for collaborative product development not only resides and cuts across 

various product lifecycle phases, but also involves groups that may jointly 

function within institutional boundaries as well as across multiple 

organisations (Hameed et al, 2004). Figure 1-1 illustrates this knowledge 

sharing scenario. It is shown that interoperable product design and 

manufacturing knowledge is required for (1) allowing seamless knowledge 

exchanges between multiple intra-system domains (A) and (2) permitting the 

reliable sharing of knowledge across systems (B). This understanding is in 

line with the view that interoperation has to be established by the supply of 

information through inter- and intra- system communication (Chen et al, 

2008). 

 

Therefore, in modern collaborative PLM, design and manufacturing 

knowledge handled by decision support systems has to be efficiently 

communicated across the entire lifecycle. This knowledge is developed in 

activities based on Design for Function, Design for Assembly and 

Disassembly, Design for Manufacture, Manufacturing Planning and more. 

Interoperable knowledge, for instance, is paramount to the integration of 
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mechanical analysis into the design process, one of the most obvious and 

crucial requirements, particularly during the early stages of design (Aifaoui et 

al, 2006). Seamless interoperability, in order to effectively support 

collaborative product development, is still not completely achievable. This lack 

of interoperability is costly to many globally distributed industries where 

significant amounts of money are spent into overcoming interoperability 

problems (Research Triangle Institute, 1999; Brunnermeier and Martin, 2002). 

 

 

 

 

A view on Figure 1-1 suggests that there exist two obvious yet problematic 

solutions to realising interoperable knowledge sharing. The first is linked to 

the adoption of an all-embracing common rigid model across systems. This 

approach to interoperability is, however, immensely problematic as the level 

of flexibility required by multiple systems would be greatly impeded. The other 

possibility involves allowing different systems to develop and use their 

preferred methods, and to later worry about interoperability. This approach 

provides multiple systems with their desired level of flexibility. Unfortunately, 

the translation mechanisms that would be needed for allowing inter-system 

interpretation and sharing of knowledge would demand considerable effort 

and may not provide optimal solutions to interoperability. 

 

System Domain System Domain 
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Design  
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Figure 1-1 Interoperable Knowledge Sharing in Collaborative Product 
Development 
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1.2 Research Hypothesis 

Another possible way of realising interoperable knowledge sharing, which is 

under scrutiny in this research, is to adopt a direction where the meaning (i.e. 

semantics) associated to core design and manufacturing concepts cutting 

across all systems could be defined (see label (C) on Figure 1-2). Such core 

concepts may include, for example, the semantics associated to the definition 

of product features and manufacturing processes from several viewpoints 

arising in design and manufacture.  

 

 

 

These core or foundation concepts could be reused and extended, i.e. 

specialised, in a controlled manner by multiple design and manufacture 

domains across multiple system domains (D). Following this approach, 

heterogeneous domains and system domains which use and specialise the 

meaning carried by the core concepts, would share a definitional basis which 

serves as a ground for interoperation (E). In other words, the definition of 

mechanisms for enabling the reconciliation of intra- and inter-system 

semantics would raise the level of interoperability and knowledge sharing. 

System Domain 

 
 

Design  
Domain 

Manufacturing 

Domain 
Design  
Domain 

Manufacturing 
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Product 
Specifications 

Design 
Stages 
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Design 
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Other  
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Other  
Domains 
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Core Design and 

Manufacturing Concepts (C) 

System Domain 

(D) 

(E) (E) 

(E) 

(E) 

Figure 1-2 Motivation Scenario for the Research Hypothesis 
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Linked to this understanding is the research hypothesis to be tested, which 

has been quoted next: 

 

 The formal specification of a rigorously-defined set of sharable design and 

manufacture core concepts supports the structure for a heavyweight 

manufacturing ontological foundation (see Chapter 2 section 2.3.2 for a 

definition of heavyweight ontologies). The application of this shared 

foundation within and across system domains can provide a basis for the 

integrity-driven specialisation of design and manufacture domain models 

(i.e. formal ontology-based representations with their associated 

Knowledge Bases). The consequence of committing to this shared 

foundation can support the capability to evaluate and verify the 

correspondences between pairs of domain models that have been 

specialised from the foundation. These correspondences can help to 

identify the extent of sharable and non-sharable knowledge across the 

content of domain models.  

 

The concept of ontologies is first introduced here and further explained in 

Chapter 2 and other chapters in the thesis. Broadly speaking, ontologies are 

formal models that provide a basis for sharing meaning (Young et al, 2007) in 

computational form. The concept originates from the computer science world 

and is showing promise in several areas of research including that of product 

design and manufacture.  

 

In this work, a route towards satisfying the research hypothesis has involved 

the development of a novel ontology-based framework, identified as the 

Semantic Manufacturing Interoperability Framework (SMIF). This framework 

fulfils the task of (1) contributing to the understanding of combined 

heavyweight ontology-based approaches to support semantic interoperability 

in product design and manufacture, (2) consolidating knowledge behind the 

specification of a heavyweight manufacturing ontological foundation and the 

mechanisms involved in supporting the integrity-driven specialisation of 

domain models from the foundation, and (3) defining semantic reconciliation 

methods that are pertinent to both the evaluation and verification of 
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correspondences between domain models that have been based on the same 

foundation, as a means to identifying interoperable knowledge.  

 

1.3 Research Strategy 

1.3.1 Aim and Objectives 

The aim of this work is to progress the understanding on ontology-based 

approaches to support semantic interoperability, applied to the field of product 

design and manufacture. This aim is to be addressed by demonstrating the 

feasibility of the research hypothesis. The achievement of the aim shall 

benefit the area of ontology-driven decision support systems in PLM. Other 

benefits include the ability to explicitly and formally capture design and 

manufacturing knowledge for reuse, which nowadays constitutes a core 

competence for the optimisation of collaborative product development 

practices. Furthermore, the realisation of the aim of this work shall benefit the 

support for effective knowledge sharing procedures between different agents 

within the product lifecycle. 

 

With the intention of meeting the aim of this research, a number of key 

objectives have been identified. These cover namely: 

 

1. The identification of key research gaps through a review of existing work 

on interoperable knowledge systems (see Chapter 2 section 2.8). 

2. A study of the problems related to semantic interoperability in product 

design and manufacture, leading to the identification of key requirements 

to be satisfied in this research (see Chapter 3 section 3.4). 

3. The proposal and exploration of a framework which meets the investigated 

requirements (see Chapter 4 section 4.9 for a summary of the proposed 

framework and chapters 5 and 6 sections 5.4 and 6.4 respectively for a 

summary of the exploration of the framework). 

4. The development of an experimental system for implementing the 

framework (see Chapter 7 section 7.4 for a summary of the experimental 

system design).  
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5. The implementation of a number of test cases, as part of a complete case 

study, for testing the proposed framework and validating the solution (see 

Chapter 8 sections 8.3, 8.4, 8.5 and 8.6 for test case implementations and 

section 8.7 for a summary of the case study as a whole). 

6. A proposition for extensions and modifications to the framework in order to 

support future work (see Chapter 9 sections 9.2 and 9.4 for more details).  

 

1.3.2 Research Methodology 

The research methodology adopted in this work builds on top of the previously 

listed objectives. Figure 1-3 depicts the flow within the research methodology. 

The main components of the literature review are portrayed (F). Two ontology 

development and knowledge engineering techniques, notably IDEF5 

schematics (Knowledge Based System Inc., 1994) (G) and the Knowledge 

Engineering Methodology (H) prescribed by Noy and McGuinness (2001), 

have also been applied to support the stages of proposing, exploring and 

experimenting the research framework. These two methods are described in 

Appendix A.  
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It is to be noted that IDEF5 schematics are used for visually representing 

ontology-based content, but is not a fundamental method that complements 

the research methodology. This is because any other ontology visualisation 

methods could be employed as long as these are able to support the 

adequate visual representation of ontology-based content. Hence, IDEF5 

schematics have only been used during the exploration and major ontology 

development tasks documented in chapters 5 and 6 and in Appendix C. 

Furthermore, relevant tools are to be identified in order to support the 

development and experimentation of research concepts. The harnessing of 

adequate tools and technologies (I) for satisfying this purpose forms an 

integral part of the research methodology and is particularly important towards 

the development of the experimental system and case study.  

 

1.3.3 Research Scope 

Whilst the essence of the concepts, investigated in the proposed framework, 

can be applied to a range of situations, the scope set to the work necessarily 

implies that the proof of these concepts works within clear boundaries and 

constraints. The research scope takes into consideration the domains of 

design and manufacture and their interoperability within and across system 

domains (refer to Figure 1-1). However, because of the substantial breadth of 

semantic interoperability issues in design and manufacture, this research 

focuses specifically onto simple product representations involving hole 

features in design and manufacture. For example, feature-based semantic 

representations for round holes constitute the chief scope, although other 

types of features such as cylinders have also been taken into account in order 

to provide a context for the existence of hole features on products. In addition, 

the research scope also involves the implications of machining process 

sequences for hole feature manufacturing and the participation relations 

between hole features and machining process sequences. 

 

Hole feature manufacture is problematic and sometimes costly to industries, 

as a result of the diverse contexts, manufacturing processes and poorly 

established best practice methods associated to hole features (Chungoora 
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and Young, 2008a). Furthermore, the hole is one of the most complex 

geometrical features in prismatic machining and building effective hole-

machining Computer Aided Process Planning (CAPP) system is still an 

important issue (Yongtao and Jingying, 2006). Hence, it is clear that several 

concerns still exist in relationship to the research scope. Moreover, another 

reason behind following the tightly-confined research scope implies the ability 

for this work to support the testing of the research hypothesis in its entirety.  

 

1.3.4 Thesis Structure  

A comprehensive literature review is first documented in Chapter 2. This helps 

to identify key research gaps that need to be addressed, so as to position this 

work according to these ongoing niches. The research problem is then further 

investigated in Chapter 3 and the observations made are used to establish a 

set of requirements, which dictate the specifications that this research 

attempts to satisfy. Based on these requirements, a novel ontology-based 

framework, the Semantic Manufacturing Interoperability  Framework (SMIF), 

is proposed in Chapter 4.  

 

The preferred concepts explored within the framework are further elaborated 

in the subsequent chapters 5 and 6. Chapter 7 documents the experimental 

system design and identifies appropriate software tools for deploying the 

framework. In Chapter 8, a number of test cases are analysed and validated 

as part of a case study, for providing a proof of concept. The overall 

understanding is further analysed in the concluding section of the thesis, in 

Chapter 9, where relevant drawbacks, possible modifications and extensions 

to the framework are finally exposed to provide an outlook on future work. 

 

It is to be pointed out that the appendices C, D and E of the thesis capture the 

full development and implementation material required for the deployment of 

the framework and the analysed test cases. This has been made available for 

any party wishing to explicitly reproduce, verify and/or extend the concepts 

explored in this work.  
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2 Enabling Interoperable Manufacturing Knowledge 

Systems: a State-of-the-Art Review 

2.1 Introduction 

This chapter presents a state-of-the-art review on a number of active research 

directions related to the topic of supporting interoperability in product design 

and manufacture. The review is aimed at exposing the current understanding 

behind other research achievements made to date, in order to carefully depict 

ongoing niches that this research targets. Section 2.2 firstly describes 

interoperability as a general concept. This is then focused at semantic 

interoperability and its influence on knowledge sharing. With this preliminary 

view onto interoperability, section 2.3 then explains how semantic 

interoperability issues have so far been tackled using ontology-based 

approaches.  

 

Section 2.4 discusses the concept of Model Driven Interoperability aided 

through the Model Driven Architecture. This then leads to an explanation of 

efforts fostered from the ISO standards community (Section 2.5) to enable 

common grounds to be adopted to enhance integration among stakeholders. 

Since this research work also emphasises on the capture of interoperable 

manufacturing knowledge for reuse, a special slant is given to information 

modelling in design and manufacture (Section 2.6). Section 2.7 is dedicated to 

providing a view on current interoperability architectures and frameworks, 

oriented at the enterprise level, as well as at the more defined world of 

product design and manufacture. A summary is then provided in section 2.8. 

 

2.2 Interoperability of Information and Knowledge 

2.2.1 Interoperability Definitions and Concerns 

The term “interoperability” is defined as the ability to share technical and 

business data, information and knowledge seamlessly across two or more 
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software tools or application systems in an error free manner with minimal 

manual interventions (Ray and Jones, 2003). Other definitions for the term 

“interoperability” have been proposed, for example, by Chen et al (2008) who 

specify that from a computer technology viewpoint, interoperability is the 

faculty for two heterogeneous computer systems to function jointly and give 

access to their resources in a reciprocal way. 

 

These definition, when extended to the field of product design and 

manufacture, is analogous to the seamless exchange of product and 

manufacture-centric information and knowledge across multiple expert 

systems. A number of key problems currently exist, which prevents the 

achievement of total product lifecycle interoperability. One of the most obvious 

issues is related to handling incompatible data and information structures 

between different platforms that need to interoperate (Brunnermeier and 

Martin, 2002; Cutting-Decelle et al, 2002; Das et al, 2007).  

 

In addition to this, Das et al (2007) also point out that the most common 

reason to account for the lack of interoperability is due to the incompatibility 

between the syntaxes of the languages and the semantics of the terms used 

by the languages of software application systems. This  statement is in 

concordance with Pouchard et al (2000), who have observed that the 

problems of interoperability are acute for manufacturing applications as these 

do not necessarily share syntax and definitions of concepts (i.e. semantics). 

To reinforce this view, Ray and Jones (2003) emphasise that either common 

terms are used to mean different things or different terms are used to mean 

the same thing, thereby resulting in problems related to ambiguous semantics 

(Young et al, 2007). This explains interoperability issues at the semantic level, 

and it becomes clear that an important leap is required to investigate new 

ways of promoting semantic interoperability.  

 

2.2.2 Semantic Interoperability and Knowledge Sharing 

Logical semantics or formal semantics, as used in the context of this work, is 

defined as the investigation of the meaning, or interpretation, of expressions 
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in specially constructed logical systems with the aid of mathematical logic 

(Lyons, 1977). Following this definition of formal semantics and the definition 

of semantic interoperability adopted by Yang and Zhang (2006), a view on 

semantic interoperability as employed in this work can be formulated. This 

states that semantic interoperability is the ability to support multiple 

applications in such a way that the computational meaning of the concepts 

defined in these applications can be jointly interpreted and shared. 

 

Some of the implications of semantic interoperability to enable knowledge 

sharing have been considered (Yang and Zhang, 2006; Chungoora and 

Young, 2008a; Lazenberger et al, 2008; Ye et al, 2008). The main observation 

reveals that a progression towards improved methods for semantic 

interoperability shall support the potential for more effective information and 

knowledge exchanges. This additionally demonstrates that there exists a gap 

as far as semantic interoperability and knowledge sharing are concerned. A 

number of approaches that help support interoperability (and semantic 

interoperability) are next discussed. 

 

2.3 Ontology-Driven Interoperability 

2.3.1 Ontology Definitions 

Ontology engineering is recognised as a key technology to deal with the 

semantic interoperability problem (Yang and Zhang, 2006). Available literature 

on ontological engineering points to a number of definitions for describing 

what an ontology is. A philosophical viewpoint is a common perspective from 

which an ontology can be defined such as the definition portrayed by Gruber 

(1993), in which an ontology is said to be an explicit specification of a 

conceptualisation. 

 

This view has also been adopted by Studer et al (1998) to propose the 

definition that: “An ontology is a formal, explicit specification of a shared 

conceptualisation”. This definition adopts a slant towards how ontologies are 

realised at applications level. This is because the words in the definition have 
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been carefully chosen, for instance, (1) the word “explicit” reflects the 

exactness in the concepts, constraints and interpretations present in an 

ontology, (2) the word “formal” implies that the ontology should be machine-

readable and (3) the words “shared conceptualisation” reflect the essence that 

an ontology aims at capturing agreed concepts over some field of knowledge. 

 

Another relevant definition for an ontology is that provided in ISO 18629 

(2005), stating that an ontology is “a lexicon of specialised terminology along 

with some specification of the meaning of the terms in the lexicon”. This 

description has led to the emphasis that an ontology is a representation or 

model that provides a basis for sharing meaning (Young et al, 2007). Very 

often, an ontology is regarded as being a multi-dimensional model of some 

domain of interest. Figure 2-1 identifies the multi-dimensional nature of an 

ontology. The figure, partly based on the structural view of what an ontology 

consists of (Labrou, 2002; Gómez-Pérez et al, 2004), regroups elements from 

the various definitions. 

 

 

 

 

 

 

 

 

 

 

 

 

The structural view on an ontology (based on Labrou (2002) and Gómez-

Pérez et al (2004)) indicates that the latter is typically composed of a (1) 

taxonomy of classes, which provides the backbone for organising concepts, 

(2) relations and functions which are used to build associations among 

concepts, (3) axioms which dictate the constraints over the ontological content 

and (4) individuals which are specific occurrences of classes. 

Shared Conceptualisation 

Explicit Specification Formal Representation 

Taxonomy of Classes 

Relations and 
Functions 

Axioms 

Individuals 

Figure 2-1 The Multi-Dimensional Nature of an Ontology 
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2.3.2 Lightweight and Heavyweight Ontologies 

An important distinction is made between ontologies in terms of the degree of 

expressiveness that they capture. Simple ontologies that only involve 

taxonomies of concepts and basic relations are referred to as lightweight 

ontologies (Fernández-López and Gómez-Pérez, 2002; Gómez-Pérez et al, 

2004). Lightweight ontological approaches assume that the meaning 

associated to the terms of concepts within an ontology can readily be 

understood.  

 

Heavyweight ontological approaches, on the other hand, on top of having the 

lightweight ontological structures also benefit from axioms in the form of 

constraints. These axioms are used to clarify the intended meaning of the 

terms gathered on the ontology (Gómez-Pérez et al, 2004). The configuration 

of the explicit specification captured in Figure 2-1 is that of heavyweight 

ontological structures. It is to be noted that in the case of a lightweight 

ontology, the axiom layer shown in Figure 2-1 is not be present. Additionally, 

Figure 3-4 in section 3.3.4.1 of Chapter 3 illustrates some common examples 

of lightweight and heavyweight ontological approaches.  

 

It is clear from a semantic viewpoint, that the presence of limitations over the 

formal meaning of ontological content in lightweight ontologies explain their 

inappropriateness for inter-system interoperability (Young et al, 2007). For this 

reason, Young et al (2007) have also identified a need for more 

mathematically rigorous approaches in order to ensure that the true meaning 

behind the terminology coming from different systems is identical. This work, 

thus pursues this direction in order to reinforce and extend the understanding 

behind exploiting heavyweight ontological methods to drive semantic 

interoperability in design and manufacture.  
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2.3.3 Ontological Formalisms 

Several ontology languages, also referred to as ontological formalisms or 

knowledge representation formalisms, are nowadays available for 

constructing ontologies. A comprehensive review of the spectrum of these 

languages is provided in Gómez-Pérez et al (2004) and in the current 

literature review, only the implications of the most relevant ontological 

formalisms are explained. Figure 2-2, partly adapted from Gómez-Pérez et al 

(2004), summarises the layout of these languages paying attention to draw a 

distinction between traditional ontology languages versus ontology markup 

languages. 

 

 

 

 

 

 

 

 

 

 

The main perceived difference between traditional ontology languages and 

ontology markup languages is that the former generally have a First Order 

Logic base while the latter are Description Logic-based (although Description 

Logic (DL) itself corresponds to the decidable fragment of First Order Logic 

(FOL)). Ontology markup languages help exploit the characteristics of the 

Semantic Web as a result of the boom of the Internet (Corcho, 2005). In 

traditional ontology languages, the Knowledge Interchange Format (KIF) 

(Genesereth and Fikes, 1992), which is FOL-based, supports the construction 

of the Open Knowledge Base Connectivity (OKBC) ontology (Chaudhri et al, 

1998), Frames-based ontologies and Ontolingua (Farquhar et al, 1997), the 

latter using a combination of Frames and FOL. 

 

Knowledge Interchange Format (KIF) 
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Figure 2-2 Formalisms for Building Ontologies 
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More recently, with the introduction of Common Logic (CL)  (ISO/IEC 24707) 

as a language framework for knowledge interchange, other ontological 

languages have been developed, for instance, (1) the Common Logic 

Interchange Format (CLIF), which is directly based on the CL standard itself 

and (2) the Knowledge Framework Language (KFL), developed by Ontology 

Works Inc. (Ontology Works Inc., 2009).  

 

Ontology markup languages, as opposed to the traditional ontology 

languages, have their syntax supported by the eXtensible Markup Language 

(XML) to address flexible information structuring (Nurmilaakso et al, 2002). 

The XML capability allows the specification of the Resource Description 

Framework (RDF) and RDF Schema (Lassila and Swick, 1999) to support the 

ability to process metadata for providing interoperability between applications 

that exchange machine understandable information (Cingil and Dogac, 2001). 

The RDF and RDF Schema stack shown on Figure 2-2 then provides even 

further potentials, where the Web Ontology Language (OWL) has been 

pursued (Bechhofer et al, 2004), for capturing more rigorous properties 

required for building more meaningful DL ontologies. 

 

One of the observations deriving from the identified ontological languages is 

that there exists an ongoing requirement to refine the understanding of the 

level of logic expressiveness (related to ontological formalisms) capable of 

semantically structuring the meaning of product lifecycle concepts (Young et 

al, 2009). Being a relatively new ontological direction, Common Logic-based 

ontological formalisms as a means to support semantic interoperability in 

product design and manufacture has not yet been given due attention. This 

work thus aims at contributing to this aspect (consult Chapter 3 and Appendix 

B for more details).  

 

2.3.4 Foundation Ontologies 

Ontological engineering embraces different levels of conceptualisation, from 

the general to the more specific. These gradations of conceptualisations 

include the upper or top level towards the domain level. Domain ontologies 
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are generally developed according to the preferences of specific fields of 

knowledge. Foundation ontologies also referred to as upper or top-level 

ontologies, on the other hand, are regarded as theories that capture the most 

common concepts relevant to many tasks and represent human 

commonsense which is hard to formalise (Kiryakov et al, 2001a). These 

theories involve the definitions of general concepts and formal axioms that 

govern the ways in which to interpret these theories. Foundation ontologies 

are also sometimes regarded as “formal” or “foundational” ontologies (Borgo 

and Leitão, 2007), due to their significance in supporting mutual 

understanding and interoperability among people and machines (Masolo et al, 

2003).  

 

The Basic Formal Ontology (BFO) is an example of a foundation ontology, 

whose core identifies the “SNAP” and “SPAN” which provide foundation 

theories for notions about objects and processes respectively, spanning over 

time (Grenon, 2003). Other established foundation ontologies include the 

Cyc‟s Upper Ontology, developed under the Cyc project (Lenat and Guha, 

1990) and the Descriptive Ontology for Linguistic and Cognitive Engineering 

(DOLCE). The latter aims at capturing the ontological categories underlying 

natural language and human commonsense (Masolo et al, 2003). Particularly 

relevant to the field of manufacturing engineering is the development of the 

ADAptive holonic COntrol aRchitecture for distributed manufacturing systems 

(ADACOR) ontology (Leitão et al, 2005), which uses concepts from the 

DOLCE foundation ontology to provide a core ontology of manufacturing. A 

segment of the primary concepts of ADACOR are portrayed in the re-drawn 

UML class diagram in Figure 2-3.  

 

Another wave of foundational ontologies involve (1) WordNet (Miller, 1995) 

which is an example of a top-level linguistic ontology whose purpose is to 

describe semantic constructs that offer a heterogeneous amount of resources, 

used mostly in natural language processing (Gómez-Pérez et al, 2004),  (2) 

the Standard Upper Ontology (SUO) (Pease and Niles, 2002), formalised in 

SUO-KIF (a variant of the Knowledge Interchange Format (KIF)) which 

acknowledges “Object” and “Process” as physical concepts, and (3) Ontology 
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Works Upper Level Ontology (ULO) developed by Ontology Works Inc. 

(Ontology Works Inc., 2009).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4 depicts the three main concepts in Ontology Works ULO taxonomy 

which are “Particular” (A), “SystemEntity” (B) and “Universal” (C). These 

concepts are defined as: (1) particulars are unique things as long as no other 

thing is the same as them, i.e. particulars are only identical with themselves, 

(2) system entities are the entities upon which the operation of Ontology 

Works ontological environment depends on and (3) universals are things that 

are allowed to have extents i.e. instances (individuals). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3 Core Manufacturing Ontology in the ADACOR 
Architecture (Redrawn from Borgo and Leitão (2008))  

Figure 2-4 Taxonomy of Basic Concepts for Ontology Works ULO 
(Captured from the ontology environment of Ontology Works Inc. (2009)) 
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In addition to the previously identified foundation ontologies, the value of the 

Process Specification Language (ISO 18629, 2005) as providing an effective 

foundation for capturing process-related meaning has also been mentioned 

(Young et al, 2007). PSL, as a foundation ontology, does not fall under the 

same category as the BFO, DOLCE or Ontology Works ULO. However, 

because the semantics captured in PSL provide a robust foundation for 

building explicit conceptualisations for processes of various sorts, this implies 

that PSL acts as a foundation ontology which supports an interlingua 

approach to interoperability (Gruninger and Kopena, 2005).  This observation 

is particularly pertinent since PSL has shown benefits to a wide range of work 

such as (1) for project scheduling information exchange (Cheng et al, 2003), 

(2) for the support of process interoperation in cross-disciplinary supply chains 

(Das et al, 2007) and (3) for capturing the semantics of flow models and 

process planning knowledge (Bock and Gruninger, 2005).  

 

There is a general view, as far as foundation ontologies are concerned, that 

they should provide the core semantics of endurants (objects/entities) and 

perdurants (processes). By understanding relevant work in the field of 

foundation ontologies, a major question emerges. This question reflects the 

ongoing concern of how effective foundation ontology approaches can be 

tailored to support the communication requirements of manufacturing (Young 

et al, 2007). It is clear that this is an important research direction which still 

deserves attention, especially to facilitate the reuse of the semantics of 

endurants to model product representations and those of perdurants to model 

manufacturing processes. 

 

2.3.5 Ontologies in Manufacturing Engineering 

A significant amount of work has been performed in the field of manufacturing 

engineering, where the concept of ontologies has been applied in order to 

solve specific problems. The area of supply chain management and 

enterprise engineering, for instance, has witnessed the benefits of ontological 

engineering (Gruninger and Fox, 1994; Chandra and Kamrani, 2003; Loss et 

al, 2005). 
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Other researchers have developed ontologies to aid decision support in 

product design and manufacture. One such example can be seen in work 

performed by Seo et al (2006) who have researched a methodology for 

achieving interoperable product data through the use of a layered reference 

ontology. Lin and Harding (2007) have defined a Manufacturing System 

Engineering (MSE) ontology model that has the capability to enable 

communication and information exchanges between inter-enterprise, multi-

disciplinary engineering design teams. 

 

On similar lines, ontologies for product representation have been pursued. 

One example is portrayed in the research approach taken by Patil et al 

(2005), where an ontology formalised in Description Logics (DL) has been 

exploited for capturing and representing the semantics of product 

representations. Formal concept definitions are captured using DL axioms, 

which to some extent have enabled the capability for semantic data 

interchange, i.e. semantic interoperability. Another example appears in the 

work performed by Costa et al (2007), where a refinement of the ISO 10303 

AP236 standard, for supporting information exchange for the furniture 

industry, is proposed using a product ontology.  

 

More competitive methods for capturing semantics while helping decision 

support in product design and manufacture have been researched. A 

combination of the Web Ontology Language (OWL) with the Semantic Web 

Rule Language (SWRL) has recently been employed for this purpose (Kim et 

al, 2006; Rabe and Gocev, 2008; Yang et al, 2008; Chang and Terpenny, 

2009; Wei et al, 2009). SWRL rules provide a relatively powerful axiom layer 

that interacts with OWL-based ontologies for semantic enrichment. For 

example, in their work Kim et al (2006) have specified the constraints and 

inferences, that hold over the semantics of concepts arising in assembly 

design, using SWRL rules. Rabe and Gocev (2008), on the other hand, have 

illustrated that a similar principle would also work in a framework where 

SWRL rules help generate knowledge within manufacturing domains. 
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Other related research efforts (Fiorentini et al, 2007; Chen and 

Stuckenschmidt, 2008), also exploiting ontology-based approaches, have 

culminated in contributions with striking similarities to the ones already 

identified in this section. The main finding is that most of these contributions 

tend to concentrate on DL and sometimes OWL with SWRL. However, 

because DL and SWRL do not provide full coverage for more expressive First 

Order semantics, this shows that there is still room for improvement in terms 

of exploring new methods for semantic representation and interoperability. 

This work targets this niche for the purpose of probing deeper into this aspect. 

 

2.3.6 Ontology Mapping 

The continuing diversity of ontologies is partly related to ontologies being 

aligned with particular views of the world, resulting in biases and subjective 

features (Hameed et al, 2004). Ontology heterogeneity in design and 

manufacture also occurs as a result of interspersed knowledge at different 

stages of the product lifecycle. The examples of ontologies discussed in the 

previous section reveals this ongoing semantic heterogeneity. If these 

ontological models are to semantically interoperate, methods need to be 

devised to reconcile disparate ontologies. 

 

The area of ontology mapping has been a key direction to tackle semantic 

heterogeneity issues across ontologies, with the intention of promoting 

semantic interoperability. Several overlapping views over categories of 

ontology mapping methods have been suggested (Kalfoglou and 

Schorlemmer, 2003; Noy and Musen, 2003; Euzenat and Shvaiko, 2007; 

Liping et al, 2007). There is almost general consensus over the types of 

methods that can be applied in ontology mapping. Figure 2-5, partly adapted 

from Noy and Musen (2003), identifies and summarises these methods. 

 

Ontology mapping methods include (1) techniques that focus on combining 

(merging) two ontologies to construct a new ontology from the individual 

ontologies, (2) tools that compile a transformation function that transforms a 

given ontology into another based on the transformation rules specified (Noy 
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and Musen, 2003), (3) methods that concentrate on establishing a collection 

of binary relations between the vocabularies of two ontologies (alignment) 

(Kalfoglou and Schorlemmer, 2003) and (4) methodologies that enable 

specific portions of two ontologies to be reconciled, through the definition of 

mappings via an intermediate articulation ontology. It is to be noted that 

although some researched ontology mapping methods fit very well into this 

category, others occur as hybrids of the common ontology mapping methods 

identified in Figure 2-5. 

 

 

 

 

 

 

 

 

 

 

 

Comprehensive available literature reviews on ontology mapping and the 

related methods (Kalfoglou and Schorlemmer, 2003; Euzenat and Shvaiko, 

2007) point to a large number of ontology mapping tools that have been either 

theoretically proposed or fully implemented and tested (Kent, 2000; 

McGuinness et al, 2000; Maedche and Staab, 2000; Kiryakov et al, 2001b; 

Stumme and Maedche, 2001a; Kalfoglou and Schorlemmer, 2002; Madhavan 

et al, 2002; Noy and Musen, 2003; Bach et al, 2004; Euzenat and Valtchev, 

2004; Mitra et al, 2004). In the literature review exposed in this work, only the 

most outstanding and pertinent ontology mapping methods are documented. 

 

The ontology MApping FRAmework (MAFRA) developed by Maedche and 

Staab (2000) is an ontology mapping method used for the reconciliation of 

distributed ontologies on the Semantic Web. MAFRA consists of five 

horizontal dimensions which relate to the implementation structural aspects of 

MAFRA and four vertical dimensions which focus on the more strategic 
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Figure 2-5 Common Methods Used for Ontology 
Mapping (Based on Noy and Musen (2003)) 
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perspectives pertaining to the framework (see Figure 2-6). Following the 

MAFRA approach, the first step in ontology mapping is that of (D) lift and 

normalisation where all information to be mapped are set onto the same 

RDF(S) representation platform. Lexical similarities are analysed in stage (E) 

and, then, based on the similarities found between the source and target 

ontologies, the “Semantic Bridging” module (F) establishes necessary 

correspondences (Kalfoglou and Schorlemmer, 2003). These semantic 

bridges are then executed (G), verified and enhanced in the final stage (H).  

 

 

 

 

 

 

 

 

 

 

 

The FCA-Merge (see Figure 2-7), presented by Stumme and Maedche 

(2001a), is another important ontology merging environment. Unlike similar 

ontology merging tools which tend to exclude instances during semantic 

reconciliation, it is said that FCA-Merge in fact extracts meaningful information 

from classified instances. The merging process realised in FCA-Merge 

comprises three vital steps. The first consists of the extraction of instances 

and the computation of two formal contexts where the ontologies reside. An 

information extraction technique known as SMES (I) (Saarbrucken Message 

Extraction System) (Neumann et al, 1997) is used for this purpose.  

 

The fundamental infrastructure underneath the second phase of the mapping 

process is the generation of a single context and the computation of the 

pruned concept lattice (J). This is performed using the FCA-Merge algorithm, 

known as “Titanic” (Stumme et al, 2000), which is attuned to fit the needs of 

the FCA-Merge environment. Both the first and the second stages are claimed 
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to be fully automatic processes. The third stage, which is semi-automatic, 

involves an interactive user interface built on top of the OntoEdit tool (K). In 

order to support the knowledge engineer in the different steps, there is a 

number of queries for focusing his attention to the significant parts of the 

pruned concept lattice (Stumme and Maedche, 2001b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Noy and Musen (2000) initially proposed an algorithm and tool to promote 

ontology merging and alignment. The authors have later exposed a complete 

suite of tools integrated in the “Prompt” suite (Noy and Musen, 2003), 

covering various functionalities for multiple-ontology management. The 

“Prompt” suite comprises (1) “IPrompt” for interactive ontology merging, (2) 

“AnchorPrompt” for graph-based mapping, (3) “PromptDiff” for ontology 

versioning management and (4) “PromptFactor” for factorising out 

semantically independent sub-ontologies.  

 

“IPrompt”, which forms part of the algorithm-driven semi-automatic ontology 

merging feature of “Prompt”, is responsible for providing suggestions for 

merging, identifying inconsistencies, resolving potential problems and 

exposing strategies to solve these (Noy and Musen, 2003). During the 
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comparison of two ontologies, “IPrompt” analyses small segments of the 

ontology graph around each concept prior to proposing appropriate merging 

decisions. Overall, the “Prompt” suite remains a comprehensive semi-

automatic toolkit for coping with semantic reconciliation.  

 

Researched and validated ontology mapping tools indicate that there is 

currently no ontology matching technique that uses the semantics of logic-

based systems that employ upper ontologies (Euzenat and Shvaiko, 2007). 

Moreover, it is evident, from experiments based on current ontology mapping 

methods, that ontology mapping has not been given due attention in design 

and manufacture primarily since the latter remains an expert domain with very 

specific content and issues (Chungoora and Young, 2008b). Hence, this work 

additionally addresses the relevance of semantic-based mapping methods for 

aiding semantic interoperability in product design and manufacture. 

 

2.4 Model Driven Architecture and Interoperability 

The Model Driven Architecture (MDA) is an initiative launched by the Model 

Driven Software Development (MDSD) community, and is nowadays a 

recommended specification from the Object Management Group (OMG) 

(Bourey, 2007). The MDA approach typically consists of a number of basic 

concepts, as defined in the MDA Guide (2003). These concepts involve three 

viewpoints and system models notably (1) the Computation Independent 

Model (CIM), (2) the Platform Independent Model (PIM) and (3) the Platform 

Specific Model (PSM), whose interactions consist of model transformations for 

converting one model to another on the same system. These basic concepts 

of MDA are reflected in Figure 2-8, together with the identification of model 

transformations between the CIM, PIM and PSM. 

 

For a single system solution under development, the high-level requirements 

for the system are first set and modelled in a CIM, in order to identify the 

intended expectations of the system. In other words, the CIM describes the 

business context and business requirements for the system under 

consideration, corresponding to a view defined by a computation independent 
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viewpoint (Elvesæter et al, 2006). The PIM, on the other hand, defines a 

model at a high level of abstraction, where the model is used to describe the 

software solution using a technology independent view (Bourey, 2007). It is 

possible through transformation mechanisms to convert a single PIM into one 

or several PSMs as shown in Figure 2-8. A PSM corresponds to a view 

defined by a platform specific viewpoint and describes the realisation of 

software systems in the chosen set of execution platforms (Elvesæter et al, 

2006).  

 

 

 

 

 

 

 

 

 

 

 

 

The principle of applying MDA to interoperability, referred to as Model Driven 

Interoperability (MDI), is an interesting direction as several researchers have 

utilised MDA and MDI to solve specific problems attuned to distinct fields of 

research (Cutting-Decelle et al, 2006; Elvesæter et al, 2006; Gnägi et al, 

2006; Didonet del Fabro, 2008; Moalla et al, 2008).  

 

Figure 2-9, which is based on the reference model identified by Bourey 

(2007), portrays a simplified version of the reference model used for MDI. In 

the reference model, two MDA approaches are shown to have been applied 

separately for developing two system solutions for “Enterprise E1” and 

“Enterprise E2”. Model transformations are present between the CIM, PIM 

and PSM levels within each enterprise system. The capability for 

interoperation between the different MDA levels across enterprise boundaries 

is anchored through the definition of intermediate interoperability models that 
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support (1) transformations and mappings between each cross-enterprise 

MDA level and (2) transformations between interoperability models too.  

 

Existing work on MDI points to the fact that MDA approaches have been used 

for exploring solutions related to interoperability and semantics. Moalla et al 

(2008), for instance, have documented the mode in which the deployment of 

MDI contributes to an enhancement in product data quality across the vaccine 

supply chain. Other authors like Gnägi et al (2006) have looked at promoting 

semantic interoperability between Object-Oriented models through the use of 

MDA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bourey et al (2006), for example, have refined the current knowledge on 

models and transformations and have applied them to test cases within the 

INTEROP NoE project (Panetto et al, 2004). In these experiments, a meta-

model approach is first defined for enabling transformations. Mappings, 

implemented in a suitable transformation language, are then established 

between the elements of the defined meta-models and executed to complete 

the transformation process. From the breadth of work performed in the field of 

MDA and MDI, it becomes obvious that there is an acknowledged importance 

relating these approaches to interoperability and semantics. Another purpose 

of this work, hence, is to develop novel concepts whose underlying 

understanding can also be positioned according to MDA and MDI.  
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2.5 Standards-Based Approaches to Interoperability 

In addition to the previously exposed paradigms, contributions are also being 

pursued towards the development of international standards which would 

promote interoperability, for example, technical standards for product 

information and CAD/CAM documents realised by efforts like Product Data 

Management (PDM), Product Lifecycle Management (PLM) and STEP (Lin 

and Harding, 2007).  

 

Particularly relevant to the field of product design and manufacture is the ISO 

10303 standard, also referred to as STEP (STandard for the Exchange of 

Product model data). STEP is aimed at the standardisation of product data for 

exchange. The specifics of STEP and its implications on data management, 

exchange and sharing, i.e. its implications on interoperability, have long been 

recognised (Fowler, 1996). Furthermore, it has been demonstrated how the 

various STEP Application Protocols (APs), defined predominantly around the 

concept of “machining features”, can be harnessed to achieve an integrated 

manufacturing architecture (SCRA, 2006).  

 

Figure 2-10, adapted from SCRA (2006), portrays this interoperability-enabled 

architecture, where some of the STEP APs are shown to relate to specific 

functions in design and manufacture. The total architecture enables the 

deployment of an integrated manufacturing environment where machining 

features are present at the core of the information exchange capability. Other 

similar efforts towards standardisation have been fostered (TC184/SC4 

Website, 2009) such as (1) Parts Library (PLIB) (ISO 13584) for the 

representation of parts library data to support interoperability between 

suppliers and users, (2) manufacturing management data interchange 

(MANDATE) (ISO 15531) for the representation of production process data 

and (3) the Process Specification Language (PSL) (ISO 18629) for the 

semantic definition of manufacturing processes.  
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Although standards-based approaches provide a viable direction to resolving 

interoperability issues, only few of these actually overcome the semantic 

interoperability challenge. This is because even concepts which are supposed 

to have agreed definitions within Standards, do not necessarily share the 

same semantics. For example, Young et al (2007) have shown the 

inconsistencies present in the informal semantics of the word “process” in ISO 

19493, ISO 18629 and ISO 10303.  This observation is also shared by Costa 

et al (2007), who have pinpointed the presence of obstacles related to the 

fuzziness in ISO 10303 AP236 definitions.  

 

It has to be noted, however, that the concepts defined in PSL (ISO 18629) 

remain robust, from a semantic integrity viewpoint. This is because, PSL is 

aimed at capturing heavyweight semantics specifically, unlike other standards 

like STEP, which remains lightweight in nature and does not satisfy all the 

requirements for semantic interoperability (Patil et al, 2005). In addition to 

acknowledging the semantic interoperability limitations of STEP, this review 

also depicts a clear potential to address these issues by exploiting 

heavyweight ontological approaches to formalise relevant parts of ISO 

standards. 
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2.6 Information Modelling in Product Design and Manufacture 

The modelling of information and knowledge structures in product design and 

manufacture has a direct influence on the capability to semantically 

interoperate. This is because, the degree of formality present in the 

structuring of information in a model is analogous to the semantic enrichment 

of the captured model. In PLM, two significant types of models have been 

pursued namely (1) product models (Molina et al, 1995; Anderl, 1997; 

Balogun et al, 2004; Sudarsan et al, 2005) and (2) manufacturing models 

(Giachetti, 1999; Zhao et al, 1999; Al-Ashaab et al, 2003; Liu and Young, 

2004). 

 

2.6.1 Product Models 

A product model may be defined as an information model, which stores 

information related to a specific product (Molina et al, 1995; Anderl, 1997). 

Another analogous description of a product model has been provided by 

Balogun et al (2004), who specify that the model represents a complex 

product from the top product level to the tolerance detail of every feature 

characteristic.  

 

Product models occupy a key role at the centre of the product lifecycle (Young 

et al, 2007) since they hold and share product information that are generated, 

used and maintained over the processes of design, manufacture, delivery, 

maintenance and disposal (Lee et al, 2006). Product models may be 

composed of a number of sub-models such as (1) the structure-oriented, (2) 

geometry-oriented, (3) feature-oriented and (4) the knowledge-oriented 

models, which when unified into integrated product models (Chin et al, 2002) 

enable decision support capability to be achieved. 

 

The concept of product models continues to evolve with time. Sudarsan et al 

(2005), for example, have successfully exploited a particularly interesting 

product model, known as the Core Product Model (CPM) as shown in Figure 

2-11. The main advantage of the CPM is that it favours product model 
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extensions while providing a common ground. The model proposed by 

Sudarsan et al (2005) also aims at capturing different engineering contexts 

that involve view-specific product considerations. The “Product Family 

Evolution Model” (PFEM), for instance, represents the evolution of product 

families and the rationale of the changes involved (Wang et al, 2003). 

 

 

 

 

 

 

 

 

 

2.6.2 Manufacturing Models 

The concept of manufacturing models initially took root from contributions 

made by Al-Ashaab (1994). Manufacturing models consist of common 

repositories of manufacturing capability information and the knowledge and 

constraints over the use of manufacturing processes (Al-Ashaab, 1994; 

Balogun et al, 2004; Liu and Young, 2004). The information structures 

exploited for this purpose comprise of defined relationships between all 

manufacturing capability elements.  

 

Similar to how product models can be decomposed into their constituent 

individual sub-models, manufacturing models also enfold different concepts 

like (1) the manufacturing resource capability model, which concentrates on 

representing information about functions and characteristics of manufacturing 

resources and their combination into manufacturing processes (Giachetti, 

1999; Molina et al, 1995; Zhao et al, 1999), (2) the process plan model, used 

to describe the information about the process plan strategy of a manufacturing 

process (Feng and Song, 2003) and (3) the manufacturing cost model, used 

for driving the meaningful estimation of production costs incurred during 

design and manufacture. 
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Figure 2-11 Framework Components of the Core Product Model 
(Redrawn from Sudarsan et al (2005)) 
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In their work, for example, Feng and Song (2003) have met the aim of 

developing a “Manufacturing Object Model” to enable the interoperability of 

preliminary design with process planning. Their implementation platform 

utilises the Unified Modelling Language (UML) Object-Oriented (OO) 

approach for constructing the information structures behind the manufacturing 

model. Current documentation on manufacturing models (Tam et al, 2000; 

Liu, 2004; Gunendran and Young, 2006) further point to the fact that mostly 

an Object-Oriented slant has been given as far as information modelling of 

manufacturing models are concerned, i.e. exploited information structures 

have remained lightweight in nature.  

 

2.6.3 Integrating Product and Manufacturing Models 

Clear evidence is available which demonstrates that there is a need to 

integrate the product and manufacturing models. Feng and Song (2003), for 

instance, mention that both models have not been shown fully integrated with 

each other. The integration of product and manufacturing models is key 

towards reinforcing decision support capability and knowledge acquisition in 

the product development lifecycle.  

 

The ability to capture and reuse design and manufacturing knowledge in a 

meaningful manner is dependent on the semantic interoperability of product 

and manufacturing models. Gunendran and Young (2006), for example, have 

documented an information and knowledge framework for capturing multi-

perspective design and manufacture and have mentioned that the integration 

knowledge may contain several rules, equations and options to support the 

information integration of multiple views. However, multi-view modelling to 

acquire manufacturing knowledge has been developed into solutions based 

on the use of UML, and therefore use a lightweight ontological approach 

which is inappropriate for inter-system interoperability (Young et al, 2007). 

Hence, it is clear that a progression to achieve this semantic integration 

remains to be addressed.  
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2.6.4 Features and Part Families 

Feature-based engineering bridges the gap between Computer Aided Design 

(CAD) and Knowledge Based Engineering (KBE) systems (Shah, 1995; Otto, 

2001). A useful definition for a feature has been provided by Brunetti and 

Golob (2000), who mention that a feature is an information unit (element) 

representing a region of interest within a product, and is described by an 

aggregation of properties of a product. 

 

Several authors have documented the importance of features of various sorts 

as providing valuable integration links between design and manufacture, such 

as the “machining features” effort from STEP. Gu (1994), for example, have 

recognised the significance of feature-based representation, as part of a 

product models for supporting integrated manufacturing. The ongoing 

significance of feature-based modelling is well established and has been 

under consideration by several researchers at different periods of time such 

as Young and Bell (1993) and Aifaoui et al (2006). 

 

One of the recent types of feature that has emerged, with the scope of 

representing any geometric and non-geometric relations in an assembly, 

involves associative assembly design features (Ma et al, 2007). In their 

approach, Ma et al (2007) firstly identify the requirements for satisfying 

assembly features by specifying, for example, (1) the need for independent 

representation of feature relations and (2) the representation of relationships 

between features and parts for the inclusion of both geometric and non-

geometric information. However, it is to be noted that a lightweight ontological 

approach using UML modelling has been pursued.  

 

Feature technology follows two main paradigms namely that of (1) feature 

recognition and (2) design by feature. In the former, intelligent algorithms are 

used to extract features from existing geometry. However, a major limitation is 

present on this approach and relates to the effectiveness of the exploited 

algorithms to recognise interacting features (Martino and Giannini, 1998). In 

the design by feature approach, which is nowadays favoured compared to 
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feature recognition, a product can be modelled from a library of available 

features. There is, however, a drawback to this approach in that the 

representation of features is dependent on the context, i.e. viewpoint, being 

taken (Martino and Giannini, 1998). Nevertheless, where features can be 

understood within a part family context, there is the potential for them to 

provide a significant route to sharing information between lifecycle activities 

(Gunendran and Young, 2008), i.e. the semantics of part families can help 

support interoperability in product design and manufacture. 

 

The concept of part families, in which specific parts are grouped according to 

their manufacturing operation requirements, is particularly relevant to group 

technology and cellular manufacturing systems (Ang, 1998; Chan at al, 2006; 

Yang and Yang, 2008). Categorisation of part families with respect to specific 

viewpoints arising in design and manufacture, as is the case with features, is 

also a fact, for example, design, manufacturing and assembly part families 

(Westkämper et al, 2000; Simpson, 2004; Jiao et al, 2007; Gunendran and 

Young, 2008).  

 

It has been acknowledged by Li et al (2006), whose work is concerned with 

the representation and sharing of part feature information in Web-based parts 

library, that one of the requirements to achieve meaningful part family 

description is to have a comprehensive norm for capturing part family 

information. This, from a semantic interoperability perspective, additionally 

implies the importance of addressing semantic descriptions of features and 

part families, as well as the ability to wrap semantically-rich product and 

manufacturing models. 

 

2.7 Interoperability Architectures and Frameworks 

Wide-ranging interoperability architectures and frameworks have been 

proposed to date. A comprehensive review of some of these has been 

documented by Chen et al (2008) and this section, therefore, concentrates on 

a discussion of the most pertinent interoperability architectures and 

frameworks relevant to this work. Early efforts fostered have resulted in well-
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established reference architectures such as (1) the Computer Integrated 

Manufacturing Open System Architecture (CIMOSA) (AMICE, 1993), (2) the 

Purdue Enterprise Reference Architecture (PERA) (Williams, 1994), (3) the 

GRAI-GIM reference model (Chen and Doumeingts, 1996) and (4) the 

Reference Model of Open Distributed Processing (RM-ODP) (ISO/IEC 10746, 

1996). 

 

With the evolving view on interoperability at enterprise level, a majority of 

interoperability architectures and frameworks are being established according 

to the strategic principles related to the requirements for business 

interoperability, considerations for appropriate technological support and the 

chosen architecture perspective. The Zachman Framework (The Zachman 

Framework Website, 2009), IDEAS interoperability framework (Chen et al, 

2004) and The Open Group Architecture Framework (TOGAF) (TOGAF 

Website, 2009), for example, all identify significant multi-level prerequisites for 

enabling enterprise interoperability.  

 

In the IDEAS interoperability framework, which has been developed within the 

ATHENA project (Ruggaber, 2006), a specific dimension is acknowledged for 

the implications of semantics cutting across the “business”, “knowledge” and 

“Information and Communication Technology” (ICT) levels within single 

enterprises and the need for integrating, unifying and federating across 

enterprise boundaries. This understanding is portrayed in the simplified 

IDEAS interoperability framework in Figure 2-12. 
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In the context of international standards, a multi-dimensional framework has 

been proposed for enterprise interoperability (CEN/ISO 11354, 2008). The 

first elaborated part of the framework entails the requirements for enabling 

process interoperability across manufacturing enterprises. Figure 2-13, 

adapted from CEN/ISO 11354 (2008) illustrates the Framework for Enterprise 

Interoperability. There exist three dimensions to the framework notably (1) the 

barriers to interoperability such as conceptual and technological, (2) relevant 

concerns such as business and process and (3) the approaches to 

interoperability such as federated and unified. In Figure 2-13, PSL has been 

positioned according to the Framework for Enterprise Interoperability, and it 

can be seen that the “conceptual”, “process” and “unified” dimensions help 

position PSL in the right segment of the framework matrix.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Other architectures, such as the semantic-mediation architecture for 

business-to-business interoperability (Vujasinovic et al, 2007), have also been 

researched and industrially validated. In their work, Vujasinovic et al (2007) 

have implemented their architecture within the ATHENA research project 

(Ruggaber, 2006). Their implementation platform primarily harnesses 

Semantic Web tools with XML and RDF(S) capability. Vetere and Lenzerini 

(2005), on the other hand, have identified four different types of models for 

semantic interoperability in service-oriented architectures, by following an 
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schemas. However, this work has remained at a conceptual level since no 

test case implementation is proposed. 

 

In current literature, very few contributions have coined the terms “semantic 

interoperability framework”. Amidst these contributions lies the extended 

COntext INterchange (eCOIN) framework (Firat et al, 2007), whose main 

purpose is to facilitate semantic reconciliation through the definition of 

reusable “conversion function networks” as mappings. The authors of eCOIN 

adopt a view that the achievement of semantic interoperability should take 

account of semantic heterogeneity as well as semantic reconciliation. It has 

been argued that the eCOIN uses a hybrid of ontology-based methods 

involving principles like ontology alignment through articulation axioms and 

ontology merging (Firat et al, 2007). However, the motivational scenarios that 

back up eCOIN remain broad in nature and have not been attuned to the 

world of product design and manufacture.  

 

Specifically in the field of product design and manufacture, relatively few 

frameworks have been proposed in order to contribute to semantic 

interoperability. Patil et al (2005), for instance, have presented an approach to 

foster the semantic interoperability of product data utilising an ontology-based 

framework. This framework for semantic interoperability is identified in Figure 

2-14.  

 

 

 

 

 

 

 

Following the framework diagram proposed by Patil et al (2005), it is possible 

to identify two main reconciliation mechanisms present namely (1) the 

mapping of the semantics from a “System A” and “System B” into an 

intermediate product ontology (Product Semantic Representation Language 

(PSRL) which is DL-based) and (2) the translation of syntax and terminology 
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Figure 2-14 Framework for Semantic Interoperability by Patil et al (2005) 
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from “System A” to syntax in PSRL, which is then translated to the syntax of 

the target “System B”. It is to be noted that Patil et al (2005) have recognised 

that their approach does not support low levels of abstraction in product 

models, such as geometric entities, as a result of their preference for the 

domain of Description Logics.   

 

Gupta and Gurumoorthy (2008) have argued a feature-based framework to 

support semantic interoperability of product models. The concept of “Domain 

Independent Form Feature” (DIFF) has been proposed, over which the 

framework is constructed. Figure 2-15 illustrates their schematic concept 

which enables semantic interoperability of product models. In the figure, the 

DIFF model supported by an ontology, provides a basis for the representation 

of features, and facilitates semantic interoperability between a source and a 

target system. 

 

 

 

 

 

 

 

 

 

 

In their approach, Gupta and Gurumoorthy (2008) have focused on the 

definition of features in terms of their faces solely, and have looked 

exclusively at semantic interoperability problems occurring due to different 

labels that refer to the same shape and different representations for the same 

shape. This implies that other significant considerations for (1) feature 

function in design, (2) relationships between features and manufacturing 

processes and (3) other forms of semantic interoperability issues remain to be 

addressed. Furthermore, the authors have implemented their framework 

utilising the Protégé (Protégé Website, 2009) ontological environment. Since 

Protégé does not provide full support for First Order heavyweight semantics, 
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this implies that opportunities still exist for improving the expressiveness of 

semantics in product models. 

 

2.8 Summary 

This state-of-the-art review has been conducted with a outlook onto the most 

pertinent areas of knowledge relevant to the problem of achieving 

interoperability at the semantic level, where the interoperation has to be 

established by the supply of information through inter- and intra- system 

communication (Chen et al, 2008). Five key areas have thus been targeted 

namely (1) ontology-based approaches to interoperability, (2) the Model 

Driven Architecture, (3) Standards-based methods, (4) the relevance of 

interoperable information modelling in design and manufacture and (5) current 

architectures and frameworks that attempt to resolve the problem of 

interoperability and semantics.  

 

Ontology-based methods have attracted a lot of attention for the development 

of shared representations. It has been witnessed that the ability for sharing 

semantics across these representations is dependent on the degree of 

formality, or logical expressiveness, supported by ontological formalisms. 

However, it has to be appreciated that even in the deployment of ontology-

based methods, semantic heterogeneity is unavoidable and for this reason, 

methods for ontology mapping are being developed for reconciling the 

semantics between ontologies that need to interoperate.  

 

The Model Driven Architecture (MDA) also has a significance in shaping the 

future perspectives on semantic interoperability. This work recognises its 

influence and, therefore, the MDA approach partly serves as a basis for 

positioning this research in terms of the CIM, PIM and PSM levels of the 

architecture. Standards-based methods to interoperability are also particularly 

important as they corroborate the ability to employ and reinforce useful 

principles applied in manufacturing integration. 

 



  
39 

Information modelling in product design and manufacture has been 

recognised as providing valuable potential for capturing the semantic 

structures required in product and manufacturing models and their integration. 

It is seen that this integration can also be facilitated through the consideration 

of multiple viewpoints of product features and part families. On the other 

hand, it has been possible to comprehend how all the other previously-

mentioned areas of knowledge are reflected in existing interoperability 

architectures and frameworks. 

 

The gathered understanding from the state-of-the-art documentation has 

helped identify a number of niches that remain to be fulfilled. These key 

research gaps are listed below: 

 

 There is a need for improved ontology-based framework solutions to 

support semantic interoperability and knowledge sharing in design and 

manufacture. 

 There is the ongoing requirement to understand how to exploit effective 

foundation ontology approaches to meet the communication needs in 

manufacturing. 

 There is a potential for exploiting more formal semantic-based methods for 

ontology matching. 

 It is necessary to explore heavyweight ontological approaches to address 

the representation of product and process semantics. 

 

The identification of these research gaps meets the first objective of this 

research (see Chapter 1 section 1.3.1). Overall, it has been shown that there 

is currently no existing framework that addresses, in a holistic way, the 

problem of semantic interoperability in product design and manufacture. This 

work, hence, exposes a novel attempt to support semantic interoperability in 

product design and manufacture by harnessing relevant capabilities from the 

identified areas of knowledge.   
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3 Requirements to Support Semantic Interoperability 

in Product Design and Manufacture 

3.1 Introduction 

This chapter elaborates a set of requirements pertinent to supporting 

semantic interoperability in product design and manufacture. Section 3.2 

broadly illustrates the implications of pursuing semantic interoperability in 

collaborative design and manufacture. Section 3.3 then explores a number of 

semantic interoperability issues, based on hole features occurring in design 

and manufacture, from which the related semantic requirements are exposed. 

These requirements represent a valuable checklist which is closely linked to 

the development of the preferred concepts adopted this work. A short 

summary of the investigated requirements is provided in section 3.4.  

 

3.2 Semantic Interoperability in Product Design and 

Manufacture 

Seamless semantic interoperability is achievable when the meaning 

associated to captured information and knowledge in computational form can 

be effectively shared across systems without any loss of the meaning and 

intent of the information and knowledge during the exchange process. At 

present, unclear, implicit and ambiguous semantics lead to 

misunderstandings and semantic obstacles i.e. obstacles related to the 

definitions of business and software classes and organisation of information 

(Gunendran et al, 2007). Figure 3-1 opens the issues arising in the quest for 

semantic interoperability, based on a design and manufacture information 

organisation perspective.  

 

For any given product family whose evolution follows the epicycles in product 

lifecycle development (Subrahmanian et al, 2005), several views of the same 

artifact are bound to exist when considered from the different nodes residing 

in the product lifecycle such as conceptual design, detailed design, 
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manufacturing, operation, etc. In Figure 3-1, these multiple perspectives 

include “Geometric Dimensioning and Tolerancing”, “Function”, “Process 

Planning and Execution”, “Machining Resource” and may consist of other 

views as well. Multiple perspectives of the same artifact result in multi-

viewpoint models (Kugathasan and McMahon, 2001; Gunendran and Young, 

2006). Multi-viewpoint models of a type of product naturally overlap with each 

other since they pertain to the same artifact. In a semantic interoperability-

enabled environment, it is essential that the semantics of various viewpoints 

be captured. This is further explained in section 3.3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In collaborative product development, intra-system domains need to establish 

shared interpretations over specific product viewpoints or combinations of 

viewpoints, as shown in Figure 3-1, in order to facilitate information 

exchanges. In the context of this work, a domain is regarded as a field of 

knowledge, based on one or multiple similar viewpoints, required to perform 

Figure 3-1 Overlapping Viewpoints and Domains in Design and 
Manufacture within a System Domain 
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the task of solving difficult real-life problems through the use of expert system 

procedures (Kalpakjian, 2001). A system domain, on the other hand, involves 

multiple interacting domains. Of particular relevance are (1) the means of 

driving semantic consistency and interoperability across multiple viewpoints 

within a single system domain and (2) the means of supporting semantic 

interoperability across system domains. Based on Figure 3-1, within a single 

system domain, the ability to semantically interoperate between view-specific 

domain models is dependent on the creation, derivation and extraction of 

semantic relationships (Ray and Jones, 2006) (see Section 3.3.2). In this 

work, the terms “domain model” are used to refer to a formal domain 

conceptualisation (ontology) and its associated Knowledge Base (KB). 

 

In a concurrent engineering-driven arena, different system domains, that hold 

their own integrated product views, may need to interoperate. From a 

semantic interoperability standpoint, this raises a concern linked to ensuring 

the cross-system consistency in the meaning of overlapping concepts that cut 

across system domain boundaries (refer to section 3.3.3). Acquiring semantic 

interoperability in product design and manufacture is also dependent on 

available technological support. In the world of semantic interoperability, 

semantic technologies provide the capability to address semantic 

interoperability obstacles between domain models. However, fundamental 

concerns remain in order to identify better means of harnessing semantic 

technologies while overcoming the related challenges documented in Shvaiko 

and Euzenat (2008). Section 3.3.4 explores this is greater detail. 

 

3.3 Semantic Interoperability Issues and Requirements 

3.3.1 View-Specific Semantics in Design and Manufacture  

Product lifecycle knowledge resides in multiple different but overlapping 

viewpoints. Approaches such as Design for Function, Design for Assembly, 

Design for Manufacture and Process Planning dictate the nature of the 

meaning and intent of concepts defined within specific viewpoints. This 

diversity of perspectives remains a key issue as far as ensuring semantic 
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integrity across viewpoints is concerned. Figure 3-2 presents two views, 

namely a functional view and a machining view, featuring visible semantic 

differences due to alternative representations of a counterbore hole. 

 

In the functional view, a counterbore hole is considered from a product 

requirements angle where the purpose of the feature is to accommodate a 

particular bolt size specification, hence its definition as a bolt hole. In the 

machining view, the functionality of the counterbore hole is not immediately 

relevant, and the same feature is defined by a different set of semantics 

pertinent to the machining view. In the case of the functional view, the 

attribution of depth parameters to the counterbore hole is based on the bolt 

head position and bolt length position. In the machining view, the attribution of 

depth parameters involves viewing the counterbore hole as a compound 

feature requiring a drilling operation followed by a counterboring operation. 
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The example noticeably shows that product features may be defined using 

view-specific semantics which is an important encounter across information 

modelling in product design and manufacture (Chapter 2 section 2.6). 

Furthermore, it has been recognised that semantics need to be defined for 

contexts (viewpoints) such as functional, geometry, manufacturing, machining 

process and assembly (Gunendran et al, 2007) to support interoperability at 

various stages of the product lifecycle. These multi-perspective considerations 

are essential for sharing information (Kugathasan and McMahon, 2001; 

Canciglieri and Young, 2003; Gunendran and Young, 2006). Hence, it 

becomes evident that a progression towards the seamless exchange of 

design and manufacturing knowledge requires capturing the semantics of 

concepts from multiple product lifecycle viewpoints [Requirement 1].  

 

3.3.2 Semantic Relationships between Viewpoints  

To capture the interactions between elements from different view-specific 

semantics, relationships need to be made across viewpoints so that the 

knowledge contained in one viewpoint can be interpreted in another without 

any loss of semantics. These relationships could be supported through the 

definition of ontology-based relations (Chapter 2 section 2.3.1) and via the 

integration of product and manufacturing model information (Chapter 2 

section 2.6.3). The example which follows proposes a scenario where albeit 

concepts from two different viewpoints occur, there nevertheless exists a 

possible overlap between the two, from a semantic standpoint.  

 

Figure 3-3 identifies a GD & T (Geometric Dimensioning and Tolerancing) 

viewpoint where a simple hole feature is described in terms of its nominal 

diameter and diameter tolerances. From a machining viewpoint, the 

semantics of the same hole feature take into account the machining 

processes required to achieve the nominal diameter and diameter tolerances. 

In the scenario, it can be seen that a semantic relationship between the 

dimensional parameter “A ± B” and a “Reaming” process, that achieves this 

dimensional parameter, can be used to drive knowledge of how a “Reamed 
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Hole” may be produced through a sequence of “Centre Drilling” followed by 

“Drilling” followed by “Reaming”.  

 

The example clearly demonstrates that if overlapping semantics between 

viewpoints can be understood, then it is possible to obtain a basis for defining 

semantic relationships. These relationships would apply regardless of domain 

boundaries developed within single system domains. Hence, there exists a 

need for providing semantic relationships between different but overlapping 

product viewpoints in order to support integrated semantic capabilities 

[Requirement 2].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.3 Semantics of Core Concepts across System Domain 

Boundaries 

Several shared domain conceptualisations (domain ontologies) that need to 

interoperate at the semantic level do not readily do so as a consequence of 

ontology heterogeneity. Continuing diversity of domain ontologies is partly 

related to the choices of knowledge representation formalism made, domain 

preferences and the inappropriateness of enforcing an all-embracing common 

ontology as a basis over which to build up information exchanges (Hameed et 
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al, 2004). This subsequently leads to multiple ontologies and schemas 

developed by independent entities (Madhavan et al, 2002).  

 

Although multiple domain ontologies impose semantic obstacles during their 

interoperation, it is obvious that all system domains in the world of product 

design and manufacture, that treat similar families of parts, to some extent 

share a “virtual” set of core concepts whose meanings may apply to all 

system domains. This understanding partly falls into the category of (1) the 

product model and part family effort fostered by various researchers (Molina 

et al, 1995; Balogun et al, 2004; Sudarsan et al, 2005; Gunendran et al, 2007) 

(Chapter 2 section 2.6) and (2) foundation ontology approaches for 

manufacturing (Chapter 2 section 2.3.4). However, since a majority of these 

approaches do not include tailored semantic definitions, this indicates that 

there is a need for an effective basis to support the provision of a set of 

reusable semantically-defined core concepts, which can be exploited by 

multiple system domains [Requirement 3]. 

 

3.3.4 Harnessing Semantic Technologies to Assist Semantic 

Interoperability 

The ability to harness the appropriate semantic technologies in order to 

facilitate the explicit capture of domain semantics in computational form 

(formalisation) and to support shared meaning across domain models 

constitutes another key requirement [Requirement 4]. Such technologies 

may involve, for example, heavyweight ontologies (Chapter 2 section 2.3.2) 

and their platforms as well as ontology mapping methods (Chapter 2 section 

2.3.6). Requirement 4 can be broken down into a number of sub-

requirements, the discussions of which are partly based on the challenges 

reviewed by Shvaiko and Euzenat (2008), and exposed in the next sub-

sections. 
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3.3.4.1 Knowledge Representation Formalisms 

Capturing and representing the semantics of domain ontologies in 

computational form is central to sharing across product design and 

manufacture. Several families of knowledge representation formalisms have 

been developed to capture and represent ontology-based semantics. Figure 

3-4 provides some examples of existing knowledge representation 

formalisms. Such formalisms include among others Frame-based languages 

(Wang et al, 2006), Description Logic-based languages (Baader et al, 2007) 

and Common Logic (ISO/IEC 24707, 2007) altogether forming a repertoire of 

languages with different levels of expressiveness as far as the representation 

of semantics is concerned (Ray, 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4 depicts that these formalisms for knowledge and semantic 

representation are either lightweight or heavyweight in nature (Gómez-Pérez 

et al, 2004). Heavyweight approaches rely on formal axioms that constrain the 

interpretation of concepts at computational level and are, therefore, preferred 

from a semantic point of view.  

 

It has been acknowledged that there is a need for more mathematically 

rigorous, i.e. heavyweight, approaches (Chapter 2 section 2.3.2) to ensure 

that the true meaning of terminology coming from different systems is identical 
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Figure 3-4 Examples of Knowledge Representation Formalisms 
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to permit computational comparisons of the meaning of terms (Das et al, 

2007; Young et al, 2007). Consequently, there exists an ongoing requirement 

to understand which family of knowledge representation formalism(s) allows 

the expressive capture and representation of product design and manufacture 

semantics [Requirement 4a] for the development of semantically-rich 

models. An experimental investigation explored in Appendix B contributes to 

this understanding by showing that a progression towards more expressive 

knowledge representation formalisms, like Common Logic (CL), is required to 

fully capture and represent semantic structures in product design and 

manufacture. 

 

3.3.4.2 Resolution of Semantic Mismatches 

Possible semantic mismatches that can exist between domain models are 

diverse in nature. The occurrence of these mismatches can be explained from 

different angles such as knowledge elicitation and knowledge representation 

(Hameed et al, 2004). When considered from the knowledge representation 

perspective, which provides a comprehensive way to describe semantic 

heterogeneity in systems, these mismatches are shown to occur at different 

levels of granularity (Visser et al, 1997; Hameed et al, 2004; Chungoora and 

Young, 2008b). Figure 3-5 exposes a classification of semantic mismatches 

based on the knowledge representation perspective. 
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In the figure it can be seen that there are two main trends to semantic 

mismatches namely: 

 

 Conceptualisation mismatches which occur as a consequence of having 

two or more types of conceptualisations of a certain domain. Disparate 

conceptualisations may differ in the way their ontological concepts are 

defined or in the way these concepts are related to each other. 

 Explication mismatches which are explained using three components of 

concept definitions, i.e. concepts, terms and definiens. A concept 

constitutes an underlying notion to be defined. A term is used to denote a 

particular concept and generally involves a human-assigned terminology. 

Definiens are other concepts which provide the building blocks of the 

definition of a more complex concept in the form of aggregated 

statements. Mismatches arising at any of the three components (i.e. 

concept, term and definiens) or combinations of components result in 

explication mismatches.   

 

Examples of semantic mismatches, explained from the knowledge 

representation perspective and applied to the area of product design and 

manufacture, have been investigated (Chungoora and Young, 2008b). The 

gathered understanding leads to the identification of another requirement. 

With the intention of promoting semantic interoperability, there exists a 

prerequisite for exploring semantic technologies which can improve the 

identification and resolution of possible semantic mismatches between 

domain models [Requirement 4b].  

 

3.3.5 Concepts for Ontology Matching 

A fundamental stage in the reconciliation of heterogeneous domain models 

involves the capability to match across ontology-based arguments (content) 

through the process of ontology mapping/matching (Chapter 2 section 2.3.6). 

Matching relationships, which can be associated across domain models, 

hence facilitate the process of building an agreement on concept spaces 

(Doerr et al, 2003). Figure 3-6 shows an example of how the specification of 
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ontology matching relationships provides a convenient way to reconcile and 

interoperate between concepts from two domain ontologies.  

 

The scenario depicts that if some desirable ontology matching relationships 

can be specified between the semantic structures (definiens) that define two 

hole feature concepts “Simple_Hole” and “Plain_Hole” from “Ontology X” and 

“Ontology Y” respectively, then it is possible to not only understand how these 

semantic structures correspond, but it also raises awareness of what type of 

knowledge could be shared across “Ontology X” and “Ontology Y” at the hole 

feature definition level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Several ontology mapping/matching methodologies exploit the ability to 

formally specify cross-ontology correspondences as a means to establishing 

mappings from which ontology interoperability can be achieved (Maedche and 

Staab, 2000; Kiryakov et al, 2001a; Madhavan et al, 2002). However, at 

present, ontology mapping approaches still deserve attention so as to improve 

the capability for more effectively matching across ontologies and verifying the 

integrity of mappings. Consequently, a key requirement is concerned with the 
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need for methods to explicitly and formally specify ontology matching 

relationships between domain models [Requirement 4c].  

 

3.3.6 Performance of Methods for Semantic Reconciliation 

Performance is of prime importance in many dynamic applications, for 

example, where a user cannot wait too long for the system to respond 

(Shvaiko and Euzenat, 2008). Current methods for ontology matching may 

resolve from linear time to quadratic time, which may imply several minutes, 

hours or even days to complete a matching task (Shvaiko and Euzenat, 

2008). Performance is also related to the level of automation of methods for 

the semantic reconciliation of ontologies. Several approaches have been 

proposed in order to reconcile heterogeneous ontologies using ontology 

mapping/matching, hence resulting in an extensive range of methodologies 

for leveraging ontological semantic interoperability (Euzenat and Shvaiko, 

2007). These ontology mapping methodologies attempt to provide ways for 

reconciling distributed semantics either automatically or semi-automatically.  

 

It is thus widely accepted that manual mapping is a labour-intensive task 

(Mitra and Wiederhold, 2002) which loses its feasibility as larger ontologies 

have to be reconciled. Consequently, it follows that the performance level of 

semantic reconciliation approaches proves to be an important asset 

contributing to the strength of semantic technologies for supporting semantic 

interoperability. For this reason, a requirement is present to support higher 

performance levels as far as semantic reconciliation processes are concerned 

[Requirement 4d]. 

 

3.4 Summary of Requirements 

This chapter has identified a set of requirements, whose importance is 

paramount to supporting semantic interoperability in design and manufacture, 

thereby meeting the second objective of this work (see Chapter 1 section 

1.3.1). The investigation of these requirements has been based on the 



  
52 

aspects that occur in the organisation of manufacturing information for 

engineering interoperability (Gunendran et al, 2007). 

 

Close considerations to these requirements are made during the proposal and 

development of a novel ontology-based framework, whose underlying 

principles are revealed in the forthcoming chapters. In other words, the 

investigated requirements form a checklist of development specifications for 

the framework. A summary of the explored requirements is provided next: 

 

 Requirement 1: There is a need for a progression towards the seamless 

exchange of design and manufacturing knowledge through the capture of 

semantics coming from multiple product lifecycle viewpoints. 

 

 Requirement 2: There exists a need for providing semantic relationships 

between different but overlapping viewpoints in order to support integrated 

semantic capabilities. 

 

 Requirement 3: There is a need for an effective basis to support the 

provision of a set of reusable semantically-defined core concepts, which 

can be exploited by multiple system domains.  

 

 Requirement 4: There is a need for harnessing the appropriate semantic 

technologies in order to facilitate the formal capture of domain semantics 

and to support shared meaning across domain models. 

 

 Requirement 4a: It is essential to understand which family of knowledge 

representation formalism(s) allows the expressive capture and 

representation of product design and manufacture semantics. 

 

 Requirement 4b: There exists a prerequisite for exploring semantic 

technologies which can improve the identification and resolution of 

possible semantic mismatches between domain models. 
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 Requirement 4c: There is a necessity for methods to explicitly and 

formally specify ontology matching relationships between domain models. 

 

 Requirement 4d: A requirement is present to support higher performance 

levels as far as semantic reconciliation processes are concerned.  

 

All the above-mentioned requirements have been fully taken into account for 

the proposal and development of the research framework (see Chapter 4). It 

is to be noted that these requirements have been exposed partly based on the 

semantic interoperability issues that derive from the research scope. 

However, the statement of these requirements has remained at a high level 

which implies that the investigated requirements are applicable to the field of 

product design and manufacture as a whole. 
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4 A Novel Framework to Support Semantic 

Interoperability in Product Design and Manufacture 

4.1 Introduction 

The purpose of this chapter is to expose the author‟s concept for a novel 

ontology-based framework which helps support semantic interoperability in 

product design and manufacture. As an attempt to resolve the semantic 

issues that prevent the achievement of semantic interoperability, the concept 

proposes a four-layered approach: The Semantic Manufacturing 

Interoperability Framework (SMIF), which is explained in further detail in 

section 4.2. The first element of the framework, identified as the Foundation 

Layer, exploits a heavyweight ontological underpinning and is explained in 

section 4.3. This Foundation Layer provides a ladder of capability for the 

specialisation of domain models, which can be individually developed in the 

Domain Ontology Layer. Section 4.4 discusses some of the basic implications 

within the Domain Ontology Layer.  

 

In section 4.5, the Semantic Reconciliation Layer is briefly explained. The 

latter, also partly established as a result of the Foundation Layer, involves the 

semantic reconciliation of cross-domain arguments coming from pairs of 

domain models developed in the Domain Ontology Layer. Interactions 

between the first three layers of the framework are key to the fourth level, the 

Interoperability Evaluation Layer, which is explained in section 4.6. This fourth 

level is where the retrieval of cross-domain correspondences and ontological 

knowledge sharing capability can be evaluated. System boundaries and 

assumptions are discussed in section 4.7. Section 4.8 aims at aligning the 

main framework concepts to the requirements previously explored in Chapter 

3. A summary of this chapter is then provided in section 4.9.  
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4.2 Semantic Manufacturing Interoperability Framework 

(SMIF) 

The Semantic Manufacturing Interoperability Framework (SMIF) exploits a 

four-layered ontology-driven architecture towards meeting the identified 

requirements for semantic interoperability across product design and 

manufacture. The different layers of the Semantic Interoperability Framework 

are illustrated diagrammatically in the Figure 4-1, where the constituent layers 

are namely (1) a Foundation Layer, (2) a Domain Ontology Layer, (3) a 

Semantic Reconciliation Layer and (4) an Interoperability Evaluation Layer. 
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The framework essentially draws its strength from the combined application 

and extension of different established methods, including ontological 

underpinnings such as the interlingua approach to interoperability (Gruninger 

and Kopena, 2005). This combined application of established methods shall 

be discussed in subsequent sections detailing the constituent layers of the 

SMIF. The novelty of the proposed concept, which is supported through the 

exploration of test cases, consists of three main areas namely: 

 

 The development of a Semantic Manufacturing Interoperability Framework 

(SMIF) that contributes to the understanding of combined heavyweight 

ontology-based approaches to support semantic interoperability in product 

design and manufacture. 

 The development of a heavyweight manufacturing ontological foundation, 

of core feature-based entity information and process semantics, which 

fosters the semantically-sound specialisation of domain models. 

 A contribution to the understanding of verifiable logic-based semantic 

reconciliation methods as part of ontology mapping processes between 

pairs of domain models that have been based on the same foundation. 

 

The proposal of the SMIF enables the research gaps summarised in section 

2.8 of Chapter 2 to be addressed in the following way: 

 

 The framework employs an ontology-based underpinning provided by the 

Foundation Layer and supports the capability to evaluate interoperable 

knowledge. The framework has been targeted to the field of product 

design and manufacture. 

 The Foundation Layer consists of an upper ontology for the Common 

Logic-based formalism over which a heavyweight manufacturing 

ontological foundation is stacked. The Foundation Layer hence supports 

the understanding on the effective exploitation of foundation ontology 

approaches. 

 The logic-based system capability supported by the Foundation Layer is 

conveyed to the subsequent layers of the framework. This provides the 
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potential for applying formal semantic-based methods during ontology 

matching. 

 Furthermore, the framework uses a heavyweight ontological approach in 

order to benefit in the explicit and expressive representation of product 

and process semantics pertinent to design and manufacture. 

 

4.3 Foundation Layer 

The Foundation Layer is at the first level of the Semantic Manufacturing 

Interoperability Framework (SMIF) and conveys the essential capability for the 

existence of subsequent layers of the framework. This first level comprises 

two characteristic elements, namely a rigorous Common Logic-based 

ontological formalism over which a heavyweight manufacturing ontological 

foundation is constructed. Figure 4-2 provides a more detailed view of the 

Foundation Layer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the diagram, it can be seen that the rigorous Knowledge Framework 

Language (KFL), a Common Logic-based formalism developed by Ontology 

Works Inc. (Ontology Works Inc., 2009), imparts the syntax and first-order 

semantics, governing the way in which the heavyweight manufacturing 

Figure 4-2 The Foundation Layer 
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ontological foundation is formalised at computational level. It is to be pointed 

out that Common Logic-based knowledge representation formalisms like KFL 

applied to the research problem under investigation is unprecedented and, 

therefore, constitutes a new aspect which is brought forward in this work (also 

see Appendix B for a justification of the chosen ontological formalism). 

 

4.3.1 Heavyweight Manufacturing Ontological Foundation 

The heavyweight manufacturing ontological foundation captures and 

expressively represents generic feature-based entity information and process 

semantics together with some of the existing relationships that hold between 

entities and processes (see Chapter 5 section 5.2 for a definition of an 

ontological foundation). The researched heavyweight manufacturing 

ontological foundation constitutes a novel effort towards the improved 

definition of foundation ontologies for manufacturing achieved through the 

development, from a low level of granularity, of process and entity information 

semantics. 

 

Firstly, the accommodation of process semantics in the Foundation Layer 

involves the formalisation of relevant concepts from the Process Specification 

Language ontology (PSL) (ISO 18629, 2005) (see Appendix C.1). Since it has 

been shown that PSL provides intuitions for reasoning about various forms of 

processes (Cheng et al, 2003; Bock and Gruninger, 2005; Bock, 2006; Das et 

al, 2007), this implies that the choice of PSL for the capture of generic 

process semantics in the Foundation Layer is relevant.  

 

PSL has been written in the Common Logic Interchange Format (CLIF) (PSL 

Website, 2009). CLIF as well as KFL are both based on the ISO Common 

Logic standard (see Chapter 2 Figure 2-2). However, the main difference 

between the two is that CLIF is platform-independent whereas KFL is 

platform-dependent and the latter is used for implementation purposes on the 

appropriate ontological environment. Since both CLIF and KFL are Common 

Logic-based, this clearly implies that PSL expressed in CLIF can completely 

be expressed in KFL as well. This constitutes an important benefit which 
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helps to reduce the ontology development time spent during the 

implementation of the Foundation Layer. Hence, this work provides the first 

factual implementation of relevant portions of PSL on a concrete ontological 

platform capable of handling the required semantic expressiveness. 

 

As a result of the current limitations of PSL to relate to resource definitions 

and to products inputs and outputs (Young et al, 2007), the “Object” concept 

from PSL is being expanded to include a broader understanding of entity 

information semantics (see Figure 4-3). Thus, secondly, in order to capture 

these generic entity information semantics, for the meaningful description of 

product representations, the fundamentals from the revised Core Product 

Model (CPM) (Fenves et al, 2004) and those from ISO 10303 AP224 (ISO 

10303-224, 2006) are being exploited and adapted to the framework needs. 

This is because the CPM is a generic, abstract model that can be used as a 

starting point for capturing foundation entity information semantics. Due to the 

fact that the CPM exists as a conceptual model while favouring extensions in 

order to make the model readily expandable (Fenves et al, 2005), the latter 

does not, for example, focus on how specific types of features need to be 

semantically defined.  

 

For this particular reason, concepts from ISO 10303 AP224 are formalised in 

the Foundation Layer to obtain generic mechanical product representation 

semantics based on feature definitions. It is to be noted that selected 

concepts coming from the CPM as well as ISO 10303 AP224 are lightweight 

in nature. Hence, the progression from their lightweight representations to 

their corresponding heavyweight semantics is a novel aspect undertaken at 

this level of the framework. Figure 4-3 identifies a conceptual picture of the 

combined approach used in the Foundation Layer. The figure emphasises the 

“Object” concept from PSL which neatly maps to the “Common Core Object” 

from the CPM. Other CPM concepts, for example, “Feature”, “Form” and 

“Geometry” are integrated with ISO 10303 AP224 concepts. Appendix C.2 

documents the relevant entity information semantics explored in this work. 
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4.4 Domain Ontology Layer 

The Domain Ontology Layer is at the second level in the Semantic 

Manufacturing Interoperability Framework (SMIF). At this level, formal 

axiomatised semantics from the heavyweight manufacturing ontological 

foundation can be specialised for the development of domain-specific 

ontologies and the capture of domain-centric knowledge. The types of 

concepts explored in the Domain Ontology Layer contribute to new knowledge 

by consolidating the understanding behind the ontological mechanisms that 

ensure the integrity-driven development of domain models that are based on 

the same manufacturing foundation ontology.  

 

In the Domain Ontology Layer, the purpose of a domain ontology is generally 

seen as providing vocabularies of the concepts within a specific domain and 

their relationships, of the activities taking place in that domain, and of the 

theories and elementary principles governing that domain (Mizoguchi et al, 

1995; van Heijst et al, 1997; Gómez-Pérez et al, 2004). In the context of this 

Core Product Model (CPM) Basic Concepts (Sudarsan et al, 
2005) 

Subset of ISO 10303 AP224 Concepts 
 

Geometry  Item 
 

Shape Aspect 
 

Round Hole 
 

Cylinder etc… 
 

Dimensional Tolerance etc… 

Subset of PSL Core 
Concepts 

 
 Object 
 

 Activity 
 

 Activity Occurrence 
 

 Timepoint 

 
 

Entity Information Semantics Process Semantics 

Figure 4-3 Conceptual Diagram of the Combined Approach Employed in the 
Heavyweight Manufacturing Ontological Foundation 
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work, the Domain Ontology Layer is where domains develop domain models 

(i.e. domain ontologies and their related KBs). Domain ontologies are bound 

to the preferences, practices and terminologies of individual domains.  

 

4.4.1 Part Family Semantics 

The extent to which the heavyweight manufacturing ontological foundation 

captures entity information semantics inevitably dictates the types of products 

or families of parts that can be represented at the Domain Ontology Layer. 

Figure 4-4 shows examples of rotary type part families that can potentially be 

represented in the Domain Ontology Layer. Domain-specific products may 

involve combinations of different shapes. The complexity of foundation entity 

information semantics allows concepts like shape representation items, 

feature shape aspects, standard features (such as hole features, cylinders, 

blocks and compound features), transition features and dimensional 

tolerances to be explicitly represented. 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.2 Manufacturing Process Semantics 

In this work, the representation of domain-dependent manufacturing process 

semantics is built on the PSL concepts formalised in the heavyweight 

manufacturing ontological foundation. These PSL concepts entail the PSL 

Core and PSL Outer-Core theories (ISO 18629, 2005) (see Appendix C.1). 

Figure 4-4 Example of Part Families which can be Represented at the Domain 
Ontology Layer 
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These two proven theories regroup a number of concepts which when used 

allow the expressive description of manufacturing process sequences. Figure 

4-5 illustrates an example of a domain-defined machining process sequence 

whose semantics can readily be captured using PSL Core and Outer-Core. In 

the process planning sequence, it can be seen that the occurrences of 

processes are ordered along a timeline where “Centre Drilling” (a compulsory 

precondition) takes place before “Drilling” which in turn takes place before a 

choice of either “Reaming” or “Boring”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5 Semantic Reconciliation Layer 

The Semantic Reconciliation Layer is at the third level in the Semantic 

Manufacturing Interoperability Framework (SMIF). The third layer combines 

the definition of new semantic mapping concepts alongside ontology mapping 

process concepts. The primary aim of the Semantic Reconciliation Layer is to 

provide adequate support for the reconciliation of domain models that are 

developed in the Domain Ontology Layer and that need to interoperate. 

 

Centre 

Drilling 

Precondition 

Drilling 

 

Reaming 

 

Boring 

 
before before 

before 

before 

TCDbegin TDbegin 

TRbegin 

TBbegin 

TRend 

TBend 

TCDend TDend 

Figure 4-5 Example of a Domain-Defined Machining Process Sequence 



  
63 

The approach to semantic reconciliation pursued in the SMIF revolves around 

logic/rule-based ontology mapping methods. Several ontology mapping 

frameworks (see Chapter 2) that have been researched and validated may be 

regarded as utilising three broad methods for achieving ontology and 

semantic interoperation namely: (1) the application of heuristics and linguistic-

based techniques, supported by formal algorithms, to provide measures of 

similarity between ontological concepts, (2) the identification and allocation of 

semantic relationships between ontological entities, sometimes referred to as 

“semantic bridges” (Maedche et al, 2002), and (3) combinations of both (1) 

and (2) for enhancing the capability of ontology mapping frameworks.  

 

Although ontology mapping research appears to be relatively mature, yet 

there still exist limitations to current ontology mapping frameworks. For 

example, many mapping techniques do not provide complete solutions for 

interoperation at the structural levels of domain models, such as classes, 

ontological functions and instances. Moreover, some ontology matching 

methods are still dependent on human intervention for the verification of 

mappings. In many cases, mapping relations across ontologies remain basic 

and, therefore, do not carry sufficiently-expressive interoperable knowledge.  

 

These limitations are being tackled through the exploration of novel verifiable 

Common Logic-based mapping methods in the Semantic Reconciliation 

Layer. At this framework level, logic-based statements can be formulated to 

capture the conditions behind semantic reconciliation. The capabilities of the 

logic-based mechanisms involved in the semantic reconciliation surpass those 

of other commonly exploited heavyweight approaches, such as Frames with 

first order constraint languages and Description Logics with rule languages 

(Gómez-Pérez et al, 2004).  

 

4.5.1 Semantic Mapping Concepts 

Semantic mapping concepts consist of ontological relations that are written in 

the Knowledge Framework Language (KFL). These semantic mapping 

concepts hold true for cross-domain arguments (e.g. classes, ontological 
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functions and instances), based on logical situations that arise between 

specialised domain models. Consider the class “Round_Hole” which is a class 

concept defined in the Foundation Layer (see Figure 4-6). In the IDEF5 

schematic (refer to Appendix A for an overview of the IDEF5 schematic 

language), the “Round_Hole” class has two specialisations in a “DomainX” 

ontology and two specialisations in a “DomainY” ontology. In the Semantic 

Reconciliation Layer, an example of a semantic mapping concept could be 

formulated to capture the following informal intuitions:  

 

If the class “Round_Hole” from the Foundation Layer has a number of 

specialised classes in the “DomainX Ontology” and also has a number of 

specialised classes in the “DomainY Ontology”, then a semantic mapping 

concept can be assigned between cross-domain sub-classes of 

“Round_Hole”, to understand that pairs of these sub-classes originate from 

the same parent class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This semantic mapping relation is denoted by the dotted arrows in Figure 4-6. 

The example is relatively simple and the mapping information could be 

checked by browsing through the taxonomy of the two domain ontologies. The 

point here, however, is to indicate that the definition of other semantic 

mapping concepts, based on more complex logical statements, can allow 

Figure 4-6 Example of a Semantic Mapping Concept 

Round_Hole

Through_
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Blind_Hole
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DomainY Ontology DomainX Ontology 
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intricate interoperability scenarios to be modelled. These semantic mapping 

concepts can be exploited for situations arising at various levels of the 

structure of domain models, which constitutes an improvement over current 

methods, as discussed further in Chapter 6.  

 

4.5.2 Ontology Mapping Process Concepts 

The process of ontology mapping in the Semantic Reconciliation Layer can be 

performed for two domain models at a time. The process comprises a first 

stage of loading two domain models together, i.e. a simple merging process, 

in such a way that the content from both models stays distinct for each of 

them. Then, semantic mapping concepts are loaded into the merged model. 

During this ontology alignment process, where a collection of binary relations 

are established between the vocabularies of the two ontologies (Kalfoglou and 

Schorlemmer, 2003a), semantic mapping concepts are automatically fed to 

the merged models. If semantic mapping relations hold true between cross-

domain arguments, based on the logic that defines these relations, then the 

relevant relations are automatically allocated between the relevant cross-

domain arguments.  

 

4.6 Interoperability Evaluation Layer 

The Interoperability Evaluation Layer is at the fourth level of the framework. At 

this level, interoperable knowledge queries can be executed with the intention 

of finding correspondences between arguments from two domain models that 

have been processed in the third level of the framework. The main activity 

involved in the Interoperability Evaluation Layer is concerned with the 

retrieval, i.e. inference, of semantic mapping concepts which carry the type of 

interoperable knowledge. Results obtained can be verified through logical 

proof. In other words, query responses can be reviewed with the intention of 

finding the truth behind their occurrence. Another element of the 

Interoperability Evaluation Layer entails the process of easily creating, running 

and managing queries which is facilitated using a developed user interface 

further explained in chapters 6 and 7. 
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4.6.1 Interoperability Evaluation through Queries 

There are two ways by which the discovery of cross-domain correspondences 

can be made. They both revolve around the formulation of logic-based 

queries which are written in a form similar to the Common Logic Interchange 

Format (CLIF). The first, remains relatively straight forward and requires the 

user selecting a particular semantic mapping concept and querying the 

concept to see whether any results are retained for the query. For instance, 

assuming the scenario in Figure 4-6, but the user is not aware of it, then on 

running a query in the form:  

 

Find all arguments that are bound to the specific semantic mapping concept, 

The result of the query should be: 

 

All possible pairs of cross-domain subclasses, for example, “Tapered_Hole 

and Through_Hole”, “Radiused_Hole and “Through_Hole” out of a total of four 

possible combinations of matches.  

 

The other method of inference is concerned with the creation of logical query 

statements that retrieve all semantic mapping concepts common between two 

cross-domain arguments in a single transaction. Figure 4-7 informally 

visualises the content of such a query and the corresponding response. The 

expected query response(s) obviously includes the semantic mapping relation 

(see dotted arrow) in Figure 4-6. This special form of knowledge querying is 

preferred over the first one since it can more effectively deduce all cross-

domain semantic mapping concepts that hold for two known arguments 

across domain models, thereby optimising the sharable knowledge discovery 

process. Hence, the awareness of the occurrence of semantic mapping 

concepts between cross-domain arguments in the Interoperability Evaluation 

Layer provides the essential knowledge sharing capability.  
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4.6.2 Interoperability Evaluation Assistant  

As a consequence of the large number of semantic mapping concepts that 

can possibly be developed, this imposes an important issue on the 

implementation aspects of the Interoperability Evaluation Layer. This issue is 

concerned with the management of executable interoperable knowledge 

queries for reuse. The fourth level of the framework additionally focuses on an 

appropriate User Interface (UI), which facilitates user-system interaction 

(Chungoora and Young, 2008b). The Web-based UI, called the 

Interoperability Evaluation Assistant, most importantly provides a method for 

the classification of queries and the ability to dynamically retrieve queries for 

improved performance during mapping knowledge discovery, an aspect that 

remains distinct to this work. 

 

4.7 System Boundaries and Assumptions 

The development of the Semantic Manufacturing Interoperability Framework 

(SMIF) and its constituent levels requires the identification of relevant system 

boundaries and assumptions. This is because the proposed framework is 

being developed aligned to the research scope, which considers specific 

areas of interoperability in product design and manufacture. In the Foundation 

Layer, it is obvious that a boundary is placed on the extent to which entity 

Figure 4-7 Example of an Informal Knowledge Query 
and the Query Response 

Query 

Find all semantic mapping relations that hold between 
“Tapered_Hole” and “Through_Hole” 

Query Response 

The semantic mapping relation:  

+ Other semantic mapping relations that bind these 
two classes together (if any) 
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information and process semantics enable product and process 

representation respectively. Thus, only the most relevant subsets of the Core 

Product Model (CPM), ISO 10303 AP224 and the Process Specification 

Language (PSL) are being targeted.  

 

Furthermore, since the Knowledge Framework Language (KFL) provides an 

expressive knowledge representation formalism, this implies that ontologies 

that employ less expressive formalisms can be mapped to KFL without any 

loss of semantics while the converse is not likely to be completely achievable. 

This issue remains peripheral to this work, and for this reason, this 

investigation does not portray the semantic interoperability of distributed 

ontologies that are formalised using ontological formalisms other than the 

Common Logic-based KFL. 

 

In the Semantic Reconciliation Layer it is assumed that the extent of semantic 

mismatches is viewed from the knowledge representation perspective (Visser 

et al, 1997; Hameed et al, 2004). However, it has been acknowledged that 

semantic discrepancies may well be considered from various other viewpoints 

(Klein, 2001). Moreover, because semantic mapping concepts can be used to 

capture a range of reconciliation scenarios, different mappings levels are 

likely to exist. This suggests that interoperable knowledge queried in the 

Interoperability Evaluation Layer can have different levels of importance to the 

expert. As a result, it is evident that the intended interoperable knowledge, to 

be discovered between two domain models, remains dependent on its 

perceived importance.  

 

Furthermore, the framework as a whole assumes a static view on ontologies 

and KBs. In reality, different versions of domain ontologies and KBs are a 

common case, where it becomes important to support the management of 

evolving domain model content. In the framework, ontology versioning (Klein, 

2001) is not taken into account, meaning that considerations for ontology 

evolution would imply the additional management of the mechanisms 

exploited in all four layers of the framework. 
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4.8 Aligning the Framework with Semantic Requirements 

As previously mentioned, the Semantic Manufacturing Interoperability 

Framework has been developed with strong considerations made to satisfy 

the set of requirements investigated in Chapter 3. This section establishes 

how the different elements of the framework, as well as the framework in its 

entirety, satisfy these requirements.  

 

The matrix shown in Figure 4-8 matches the framework and its components to 

the set requirements. Requirement 1 is met through the combined approach 

involving PSL, CPM and ISO 10303 AP224 in the Foundation Layer (see 

Figure 4-8 label (A)). Capturing the semantics from these methods enables a 

number of viewpoints to be considered in product design and manufacture. 

These viewpoints include, for example, the GD & T, functional, machining and 

process planning. 

 

Semantic relationships between different but overlapping viewpoints are 

targeted through the specification of entity information, process semantics and 

the participation relationships that hold between them, based on the combined 

approach used to meet Requirement 1 (B). This, therefore, helps to satisfy 

Requirement 2. 

 

In order to support an effective basis for the provision of shared meaning, the 

heavyweight manufacturing ontological foundation is exploited. Since 

providing shared meaning is where ontological approaches have been 

pursued (Young et al, 2007), this clearly implies that the ontology-based slant 

within the framework is favoured. The types of semantics explored in the 

ontological foundation pertain to an array of core feature-based concepts that 

can be reused and extended by a multitude of domains. This depicts that the 

Foundation Layer and the interactions that it supports with the Domain 

Ontology Layer help meet Requirement 3 (C). 
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To be able to harness the appropriate semantic technologies to facilitate the 

capture of domain semantics and to support shared meaning across domains, 

the SMIF harmonises four different dimensions, i.e. four distinct layers which 

adopt specific semantic technologies into a single framework, thereby 

satisfying Requirement 4 (D). In the sub-requirements of Requirement 4, such 

as the need to understand appropriate families of knowledge representation 

Figure 4-8 Aligning the SMIF and Its Components to Semantic Requirements 

Framework Components 

Requirement 1: There is a need for a progression 
towards the seamless exchange of design and 
manufacturing knowledge through the capture of 
semantics coming from multiple product lifecycle 
viewpoints. 

Requirement 2: There exists a need for providing 
semantic relationships between different but 
overlapping viewpoints in order to support integrated 
semantic capabilities. 

Requirement 3: There is a need for an effective basis 
to support the provision of a set of reusable 
semantically-defined core concepts, which can be 
exploited by multiple system domains. 

Requirement 4: There is a need for harnessing the 
appropriate semantic technologies in order to facilitate 
the formal capture of domain semantics and to support 
shared meaning across domain models. 

Requirement 4a: It is essential to understand which 
family of knowledge representation formalism(s) 
allows the expressive capture and representation of 
product design and manufacture semantics. 

Requirement 4b: There exists a prerequisite for 
exploring semantic technologies which can improve 
the identification and resolution of possible semantic 
mismatches between domain models. 

 
Requirement 4c: There is a necessity for methods to 
explicitly and formally specify ontology matching 
relationships between domain models. 

 
Requirement 4d: A requirement is present to support 
higher performance levels as far as semantic 
reconciliation processes are concerned. 
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formalisms (Requirement 4a), a study that leads to the choice of the Common 

Logic-based formalism, conveys this understanding (see Appendix B) (E). 

 

Furthermore, one of the purposes of the Semantic Reconciliation Layer is to 

deal with semantic heterogeneity across domain models, and provide 

mechanisms by which semantic mismatches can be identified and possibly 

resolved (Requirement 4b) (F). The specification of rigorous semantic 

mapping concepts in the third layer of SMIF satisfies the need for improved 

methods of specifying ontology matching relationships (Requirement 4c) (G). 

Moreover, interactions between the Semantic Reconciliation and 

Interoperability Evaluation layers and their implementations, help support 

higher performance levels as far as semantic reconciliation processes are 

concerned, as these are optimised for the SMIF (H). By so doing, the third 

and fourth layers of SMIF aim at meeting Requirement 4d. 

 

4.9 Summary 

This chapter has exposed the author‟s ideas for a novel ontology-based 

approach to support semantic interoperability in product design and 

manufacture. This has helped to fulfil part of the third objective of this 

research, linked to the proposal of a framework solution (see Chapter 1 

section 1.3.1). 

 

The framework concept has been established with a strong view on the 

requirements previously analysed in Chapter 3. The Semantic Manufacturing 

Interoperability Framework (SMIF) employs a four-layer architecture which 

facilitates the interoperation of domain models as long as these models have 

been based on the same ontological foundation. A key contribution of the 

SMIF lies in its novel understanding which derives from the development a 

heavyweight manufacturing ontological foundation of feature-based entity 

information and process semantics. This foundation provides a ladder of 

capabilities including the fidelity-driven (i.e. semantically-sound yet flexible-

enough) specialisation of domain models.  
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Other benefits involve the application of competitive semantic reconciliation 

techniques. Semantic mapping concepts which are defined ontological 

relations, backed by expressive logic (hence their heavyweight nature) are 

under exploration as part of these reconciliation techniques. The outcome 

from the third level provides a stepping stone for running intelligent queries in 

the Interoperability Evaluation Layer in order to derive valuable 

correspondences between cross-domain arguments. These correspondences 

are synonymous of sharable knowledge. Explanations of the different 

components of the SMIF and their interactions are examined in greater detail 

in chapters 5 and 6.  
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5 Foundation and Domain Ontology Layers 

5.1 Introduction 

This chapter is divided into two main sections. The first, explained in section 

5.2, considers the Foundation Layer, paying particular attention to expose the 

different types of intuitions, assumptions over these intuitions, and the 

semantics captured at this level of the framework. These semantic structures, 

further developed in the sub-sections of section 5.2, include process 

semantics, entity information semantics and the key participation relationships 

that hold between them. The ontology development process follows the 

knowledge engineering methodology (Noy and McGuinness, 2001). 

 

The second part of the chapter involves an explanation of the Domain 

Ontology Layer in section 5.3. The various ways in which domains reuse and 

specialise the semantics coming from the Foundation Layer are clarified and 

exemplified, in order to depict the differences and interactions between the 

Domain Ontology Layer and the Foundation Layer. Section 5.4 then 

summarises the key points from the chapter. It is to be noted that the 

semantic structures presented here intend to support the relevant set of 

requirements discussed earlier. Furthermore, ontology schematics featured in 

this chapter are represented using the IDEF5 schematic language.  

 

5.2 Foundation Layer 

The Foundation Layer is dependent of the Knowledge Framework Language 

(KFL), based on Ontology Works Upper Level Ontology (ULO) (Ontology 

Works Inc., 2009), for the formal specification of a heavyweight manufacturing 

ontological foundation. Such an ontological foundation, as perceived in this 

work, is regarded as an integration of intuitions that provide effective meta-

concepts, with well-established human-perceived meaning, for modelling 

domain ontologies (Cho et al, 2006). 
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The heavyweight manufacturing ontological foundation possesses the 

property of capturing generic but constrained entity information and process 

semantics, together with the participation relationships that hold between 

entities and processes. Reusable concepts are captured within the ontological 

foundation. The concepts explored remain generic in terms of the underlying 

intuitions, constraints and definitions governing their existence. Axiomatised 

concepts at this level provide a reusable set of semantics and behaviours 

which can be individually specialised in the Domain Ontology Layer (see 

section 5.3) to meet the needs of individual product design and manufacture 

domains.  

 

Traditional foundation ontology approaches, such as the Basic Formal 

Ontology (Grenon, 2003) and the Descriptive Ontology for Linguistic and 

Cognitive Engineering (Gangemi et al, 2003), generally define reusable core 

ontologies from a philosophical viewpoint. Unlike these traditional 

approaches, the heavyweight manufacturing ontological foundation in this 

work has been developed as a core ontology with a strong slant onto 

important principles arising in feature-based product design and manufacture. 

The nature of the Foundation Layer thus provides an understanding of how 

effective foundation ontology approaches can be tailored to support the 

communication requirements of manufacturing (Young et al, 2007). The 

constituent approaches and theories used in the Foundation Layer are next 

discussed. 

 

5.2.1 Process Semantics 

Process semantics used in the heavyweight ontological manufacturing 

foundation derive completely from the Core and Outer-Core theories of the 

Process Specification Language (ISO 18629, 2005). The most up-to-date 

version of PSL is available from the PSL Website (PSL Website, 2009), and 

this has been the primary source for obtaining the Core and Outer-Core 

theories in the Common Logic Interchange Format. The CLIF version of PSL 

Core and Outer-Core has been expressed using the Knowledge Framework 
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Language (KFL). Appendix C.1 documents relevant PSL concepts exploited in 

this work alongside the corresponding IDEF5 schematics. 

 

The purpose of PSL Core is to axiomatise a set of intuitive semantic primitives 

that is adequate for describing the fundamental concepts of manufacturing 

processes (PSL Website, 2009). Figure 5-1 depicts the four classes defined in 

PSL Core namely “Object”, “Activity”, “Activity_Occurrence” and “Timepoint”. 

Note that the root class “Origin” is an abstract class defined in the Foundation 

Layer to keep the taxonomy tidy, and thus does not carry any formal 

semantics other than being the super-class of the four defined classes from 

PSL Core. 

 

PSL Outer-Core, consists of a number of theories that together bring greater 

strength to PSL, in terms of logical expressiveness. PSL Outer-Core involves 

the: (1) Theory of Subactivities, (2) Theory of Occurrence Trees, (3) Theory of 

Discrete States, (4) Theory of Atomic Activities, (5) Theory of Complex 

Activities and (6) Theory of Activity Occurrences.  

 

 

 

 

 

 

 

 

 

 

5.2.2 Entity Information Semantics 

The development of entity information semantics compensates for the limited 

ability of PSL to capture object-centric semantics (Young et al, 2007). Entity 

information semantics are explored in the heavyweight manufacturing 

ontological foundation to formalise a set of semantic structures for the formal 

representation of mechanical product definition using features. In other words, 

Figure 5-1 PSL Core Classes 
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entity information semantics help capture enriched product models by 

embedding the meaning associated to: 

  

 Product feature geometries expressed as a collection of 2-D faces and 

their semantic relationships to produce 3-D features, 

 The dimensional and dimensional tolerance parameters related to product 

feature geometries  in design and manufacture, 

 The functional aspects of product features, thereby providing a useful way 

to describe features from different viewpoints, and, 

 The aggregation of features into complete artifacts or families of parts. 

 

The sub-sections of section 5.2.2 document the progressive build up of core 

intuitions which help to capture the above-mentioned semantic capability in 

the heavyweight manufacturing ontological foundation. Entity information 

semantics in the heavyweight manufacturing ontological foundation are 

defined based on the fundamentals from the revised Core Product Model 

(CPM) (Fenves et al, 2004) as a proposed foundation for interoperability in 

next-generation product development systems (Szykman et al, 2001) and 

those from ISO 10303 AP224 because of its slant onto wide-ranging feature 

definitions and also because features support the integration between design 

and manufacture (Abouel Nasr and Kamrami, 2006; Dartigues et al, 2007; 

Nassehi et al, 2007). 

 

This combined approach used in the Foundation Layer supports the ability to 

capture, represent and axiomatise important reusable and extensible entity 

information semantics. The approach shows that the specification of product 

definition semantics backed by the expressive Common Logic-based KFL is a 

novel aspect brought forward, that from a semantic viewpoint goes one step 

beyond related work. This is because documented work points to the fact that, 

so far, conceptualisations involving product definitions have at most exploited 

heavyweight Description Logics with rule languages (Patil et al, 2005; Kim at 

al, 2007; Rabe and Gocev, 2008).  
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5.2.2.1 Core Entities and Core Properties 

As a starting point for capturing entity information semantics, the required 

ontological commitments have been identified and are based on the following 

intuitions: 

 

 Concepts defined to capture and represent entity information semantics 

extend the “Object” concept from PSL. 

 “Core_Entity” (Fenves et al, 2004) is a kind of abstract object from which 

the concepts “Artifact” and “Feature” originate. 

 “Core_Property” (Fenves et al, 2004) is another kind of abstract object 

whose hierarchy captures relevant notions that embody core entities.  

 

Thus, the two concepts found in the CPM namely “Core_Entity” and 

“Core_Property” initially categorise the “Object” class as shown in Figure 5-2.  
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While the abstract “Core_Entity” concept involves the basic semantics of 

features and artifacts that hold features, the abstract “Core_Property” concept 

is present to provide more detail semantics, primarily used towards product 

feature definitions and their behaviours. Figure 5-2 also identifies the 

decomposition structure of “Core_Entity” and “Core_Property”. The concepts 

“Artifact”, “Feature”, “Function” and “Material” originate from the CPM while 

the remaining sub-classes of “Core_Property” are adapted from ISO 10303 

AP224.  

 

Two binary relations are specified to initially capture the idea that core entities 

may hold some function and some material, which are essential factors that 

govern the existence of entities in the first place (see Figure 5-3). By, for 

example, adding an axiom to capture the constraint that every core entity may 

hold some function, it is possible to enforce an optional necessary condition, 

which is also carried upwards to the Domain Ontology Layer. Expression 5-1 

depicts the Common Logic Interchange Format (CLIF) statement of the 

integrity constraint (IC), i.e. axiom. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Function
holds_function

C

Core_Entity

Material
holds_material

C

Core_Entity

Figure 5-3 “holds_function” and “holds_material” 
Binary Relations 

(forall (?coreEnt) 
(=> (Core_Entity ?coreEnt) 
      (exists (?func) 
 (and (Function ?func) 
         (holds_function ?coreEnt ?func))))) 

Expression 5-1 IC: Every Core Entity Holds Some 
Function 
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Core properties provide the essential building blocks for core entities. In the 

Foundation Layer, the gradual build-up of formal entity information semantics 

is achieved by exploiting a number of inter-dependent sub-theories developed 

in an ascending process. These sub-theories start with geometry and 

measure items followed by shape aspects, features and artifacts, transition 

features and dimensional tolerances. This particular order has been chosen 

because within ISO 10303 AP224  and partly CPM: 

 

 Shape aspects are 2-D profiles which are defined using geometry and 

measure items. 

 Shape aspects are swept along 2-D paths to produce 3-D features. 

 Artifacts are made up of an aggregation of features. 

 Transition features only come into existence when standard features 

already exist. 

 Dimensional tolerances can only be meaningfully captured from the shape 

aspects of features that make up artifacts. 

 

As a consequence of the detailed and extensive nature of foundation entity 

information semantics, only some of the pertinent examples are illustrated in 

this chapter. The formal semantics, alongside the corresponding IDEF5 

schematics of the developed entity information semantics can be consulted in 

Appendix C.2.  

 

5.2.2.2 Measure and Geometry Items 

Measure and geometry items provide the intuitions towards the very basic 

elements of entity information semantics from which more complex core 

property definitions can be derived. The following intuitions apply to measure 

and geometry items: 

 

 Measure items provide the semantics for the representation of measure 

qualities. There are two kinds of entities that have been chosen for 

reasoning about measure qualities namely “Length_Measure” and 
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“Angle_Measure”. These two concepts provide the description for qualities 

of lengths and angles respectively. 

 “Measure_Item” is an abstract kind of “Core_Property” because any 

instance of “Measure_Item” can only exist as a “Length_Measure” or 

“Angle_Measure”. 

 A “Length_Measure” or an “Angle_Measure” can only be meaningfully 

described using some real number with some attached unit of 

measurement. 

 “Geometry_Item” is an abstract kind of “Core_Property” for which the 

concepts “Point”, “Vector_Direction” and “Placement” are sub-classes of. 

 Points and vector directions are the fundamental information elements 

necessary to provide a description of the placement of an entity. 

 Thus, geometry items help specify the spatial description of the elements 

that make up features and artifacts. Points, vector directions as well as 

placements are characterised by spatial descriptions that involve the 

informal notion of X, Y and Z Cartesian axes. These axes define three 

mutually perpendicular imaginary planes in space. 

 

Figure 5-4 identifies the taxonomy of the classes “Measure_Item” and 

“Geometry_Item”, following the previously identified intuitions. Figure 5-5 then 

depicts a unary function “mm”. This instance of “UnaryFun” has an “argProp” 

which is a “RealNumber” and a “returnProp” which is a “Length_Measure” 

(note that “RootCtx” is the namespace for the KFL meta-ontology). This 

implies that the “mm” function attached to a real number, for example, (mm 

10), denotes an instance of the class “Length_Measure”. 
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As a result of the expressive first order semantics of KFL, two ternary 

functions, “coordinates” and “direction”, have also been defined to denote 

instances of “Point” and “Vector_Direction” respectively. So, for example, the 

point given by “(coordinates (mm 10) (mm 10) (mm 10))” provides a spatial 

designation of a certain point with respect to the X, Y and Z Cartesian axes. 

One axiom related to this concept appears in Expression 5-2. The CLIF 

statement imposes a necessary condition that every specification of an 

instance of “Point” should be given by some X, Y and Z length measure 

coordinates. The specification of functions of the required arities is vital for 

capturing in an expressive and constrained way some of the lengthy 

structures from ISO 10303 AP224 used to capture the same intuitions.  
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Figure 5-5 The "mm" Unary Function Used to Denote an 
Instance of “Length_Measure” 

(forall (?pt) 
(=> (Point ?pt) 
      (exists (?length1 ?length2 ?length3) 
 (and (Length_Measure ?length1) 
         (Length_Measure ?length2) 
         (Length_Measure ?length3) 
         (= ?pt (coordinates ?length1 ?length2 ?length3)))))) 

Expression 5-2 IC: Every Point Is Given by Some X, Y and Z 
Coordinates 
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5.2.2.3 Shape Aspects 

A shape aspect is regarded as an entity that provides the geometric 

information necessary towards the creation of a feature, such as the 

identification of 2D shapes, which when swept along a path create 3D 

features (ISO 10303-224, 2006). The following intuitions apply: 

 

 There can be several different types of entities whose semantics allow 

reasoning about shape aspects. In the context of this work, six 

fundamental types of shape aspect entities are considered namely 

“Circular_Closed_Profile”, “Rectangular_Closed_Profile”, “Linear_Path”, 

“Linear_Profile”, “Taper” and “Transition_Feature”. These kinds of shape 

aspects are sourced from ISO 10303 AP224. 

 “Shape_Aspect” is an abstract kind of “Core_Property” from which the 

concepts “Circular_Closed_Profile”, “Rectangular_Closed_Profile”, 

“Linear_Path”, “Linear_Profile”, “Taper” and “Transition_Feature” are 

specialised.  

 Circular closed profiles as well as rectangular closed profiles have their 

orientation positioned perpendicular to the centre of the profile surfaces.  

 

Figure 5-6 indicates the taxonomy for the abstract class “Shape_Aspect”. 
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Consider the class “Linear_Profile” in the class hierarchy from Figure 5-6. The 

informal semantics of “Linear_Profile” state that: 

 

 An instance ?lp of the class “Linear_Profile” is TRUE in an interpretation of 

the Foundation Layer if and only if ?lp is a member of a set of linear 

profiles. A linear profile is an open profile that involves exactly two 

connected points in a straight line of specified length. 

 

In the context of this work, linear profiles are essential to provide semantic 

definitions linked to, for example, the axes of hole features and other basic 

features. To formalise the above informal semantics, two relations are 

specified: a ternary relation named “meets” and a binary relation named 

“measures”, the latter being applicable to the other sub-classes of 

“Shape_Aspect” as well. Figure 5-7 identifies the two relations.  

 

 

 

 

 

 

 

 

The CLIF statements in expressions 5-3 to 5-6 (also refer to Figure 5-8) 

capture a majority of the foundation axioms that govern the behaviour of 

“Linear_Profile”. In Expression 5-3, the axiom is formulated to capture the 

intuition that if a linear profile ?lp “meets” two points ?pt1 and ?pt2, then ?lp 

also “meets” ?pt2 and ?pt1, hence the symmetry of the relation “meets”. 

Moreover, another axiom (Expression 5-4) involves the intuition that a linear 

profile ?lp cannot meet the same point ?pt twice. Hence, this implies that the 

necessary condition in Expression 5-5 holds in all cases, i.e. the definition of 

any instance of “Linear_Profile” should be followed by the identification of two 

distinct points that the linear profile instance “meets”.  
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Also, since the informal semantics state that a linear profile needs to have a 

specified length as a basis for its measure, this immediately conducts the 

importance of having Expression 5-6 as another IC. Similar chaining of ICs 

has been followed throughout the development of the heavyweight 

manufacturing ontological foundation in order to encase generic but 

constrained intuitions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(forall (?lp ?pt1 ?pt2) 
(=> (meets ?lp ?pt1 ?pt2) 
      (meets ?lp ?pt2 ?pt1))) 

(forall (?lp ?pt) 
(=> (and (Linear_Profile ?lp) 
  (Point ?pt)) 
      (not (meets ?lp ?pt ?pt)))) 

Expression 5-3 IC: The Relation "meets" is Symmetric over Linear 
Profiles and Points 

Expression 5-4 IC: The Relation "meets" is Irreflexive on Points 

(forall (?lp) 
(=> (Linear_Profile ?lp) 
      (exists (?pt1 ?pt2) 
 (and (Point ?pt1) 
         (Point ?pt2) 
         (/= ?pt1 ?pt2) 
         (meets ?lp ?pt1 ?pt2))))) 

Expression 5-5 IC: Every Linear Profile “meets” Two 
Distinct Points 

(forall (?lp) 
(=> (Linear_Profile ?lp) 
 (exists (?length) 
      (and (Length_Measure ?length) 
              (measures ?lp ?length))))) 

Expression 5-6 IC: Every Linear Profile Has an 
Associated Length Measure 

Figure 5-8 Linear Profile Semantics 

?length

?pt1 ?lp

?pt2
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5.2.2.4 Features and Artifacts 

An artifact is a distinct entity whether that entity is a component, part, 

subassembly or assembly, which can be defined in terms of the features that 

constitute it. Hence, a feature represents a portion or element of interest of an 

artifact‟s form (Fenves et al, 2004). The following intuitions apply: 

 

 Features may have specific functions assigned to them depending on their 

purpose (Expression 5-2 previously explained captures this intuition). 

 “Feature” is a kind of “Core_Entity” for which the chosen concepts 

“Round_Hole”, “Cylinder” and “Block” are sub-classes of. Several other 

kinds of features can exist but fall outside the scope of this research. 

 Round holes, cylinders and blocks as 3-D features consist of closed 2-D 

profiles that are swept along a 2-D linear path to produce 3-D features. 

 Compound features are not considered a new categorisation of “Feature” 

since they consist of the aggregation of more than one simple feature. 

Thus, the “compound” property of a complex feature is such that the 

compound feature inherits its semantics from its individual constituent 

features. 

 “Artifact” is a kind of “Core_Entity” and has its own containment hierarchy 

so that individual artifacts can be aggregated into more complex ones 

(Fenves et al, 2004). 

 

Figure 5-9 illustrates the taxonomy of the “Feature” class, with two important 

binary relations “holds_feature” and “holds_shape” that allow artifacts to be 

described in terms of features, and features in terms of shape aspects, 

respectively. Consider the class “Round_Hole” from Figure 5-9. To capture 

part of the axioms governing the existence of an instance of “Round_Hole”, 

Expressions 5-7 and 5-8 have been formulated. The logic captured in these 

axioms (also see Figure 5-10) imposes the necessary conditions that any 

specification of an instance of “Round_Hole” should be accompanied by the 

identification of two distinct instances of “Circular_Closed_Profile” (Expression 

5-7) and one instance of “Linear_Path” (Expression 5-8) related to that 

instance of the “Round_Hole” through the “holds_shape” binary relation. 
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(forall (?hole) 
(=> (Round_Hole ?hole) 
      (exists (?ccp1 ?ccp2) 
 (and (Circular_Closed_Profile ?ccp1) 
         (Circular_Closed_Profile ?ccp2) 
         (/= ?ccp1 ?ccp2) 
         (holds_shape ?hole ?ccp1) 
                     (holds_shape ?hole ?ccp2))))) 

(forall (?hole) 
(=> (Round_Hole ?hole) 
      (exists (?lin) 
 (and (Linear_Path ?lin) 
         (holds_shape ?hole ?lin))))) 

Expression 5-7 IC: Every Round Hole Feature 
Holds Two Distinct Circular Closed Profiles 

Expression 5-8 IC: Every Round Hole Feature 
Holds One Linear Path 

Figure 5-9 Class Hierarchy of "Feature" and Binary Relations 
"holds_feature" and "holds_shape" 

?ccp1

?ccp2

?lin

?hole

Figure 5-10 Round Hole Semantics 
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5.2.2.5 Transition Features 

A transition feature is a kind of shape aspect that represents a transition 

region between two geometrically-defined faces. The main intuitions are: 

 

 “Transition_Feature” is an abstract kind of “Shape_Aspect” from which the 

concepts “Constant_Radius_Edge_Round”, “Constant_Radius_Fillet” and 

“Chamfer” are specialised (ISO 10303-224, 2006).  

 Transition features can only come into existence if proper features like 

cylinders and round holes already exist. 

 Transition features require no orientation for placement since their 

positions are relative to predefined surfaces of proper features (ISO 

10303-224, 2006). Hence because transition features do not exhibit the 

same fundamental behaviour as proper features like cylinders and round 

holes, this implies that transition features are essentially shape aspects. 

 

Figure 5-11 depicts the class hierarchy of the “Transition_Feature” abstract 

class and one binary relation “blends” which holds between 

“Transition_Feature” and “Shape_Aspect”. This relation is used to capture the 

blending relationship that exists between transition features and shape 

aspects. The type of logical integrity constraints formulated for transition 

features follow a similar understanding explained so far in this chapter. 

Additionally, Appendix C.2 can be consulted for a more detailed insight into 

transition feature semantics. 
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5.2.2.6 Dimensional Tolerances 

A dimensional tolerance is the total amount a specific dimension is permitted 

to vary, which is the difference between maximum and minimum permitted 

limits of size (ISO 10303-224, 2006). The following intuitions apply to 

dimensional tolerances in the Foundation Layer: 

 

 “Dimensional_Tolerance” is a kind of “Core_Property”. It does not have 

any further decompositions since a dimensional tolerance may be 

regarded as reusable element of information.  

 The behaviour of a dimensional tolerance either as a size tolerance or 

location tolerance is dictated by the tolerance relationships that hold 

between shape aspects, features, measure items and dimensional 

tolerances. 

 Tolerance values can only be meaningfully interpreted by having a lower-

bound or minimum real value and an upper-bound or maximum real value, 

both of which are accompanied with units of measurement. 

 

Figure 5-12 illustrates two higher-arity relations that can be used for the 

specification of size tolerances and location tolerances using reusable 

dimensional tolerance values. In the case of these two relations, the informal 

semantics play an important role in their interpretation at computational level. 
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The informal semantics for the “holds_size_tolerance” relation states that the 

relation is TRUE if and only if a shape aspect holds a given dimensional 

tolerance with respect to the toleranced measure item of the shape aspect. 

Similarly, the quaternary relation “holds_location_tolerance” is TRUE if and 

only if a feature holds a given dimensional tolerance with respect to the 

toleranced measure item, which separates the initial feature from another 

feature. On the other hand, an important rule in ISO 10303 AP224 regarding 

tolerance values is related to the value component of the lower limit being 

always less than that of the upper limit. To capture this fundamental intuition, 

Expression 5-9 has been defined. This expression imposes a constraint such 

that the first real number argument of the binary function “tolerance_value” is 

always less than the second real number argument. Thus, for example, 

“(tolerance_value (mm -0.1) (mm 0.1))” would be a correct instance of 

“Dimensional_Tolerance” while “(tolerance_value (mm 0.1) (mm 0.1))” would 

be incorrect and the irregularity would be flagged. 

 

 

 

 

 

 

 

 

5.2.3 Flow Objects 

Most process models support the notion of input and output, which are data or 

objects provided to a behaviour execution before it starts, and data produced 

when it finishes, respectively (Bock and Gruninger, 2005). An additional set of 

basic concepts that hold between entities and processes has been explored, 

partly based on previous work performed by Bock and Gruninger (2005), in 

order to overcome the current limitations of PSL to relate to products inputs 

and outputs (Young et al, 2007). The following intuitions summarise the 

understanding behind the definition of relationships between entities and 

processes: 

(forall (?dtol ?real1 ?real2) 
(=> (and (Dimensional_Tolerance ?dtol) 
   (RealNumber ?real1) 
   (RealNumber ?real2) 
   (or (= ?dtol (tolerance_value (mm ?real1) (mm ?real2))) 
        (= ?dtol (tolerance_value (degree ?real1) (degree ?real2))))) 
       (ltNum ?real1 ?real2))) 

Expression 5-9 IC: The Lower-Bound Value of a Dimensional Tolerance Is 
Always Numerically Less Than Its Upper-Bound Value 
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 A flow object is the property of an entity that can participate as a 

precondition and/or post-condition on runtime executions of activities. In 

other words, an object that has the property of being a flow object acts as 

an input and/or output on activity occurrences. 

 Activity occurrences that depend on precondition entities, i.e. input flow 

objects, must be executed after other activity occurrences have provided 

these precondition entities as post-condition entities, i.e. output flow 

objects. An input flow object can also participate in the execution of a 

complex activity. 

 Input and output flow objects can participate in activity occurrences that 

use the “min_precedes” ordering relation that provides a weaker ordering 

constraint, although the “next_subocc” relation can be used to provide a 

stronger ordering constraint as required. The two relations are introduced 

in the PSL Outer-Core Theory of Complex Activities. 

 Entity information semantics explained in section 5.2.2 enable the explicit 

ontological definition of fundamental concepts relevant to mechanical 

products. It is obvious that during a complex activity occurrence several 

input and output flow objects are likely to exist. Intermediate input and 

output flow objects, for example, may not necessarily have explicitly-

defined entity information semantics. These specific flow objects whose 

definitions are not explicitly captured are regarded as being implicit in 

nature.  

 

Figure 5-13 depicts the fundamental nature of the intuition about explicit and 

implicit flow objects. In the diagram, a complex process sequence is identified, 

one that consists of a centre drilling operation followed by a drilling operation. 

A number of entities act as inputs and outputs to the subactivity occurrences 

within the complex process, for example, the explicitly-defined block 

“Object_A” is an input flow object to “Centre_Drill_Occ”. The resulting output 

flow object “Object_B”, whose formal representation using foundation entity 

information semantics is not explicitly captured (i.e. implicit), then becomes an 

input to “Drill_Occ”. The flow object “Object_C” which is an output from 
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“Drill_Occ” is an explicit object provided “Object_C” holds a complete 

representation using foundation entity information semantics. 

 

Figure 5-14 identifies all the binary and unary relations defined to formalise 

the key participation relationships that hold between entity information and 

process semantics. The unary relations “flow_object”, “implicit” and “explicit” 

are used to differentiate between standalone objects and those that 

participate as inputs and outputs to activity occurrences. A full list of axioms 

governing these relationships is found in Appendix C.3. 
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Figure 5-13 Explicit and Implicit Flow Objects 
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5.2.4 Summary of Foundation Layer 

Section 5.2 of this chapter has exposed the main concepts and the intuitions 

exploited in order to conceptualise and formalise the Foundation Layer of the 

SMIF ontology-based approach. The main components of the first layer 

consist of: 

 

 The expressive Common Logic-based Knowledge Framework Language 

(KFL). 

 Concepts from PSL Core and PSL Outer-Core. 

 The mergence, adaptation and improvement, from a heavyweight 

ontological viewpoint, of relevant object concepts originating from ISO 

10303 AP224 and the Core Product Model (CPM). 

 The definition of concept relationships that dictate how entities should 

participate in processes. 

 

The foundation ontology approach, employed in the Foundation Layer, 

provides the initial vital building blocks to support the communication and 

interoperability requirements in product design and manufacture. Through the 

approach discussed in this chapter, it is clear that an integrated heavyweight 

manufacturing ontological foundation is a prerequisite. However, it is to be 

noted that the ontological foundation is multi-dimensional in nature, as it 

integrates different theories and combination of approaches, to help address 

the semantics of a range of system domains within design and manufacture. 
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5.3 Domain Ontology Layer 

The Domain Ontology Layer is at the second level of the Semantic 

Manufacturing Interoperability Framework (SMIF). Reusable foundation 

semantics from the Foundation Layer can be specialised for the development 

of domain models. In essence a domain ontology classifies the most general 

information that characterises an entire domain (IDEF5 Method Report, 1994), 

where they are designed to provide common high-level knowledge related to 

system structures and controls and are designed for industry specific needs 

(Chandra and Kamrani, 2003).  

 

It follows that in the Domain Ontology Layer, a domain model is an 

established view-specific model whose content is developed according to the 

knowledge assets, practices and preferences, terminologies and constraints 

that govern the domain in question. A domain shares an agreed commitment 

to its domain ontology. Figure 5-15 exemplifies the conceptual difference 

between sample concepts, coming from the heavyweight manufacturing 

ontological foundation, and possible domain-specific concepts that could be 

specialised, in a single ontology within the Domain Ontology Layer.  

 

Figure 5-15 first identifies two entity information classes namely “Round_Hole” 

and “Function” (A) (also see figures 5-3 and 5-10) as well as the PSL-based 

process concepts “Activity” and “Activity_Occurrence” (B) respectively. 

Relevant semantics such as relations and ontological functions also apply to 

the example (here not illustrated for clarity). These sample foundation 

concepts are then specialised in the Domain Ontology Layer to establish new 

concept definitions such as “Positioning_Hole” (C) and to formalise domain-

specific knowledge such as the machining constraints that apply to the 

production of positioning holes (D).  

 

In the example in Figure 5-15, the “Positioning_Hole” (C) concept 

demonstrates the prevalence of domain-assigned terminologies set with 

respect to the intended function of the feature concept. Similarly, the 
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knowledge of machining constraints on positioning holes (D) could potentially 

follow from the best practice knowledge that resides at factory level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The specialisation dimension between the Foundation Layer and the Domain 

Ontology Layer is key to the SMIF approach and consists of: 

 

 The ontological mechanisms that allow specialisation to occur in the first 

place. This can be achieved through the specification of ontological 

relationships between foundation semantics and domain-centric 

semantics. 

Figure 5-15 Example to Illustrate the Conceptual Difference between Foundation and 
Domain Concepts 
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 The specification of new domain-defined integrity constraints and 

ontological definitions used for knowledge inference. Domain-defined 

integrity constraints and ontological definitions can exist as long they do 

not violate foundation axioms.  

 The ability to instantiate domain and/or foundation concepts in the Domain 

Ontology Layer and use foundation and domain-defined semantics for 

discrete knowledge representation. For example, the specification of an 

instance of the class “Positioning_Hole” of known dimensions that is the 

output from a specific execution of a hole reaming process sequence. 

 

A detailed account of ontology specialisation in the Domain Ontology Layer is 

documented next, based on the scenario introduced in Figure 5-15. 

 

5.3.1 Domain Specialisation of Foundation Semantics 

5.3.1.1 Contexts for Domain Models 

In the SMIF, domain models are built “within contexts”. “Contexts” are very 

similar to namespaces applied to the Semantic Web. It is well known that the 

emerging layers of the W3C‟s architecture are incorporating support for a 

multiple-ontology Semantic Web, founded on distributed information 

architecture standards such as URIs and XML namespaces for creating object 

identifiers that can be defined with respect to a local ontology, yet referenced 

globally (Hameed et al, 2004). Similarly, contexts for domain models in the 

framework have two main purposes namely: 

 

 To distinguish between elements and attributes from different vocabularies 

with different meanings that happen to share the same name (Harold and 

Means, 2004). 

 To group all related domain arguments from a single domain model 

together so that ontology implementation platforms can easily identify 

them. 
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During domain ontology construction, it is possible to envisage domains using 

concept terms, that are the same as in the heavyweight ontological 

manufacturing foundation, to refer to different domain concepts. Similarly, two 

separately-developed domain ontologies could be employing the same terms 

to mean different notions. At first sight this would lead to semantic 

reconciliation problems and matching conflicts. However, in the SMIF, 

because domain models are built “within contexts”, this implies that each term 

used to designate each argument is defined in a single context. 

 

Using the understanding of contexts for ontologies, the two terms 

“Round_Hole” and “Positioning_Hole” (see Figure 5-15) are clearly 

disambiguated since “Round_Hole” is in fact “Foundation.Round_Hole” while 

“Positioning_Hole” is “DomainX.Positioning_Hole”, where “Foundation” and 

“DomainX” are the defined contexts for the heavyweight ontological 

manufacturing foundation and the domain ontology in question, respectively. 

Another domain ontology could be employing the term “Positioning_Hole” but 

the latter would avoid confusion with “DomainX.Positioning_Hole” as long as 

the context for that domain ontology be different, for example, 

“DomainY.Positioning_Hole”.  

 

5.3.1.2 Ontological Relationships between Foundation and Domain 

Ontology Layers 

Part of the mechanisms that allow specialisation to take place in the Domain 

Ontology Layer consists of three fundamental ontological relationships. The 

domain taxonomy (of classes and relations) can be made homogeneous and 

logical using the principle of specialisation through subsumption (Rector, 

2003). Two subsumption relations that enable taxonomies of classes and 

relations to exist are: (1) super/sub-class relation and (2) super/sub-relation 

relation respectively. The third ontological relationship, which is not a 

subsumption relation, is (3) instance-of, which makes the population of facts 

possible through the instantiation of classes. These three ontological relations 

are key to the internal structure of any ontology-based model, and are thus 

accounted for in all meta-model ontologies such as the Ontology Works Upper 
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Level Ontology (Ontology Works, 2009), the Protégé knowledge model (Noy 

et al, 2000) and that of Ontolingua (Gruber, 1992).  

 

Figure 5-16 depicts how subsumption relations may be used to specialise the 

“Round_Hole” and “Function” foundation classes as well as the 

“holds_function” foundation binary relation. The domain class 

“Positioning_Hole” is made a sub-class of “Round_Hole” through the “sup” 

relation that holds between classes. The relation “sup” is the super/sub-class 

relation as defined in the Ontology Works Upper Level Ontology for the KFL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The “supRel” relation, also present in the KFL meta-ontology, is used to form 

taxonomies of relations. As can be seen in Figure 5-16, the binary relation 

“holds_feature_function” in the Domain Ontology Layer is a sub-relation of the 

foundation relation “holds_function”. Note that this example does not illustrate 

instantiation of classes as this is treated in more detail in section 5.3.1.6 of 

this chapter. From the Foundation Layer, it is possible to provide the ability to 

enable or constrain the specialisation of domain taxonomies of classes and 
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relations. This consequently leads to two types of possible specialisation 

approaches in the SMIF namely (1) the flexible specialisation approach and 

(2) the controlled specialisation approach. These two specialisation 

approaches, explained next, have important repercussions on the capability of 

evaluating the interoperation between instantiated facts coming from pairs of 

domain models. 

 

5.3.1.3 The Flexible Specialisation Approach 

As its name suggests, the flexible specialisation approach enables domains to 

reuse foundation semantics without being imposed of domain ontology 

structural restrictions (apart from restrictions in violating foundation integrity 

constraints explained later in this chapter). In other words, the subsumption 

relations identified previously in Figure 5-16 are fully permitted as well as the 

declaration of instances. The consequence of creating relation taxonomies 

using “supRel” is a major concern to the reconciliation of instantiated facts 

across domain models. This is because the ability to evaluate the 

interoperation between cross-domain arguments at the instance level 

between domain models is drastically reduced. 

 

Consider the example illustrated in Figure 5-17. Since the foundation relation 

“holds_function” holds between the classes “Core_Entity” and “Function” (also 

see Figure 5-16), this necessarily implies that “Round_Hole”, which is part of 

the taxonomy of “Core_Entity” is also an argument to the “holds_function” 

relation as shown in (E). These foundation semantics are then specialised 

using the relations “sup” and “supRel” to form domain taxonomies of classes 

and relations in two domain model contexts here identified as “DomainX” and 

“DomainY”. For example, in “DomainX”, “Positioning_Hole” is a sub-class of 

“Round_Hole” while “holds_feature_function” is a sub-relation of the 

foundation relation “holds_function”.  

 

Based on this specialisation scenario, suppose it is necessary to establish an 

inference reconciliation relation, called “Relation_XY” (F), between instances 

of all domain-defined sub-classes of “Round_Hole” that are always 
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accompanied by the specification of some “Function" instance. An example of 

one such specification is “Hole_X holds_feature_function Location_Criteria_X” 

in “DomainX” while the statement of “Hole_Y holds_hole_function 

Position_Criteria_Y” is another similar example in “DomainY”. In order to 

logically replicate this specialisation scenario, which then leads to the ability to 

assign the “Relation_XY” (F) between applicable instances from both domain 

models, it is first required to formalise the scenario. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Expression 5-10 identifies the inference axiom required for modelling the 

above scenario. The inference axiom has been broken down into sections in 

order to explain the relevance of each logic-based section in relationship to 

the example exposed in Figure 5-17.  

 

 

 

 

 

Figure 5-17 Example of the Flexible Specialisation Approach Involving Relation 
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The above expression states that the variables ?x and ?y are related through 

the binary relation “Relation_XY” (F) if and only if: 

 

 ?x is an instance of the foundation class “Round_Hole” and is defined in 

the “DomainX” context and can, therefore, pertain to any sub-class of 

“Round_Hole” defined in “DomainX” (G).  

 ?fx is an instance of the foundation class “Function” and is defined in the 

“DomainX” context and can, therefore, pertain to any sub-class of 

“Function” defined in “DomainX” (H). 

 ?relx has the super-relation “holds_function” and is defined within the 

“DomainX” context (I).  

 ?relx is the relation that binds the instance ?x to the instance ?fx (J). 

 ?y is an instance of the foundation class “Round_Hole” and is defined in 

the “DomainY” context and can, therefore, pertain to any sub-class of 

“Round_Hole” defined in “DomainY”.  

(forall (?x ?y ?fx ?fy ?relx ?rely) 
(<= (Relation_XY ?x ?y)   (F) 
 
      (and (Round_Hole ?x) 
  (withinContext ?x DomainX) 
 
  (Function ?fx) 
  (withinContext ?fx DomainX) 
 
  (supRel ?relx holds_function) 
  (withinContext ?relx DomainX) 
 
  (?relx ?x ?fx)   (J) 
  
  (Round_Hole ?y) 
  (withinContext ?y DomainY) 
 
  (Function ?fy) 
  (withinContext ?fy DomainY) 
 
  (supRel ?rely holds_function) 
  (withinContext ?rely DomainY) 
 
  (?rely ?y ?fy))))   (K) 

(G) 

(H) 

(I) 

Expression 5-10 Example of a Redundant Reconciliation 
Axiom as a Result of Unbound Relation Variables 
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 ?fy is an instance of the foundation class “Function” and is defined in the 

“DomainY” context and can, therefore, pertain to any sub-class of 

“Function” defined in “DomainY”. 

 ?rely has the super-relation “holds_function” and is defined within the 

“DomainY” context.  

 ?rely is the relation that binds the instance ?y to the instance ?fy (K). 

 

Although this axiom at first sight appears to be correct, it is vital to point out 

that there is a problem within Expression 5-10, which constitutes the primary 

drawback, from an ontology interoperability perspective, of enabling domain 

relation taxonomies. The lines (J) and (K), i.e. (?relx ?x ?fx) and (?rely ?y ?fy) 

respectively, cannot be processed because of the presence of the variables 

?relx and ?rely used to denote possible sub-relations of “holds_function” that 

become unbound in lines (J) and (K). This inevitably occurs as a 

consequence of trying to capture possible relations specialisations, and 

prevents the desired level of deductive reasoning to be reached. Deduction 

(deductive reasoning) in this case refers to the process of reaching a 

conclusion on the basis of some given premises (Markovits, 2004), and is a 

fundamental part of logical reasoning. Hence, this example identifies the 

inference issues at the instance level arising from the creation of relation 

taxonomies in domain ontologies.  

 

5.3.1.4 The Controlled Specialisation Approach 

The controlled specialisation approach overcomes the issue of ontology 

interoperation at the instance level. By restricting domain models from 

specialising foundation relations, it is possible to carry out deductive 

reasoning at the instance level, across the KBs of domain models. Expression 

5-11 depicts an integrity constraint which can be added to the heavyweight 

manufacturing ontological foundation to prevent domains from creating 

relation subsumptions and relation taxonomies. 
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Expression 5-11 informally states that if there is purely a relation ?rel, where 

?rel is defined within the “Foundation” context, then no specification of a sub-

relation of ?rel identified as ?subrel is meant to exist. This integrity constraint 

immediately imposes a structural constraint at the Domain Ontology Layer. 

This constraint is portrayed in Figure 5-18, where it can clearly be discerned 

that the “holds_function” foundation relation is used as-is in both “DomainX” 

and “DomainY”. Consequently, a deductive reconciliation axiom can be 

written (see Expression 5-12) with the intention of reconciling all the instances 

of “Round_Hole” defined in “DomainX” and “DomainY” that happen to hold 

some function, for example, “Hole_X holds_function Location_Criteria_X” in 

“DomainX” and “Hole_Y holds_function Position_Criteria_Y” in “DomainY”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(forall (?rel) 
(=> (and (Relation ?rel) 
   (not (Property ?rel)) 
   (withinContext ?rel Foundation)) 
   (not (exists (?subrel) 
  (and (Relation ?subrel) 
          (supRel ?subrel ?rel)))))) 

Expression 5-11 IC: Subsumptions Involving 
Foundation Relations Are Not Permitted 

Figure 5-18 Example of the Controlled Specialisation Approach 
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Expression 5-12 remains somehow similar to Expression 5-10. However, the 

difference lies in lines (L) and (M) where instead of having variables to denote 

relations, the known foundation relation “holds_function” is present. The 

arguments to the “holds_function” relation are also obvious, for example, line 

(L) comprises (holds_function ?x ?fx), meaning ?x is the first argument to the 

relation “holds_function” and ?fx is the second argument to the same relation, 

where it is known that ?x and ?fx refer to some instance of “Round_Hole” and 

some instance of “Function” in “DomainX” respectively. This understanding 

also applies to line (M). Hence, Expression 5-12 is well-formed and for this 

reason, the controlled specialisation approach provides a way for enabling 

cross-domain inferences to be performed at the instance level of domain 

models. 

 

5.3.1.5 Integrity Constraints and the Domain Ontology Layer 

One of the features of integrity constraints (ICs), as a means to embed 

foundation ontological axioms as prescriptions to complement semantic 

knowledge (Mäs et al, 2005), has previously been exposed (see section 5.2). 

In addition to this, ICs also have a direct influence on the semantic 

conformance of domain models that are developed in the second layer of the 

SMIF. ICs ensure that the completeness of the heavyweight ontological 

(forall (?x ?y ?fx ?fy) 
(<= (Relation_XY ?x ?y)   (F) 
 
      (and (Round_Hole ?x) 
  (withinContext ?x DomainX) 
  (Function ?fx) 
  (withinContext ?fx DomainX) 
 
  (holds_function ?x ?fx)   (L) 
  
  (Round_Hole ?y) 
  (withinContext ?y DomainY) 
  (Function ?fy) 
  (withinContext ?fy DomainY) 
 
  (holds_function ?y ?fy))))   (M) 

Expression 5-12 Example of a Deductive Reconciliation 
Axiom 
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manufacturing foundation as a logical theory is met. As a consequence of 

domain models being specialised directly from foundation semantics, 

foundation ICs ascertain that the soundness in semantics is conveyed to 

domain-defined arguments too. 

 

Consider the example shown in Figure 5-19, where a foundation IC is present 

in order to detect incorrect or incomplete specifications involving the binary 

relation “holds_function”. The IC is written in KFL and is appended in line (U) 

with a textual statement that reads: “The holds_function relation only holds 

between core entities and functions”. Note the “:IC soft” declaration at the 

beginning of line (U), which is a KFL-permitted declaration. Suppose in one 

domain ontology the “holds_function” relation is specialised to 

“holds_feature_function” and the latter is asserted as being a binary relation 

whose arguments involve an incorrect class definition (see Figure 5-19 “Not a 

Core_Entity Class”). On loading the domain ontology, the loading process 

would be prevented because of infringements against the class argument 

declarations to the relation “holds_function” as well as the presence of the “:IC 

soft” declaration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(forall (?coreEnt ?func) 
(=> (holds_function ?coreEnt ?func) 
      (and (Core_Entity ?coreEnt) 
  (Function ?func)))) 
:IC soft “The holds_function relation only holds between core entities and functions” (U) 
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Figure 5-19 Example of an Integrity Constraint Violation 
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During the domain ontology loading process, the knowledge engineer is made 

aware of the nature of the infringement, thereby prompting a rectification 

action to be proceeded with. In KFL, there are four degrees of gravity relating 

to the violation of ICs and are identified as “weak”, “soft”, “hard” and 

“adamant” (in ascending order of gravity). A weak IC, when infringed, would 

simply indicate an irregularity which does not necessarily constitute a 

problem. A soft IC is stronger than a weak IC and does not prevent an 

instance loading process from taking place. On the other hand, a hard IC 

completely prevents a wrong action from being committed. An adamant IC is 

one which indicates a necessity and is destined to be used for the functioning 

of Ontology Works‟ Upper Level Ontology system.  

 

The simple example illustrated in Figure 5-19 demonstrates one of the 

important potentials of ICs. ICs extend a conceptual model (in this case the 

heavyweight ontological manufacturing foundation) to make the model precise 

and capable to ensure that domain semantics is rightly expressed (Halpin, 

1999). In a similar way, ICs are intended to ensure correctness, consistency 

support and checking of data (instances) in the implementation in a database 

(in this case a domain KB) (Pakalnickiene and Nemuraite, 2007). Therefore, 

this advantage of ICs contributes positively early on during the domain 

ontology development phase and further downstream during instantiation and 

commitment of fact statements to a domain KB. 

 

It is also to be pointed out that domain ontologies are able to formulate 

domain-specific ICs, provided these are in line with foundation ICs. As an 

example to illustrate this facet, consider Figure 5-20. Recall from Expression 

5-1 that there is a foundation IC present in order to ensure that “every core 

entity holds some function” (V). Based on the scenario previously exposed in 

Figure 5-18, it becomes possible to specialise the expression (V) in order to 

establish an IC in “DomainX”. For example, expression (W) in Figure 5-20 

captures the semantics that “every positioning hole holds exactly one location 

function”. Expression (W) consistently follows from expression (V) and is, 

therefore, a completely suitable IC capable being declared in “DomainX”. 
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5.3.1.6 Instantiation and Discrete Knowledge Representation 

Instantiation often becomes an important process after the domain ontology 

development phase is completed. The instance layer is the commitment layer 

which is concerned with the composition, constraining and instantiation of 

lexons (a fact type of some category or description, for example, a class) to 

represent the semantics of a particular fact (instance) (Pretorius, 2004). In 

other words, individual instances are the most specific concepts represented 

in a Knowledge Base (KB) (Noy and McGuinness, 2001).  

 

It is necessary to emphasise that, from the point of view of this work, there 

exists a fine line between an ontology as a logical theory and a Knowledge 

Base (KB). An ontology aims to capture the conceptual structures of some 

field while a KB aims to specify a concrete state of the field, i.e. an ontology 

consists of intensional logical definitions (characteristics that distinguish 

concepts) while a KB comprises of extensional parts (instances) (Pretorius, 

2004). A KB, therefore, may be regarded as being a form of database 

dedicated to the effective management of knowledge which is facilitated 

through the classification and constraining mechanisms coming from the 

domain ontology to which the KB is associated with. Thus, the structure of the 

(forall (?coreEnt) 
(=> (Core_Entity ?coreEnt) 
      (exists (?func) 
 (and (Function ?func) 
         (holds_function ?coreEnt ?func))))) 
:IC soft “Every core entity holds some function” (V) 

(forall (?hole ?func1 ?func2) 
(=> (and (Positioning_Hole ?hole) 
   (Location_Function ?func1) 
   (Location_Function ?func2) 
   (holds_function ?hole ?func1) 
               (holds_function ?hole ?func2)) 
      (= ?func1 ?func2))) 
:IC hard “Every positioning hole holds exactly one location function” (W) 

Figure 5-20 Example of a Consistently-Defined Domain Integrity 
Constraint 
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KB relies on semantic structures established in an ontology. For example, 

machine-readable KBs store knowledge in a computer-readable form where 

an ontology can be used to define the structure of the stored data (Wikipedia, 

2009).  

 

Figure 5-21 illustrates how through instantiation, discrete knowledge 

pertaining to a complex reaming process execution sequence can be 

represented. The example takes into account the instantiation of sample 

foundation semantics (primarily PSL-based process semantics) employed in 

the Domain Ontology Layer to formalise a complex hole reaming process 

sequence as a machining constraint on the production of an instance of the 

class “Positioning_Hole” (also refer to (C) and (D) on Figure 5-15 if needed). 

The example uses the controlled specialisation approach, where relation 

subsumptions are not allowed. 

 

Part of the instance file which contributes to encoding the instance knowledge 

within “DomainX” in Figure 5-21 is captured in Expression 5-13. Instance files 

are required in the Domain Ontology Layer whenever facts, i.e. instances, 

have to be populated in the KB of domain models. Instance files are written in 

Simple Common Logic (SCL) (Kendall et al, 2004), which is very similar to the 

Common Logic Interchange Format (CLIF), except that SCL instance files 

used in the Domain Ontology Layer are dedicated to the population of 

instances rather than the manipulation of an ontology‟s logical theory. 

 

Based on the example illustrated in Figure 5-21 and Expression 5-13, it is 

shown that there are essential components that influence the instantiation of 

facts in order to capture domain instance knowledge. These components 

include: 

 

 The specification of instances, for example, in (N), “DomainX.Make_Hole” 

is an instance of the foundation class “Activity” identified as “Make_Hole” 

in the “DomainX” context. Note that the specification of instances should 

always be accompanied by the context, for example, 

“DomainX.Make_Hole”, for term disambiguation. 
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 The use of relations to bind instances together in order to create fact 

sentences, for example, in (O), the instance “Make_Hole_X” is linked to 

the instance “Make_Hole” via the foundation binary relation 

“occurrence_of”. This understanding also applies to (P), (Q), (R) and (T). 

Note that (Q) and (R) in Expression 5-13 are exploited to provide part of 

the semantics of the process sequence in Figure 5-19, while (T) is used to 

capture the knowledge that the instance “Hole_X” (S) is an output from the 

complex hole reaming activity occurrence “Make_Hole_X”. 
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Figure 5-21 Example of Instantiation and Discrete Knowledge 
Representation in the Domain Ontology Layer 
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The nature of instantiation elucidated in the previous example reveals the way 

in which the formalisation of discrete knowledge (such as the known 

machining constraints on a specific “Hole_X” in “DomainX”) is performed. 

Instances can be committed to the KB of a domain model as long as both 

foundation and domain integrity constraints are not violated. During the 

commitment transaction of facts to the KB, ICs ensure that the knowledge 

engineer always supplies correct and complete instance knowledge. 

 

 

;;; DEFINE ACTIVITY INSTANCES 
 
e.g. (Foundation.Activity DomainX.Make_Hole) (N) 
 
;;; DEFINE ACTIVITY OCCURRENCE INSTANCES 
 
e.g. (Foundation.Activity_Occurrence DomainX.Make_Hole_X) 
e.g. (Foundation.Activity_Occurrence DomainX.Centre_Drilling_Occ) 
 
;;; RELATE ACTIVITIES TO ACTIVITY OCCURRENCES 
 
e.g. (Foundation.occurrence_of DomainX.Make_Hole_X  
        DomainX.Make_Hole) (O) 
 
;;; DEFINE SUBACTIVITY OCCURRENCE RELATIONSHIPS 
 
e.g. (Foundation.subactivity_occurrence DomainX.Drilling_Occ  
        DomainX.Make_Hole_X) (P) 
 
;;; DEFINE PROCESS SEQUENCE RELATIONSHIPS 
 
e.g. (Foundation.root_occ DomainX.Centre_Drilling_Occ  
        DomainX.Make_Hole_X) (Q) 
e.g. (Foundation.next_subocc DomainX.Drilling_Occ  
        DomainX.Centre_Drilling_Occ DomainX.Make_Hole) (R) 
 
;;; DEFINE POSITIONING HOLE INSTANCE 
 
e.g. (DomainX.Positioning_Hole DomainX.Hole_X) (S) 
 
;;; DEFINE OUTPUT RELATIONSHIPS 
 
e.g. (Foundation.output DomainX.Hole_X DomainX.Make_Hole_X) (T) 

Expression 5-13 Example of Part of an Instance File Written in Simple 
Common Logic (SCL) 
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5.3.2 Summary of Domain Ontology Layer 

Section 5.3 of this chapter has documented the essential principles adopted, 

in Domain Ontology Layer, to allow domain models to be developed from the 

heavyweight ontological manufacturing foundation. Domain model 

specialisation typically consists of: 

 

 Ontological relationships and interactions between concepts from the 

Foundation and Domain Ontology layers. 

 The declaration of domain-specific integrity constraints, which need to 

remain coherent with foundation semantics. 

 The definition of instances in order to capture instance knowledge in the 

form of facts (instances) and sentences that relate facts together. 

 

It has also been shown that there are two directions in which domain models 

could be specialised. The specialisation process can either be flexibly carried 

out or performed in a controlled manner. A simple understanding can be 

applied regarding the suitability of specialisation processes to specific 

domains. For example, if the main purpose of a domain ontology is to focus 

on the capture of domain concepts and constraints as a logical theory, and 

does not involve the population of instances, then the flexible specialisation 

approach is as convenient as the controlled approach.  

 

However, if discrete knowledge representation is a significant aspect of a 

domain model, alongside the representation of domain concepts and 

constraints, then the controlled specialisation approach is preferred from an 

ontology interoperability viewpoint. Moreover, since relation specialisations 

are not allowed at domain level following the controlled specialisation 

approach, this implies that relation mismatches between domain models are 

avoided. Relation mismatches typically involve dissimilarities in the definition 

of relations, the way in which these are attributed and used to structure 

classes in disparate ontologies (Hameed et al, 2004; Chungoora and Young, 

2008b). In this work, the controlled specialisation approach has been chosen 
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in order to explore higher capabilities for the reconciliation of instances and 

also to limit relation mismatches. 

 

5.4 Summary 

This chapter has explained the nature and implications of the first two layers 

of the SMIF, thereby satisfying part of the third objective of this work 

concerned with the exploration of concepts related to the framework (see 

Chapter 1 section 1.3.1). In order to develop the rigorous heavyweight 

ontological manufacturing foundation in this research, informal intuitions about 

entity information and processes need to be formalised. This formalisation 

process necessitates the accurate definition of heavyweight semantics, 

involving basic ontological concepts such as classes and relations backed 

with the efficient declaration of integrity constraints. Moreover, IDEF5 

schematics have been used in order to visually explore the primary semantic 

structures within the heavyweight manufacturing ontological foundation (also 

see Appendix C). 

 

With the heavyweight ontological manufacturing foundation in place, it then 

becomes possible to develop domain models in the Domain Ontology Layer. 

This process is enabled via ontology specialisation mechanisms such as the 

definition of domain contexts, the specification of subsumption relationships, 

and the definition of concept instances for the capture of discrete domain 

knowledge. Furthermore, because the Domain Ontology Layer interacts with 

the Foundation Layer, this implies that the benefits arising from the definition 

of foundation integrity constraints are passed on to the Domain Ontology 

Layer to ensure the integrity-driven specialisation of domain models. The 

interactions between the Foundation and Domain Ontology layers identified in 

this chapter have been experimentally tested and applied to a number of test 

cases in Chapter 8.  
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6 Semantic Reconciliation and Interoperability 

Evaluation Layers 

6.1 Introduction 

This chapter discusses in more detail the understanding behind the Semantic 

Reconciliation and Interoperability Evaluation layers of the Semantic 

Manufacturing Interoperability Framework (SMIF). Section 6.2 and its sub-

sections focus on how a stepwise semantic reconciliation process is achieved 

through the application of ontology mapping process concepts to reconcile 

pairs of domain models developed in the Domain Ontology Layer. One 

fundamental stage of the ontology mapping process comprises semantic 

alignment, which relies on logic-based definitions of semantic mapping 

concepts. The different modes in which semantic mapping concepts occur are 

also further explained.  

 

The automated association of semantic mapping concepts in the Semantic 

Reconciliation Layer provides a basis for evaluating and verifying the possible 

correspondences between cross-domain arguments. Section 6.3 documents 

the main mechanisms used for the evaluation and verification process carried 

out in the Interoperability Evaluation Layer. These mechanisms enable the 

formulation of interoperable knowledge queries. As a result of the complexity 

involved in constructing several interoperable knowledge queries, a method is 

then identified in order to assist knowledge querying procedures in order to 

maximise reusability of interoperable knowledge queries at the fourth level of 

the SMIF. 

 

6.2 Semantic Reconciliation Layer 

Following the framework approach, several collaborating domain models of 

feature-based design and manufacture are bound to exist in the Domain 

Ontology Layer. In the event that these domain models need to interoperate 

with the intention of sharing knowledge, domain semantics need to be 
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reconciled. The Semantic Reconciliation Layer covers applied ontology-based 

techniques relevant to enabling the reconciliation of domain semantics.  

 

These techniques employ segments of known ontology matching methods 

such as (1) the computation of contexts for domain ontologies (Stumme and 

Maedche, 2001), (2) ontology merging (Noy and Musen, 2003) and (3) 

semantic alignment (Euzenat and Shvaiko, 2007). However, unlike known 

ontology matching methods, the combined approach exploited at the 

Semantic Reconciliation Layer provides a unique way to the reconciliation of 

domain semantics. This takes into account: 

 

 Cross-domain arguments that may share the same terms but are 

semantically different, since from a semantic interoperability viewpoint, 

term similarity does not necessarily imply equivalence. 

 A progression towards heavyweight Common Logic-based semantic 

alignment processes, to reinforce current knowledge on semantic 

alignment and the related methods to verify the integrity of cross-domain 

mappings. 

 Interoperation at the instance level of domain models made possible 

through the controlled specialisation approach, an aspect which until now 

has remained problematic to the ontology mapping community.  

 

Figure 6-1 illustrates the basic concepts involved in the mapping of domain 

models at the Semantic Reconciliation Layer. The process of semantic 

reconciliation can be performed between pairs of models at a time, as can be 

encountered with almost all current ontology mapping frameworks and 

methodologies (Kalfoglou and Schorlemmer, 2003). Ontology mapping 

process concepts involve a first stage of adjusting the contexts (namespaces 

in this case) of two domain models which are to be reconciled. Following this 

stage is a simple ontology merging process, where both models are loaded 

intact into a single Foundation Layer. The last procedure in the ontology 

mapping process is that of semantic alignment, where semantic mapping 



  
114 

concepts are loaded into the merged models. Semantic mapping concepts are 

further discussed in section 6.2.2. 

 

 

 

 

 

 

 

 

 

 

 

6.2.1 Ontology Mapping Process Concepts 

6.2.1.1 Domain Context Adjustment Process 

Adjusting the contexts of pairs of domain models to be reconciled forms part 

of the initial stage of semantic reconciliation. It is relatively easy to understand 

the reason behind the adjustment of the contexts of two domain models to two 

standard contexts, which resembles the computation of contexts adopted in 

the FCA-Merge ontology merging method (Stumme and Maedche, 2001), but 

is simpler. From the preferences established in this research, any two domain 

models to be reconciled have their contexts adjusted to the standard contexts 

“DomainX” and “DomainY”.  

 

For example, suppose there are two domain models which need to 

interoperate and one uses a context called “Design” while the other uses a 

context called “Manufacture”. Following the approach of domain context 

adjustment, the “Design” context would be renamed to “DomainX” and the 

“Manufacture” context to “DomainY”, or vice versa, where “Design” is 

renamed to “DomainY” and “Manufacture” to “DomainX”. In short, any two 

domain contexts are renamed to either “DomainX” or “DomainY” as standard 

contexts. Context adjustment also needs to be performed for instance files 

Semantic Reconciliation Layer 

 

 

 Class Mapping Relations 
 

 Function Mapping Relations 
 

 Instance Mapping Relations 

Context Adjustment 

Ontology Merging 

Semantic Alignment 

Ontology Mapping Process 

Concepts 

Semantic Mapping Concepts 

Figure 6-1 Concepts Explored in the Semantic Reconciliation Layer 
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pertaining to each domain model, if reconciliation needs to be carried out at 

the KB level. 

 

The context adjustment procedure is important because the semantic 

alignment process, which takes place later on during ontology mapping, 

involves semantic mapping concepts based around the two predefined 

contexts “DomainX” and “DomainY”. The process of context adjustment is 

straight forward and only requires a substitution of the names of domain 

model contexts. Figure 6-2 captures this understanding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.1.2 Simple Ontology Merging Process 

The second stage in the ontology mapping process is concerned with a 

simple ontology merging procedure, which uses the domain models with their 

adjusted contexts and loads both in a single Foundation Layer. During this 

simple ontology merging process, all domain arguments present in “DomainX” 

and “DomainY” remain distinct to each domain model. The merging process 

also applies to the instances adjusted to “DomainX” and “DomainY”, if these 

instances exist. Figure 6-3 identifies the consequence of merging two domain 

models under the simple ontology merging process adopted. 
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Figure 6-2 Adjusting Domain Contexts to Standard 
Contexts "DomainX" and "DomainY" 
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The figure first illustrates two specialisations of the foundation class 

“Round_Hole” that are defined separately in the “DomainX” and “DomainY” 

contexts. Under the simple merging process, all ontology-based content from 

both domain models are brought under one platform. Notice in Figure 6-3 how 

during merging, the two classes “Positioning_Hole” and “Locating_Hole” stay 

distinct to their contexts but both still appear as specialisations of 

“Round_Hole”.  

 

It is to be noted that the ontology merging process is referred to as being 

simple, on the basis that no similarity computation is made during the 

mergence of both domain models unlike other dedicated ontology merging 

approaches such as FCA-Merge (Stumme and Maedche, 2001), the system 

developed by Fernández-Breis and Martínez-Béjar (2002) and PROMPT (Noy 

and Musen, 2003). The procedure here simply ensures that all domain model 

Figure 6-3 Simple Ontology Merging Process 

Domain Model 
using “DomainX” 

Context 

Domain Model using 
“DomainY” Context 

Merged Domain Models 

Foundation Layer 

DomainX DomainY 

 

s
u
p

Positioning

_Hole

Round_

Hole

 

s
u
p

Locating_

Hole

Round_

Hole

 

DomainX DomainY 

su
p sup

Positioning

_Hole

Round_

Hole

Locating_

Hole



  
117 

content is captured in a single environment prior to the semantic alignment 

process. 

 

6.2.1.3 Semantic Alignment Process 

The semantic alignment process is at the heart of the Semantic Reconciliation 

Layer and is illustrated in Figure 6-4. The alignment process is enabled by 

feeding semantic mapping concepts to the merged models (see section 6.2.2 

for a description of semantic mapping concepts). Based on the heavyweight 

logical conditions that define these semantic mapping concepts, mapping 

relations may become associated to cross-domain arguments, if during the 

merging of a model in “DomainX” and another model in “DomainY”, there exist 

arguments from both contexts that happen to satisfy these logical conditions. 

The semantic alignment process is almost entirely automatic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The view on the semantic alignment process exposed in this work falls under 

the category of tools responsible for the discovery of mappings between two 

domain models. This is performed by finding pairs of related arguments, 

through the process of alignment and the reconciliation of specific portions of 

two domain models through an intermediate articulation ontology (in this case 

the Foundation Layer). It has been acknowledged that alignment and 

Semantic Mapping 

Concepts 

Merged Domain Models 

Foundation Layer 

DomainX DomainY 

Merged and Aligned Domain Models 

Foundation Layer 

DomainX DomainY 

Load 

Figure 6-4 Semantic Alignment Process 
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articulation mapping processes are related in the sense that binary relations 

can be used to align two ontologies. These binary relations can themselves 

be decomposed into a pair of functions emanating from a common 

intermediate source where the intermediate ontology serves as the 

articulation ontology (Kalfoglou and Schorlemmer, 2003).  

 

6.2.2 Semantic Mapping Concepts 

A semantic mapping concept in the Semantic Reconciliation Layer consists of 

a formally-defined semantic mapping relation (using logic programming) and 

written informal remarks that accompany the relation. A semantic mapping 

relation binds two cross-domain arguments (such as classes) when certain 

logical conditions, that define the semantic mapping relation, become true 

between these arguments.  

 

In addition to these formal semantics, semantic mapping concepts also 

include the statement of informal remarks for human interpretation. This is 

because alignments produced by matching systems may not be intuitively 

obvious to human-users and, therefore, need to be explained (Shvaiko and 

Euzenat, 2008). These remarks generally include the informal way of 

interpreting the mapping concept. In certain cases, depending on the reliability 

of a semantic mapping concept, other remarks may be added to capture 

possible limitations of the extent to which the semantic mapping concept is 

applicable to cross-domain arguments, and possible example remarks which 

further reflect the understanding behind the semantic mapping concept. 

 

Figure 6-5 conceptually summarises the above-mentioned components of 

semantic mapping concepts. The diagram shows that if the argument ?x 

satisfies certain conditions and is defined within the “DomainX” context and 

the argument ?y satisfies certain conditions and is defined within the 

“DomainY” context, then the “semanticMappingRelation” holds true between 

?x and ?y where ?x is to be interpreted in the first argument position and ?y in 

the second argument position to the “semanticMappingRelation”. Information 

carried by the relations, both formally in terms of logical definition and 
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informally in terms of remarks, represents the nature of semantic 

interoperation between cross-domain arguments. 

 

 

 

 

 

 

 

 

 

The predefined standard contexts “DomainX” and “DomainY” present in the 

definition of logical conditions justify the domain context adjustment stage 

discussed earlier. Furthermore, it is to be noted that the arguments ?x and ?y 

from Figure 6-5 could be classes, instances or ontological functions but not 

relations. The reconciliation of relations is not under consideration in the 

chosen method, since the controlled specialisation approach is taken, where 

relation subsumptions are not permitted within domain models, in order to 

optimise reconciliation at the instance level. 

 

Semantic mapping concepts embrace different levels of granularity based on 

foundation semantics and the user‟s knowledge of domain semantics. This 

leads to the ability to define (1) reusable semantic mapping concepts based 

directly on foundation semantics, (2) reusable semantic mapping concepts 

that are only relevant to the two domains to be reconciled and (3) reusable 

semantic mapping concepts based on domain knowledge that does not reside 

in neither the Foundation Layer nor the two domains to be reconciled. These 

different implications are next discussed. 

 

6.2.2.1 Semantic Mapping Concepts Based on Foundation Semantics 

A standard set of semantic mapping concepts derive from foundation 

semantics (see Figure 6-6). This set of mapping concepts can be reused in all 

reconciliation scenarios since, following the SMIF approach, all domain 
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Figure 6-5 Understanding Semantic Mapping Concepts 
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models are essentially specialisations of the Foundation Layer, and therefore 

all share a common semantic ground.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider Figure 6-7 which illustrates how a semantic mapping concept can be 

specified for the reconciliation of cross-domain sub-classes of the foundation 

class “Round_Hole”. The expression accompanying the diagram captures the 

intuition that the “classMappingRelation_018” (A) be inferred as true between 

the arguments ?x and ?y if and only if ?x is a sub-class of “Round_Hole” 

defined within the “DomainX” context (B) and ?y is another sub-class of 

“Round_Hole” defined within the “DomainY” context (C). 

 

 

 

 

 

 

 

 

 

 

(forall (?x ?y) 
(<= (classMappingRelation_018 ?x ?y) (A) 
      (and (sup ?x Round_Hole) 
  (withinContext ?x DomainX) (B) 
  (sup ?y Round_Hole) 
  (withinContext ?y DomainY)))) (C) 
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Figure 6-6 Semantic Mapping Concepts Based on 
Foundation Semantics 

Figure 6-7 Example of a Class Semantic Mapping Concept Based on Foundation 
Semantics 
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Although the name tag of the “classMappingRelation_018” carries very little 

information, yet, it is formally defined (refer to the logical expression in Figure 

6-7). Informal remarks can be tagged to the semantic mapping relation, based 

on the formal logical conditions, to enhance the meaning of 

“classMappingRelation_018” between ?x and ?y for human interpretation. 

This can be achieved by stating, for example, that: 

 

 There exists a commonality between the class ?x in the “DomainX” context 

and the class ?y in the “DomainY” context as a result of both ?x and ?y 

being subclasses of the foundation class “Round_Hole”. Both ?x and ?y 

capture the notion of a feature that is of cylindrical or conical negative 

(removal) volume. It is necessary for instances of ?x and ?y be defined in 

terms of a first instance of “Circular_Closed_Profile” swept along an 

instance of “Linear_Path” resulting in a second instance of 

“Circular_Closed_Profile” of identical or different dimensions. Every 

instance of ?x and ?y may be specified as holding a “Linear_Profile” axis. 

 

The above informal statement is highly relevant in terms of interoperable 

semantics between the possible classes ?x and ?y, since the “Round_Hole” 

concept possesses formal necessary conditions, captured as integrity 

constraints, which restrict its interpretation (see also Chapter 5 section 

5.2.2.4). Besides informal remarks about the semantic commonality, there is 

also the issue of dealing with uncertainties in ontology matching (Shvaiko and 

Euzenat, 2008) and in the case of the “classMappingRelation_018”, one way 

to specify this is to tag a limitation remark such as: 

 

 Without reference to the terms assigned to the concepts ?x and ?y, there 

could potentially be class mismatches present. This is because ?x and ?y 

could have been defined with a view on specific domain preferences, 

which vary across domains. Varying levels of abstraction of the foundation 

class “Round_Hole” in both domains could also result in class 

mismatches. 
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The statement identified above is also relevant to semantic reconciliation in 

terms of the inconclusive correspondences that could exist between ?x and 

?y. This is because the logical conditions for “classMappingRelation_018” do 

not entail term similarities nor the identification of the number of sub-class 

levels of “Round_Hole” in “DomainX” and “DomainY”. Hence, it is clear that 

possible semantic mismatches could still prevail even though the capability is 

present to infer similarities between ?x and ?y. 

 

In a very similar way to the one explained, other semantic mapping concepts 

can be defined based on foundation semantics. Figure 6-8 depicts a scenario 

where a semantic mapping relation named “instanceMappingRelation_041” 

(D) has been specified in order to partly reconcile domain-defined instances of 

the class “Round_Hole”. The logical expression accompanying the figure 

states that the “instanceMappingRelation_041” (D) be inferred as true 

between the arguments ?holex and ?holey if and only if ?holex is an instance 

of “Round_Hole” defined within the “DomainX” context (E) and ?holey is 

another instance of “Round_Hole” defined within the “DomainY” context (F) 

and that both instances ?holex and ?holey share the common condition of 

having blind circular closed profiles (G).  

 

 

 

 

 

 

 

 

 

 

 

 

The informal remarks which support the definition of the semantic mapping 

concept to partly reconcile round holes in “DomainX” and “DomainY” state 

that: 

(forall (?holex ?holey ?ccpx ?ccpy) 
(<= (instanceMappingRelation_041 ?holex  
       ?holey) (D) 
      (and (inst ?holex Round_Hole) 

 (withinContext ?holex DomainX) (E) 
              (inst ?ccpx Circular_Closed_Profile) 
  (holds_shape ?holex ?ccpx) 
  (blind ?ccpx) (G) 
  (inst ?holey Round_Hole) 
  (withinContext ?holey DomainY) (F) 
  (inst ?ccpy Circular_Closed_Profile) 
  (holds_shape ?holey ?ccpy) 
  (blind ?ccpy)))) (G) 
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Figure 6-8 Example of an Instance Semantic Mapping Concept Based on Foundation 
Semantics 
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 There exists a commonality between the instances ?holex and ?holey as a 

result of both being asserted instances of the foundation class 

“Round_Hole” declared in “DomainX” and “DomainY” respectively. ?holex 

and ?holey both share in common the property of having blind hole bottom 

conditions. 

 

In this case the logical conditions that define “instanceMappingRelation_041” 

are very constrained and for this reason, no potential limitation could be 

envisaged over the semantic mapping concept. In other words, if the 

“instanceMappingRelation_041” holds true for two instance arguments ?holex 

and ?holey, then there is a total certainty that the semantic mapping concept 

applies under all circumstances (refer to Appendix E.1 for more information on 

other similar types of semantic mapping concepts that derive from foundation 

semantics). 

 

6.2.2.2 Semantic Mapping Concepts Based on Known Cross-Domain 

Correspondences 

The definition of semantic mapping concepts can also be based on the user‟s 

knowledge of the concepts and conditions present in two domain models to 

be reconciled (see Figure 6-9). It becomes possible to specify domain-derived 

semantic mapping concepts depending on the user‟s knowledge of the 

commonalities and differences between the two domain models. This 

knowledge can, for example, be gathered through historical cross-domain 

information correspondences which are at the disposal of the knowledge 

engineer. This understanding falls in line with the discovery of missing 

background knowledge to improve matchability acknowledged by Shvaiko and 

Euzenat (2008) in their analysis of ten challenges for ontology matching. 

 

Unlike the semantic mapping concepts that are based on foundation 

semantics and are fully reusable in all reconciliation scenarios, semantic 

mapping concepts based on the semantics of reconcilable domains are much 

more specific and are only generally reusable for two domain models, for 

which the semantic mapping concepts have been designed to reconcile. 
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Consider the example portrayed in Figure 6-10 where the foundation class 

“Activity” has one specialisation called “Drilling_Process” defined in the 

“DomainX” context and another specialisation called “Drilling_Operation” 

defined in the “DomainY” context. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Purely based on the “sup” subsumption relation of the domain-defined classes 

to the class “Activity”, it is possible to infer that both “Drilling_Process” and 

“Drilling_Operation” originate from the same parent class. However, if the 

knowledge engineer already understands the implications of 

“Drilling_Process” and “Drilling_Operation”, the latter could specify a domain-

derived semantic mapping concept that directly holds between these two 

classes. In this case, assuming that the knowledge engineer understands that 

the two classes are in fact the same, a semantic mapping concept called 

“classDomainMappingRelation_001” (H) can be used to infer that 

“Drilling_Process” and “Drilling_Operation” are conceptually similar types of 

reusable process behaviours as depicted in the expression in Figure 6-10.  
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Figure 6-9 Semantic Mapping Concepts Based on Known 
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User-defined informal remarks listed below can also be added for enhancing 

human interpretation: 

 

 The “Drilling_Process” class in “DomainX” is a conceptually similar class to 

the “Drilling_Operation” class in “DomainY”. 

 There is a term mismatch between the class “Drilling_Process” and 

“Drilling_Operation”. 

 

The process of establishing semantic mapping concepts based on known 

cross-domain correspondences is regarded as being an important method 

currently used in ontology mapping research. In Description Logics (DL), pre-

defined semantic mapping relations such as “owl:sameClassAs” (Lin and 

Harding, 2007), other related DL comparison relationships (Lazenberger et al, 

2008; Rabe and Gocev, 2008) and the exploration of “semantic bridges” such 

as the “ConceptBridge” (Maedche and Staab, 2002) provide similar 

capabilities to the “classDomainMappingRelation_001” (H) discussed earlier.  

 

The fundamental difference between the semantic mapping concepts based 

on known cross-domain correspondences explored in this work, for example 

“classDomainMappingRelation_001”, and other related concepts like 

“owl:sameClassAs” lies in the degree of formality and flexibility in the 

definition of the former. Heavyweight Common Logic-based rules are used to 

reinforce the semantics of semantic mapping concepts based on known 

 (<= (classDomainMappingRelation_001  
       Drilling_Process Drilling_Operation) 
       (and (Property Drilling_Process)  
   (Property Drilling_Operation))) 
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Figure 6-10 Example of a Class Semantic Mapping Concept Based on Known Cross-
Domain Correspondences 
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cross-domain correspondences. Furthermore, the tagging of informal 

remarks, which informally identify the criteria for matching and the limitations 

to the matching, improves the interpretability of semantic mapping concepts. 

 

6.2.2.3 Semantic Mapping Concepts Based on External Domains 

There is a third mode in which semantic mapping concepts could be defined 

following the SMIF approach. In Figure 6-11, the two domains to be 

reconciled are “DomainX” and “DomainY”. The knowledge engineer is able to 

specify other types of semantic mapping concepts based on some external 

domain model if the knowledge contained within the external model can 

potentially be used during the reconciliation of “DomainX” and “DomainY”. 

This external domain model also needs to have been developed from the 

Foundation Layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The diagram in Figure 6-12 exemplifies the understanding behind the 

specification of semantic mapping concepts based on external domain 

knowledge. In this example, the external domain model is that of the ISO 

Tolerance Band and machining processes associated with ISO IT Tolerance 

Grade (ISO 286-2, 1988). In this external domain model, the knowledge that 

originates from ISO Tolerance Band and machining processes has been 
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Figure 6-11 Semantic Mapping Concepts Based on External Domains 
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formalised in such a way that it is possible to infer suitable machining 

methods based on the dimensional parameters of “Round_Hole” instances.  

 

The expression in Figure 6-12 captures the ISO Tolerance Band domain 

condition that if a “Round_Hole” instance (I) has an entry hole diameter that is 

between 6 mm (exclusive) and 10mm (inclusive) (J) accompanied with an 

upper diameter tolerance value which is between 0.06 mm (inclusive) and 

0.36 mm (inclusive) (K) and a lower diameter tolerance value which is 

between -0.36 mm (inclusive) and -0.06 mm (inclusive) (L), then it is possible 

to infer that the unary relation “toleranceBandRelation_04” (M) holds for that 

specific instance of “Round_Hole”. In this case, the informal remarks that 

accompany the declaration of “toleranceBandRelation_04” state that: 

 

 Based on the entry diameter and entry diameter size tolerance of the 

queried “Round_Hole” instance, it can be inferred that this hole feature can 

be produced using a Reaming machining process. This criteria is only 

satisfied under the ISO Tolerance Band domain model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inference Rule Based on the ISO Tolerance Band Model (External Domain) 

 
 
(forall (?hole ?ccp ?real ?realmin ?realmax) 
(<= (toleranceBandRelation_04 ?hole) (M) 
      (and (Round_Hole ?hole) (I) 
  (Circular_Closed_Profile ?ccp) 
  (holds_shape ?hole ?ccp) 
  (not (through ?ccp)) 
  (not (blind ?ccp)) 
  (measures ?ccp (mm ?real)) 
              (holds_size_tolerance ?ccp (tolerance_value (mm ?realmin)  

                                                     (mm ?realmax)) (mm ?real)) 
  (inInterval ?real (interval ex 6 10 in)) (J) 
  (inInterval ?realmin (interval in -0.36 -0.06 in)) (L) 
  (inInterval ?realmax (interval in 0.06 0.36 in))))) (K) 

?hole

Ø: ?real
Upper Tol: ?realmax

Lower Tol: ?realmin
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Figure 6-12 Example of an Instance Semantic Mapping Concept Based on an External 
Domain 
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The knowledge captured in the expression in Figure 6-12 shows an example 

of how a semantic mapping concept could be specified using an external 

domain model as an articulation model for reconciling two other domain 

models. The unary relation “toleranceBandRelation_04” (M) can act as a 

semantic mapping concept when used to reconcile “Round_Hole” instances in 

“DomainX” and “DomainY”, where these “Round_Hole” instances happen to 

share the commonality of being able to be machined using reaming processes 

under the ISO Tolerance Band conditions set. In other words, SMIF provides 

the potential for reusing the knowledge contained in ISO standard-based 

domain models towards the reconciliation of pairs of other domain models.  

 

6.2.3 Summary of Semantic Reconciliation Layer 

The Semantic Reconciliation Layer is based on the interactions between three 

key stages of the ontology mapping process between two domain models to 

be reconciled. Ontology mapping process concepts adopted in the third layer 

of the research framework involve a domain context adjustment process 

followed by a simple ontology merging action. The next stage is that of 

semantic alignment, where a number of pre-defined semantic mapping 

concepts aligns the arguments present across domain models.  

 

Semantic mapping concepts may be developed from three distinct angles. A 

reusable set of semantic mapping concepts can be defined from foundation 

semantics. Also, depending on the experience of the knowledge engineer, it is 

possible to define semantic mapping concepts based on known cross-domain 

correspondences that only apply to the specific pair of domain models to be 

reconciled. The third method of specifying semantic mapping concepts is 

concerned with the use of knowledge, coming from other domain models 

external to the pair of domain models to be reconciled, which serves as 

articulation knowledge. The case study in Chapter 8 explores all three means 

of defining semantic mapping concepts (also consult Appendix E for a sample 

of explored semantic mapping concepts). 
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Semantic mapping concepts are not limited to one-to-one mappings. They 

can involve, in addition to (1) one-to-one mappings, (2) many-to-one, (3) one-

to-many and (4) many-to-many mappings, which are governed through the 

logical conditions that define semantic mapping concepts. Although semantic 

mapping concepts help identify the correspondences that may exist between 

two distinct domain representations, it is nevertheless appreciated that 

semantic mismatches could still occur. This has helped identify a suitable 

way, by using tagged remarks, to flag the uncertainties or possible 

mismatches that might exist even after a semantic mapping relation has been 

established. In this way, not only is the user able to understand what is 

sharable between two cross-domain arguments, but the latter is also made 

aware of the extent to which it is not possible to infer about their resemblance.  

 

6.3 Interoperability Evaluation Layer 

One of the most active areas of research in ontology alignment is the 

automatic and semi-automatic mapping discovery (Noy and Stuckenschmidt, 

2005). The Interoperability Evaluation Layer which is at the last level of the 

SMIF uses semi-automatic mechanisms for enabling mapping discovery. This 

layer builds on top of the Semantic Reconciliation Layer and, therefore, uses 

the capabilities achieved in the third level to help evaluate the commonalities, 

differences and uncertainties (i.e. correspondences) across domain models.  

 

Figure 6-13 illustrates how the last stage of the ontology mapping process in 

the Semantic Reconciliation Layer contributes to the ability to formulate 

interoperable knowledge queries in the Interoperability Evaluation Layer. The 

alignment of pairs of domain models provides a basis for the retrieval of 

mappings across models (interoperability evaluation process). Moreover, 

since all the semantics in the merged and aligned representations are 

logically defined, it is possible to verify the conformance of retrieved evaluated 

results (verification process). 
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6.3.1 Interoperable Knowledge Queries 

Interoperable knowledge queries are Common Logic-based queries that allow 

(1) the retrieval of cross-domain arguments over known semantic mapping 

concepts and (2) the retrieval of semantic mapping concepts over known 

cross-domain arguments. These queries fall in the category of structured 

query processing of alignments supported by ontologies (Noy and 

Stuckenschmidt, 2005) and the explanation of matching results in ontology 

matching (Shvaiko and Euzenat, 2008). The integrity of results obtained from 

an interoperable knowledge query can be verified via logical proof. This proof 

is traced back from the source logic of the semantic mapping concepts, the 

cross-domain arguments in question and a breakdown of the conditions, as to 

why certain cross-domain arguments satisfy certain semantic mapping 

concepts, in order to provide a valid logical justification. The next sub-sections 

of this chapter explain, in an exemplified fashion, the relevant mechanisms 

involved in evaluating and verifying interoperable knowledge queries.  

 

Interoperability Evaluation Layer 

Interoperable Knowledge 
Queries 

DomainX DomainY 

Merged and Aligned Domain Models 

Foundation Layer 

DomainX DomainY 

Figure 6-13 Interoperable Knowledge Queries in the 
Interoperability Evaluation Layer 
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6.3.1.1 Querying Cross-Domain Arguments over Known Semantic 

Mapping Relations 

One possible way of formulating interoperable knowledge queries in the 

Interoperability Evaluation Layer is to create a general query over a known 

semantic mapping relation and deduce whether or not there are cross-domain 

arguments that have become bound to the semantic mapping relation during 

the semantic alignment process previously discussed. Consider the example 

illustrated in Figure 6-14 which is based on Figure 6-7. 

 

In the diagram, the class “Locating_Hole”, defined in the “DomainX” context is 

a sub-class of “Round_Hole” and the class “Gate_Hole”, defined in “DomainY” 

is another sub-class of the foundation class “Round_Hole”. During the 

semantic alignment process, based on the logical conditions that define the 

relation “classMappingRelation_018” (A), the classes “Locating_Hole” and 

“Gate_Hole” are inferred as being valid ?x and ?y arguments to the 

“classMappingRelation_018” respectively (refer to (A), (B) and (C) in the 

expression in Figure 6-14). Recall that this semantic mapping concept helps 

to establish a correspondence between cross-domain sub-classes of 

“Round_Hole” and also increases awareness about possible class 

mismatches between these cross-domain sub-classes.  

 

 

 

 

 

 

 

 

 

 

Assuming that the user is unaware of the semantic mapping  relation between 

“Locating_Hole” and “Gate_Hole”, the person could formulate a query by 

selecting “classMappingRelation_018” to find out whether or not there are 

(forall (?x ?y) 
(<= (classMappingRelation_018 ?x ?y) (A) 
      (and (sup ?x Round_Hole) 
  (withinContext ?x DomainX) (B) 
  (sup ?y Round_Hole) 
  (withinContext ?y DomainY)))) (C) 

su
p sup

Locating_

Hole

Round_

Hole

Gate_Hole

classMappingRelation_018

DomainX DomainY 

Conditions for “classMappingRelation_018” to hold 
between arguments ?x and ?y 

Figure 6-14 Example of a Scenario to Be Queried which Returns a One-to-One Mapping 
Result 
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arguments bound by the relation. This query would be in the Common Logic 

statement of: (classMappingRelation_018 ?x ?y) 

 

If the query transaction returns results, then the results would be in the form of 

a list of all the possible combinations under “classMappingRelation_018”. In 

the example depicted in Figure 6-14, the argument ?x would be 

“Locating_Hole” while the argument ?y “Gate_Hole”, thereby returning a one-

to-one mapping. In the event that there were two or more specialisations of 

“Round_Hole” defined in the “DomainX” context and one specialisation of the 

same foundation class declared in the “DomainY” context as shown in Figure 

6-15, then there would be a many-to-one mapping under the same logical 

conditions that define “classMappingRelation_018”. Many-to-many mappings 

would occur in the presence of a plurality of sub-classes of “Round_Hole” in 

both “DomainX” and “DomainY”. 

 

 

 

 

 

 

 

 

 

 

 

The type of querying method mentioned in this section is highly useful when 

the user readily understands the implied semantics of the queried semantic 

mapping concept and wants to discern what cross-domain arguments are 

bound by the relation. However, not in all circumstances is the user expected 

to be an expert in interpreting semantic mapping concepts. For this reason, 

this querying method is not always preferred from a user perspective. The 

next sub-section explains an alternative direction to optimise interoperable 

knowledge querying procedures. Furthermore, a potential problem occurs 

when there is a large number of semantic mapping concepts that needs to be 

su
p

su
p sup

Locating_

Hole

Round_

Hole

Gate_Hole

classMappingRelation_018

Locating_

Hole

classMappingRelation_018

DomainX DomainY 

Figure 6-15 Example of Many-to-One Mapping Results 
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managed. Section 6.3.2 suggests a method to facilitate the management of 

semantic mapping concepts for reusability. 

 

6.3.1.2 Querying Semantic Mapping Relations over Known Cross-

Domain Arguments 

An alternative way of formulating queries, in the Interoperability Evaluation 

Layer, is to discover in a single querying transaction all the semantic mapping 

relations that hold between two chosen cross-domain arguments. Selecting 

cross-domain arguments can be performed by browsing through the merged 

domain models. It is to be noted that the selection of cross-domain arguments 

is dependent on the user‟s objectives and intentions during the querying 

procedure. Consider the example portrayed in Figure 6-16 which is based on 

Figure 6-8.  

 

In the illustration, the instance “Hole_X”, defined in the “DomainX” context is 

an instance of “Round_Hole” and the instance “Hole_Y”, defined in “DomainY” 

is another instance of the foundation class “Round_Hole”. Assuming that 

“Hole_X” and “Hole_Y” both satisfy the given logical conditions for holding 

blind hole bottom parameters (according to (E), (F) and (G)), the relation 

“instanceMappingRelation_041” (D) infers the instances “Hole_X” and 

“Hole_Y” as being valid ?holex and ?holey arguments to the 

“instanceMappingRelation_041” respectively.  

 

 

 

 

 

 

 

 

 

 

 

(forall (?holex ?holey ?ccpx ?ccpy) 
(<= (instanceMappingRelation_041 ?holex  
       ?holey) (D) 
      (and (inst ?holex Round_Hole) 

 (withinContext ?holex DomainX) (E) 
              (inst ?ccpx Circular_Closed_Profile) 
  (holds_shape ?holex ?ccpx) 
  (blind ?ccpx) (G) 
  (inst ?holey Round_Hole) 
  (withinContext ?holey DomainY) (F) 
  (inst ?ccpy Circular_Closed_Profile) 
  (holds_shape ?holey ?ccpy) 
  (blind ?ccpy)))) (G) 

in
st

inst

Hole_X

Round_

Hole

Hole_Y

instanceMappingRelation_041

DomainX DomainY 

Conditions for “instanceMappingRelation_041” to hold 
between arguments ?holex and ?holey 

Figure 6-16 Example of a Scenario to be Queried between Known Cross-Domain 
Instances 
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Knowing that “Hole_X” and “Hole_Y” exist in the merged domain models, the 

user is able to write a query with the intention of retrieving all possible 

semantic mapping relations based on foundation semantics that bind these 

two instances together, where “Hole_X” is in the first argument position and 

“Hole_Y” in the second argument position. The person would do so by stating 

a query in the form:  

 

(and (BinaryRelation ?rel) (withinContext ?rel foundationMapping) (holdsArg 

?rel 1 DomainX.Hole_X) (holdsArg ?rel 2 DomainY.Hole_Y)) 

 

When the query is run, the user is able to gather a list of all the semantic 

mapping relations based on foundation semantics, that apply to the instances 

“Hole_X” and “Hole_Y”. The query should return the binary relation 

“instanceMappingRelation_041” as a relation that binds “Hole_X” and 

“Hole_Y”. The user is then able to browse “instanceMappingRelation_041” in 

order to view the informal remarks that are tagged to the relation for further 

interpretation of the correspondence. It is to be noted that the way to 

formulate queries is dependent on the expertise of the user in the use of KFL. 

It is also possible to provide user interfaces for guiding the user through 

querying procedures as explained in sections 6.3.2 and Chapter 7 section 

7.3.4. This helps to retrieve accurate queries that do not demand a solid 

knowledge of KFL on behalf of the user. 

 

6.3.1.3 Verification of Reconciliation Correspondences 

It has been acknowledged that the verification of alignment results 

(Lazenberger et al, 2008) forms an important facet of ontology alignment for 

knowledge sharing and reuse. In the research framework, by committing to 

the Foundation Layer, multiple KBs (in this case domain models) are enforced 

a common set of rules and constraints, which is particularly useful when 

attempting to verify the interactions of multiple KBs (Cochrane, 2006). Hence, 

following the framework approach, the verification of reconciliation 

correspondences between cross-domain arguments is the procedure by 

which the results obtained from a query action are checked for conformance 
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to (1) the logical conditions set in the query and (2) any inferred logical 

conditions based on semantic mapping concepts.  

 

Based on the scenario in Figure 6-16 and Figure 6-17, the verification process 

entails the action of proving the reason why “instanceMappingRelation_041” 

corresponds to the queried variable ?rel. The logical proof in this case reflects 

the fact that in the query: 

 

 ?rel is a binary relation. 

 ?rel has been defined in the “foundationMapping” context and is, therefore, 

a semantic mapping relation based on foundation semantics. 

 ?rel holds the argument “Hole_X” in the first argument position. 

 “Hole_X” is an argument defined in the “DomainX” context. 

 ?rel holds the argument “Hole_Y” in the second argument position. 

 “Hole_Y” is an argument defined in the “DomainY” context. 

 

 

 

 

 

 

 

 

 

 

Since “instanceMappingRelation_041” satisfies all the above-mentioned 

conditions and “Hole_X” and “Hole_Y” also satisfy the criteria for the relation 

to bind them together (through inferred logical conditions), this implies that 

“instanceMappingRelation_041” is in fact ?rel. Hence, the reconciliation 

correspondence is a verified semantic mapping relation that holds for 

“Hole_X” and “Hole_Y”, since its occurrence can be proved. 

 

Hole_X Hole_Y?rel
1 2

Query:     Find ?rel such that … 

Result:     ?rel is  instanceMappingRelation_041

Verify:    Why does “instanceMappingRelation_041”  

               correspond to the queried variable ?rel 

Figure 6-17 Example of a Verification Procedure 



  
136 

Verification processes are particularly significant when different parties 

involved in multi-domain model reconciliation wish to become aware of the 

logical conditions pertaining to the reasons as to why certain semantic 

mapping concepts exist between cross-domain arguments. Therefore, 

automated verification through the exploitation of heavyweight logic is key to 

ensuring the integrity of sharable knowledge between systems.  

 

6.3.2 Assisting Knowledge Querying Procedures 

Section 6.2.2 has identified three ways in which semantic mapping concepts 

can be defined based on (1) foundation semantics, (2) known cross-domain 

correspondences and (3) external domains. Another viewpoint from which 

semantic mapping concepts are being developed under this work is to 

consider different levels of domain models namely the class, instance and 

function levels. As a result of these various possible ways of categorising 

semantic mapping concepts, this implies that querying procedures naturally 

follow a similar breakdown. As the extent of foundation and domain semantics 

grows, so does the rate of development of semantic mapping concepts and 

their associated queries. This clearly demonstrates that there is a need for the 

effective management of queries, which would assist the user during 

knowledge querying procedures. 

 

In ontology reconciliation research, it has been acknowledged that semantic 

mapping management systems is needed to support users and applications in 

creating, reusing, managing and applying such semantic mappings in order to 

handle these multiple and complex semantic mappings (Thomas et al, 2008). 

Furthermore, the development of suitable infrastructure and support for 

alignment management still remains a challenge for ontology matching 

(Shvaiko and Euzenat, 2008). This challenge is clear in this work as a result 

of an extensive range of semantic mapping concepts and their associated 

queries. 

 

In order to assist knowledge querying procedures, a matrix approach has 

been devised. The main purpose of the matrix is to support the ability to 
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configure the different modes in which semantic mapping concept queries 

occur according to the different levels involved in domain models. Figure 6-18 

depicts the matrix configuration adopted. 

 

 

 

 

 

 

 

 

 

 

 

In the figure, the matrix follows an intuitive categorisation approach, for 

example, queries based on semantic mapping concepts, that derive from 

foundation semantics, can be carried out at the instance level, class level and 

function level of merged and aligned domain models. This also applies to the 

other two modes in which semantic mapping concept queries occur. Each cell 

of the matrix correspond to the collection of designated queries at the relevant 

instance, class or function level. The matrix approach is simple in essence, 

yet it can facilitate user-system interactions during knowledge querying 

procedures. 

 

6.3.3 Summary of Interoperability Evaluation Layer 

The capability for interoperability evaluation in the fourth layer of the research 

framework is based on the formulation of interoperable knowledge queries 

expressed in Common Logic, while the verification process involves the 

logical reasons for which certain results are obtained when queries are run. 

There are two main ways in which queries can be executed namely (1) by 

querying for cross-domain arguments over known semantic mapping relations 

and (2) by querying for semantic mapping concepts based on known cross-

domain arguments. 

Figure 6-18 Matrix Configuration to Assist Knowledge Querying Procedures 

Queries based on 
semantic mapping 

concepts developed from 
foundation semantics 

Queries based on semantic 
mapping concepts 

developed from known 
inter-domain 

correspondences 

Queries based on semantic 
mapping concepts 

developed from external 
domains 

Instance Level 

Class Level 

Function Level 



  
138 

Unlike the first querying method, the second provides an optimised way of 

retrieving all the mapping correspondences between known pairs of 

arguments present across domain models. Moreover, this querying mode 

does not necessarily require the user to be an expert in understanding 

semantic mapping concepts. Nevertheless, since both methods of querying 

are useful in the Interoperability Evaluation Layer, both remain under 

consideration. Furthermore, a matrix-based configuration has been proposed 

in order to support the management and retrieval of all querying possibilities 

within a reconcilable system.  

 

6.4 Summary  

This chapter has documented the nature and implications of the second two 

layers of the Semantic Manufacturing Interoperability Framework (SMIF), 

which helps meet the third objective of this work (see Chapter 1 section 

1.3.1). The Semantic Reconciliation Layer exploits a combined improved 

approach based on known methods of ontology reconciliation. This combined 

approach imparts a unique facet to the third layer of the framework, by 

enabling the meaningful capture of the semantics of mapping concepts using 

the Knowledge Framework Language (KFL). IDEF5 schematics have been 

employed in this chapter to visually communicate various scenarios that take 

place during semantic reconciliation. 

 

The Interoperability Evaluation Layer closely interacts with the Semantic 

Reconciliation Layer to provide the capability to evaluate and verify the 

correspondences that hold between the entities from two domain models. 

Querying techniques act as mapping discovery methods to understand the 

consequence of ontology mapping performed in the third layer of the 

framework. The case study in Chapter 8 experimentally tests the concepts 

explored in the Semantic Reconciliation and Interoperability Evaluation layers. 
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7 Experimental System Development 

7.1 Introduction 

The development of the experimental system to explore and experiment with 

the different constituent layers of the Semantic Manufacturing Interoperability 

Framework (SMIF) and their interactions are documented in this chapter. 

Section 7.2 concentrates on providing an overview into the design of the 

experimental system for the framework. The various tools exploited for this 

purpose are first presented. Section 7.3 then provides further details on the 

experimental system, by targeting the implementation side of the four layers 

of the SMIF, while emphasising the relevant development methodologies 

employed.  

 

A number of key facets has been identified as part of the experimental system 

development process. These are namely: 

 

 The formalisation of the heavyweight manufacturing ontological foundation 

of the Foundation Layer in an appropriate ontological environment. 

 The exploitation of the Foundation Layer for the purpose of developing 

semantically-sound domain models in the Domain Ontology Layer (see 

Chapter 8 for more details). 

 The formalisation of a set of semantic mapping concepts, based on the 

three different modes in which these occur (refer to Chapter 6 if required) 

and explore the ontology mapping process concepts pertinent to the 

Semantic Reconciliation Layer. 

 The exploration of querying methods via the use of a suitable interface for 

assisting knowledge querying procedures and through appropriate query 

tools. 
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7.2 Design of the Experimental System 

There exist two critical aspects involved in the design of the experimental 

system for testing the research framework, namely (1) the selection of 

relevant software applications and (2) the knowledge representation 

formalism. A list of the software tools and the knowledge representation 

formalism applied to meet the needs of the experimental system are identified 

next. These resources have been selected based on their availability for 

research and other set preferences for this work. 

 

 Integrated Ontology Development Environment (IODE) V2.1.1 developed 

by Ontology Works Inc. (Ontology Works Inc., 2009). IODE is an 

ontological environment that is capable of handling heavyweight Common 

Logic-based ontologies and KBs. This ontology development tool 

constitutes the primary environment for deploying the experimental 

system. 

 

 Knowledge Framework Language (KFL). KFL is a Common Logic-based 

ontological formalism, developed by Ontology Works Inc., that provides 

the syntax and first order semantics required for developing heavyweight 

ontological models. The ability to encode ontological content in KFL 

derives from Ontology Work‟s Upper Level Ontology (ULO). 

 

 Unlike other ontological environments, like Protégé (Protégé Website, 

2009) for instance, IODE makes use of ontology files that are “written” in 

KFL format outside the ontological environment before these files can be 

loaded and saved into IODE. For the purpose of “writing” these files, the 

software tool Notepad++ has been sought (Notepad++ Website, 2009). 

Notepad++ is a free source code editor that is particularly useful for 

manipulating programming in various forms. SCL files (instance files) can 

also be written using this application. 

 

 Ontology development processes have been aided through the use of the 

IDEF5 schematic language (Knowledge Based Systems Inc., 1994) for 
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diagrammatically representing ontological content such as classes and 

their taxonomies, relations and ontological functions, before these 

ontologies are coded in the KFL format. As a result of the unavailability of 

a dedicated tool for constructing these schematics, a template (see 

Appendix A) has been purposely developed for providing the required 

IDEF5 schematic constructs using Microsoft Office Visio 2003 (Microsoft 

Office Visio Homepage, 2009). This application has also been used for the 

manipulation of some graphics during the development of the interface for 

assisting knowledge querying procedures. 

 

 A suite of development tools such as Adobe Flash 8 (Adobe Website, 

2009) and scripting languages like ActionScript 2.0 have been utilised 

during the course of the development of this interface. These development 

methods are further identified in section 7.3.4.1 of this chapter. 

 

7.3 Implementation of the Experimental System 

An overview of the total implementation of the experimental system is next 

revealed. Figure 7-1 illustrates how all the levels of the SMIF are implemented 

in IODE and where relevant tools come into play. KFL files are present at the 

first three levels of the framework for encoding ontological content needed in 

the Foundation and Domain Ontology layers and to formalise semantic 

mapping concepts present in the Semantic Reconciliation Layer. SCL files are 

required in the Domain Ontology Layer to populate instances. Ontology files in 

KFL are loaded in separate Object Management Systems (OMS) in IODE as 

shown in Figure 7-1.  

 

An OMS in IODE corresponds to a system that holds an ontology written in 

KFL with a linked KB for populating facts based on the ontology (if needed). In 

IODE, the Foundation Layer and domain models in the Domain Ontology 

Layer are developed in separate OMSs. In the event that a pair of domain 

models needs to be reconciled, each are merged in a single OMS (see OMS4 

in Figure 7-1) and KFL files that hold the necessary semantic mapping 
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concepts are then loaded and saved in the merged OMS in order to complete 

the ontology mapping process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To evaluate and verify cross-domain correspondences in the Interoperability 

Evaluation Layer, two main tools are employed. The interface, developed to 

assist querying procedures, is first used to retrieve the appropriate user-

selected query. This query is then pasted in the query tool (an integral module 

of IODE) and run to process results. Results can then be analysed in IODE 

itself or saved for other external transactions. 

 

7.3.1 Implementation of the Foundation Layer 

The implementation of the Foundation Layer is at the base of the 

experimental system development process. All the concepts discussed in 

section 5.2 of Chapter 5 have been implemented in IODE. It is also to be 

noted that relevant concepts from the CPM and ISO 10303 AP224 have been 

formalised in KFL, following a careful study of their lightweight structures, 

natural language statements and informally-expressed axioms. Due to the 

different ontological components of the heavyweight manufacturing 

Figure 7-1 Overview of the Implementation of the Experimental System 
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ontological foundation, such as (1) process semantics based on PSL, (2) 

entity information semantics and (3) the participation semantics between 

entity and process concepts, KFL ontology files are developed for each 

component (1), (2) and (3). These files are then loaded together in a single 

OMS to hold the Foundation Layer of SMIF. Appendix C supports a full set of 

implemented semantic structures for the Foundation Layer. 

 

The development of the heavyweight manufacturing ontological foundation is 

based on the knowledge engineering methodology prescribed by Noy and 

McGuinness (2001). Following this methodology, one major competency 

question has been identified for the implementation of the Foundation Layer: 

 

 Can the Knowledge Framework Language (KFL) and IODE be used to 

formally capture and represent the heavyweight semantics required for a 

fully functioning Foundation Layer? 

 

7.3.1.1 Implementation of PSL Core and PSL Outer-Core 

The implementation of process semantics coming from PSL Core and Outer-

Core theories forms part of one of the components of the Foundation Layer. 

To load and save PSL in a fresh OMS (A) (see Figure 7-2), the KFL file 

containing the PSL process semantics (B) is browsed and firstly parsed (C). If 

no parsing errors are present, the loading process is initiated as shown in 

label (D). If during the loading process no loading errors are detected, the 

loaded file is accepted and can be saved (E) to the OMS. 

 

It is important to note that parsing errors occur as a consequence of missing 

parentheses in written axioms, wrongly specified KFL commands and the like. 

On the other hand, the loading action detects errors in the event that logical 

integrity conflicts are present within the KFL file during the loading process 

(i.e. the ontology as a logical theory does not prove to be consistent in its 

entirety). Note that the parsing, loading and saving processes in the OMS of 

the Foundation Layer also applies to KFL files that contain entity information 

semantics and participation semantics between entities and processes. 
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7.3.1.2 Implementation Issues with PSL Process Semantics 

During the implementation of PSL, from its Common Logic Interchange 

Format (CLIF) form to its KFL form in IODE, a few issues have been faced 

and resolved. One of the issues lies in the need to remove “forall” statements 

(F), carefully disambiguating variables present in axioms (G) and appending 

the axiom with the necessary type of integrity constraint statement (H) as 

shown in Expression 7-1.  

 

 

 

 

 

 

 

 

(A) 

(B) 

(C) 

(D) 

(E) 

Figure 7-2 Parsing, Loading and Saving Process Semantics in the Foundation 
Layer OMS 

Expression 7-1 Implementing a CLIF-Written PSL Axiom in KFL 

PSL Core axiom 13. An activity 
occurrence is associated with a unique 
activity. 

CLIF Form 

 
(forall (?occ ?a1 ?a2) (F) 
(if (and (occurrence_of ?occ ?a1) 
            (occurrence_of ?occ ?a2)) 
    (= ?a1 ?a2)))  

KFL Form 

(=> (and (Activity ?a1)             (G) 
   (Activity ?a2) 
   (Activity_Occurrence ?occ) 

  (occurrence_of ?occ ?a1) 
              (occurrence_of ?occ ?a2)) 
    (= ?a1 ?a2))) 
:IC hard “An activity occurrence is 
associated with a unique activity.” (H) 
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The example illustrates an original CLIF-written axiom from PSL (PSL Core 

axiom 13) versus its implemented form in KFL. Statements  with “forall” are 

redundant and are, therefore, removed from logical statements because in 

KFL, written axioms already have an implicit universal quantification over 

them (i.e. although “forall” is not physically identified, it nevertheless is present 

in any axiom). The above-mentioned modifications to PSL axioms do not 

change their behaviour. In other words, original semantics are fully preserved. 

 

Another obstacle faced with the implementation of CLIF-based PSL to PSL 

expressed in KFL is concerned with some of the very complex PSL axioms 

which have to be broken down into smaller axioms for better manageability in 

the IODE environment. One such example is captured in Expression 7-2 

where in the CLIF form of the axiom, more than one “if-then” statement is 

nested into one another, which in IODE creates confusion. In the example, 

axiom 5 from PSL Outer-Core Theory of Subactivities has been split into two 

parts, the consequence of which is the same as expressing the more complex 

single axiom. Only few of these very complex axioms (five in all) arising in 

PSL Outer-Core Theory of Subactivities and Theory of Discrete States have 

been broken down.  

 

From an IODE implementation viewpoint, very few PSL rules need to be 

modified in order to enhance their interpretation. One such example is the 

logical condition in definition 1 from PSL Outer-Core Theory of Subactivities. 

A definition in PSL is analogous to an inference rule as opposed to an 

integrity constraint, hence explaining why a definition is appended with a 

remark line “:rem” (I) instead of “:IC” as identified in Expression 7-3. 

 

The PSL definition is used for inferring instances of the class “Activity” as 

being “primitive” based on the fact that these instances do not have any 

proper subactivities. However, based on PSL semantics, any “Activity” 

instance is a subactivity of itself. If the definition were left as per its CLIF from 

in Expression 7-3, this would lead to the inference that even complex activities 

are “primitive” since complex activities, in addition to having proper 

subactivities, are also a subactivities of themselves. For this reason, the 
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definition of a “primitive” activity is extended in KFL (H) for not inferring 

complex activities as being “primitive”. During the implementation of PSL, only 

very few rules have been extended. However, this brings forward an 

improvement of PSL process semantics from an implementation perspective.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLIF Form 
Subactivity Theory axiom 5. The subactivity 
relation is a discrete ordering, so every 
activity has an upwards successor in the 
ordering. 
 
(forall (?a1 ?a2) 
(if (and (subactivity ?a1 ?a2) 
            (not (= ?a1 ?a2))) 
    (exists (?a3) 
            (and (subactivity ?a1 ?a3) 
        (subactivity ?a3 ?a2) 
        (not (= ?a3 ?a1)) 
        (forall (?a4) 
  (if (and (subactivity ?a1 ?a4) 
              (subactivity ?a4 ?a3)) 
              (or (= ?a4 ?a1) 
       (= ?a4 ?a3)))))))) 
 

KFL Form (Part 1) 

(=> (and (Activity ?a1) 
              (Activity ?a2) 
  (/= ?a1 ?a2) 
  (subactivity ?a1 ?a2)) 
      (exists (?a3) 

 (and (Activity ?a3) 
          (/= ?a3 ?a1) 
          (subactivity ?a1 ?a3) 
          (subactivity ?a3 ?a2)))) 
:IC hard “The subactivity relation is a 
discrete ordering, so every activity has 
an upwards successor in the ordering.” 
 

KFL Form (Part 2) 

(=> (and (Activity ?a1) 
  (Activity ?a2) 
  (/= ?a1 ?a2) 
  (Activity ?a4) 
  (subactivity ?a1 ?a2) 
  (subactivity ?a1 ?a4) 
  (subactivity ?a4 ?a3) 
  (exists (?a3) 
     (and (Activity ?a3) 
            (/= ?a3 ?a1) 
            (subactivity ?a1 ?a3) 
            (subactivity ?a3 ?a2)))) 
       (or (= ?a4 ?a1) 
            (= ?a4 ?a3))) 
:IC hard “The subactivity relation is a 
discrete ordering, so every activity has 
an upwards successor in the ordering.” 

 

Expression 7-2 Splitting a PSL Axiom into Two Parts for Improving Manageability in 
IODE 

CLIF Form 

Subactivity Theory definition 1. An 
activity is primitive if and only if it has 
no proper subactivities. 
 
(forall (?a) 
(<= (primitive ?a) 
      (and (activity ?a) 
  (forall (?a1) 
        (if (subactivity ?a1 a) 
            (= ?a1 ?a)))))) 

KFL Form 

 
(<= (primitive ?a) 
      (and (subactivity ?a1 ?a) 
  (= ?a1 ?a) 
  (not (exists (?a2) 
  (H)          (and (subactivity ?a2 ?a) 
      (/= ?a2 ?a1) 
      (/= ?a2 ?a)))))) 
:rem “An activity is primitive if and only 
if it has no proper subactivities.” (I) 

Expression 7-3 Improving the Logical Interpretation of a PSL Definition 
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7.3.1.3 Exploring the Implemented Foundation Layer 

After all the KFL files, containing the relevant ontological content for the 

heavyweight manufacturing ontological foundation have been parsed, loaded 

and saved in the OMS, it becomes possible to browse through the Foundation 

Layer. This is illustrated in Figure 7-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(J) 

(K) 

(L) 

(M) 

(N) 

Figure 7-3 Browsing through the Implemented Foundation Layer 
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The screenshots indicate the possibility of browsing through the taxonomy of 

classes present in the Foundation Layer (J). These classes form the 

backbone of the heavyweight manufacturing ontological foundation. In the 

figure, a majority of the developed classes are shown. By selecting a 

particular class like “Round_Hole” (K), the user is able to view a number of 

aspects relevant to “Round_Hole”. For instance, the “Description” tab (L) 

allows the user to view general information about the class. This includes 

natural language remarks which informally describe the intuition behind 

“Round_Hole”. It is also possible to analyse the defined relations over 

“Round_Hole” by switching to the “Relations” tab as in (M). Note that in this 

case no specific relation is defined explicitly over “Round_Hole”. This is 

because all relevant relations are inherited from its parent class “Feature”.  

 

Axioms over classes, i.e. integrity constraints as well as definitions (inference 

rules), can be viewed by selecting the “Assertions” tab (N) in the IODE 

browser. In the example in Figure 7-3, two of the ICs governing two necessary 

conditions over “Round_Hole” are shown. It is important to emphasise at this 

point that once an ontology is saved in an OMS, it cannot be manipulated 

within the environment, i.e. modified in IODE itself. Any modification needs to 

be carried out in the relevant KFL file(s) prior to being re-saved to a new 

OMS.  

 

7.3.2 Implementation of the Domain Ontology Layer 

The implementation of the Domain Ontology Layer follows a similar approach 

to that of the Foundation Layer. The knowledge engineering methodology 

(Noy and McGuinness, 2001) is also applied for this purpose. Four different 

domain models are under consideration namely: 

 

 A “Machining Hole Feature Ontology A” which treats the definition of 

different types of hole features based on the machining and process 

planning viewpoints. 
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 A “Machining Hole Feature Ontology B”, which focuses on the definition of 

a set of hole features based on the machining and process planning 

viewpoints.   

 A “Design Hole Feature Ontology A” which entails an ontological model 

based on a design function viewpoint of the “Machining Hole Feature 

Ontology A”.  

 An “ISO Tolerance Band Model” for round holes, based on ISO Tolerance 

Band and machining processes associated with ISO IT Tolerance Grade 

(ISO 286-2, 1988). This model serves as an external domain model to 

experiment with semantic mapping concepts based on external domains 

(refer to Chapter 6 section 6.2.2.3).  

 

Figure 7-4 illustrates the creation of OMSs for the four domain ontologies 

under consideration. To create an OMS for any domain ontology that follows 

the SMIF approach, the Foundation Layer OMS is first cloned. The new OMS 

is renamed at convenience, and the KFL file for the required domain ontology 

is loaded in the new OMS. The implementation of domain models is not 

discussed further in this section as this constitutes an element of the case 

study in Chapter 8, where the implementation of integrity-driven domain 

models specialised from the Foundation Layer is debated in more detail. The 

content of the various domain models can be consulted in Appendix D. 

 

 

 

 

 

 

 

 

 

 

Figure 7-4 Creating OMSs for Four Domain Models under Investigation 



  
150 

7.3.3 Implementation of the Semantic Reconciliation Layer 

The development process of semantic mapping concepts for semantic 

alignment follows the ontology alignment lifecycle (Euzenat et al, 2008; 

Shvaiko and Euzenat, 2008). This is because of the iterative process required 

during the creation, testing and modification (if needed) of these semantic 

mapping concepts for their optimised implementation. The meaning behind 

semantic mapping concepts (both formal and informal) required for the 

implementation of the Semantic Reconciliation Layer is captured in KFL files. 

Appendix E exposes a subset of the types of semantic mapping concepts 

used in the Semantic Reconciliation Layer.  

 

If, for example, semantic mapping concepts based on foundation semantics 

are to be deployed, then the corresponding KFL file is loaded after the 

merging stage is completed for two domain models to be reconciled. Similarly, 

if semantic mapping concepts based on an external domain is required, then 

the KFL file containing the ontological content of the external domain has to 

be loaded after the merging stage is performed.  

 

In this section, the implementation of semantic mapping concepts based on 

foundation semantics is explained. The case study in Chapter 8 further 

elaborates the other aspects of the Semantic Reconciliation Layer, for 

example, (1) how to reconcile cross-domain arguments based on known 

cross-domain correspondences and (2) how to reconcile cross-domain 

arguments based on external domains. 

 

The KFL file containing all the semantic mapping concepts based on 

foundation semantics is loaded and saved in an OMS. The creation of this 

OMS follows the context adjustment and merging processes for two domain 

models to be reconciled. When the semantic mapping concepts are saved in 

the OMS, it then becomes possible to browse through them.  

 



  
151 

7.3.3.1 Semantic Mapping Concepts for Reconciling Classes 

Figure 7-5 illustrates some of the semantic mapping relations for reconciling 

cross-domain classes (O). Notice the “classMappingRelation_018” (P) 

previously explained in section 6.2.2.1 of Chapter 6. Further browsing into this 

semantic mapping relation provides options for viewing the logical sentence 

(Q). This logical sentence provides the formal definition of the relation 

“classMappingRelation_018”. By switching to the “Description” tab for the 

relation, the user is able to view the informal semantics in the form of written 

remarks (R). Also notice within the window in (R) the presence of highlighted 

foundation concepts. These concepts are hyperlinked to their relevant 

locations in the Foundation Layer in case the user wishes to refer to these 

concepts too.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(O) 

(Q) 

(R) 

(P) 

Figure 7-5 Implementation of Semantic Mapping Relations for Reconciling Cross-
Domain Classes 
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7.3.3.2 Semantic Mapping Concepts for Reconciling Instances 

Figure 7-6 depicts a portion of the semantic mapping concepts based on 

foundation semantics, explored for the reconciliation of cross-domain 

instances. The semantic mapping concept “instanceMappingRelation_041” 

(S), also previously explained in section 6.2.2.1 of Chapter 6, is highlighted. 

As with all other semantic mapping concepts based on foundation semantics, 

“instanceMappingRelation_041” is also accompanied by its formal definition 

and the adequate tagged remarks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.3.3.3 Semantic Mapping Concepts for Reconciling Ontological 

Functions 

The implementation of semantic mapping concepts based on foundation 

semantics also involves reconciling at the ontological function level of domain 

ontologies. Figure 7-7 identifies four such mapping relations where the logical 

definition as well as the informal semantics of the relation 

(S) 

Figure 7-6 Implementation of Semantic Mapping Concepts for Reconciling Cross-
Domain Instances 



  
153 

“functionMappingRelation_003” (T) are illustrated. This semantic mapping 

concept infers correspondences between cross-domain units of measurement 

functions for denoting instances of the foundation class “Length_Measure” 

(U).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The logical conditions that define “functionMappingRelation_003” (T) are 

relatively complex and for this reason, the logical statement has to be split for 

better manageability. During implementation, “pointer relations” such as 

“pointerRelation_003” (V) are defined to provide a better facility to infer over 

complex logic.  

 

 

 

(T) 

(V) 

(U) 

Figure 7-7 Implementation of Semantic Mapping Concepts for Reconciling Cross-
Domain Ontological Functions 
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7.3.4 Implementation of the Interoperability Evaluation Layer 

There are two main components used in the Interoperability Evaluation Layer 

for the discovery of correspondences. The first is a graphical Web-based user 

interface, developed in this work, called the Interoperability Evaluation 

Assistant. This user interface applies the matrix configuration identified in 

section 6.3.2 of Chapter 6 in order to improve the management of queries and 

user interaction, before these queries can be executed. Appropriate queries 

are accessed from the Interoperability Evaluation Assistant and run in the 

second component in the Interoperability Evaluation Layer. This second 

component is the query tool facility provided in IODE. 

 

7.3.4.1 Interoperability Evaluation Assistant 

During the development of the Interoperability Evaluation Assistant, a number 

of software tools and programming languages have been harnessed. These 

include: 

 

 Microsoft Office FrontPage 2003 (Microsoft Office FrontPage Homepage, 

2009). This application allows the development of Web-based interfaces 

and has, therefore, been exploited towards the development of the 

Interoperability Evaluation Assistant. Where necessary, the scripting 

language JavaScript has been used to control user inputs in text fields and 

for outputting relevant messages. 

 Adobe Flash 8 (Adobe Website, 2009). This application allows more 

complex Web-based interfaces to be realised, with the advantage of 

nesting several possible user actions within one page instead of requiring 

multiple pages. The scripting language ActionScript 2.0 has been utilised 

in Adobe Flash 8 for enabling the coordination of dynamic content present 

within the Interoperability Evaluation Assistant.  

 Adobe Photoshop CS (Adobe Website, 2009). The manipulation of 

graphical content to go on the interface has been performed through the 

application of this image editing software. 
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Two main aspects have been taken into consideration for selecting a Web-

based approach towards the realisation of the user interface. Firstly, a Web-

based approach has been chosen because of the recognised information 

sharing benefits of Web-based architectures for collaborative product 

development (Rodriguez and Al-Ashaab, 2005). This implies that a Web-

based interface is a useful way of supporting an interoperability-enabled 

environment. Secondly, a Web-based interface is relatively straightforward to 

implement, when viewed from the author‟s experience. Appendix F highlights 

the sitemap and sample codes used in the development of the interface.  

 

Figure 7-8 identifies the main panel of the interface. Two ways of building 

queries are supported namely by (1) allowing the user to look for specific 

semantic mapping concepts to query, using the matrix configuration (W) and 

(2) allowing the user to build queries to retrieve all semantic mapping 

concepts that hold between two known cross-domain arguments (X).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-9 identifies how the Interoperability Evaluation Assistant helps the 

user to browse through specific semantic mapping concepts to be queried 

(also see Appendix F if needed) In the first place, the user switches on the 

Figure 7-8 Main Panel of the Interoperability Evaluation Assistant 

(W) 

(X) 
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relevant cell in the matrix, for example, “Queries involving semantic mapping 

concepts based on foundation semantics” against the “Instance Level” (Y). 

Using the taxonomical breakdown of foundation classes (Z),  the user goes to 

the relevant concept in question, in this case “Round_Hole” (A1). From the set 

of possible semantic mapping concepts that may exist, the user then selects 

the intended query and clicks on the download button (B1) to retrieve the 

logical query (C1). The query can then be copied and pasted in the query tool 

provided in IODE for processing. Note that the storage of these queries has 

been done using a simple folder-based method. For even better 

manageability, this method would preferably be a database storage facility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-10 depicts the other way in which the interface can be used, i.e. to 

build queries for retrieving all semantic mapping concepts that hold between 

two known cross-domain arguments. For so doing, the additional JavaScript-

supported facility (refer to label (X) in Figure 7-8) is utilised. Suppose the user, 

by browsing through an IODE OMS containing two merged domain models, 

comes across two classes named “Primary_Hole” in the “DomainX” context 

and “Drilled_Hole” in the “DomainY” context. The user, at this point, wishes to 

(Y) 

(Z) 
(A1) 

(B1) 

(C1) 

Figure 7-9 Retrieving a Specific Interoperable Knowledge Query 
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build a query to find out all the semantic mapping concepts based on 

foundation semantics, that hold between these two classes.  

 

The query procedure consists of opening the main panel of the Interoperability 

Evaluation Assistant and using the JavaScript-supported facility, the names of 

the two arguments are typed in the provided text fields (D1). On clicking the 

submit button, a new window opens (E1) where the more complex query can 

be retrieved. The query is selected and copied (F1) prior to being pasted into 

IODE‟s query tool for being processed. 

 

 

 

 

 

 

 

 

 

 

7.3.4.2 The Query Tool in IODE 

After the appropriate query is accessed from the Interoperability Evaluation 

Assistant (refer to Figure 7-10), the query is pasted into the query editing 

window of the query tool in IODE (see label (G1) on Figure 7-11). On clicking 

the “Run query” button, all the results of the query can be viewed as a table of 

results. Notice the presence of “classMappingRelation_018” (H1), which is 

one of the correspondences that hold between the class “Primary_Hole” in 

“DomainX” and “Drilled_Hole” in “DomainY”. The user is able to further 

browse into the details of the query result by selecting it and viewing its 

tagged remarks (I1).  

 

 

 

 

(D1) 

(D1) 
(E1) 

(F1) 

Figure 7-10 Building a Query to Retrieve All Semantic Concepts that Hold 
between Two Known Cross-Domain Arguments 
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7.3.4.3 Logically Verifying Query Results 

Results obtained from running a query can then be verified through logical 

proof for enhancing the user‟s awareness of why the query results portray 

certain semantic mapping concepts. The verification process also utilises 

IODE‟s query tool. By switching to the “View results as facts” window (see 

label (J1) on Figure 7-12) an option for launching the proof procedure for each 

query result becomes available. On clicking this link, the proof structure for a 

specific query result is made visible (K1). A proof structure is accompanied by 

both an informal interpretation (K1) as well as a formal one expressed in logic 

form (not shown on Figure 7-12).  

 

 

(G1) 

(H1) 

(I1) 

Figure 7-11 Executing an Interoperable Knowledge Query and Viewing Its Results 
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7.4 Summary 

This chapter has described the core details involved in the development and 

deployment of an experimental system for testing the SMIF approach. This 

consequently meets the fourth objective of this research (see Chapter 1 

section 1.3.1). The implementation has been decomposed into a number of 

stages that hold for each specific level of SMIF, where the primary 

implementation environment exploited being IODE, the latter supporting the 

development of ontologies expressed in KFL. IDEF5 schematics used for the 

exploration of concepts in the heavyweight manufacturing ontological 

foundation (see Appendix C), have helped implementation into KFL and 

deployment in IODE. The competency question to be answered is as follows 

(see section 7.3.1): 

 

 Can the Knowledge Framework Language (KFL) and IODE be used to 

formally capture and represent the heavyweight semantics required for a 

fully functioning Foundation Layer? 

 

(J1) 

(K1) 

Figure 7-12 The Verification of an Evaluated Query Result using Logical Proof 



  
160 

It is evident from the implementation that the full semantic capability required 

for establishing the Foundation Layer is acquired, although, for example, 

some modifications related to PSL axioms and definitions need to be 

performed during implementation. However, it is seen that these modifications 

do not affect semantic integrity (i.e. there is no actual loss of meaning in 

computational form).  

 

In the Domain Ontology Layer, various domains employ the implemented 

Foundation Layer to build, in an integrity-driven way, their own tailored 

domain models. The case study in Chapter 8 analyses this aspect in more 

detail, following the success in the implementation of the Foundation Layer. In 

the event that a pair of domain models need to be reconciled with the 

intention of identifying the correspondences that hold between the two, the 

Semantic Reconciliation and Interoperability Evaluation layers are deployed. 

 

The pair of domain models to be reconciled undergo the simple merging 

procedure under the explored ontology mapping process concepts from 

Chapter 6. The domain models are merged in a distinct Object Management 

System (OMS) where, based on the intention of the user, the relevant set of 

semantic mapping concepts (available as KFL files) are loaded in the OMS in 

question. Section 7.3.3 has illustrated that semantic mapping concepts based 

on foundation semantics can be made relevant to different levels of domain 

models namely the (1) class level, (2) instance level and (3) function level.  

 

Mapping discovery and the interpretation of cross-domain correspondences 

between domain models is carried out at the fourth level of the framework. 

Two mechanisms are applied for this purpose. A Web-based user interface, 

the Interoperability Evaluation Assistant developed in this work, facilitates the 

retrieval of the correct query to be processed. After the query is obtained, the 

latter is simply copied and pasted in the query tool provided in IODE. The 

results obtained from a query action are tabulated. These results can be 

browsed or proved in order to support the verification of evaluated cross-

domain correspondences.  
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8 Case Study 

8.1 Introduction 

This chapter explores a number of test cases as part of a complete case 

study in order to provide a proof of concept for the overall deployment of the 

Semantic Manufacturing Interoperability Framework (SMIF), whose underlying 

understanding has been discussed in the previous chapters. The case study 

has been set in order to test the research hypothesis identified in Chapter 1. A 

re-statement of the research hypothesis is given below: 

 

 The specification of a heavyweight manufacturing ontological foundation 

can provide a basis for the integrity-driven specialisation of domain 

models, while supporting the capability to evaluate and verify the 

correspondences between pairs of domain models that have been 

specialised from the foundation. 

 

The different test cases are thus oriented on the research hypothesis, where 

the appropriate aims and objectives have been identified for each test case. 

The results gathered from the case study are presented and necessary 

discussions and validation of results are exposed at the end of each test case. 

Section 8.2 provides a global picture of the intended test cases as well as the 

identification of relevant case study boundaries and assumptions. Four test 

cases are then analysed in sections 8.3, 8.4, 8.5 and 8.6. Finally, section 8.7 

provides a summary of the main findings from the test case implementations.  

 

8.2 Overview of Test Cases 

8.2.1 The Arrangement of Test Cases in the Case Study 

The various test cases are aimed at specific levels of the SMIF notably the 

Domain Ontology, Semantic Reconciliation and Interoperability Evaluation 

layers. Note that at this point, a fully functioning and validated Foundation 

Layer has already been implemented (see section 7.3.1 in Chapter 7 and 
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Appendix C) and this implementation is, therefore, not further documented in 

the case study.  

 

Figure 8-1 visually illustrates how the test cases are arranged. The test cases 

involve the development of three domain models in the first place, namely a 

“Machining Hole Feature Ontology A” (A) within a “System Domain A”, a 

“Machining Hole Feature Ontology B” (B) within a “System Domain B” and a 

“Design Hole Feature Ontology A” (C) pertaining to the “System Domain A”. 

Test Case 1 firstly analyses the integrity-driven development of the 

“Machining Hole Feature Ontology A” facilitated through the heavyweight 

semantics residing in the Foundation Layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-1 The Arrangement of Test Cases in the Case Study 
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Test Case 2 focuses on the reconciliation of two domain models, “Machining 

Hole Feature Ontology A” (A) and “Machining Hole Feature Ontology B” (B) 

developed within the system domains A and B respectively. In Test Case 2, 

reconciliation is established using semantic mapping concepts based on 

foundation semantics (D). Test Case 3, on the other hand, also aims at  

reconciling “Machining Hole Feature Ontology A” and “Machining Hole 

Feature Ontology B”, but instead, the reconciliation is driven through semantic 

mapping concepts based on an external domain ontology (E). Both test cases 

2 and 3 are targeted at inter-system interoperability. 

 

Test Case 4 considers intra-system interoperability. Another domain model 

pertaining to the “System Domain A”, identified as “Design Hole Feature 

Ontology A” (C), is developed for this purpose. The ontology captures the 

concepts from the “Machining Hole Feature Ontology A” (A) but aligned to a 

functional design viewpoint. The “Design Hole Feature Ontology A” and 

“Machining Hole Feature Ontology A” are then reconciled utilising semantic 

mapping concepts based on known cross-domain correspondences (F). Test 

cases 2, 3 and 4 altogether explore the different modes in which semantic 

mapping concepts occur.  

 

All domain models explored in the test cases have been developed following 

the Knowledge Engineering Methodology (Noy and McGuinness, 2001). The 

types of hole feature concepts defined in the various test cases have been 

partly inspired from (1) hole feature terminologies obtained from company 

sources, (2) sources such as Canciglieri (1999) and NX (Siemens PLM 

Software Website, 2009) terms for holes and (3) the author‟s preferences and 

experience of the research scope.  

 

8.2.2 Case Study Boundaries and Assumptions 

The main boundary set is concerned with a restriction to the scope of the 

research, which is centred around the formal representation of hole features 

in design and manufacture and the representation of hole making process 

sequences. Furthermore it is assumed that all the domain models being 
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developed within the framework follow the controlled specialisation approach 

and use IODE as a common implementation platform. It is also assumed that 

the formalised domain integrity constraints accurately capture the intended 

informal meaning. Other boundaries and assumptions previously identified in 

section 4.7 of Chapter 4 also apply to the case study. 

 

8.3 Test Case 1: Integrity-Driven Specialisation of a 

Machining Hole Feature Ontology 

8.3.1 Aim and Objectives 

The aim of Test Case 1 is to prove the ways in which the Foundation Layer 

facilitates the specialisation of a “Machining Hole Feature Ontology A”, such 

that a semantically rich and accurate representation of the ontology-based 

model is obtained. In this first test case, the following competency questions 

have been formulated: 

 

 Can the ontological mechanisms that allow specialisation to occur be used 

during the development of “Machining Hole Feature Ontology A”? 

 Can the specification of domain-defined integrity constraints be achieved 

in a flexible way while not violating foundation semantics? 

 Is it possible to accurately represent discrete knowledge through 

instantiation, based on the semantics captured in the “Machining Hole 

Feature Ontology A” and foundation semantics? 

 

There are two main objectives involved namely (1) the deployment of the 

Foundation and Domain Ontology layers of the Semantic Manufacturing 

Interoperability Framework in order to analyse the test case and (2) the use of 

the relevant set of tools and ontological formalism depicted in Chapter 7 

notably IODE (Ontology Works Inc., 2009) as ontology development 

environment. 
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8.3.2 Machining Hole Feature Ontology A 

The diagram in Figure 8-2 provides a view on the type of part family being 

investigated, where in this scenario, a “Housing_Part_Family” is considered. It 

is to be pointed out that the diagram does not represent a concrete state of 

the domain ontology, i.e. instances of the concepts from the ontology, but in 

fact reflect some of entity information classes being developed in the 

“Machining Hole Feature Ontology A”. Additionally, although the classes 

“Turned_Flange” and “Turned_Boss” are referenced in the domain ontology, 

these are primarily present to provide a context for the existence of the hole 

features held by the “Housing_Part_Family”.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.3.2.1 Entity Information Semantics 

The taxonomy of entity information classes for the “Machining Hole Feature 

Ontology A” is shown in Figure 8-3 (G).  Some of the classes present are 

“Housing_Part_Family” (H) specified as a sub-class of the foundation class 

“Artifact”, “Counterbore_Hole” (I) as a sub-class of “Feature” and  

“Drilled_Hole” (J) as a sub-class of “Round_Hole”. Consider the domain-

defined class “Counterbore_Hole”. The latter is defined as a sub-class of the 

Reamed_Hole 

Drilled_Hole 
Turned_Flange 

Turned_Boss 

Counterbore 

Counterbore_Hole 

Housing_Part_Family 

Figure 8-2 Examples of Classes Developed in the “Machining Hole 
Feature Ontology A” 
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foundation class “Feature” using the super-class/sub-class directive “:sup” 

(K), in the KFL file of the domain ontology. 

 

This is because “Counterbore_Hole” is a class of compound feature that 

aggregates the “Round_Hole” sub-classes “Drilled_Hole” (J) and 

“Counterbore” (L), which themselves have their definitions based on domain-

defined dimensional parameters. For example, “Drilled_Hole” (J) consists of 

“Drilled_Hole_Diameter” (M) and “Drilled_Hole_Depth” (N), which are 

identified as sub-classes of the foundation class “Length_Measure”. The 

“Description” tab (O) views the remarks defined for “Counterbore_Hole”, while 

the “Assertions” tab (P) depicts two of the ICs defined for that class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The diagram in Figure 8-4 illustrates the intuitions adopted in the “Machining 

Hole Feature Ontology A” for capturing the domain-defined axioms for the 

class “Counterbore_Hole” in terms of the “Round_Hole” classes that it 

(G) 

(H) 

(I) 

(J) 

(K) 

(L) 

(M) 

(N) 

(O) 

(P) 

Figure 8-3 The Specialisation of Entity Information Classes in the “Machining Hole 
Feature Ontology A” 
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aggregates. A list of the several informal ICs is provided in Figure 8-4. Similar 

axioms have been formalised (refer to Appendix D.1 if needed) in order to 

have a semantically enriched model which is (1) consistent to the practices 

and preferences within “Machining Hole Feature Ontology A” as well as (2) 

consistent with foundation semantics  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The formal logical statements written in KFL for the first three ICs of the class 

“Counterbore_Hole” are listed in Expression 8-1. These expressions capture 

Counterbore_ 
Diameter 

Drilled_Hole_ 
Diameter 

Drilled_ 
Hole_ 
Depth 

Counterbore_ 
Depth 

Drilled_Hole 

Counterbore 

Counterbore_Hole 

Counterbore_Hole 
 

 A counterbore hole is a compound feature 

 Every counterbore hole involves a drilled hole and a 
counterbore which are elements of the counterbore 
hole 

 The drilled hole of a counterbore hole is the base 
feature of the counterbore hole 

 The counterbore element of a counterbore hole has 
a diameter value which is always greater than that 
of the drilled hole element of the same counterbore 
hole 

 The drilled hole element of a counterbore hole has 
a depth value which is always greater than that of 
the counterbore element of the same counterbore 
hole 

 
Drilled_Hole 
 

 Every drilled hole holds exactly two circular closed 
profiles of identical drilled hole diameter 

 Every drilled hole holds exactly one linear path of 
drilled hole depth 

 
Counterbore 
 

 Every counterbore holds exactly two circular closed 
profiles of identical counterbore diameter 

 Every counterbore holds exactly one linear path of 
counterbore depth 

 

Figure 8-4 Entity Information Semantics for the class “Counterbore_Hole” 

(=> (Counterbore_Hole ?cbhole) 
     (Foundation.compound ?cbhole)) (Q) 
:IC hard "A counterbore hole is a 
compound feature." 

(=> (Counterbore_Hole ?cbhole) 
      (exists (?dhole ?chole) 

(and (Drilled_Hole ?dhole) 
         (Counterbore ?chole) 
(Foundation.element_of ?dhole ?cbhole) (R) 
(Foundation.element_of ?chole ?cbhole)))) 
:IC hard "Every counterbore hole involves a 
drilled hole and a counterbore which are 
elements of the counterbore hole." 

(=> (and (Counterbore_Hole ?cbhole) 
   (Drilled_Hole ?dhole) 
   (Foundation.element_of 
?dhole ?cbhole)) 
      (Foundation.base ?dhole)) (S) 
:IC hard "The drilled hole of a 
counterbore hole is the base feature of 
the counterbore hole." 

Expression 8-1 Example of ICs for the Class “Counterbore_Hole” 
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domain-defined ICs. It is important to notice how the specification of these 

axioms are based on the reuse of appropriate foundation semantics such as 

in line (Q) where the foundation unary relation “compound” is used, in line (R) 

where the “element_of” binary relation is used and in line (S) where the unary 

relation “base” is used.  

 

8.3.2.2 Machining Process Semantics and Relationships to Entities 

The taxonomy of machining process classes for the “Machining Hole Feature 

Ontology A” is illustrated in Figure 8-5. In the figure, a number of sub-classes 

of the foundation class “Activity” is present such as “Reamed_Hole_Making” 

(T). The “:sup” directive has also been exploited for the purpose of creating 

the sub-classes of “Activity”. Similar to the previously explained example of 

the “Counterbore_Hole”, “Activity” sub-classes also carry informal semantics 

as captured in the “Description” tab (U) and formal ICs for semantic 

enrichment as shown in the “Assertions” tab (V) in Figure 8-5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(T) 

(U) 

(V) 

Figure 8-5 The Specialisation of Machining Process Classes in the “Machining Hole 
Feature Ontology A” 
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The IC exposed in Figure 8-5 (V) is an example of an axiom that governs the 

participation semantics between the individuals of the class “Reamed_Hole” 

and the corresponding activity occurrences. Informally, this soft IC states that 

“every reamed hole that is a flow object is both an output from a potential 

occurrence of a complex reamed hole making activity and an output from a 

potential occurrence of an atomic reaming activity." This understanding is 

captured in Figure 8-6, where it may be required that some instance of the 

class “Reamed_Hole” (W), carrying the “flow_object” semantics, be specified 

as being an “output” of some “occurrence_of” the “Activity” class “Reaming” 

(X) and an “output” of some “occurrence_of” the “Reamed_Hole_Making” 

class (Y). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The informal ICs defined for capturing rigorous semantics for the class 

“Reamed_Hole_Making” are also listed in Figure 8-6. The Expression 8-2 

then reveals the formalised IC for the first informal axiom in the list from 

Figure 8-6. It is important to notice the use of the “min_precedes” relation (see 

Figure 8-6 (Z) and line (Z) in Expression 8-2) defined in PSL-based process 

Some occurrence_of Reamed_Hole_Making 

Some 
Reamed_Hole 
specified as a 

flow_object 

Some 
occurrence_of 

Centre_Drilling 

min_precedes min_precedes 

Some 
occurrence_of 

Drilling 

Some 
occurrence_of 

Reaming 

output 

(W) 

(X) 

(Y) 

(Z) (Z) 

Reamed_Hole_Making 
 

 An occurrence of centre drilling must precede an occurrence of drilling under a complex 
occurrence of reamed hole making. Other behaviours under the complex reamed hole 
making activity may occur in between 

 An occurrence of drilling must precede an occurrence of reaming under a complex 
occurrence of reamed hole making. Other behaviours under the complex reamed hole 
making activity may occur in between 

 An occurrence of centre drilling under a complex occurrence of reamed hole making 
must be at the extreme beginning of the complex occurrence 

 An occurrence of reaming under a complex occurrence of reamed hole making must be 
at the extreme end of the complex occurrence 

Figure 8-6 Process Semantics for the class “Reamed_Hole_Making” and its 
Relationships to the Entity Class “Reamed_Hole” 
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semantics coming from the Foundation Layer and reused in the domain 

ontology in order to capture the semantics of the process sequence under 

occurrences of “Reamed_Hole_Making”. A full list of the explored process-

based ICs for the “Machining Hole Feature Ontology A” is also provided in 

Appendix D.1.  

 

 

 

 

 

 

 

 

 

  

 

 

8.3.2.3 Warnings and Errors in Loading the Machining Hole Feature 

Ontology A 

During the development of the “Machining Hole Feature Ontology A”, few 

warnings and errors were flagged while loading the KFL file containing the 

domain ontology in the corresponding Object Management System (OMS). 

These occurred during the parsing phase of the KFL file. Figure 8-7 depicts 

(1) warnings as a result of confusing variables declared in some axioms and 

(2) an error which occurred due to an incorrect use of the foundation unary 

relation “base”. These warnings and errors have prompted the necessary 

rectifications prior to a successful loading and saving of the KFL file for 

“Machining Hole Feature Ontology A”.  

 

 

 

 

 

(=> (and (Reamed_Hole_Making ?rholeMake) 
  (Foundation.Activity_Occurrence ?rholeMakeOcc) 
  (Foundation.occurrence_of ?rholeMakeOcc ?rholeMake)) 
      (exists (?cDrill ?drill ?cDrillOcc ?drillOcc) 
 (and (Centre_Drilling ?cDrill) 
         (Drilling ?drill) 
         (Foundation.Activity_Occurrence ?cDrillOcc) 
         (Foundation.Activity_Occurrence ?drillOcc) 
         (Foundation.occurrence_of ?cDrillOcc ?cDrill) 
         (Foundation.occurrence_of ?drillOcc ?drill) 
         (Foundation.min_precedes ?cDrillOcc ?drillOcc ?rholeMake)))) (Z) 
:IC hard "An occurrence of centre drilling must precede an occurrence of drilling 
under a complex occurrence of reamed hole making. Other behaviours under 
the complex reamed hole making activity may occur in between." 

Expression 8-2 Example of an IC for the class “Reamed_Hole_Making” 
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8.3.2.4 Instantiating Entity Information Concepts 

The “Machining Hole Feature Ontology A” provides a domain model that 

allows the semantic representation of discrete knowledge through 

instantiation. Instances based on the domain ontology are populated 

according to the KB schema defined within the “Machining Hole Feature 

Ontology A”. In this test case a concrete state of the entity information 

concepts of the ontology has been captured as shown in Figure 8-8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-7 Warnings and Errors during the Loading Process of “Machining Hole 
Feature Ontology A” in its OMS 

Figure 8-8 Populated Entity Information Instances for Discrete Knowledge 
Representation 
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Individuals of the various classes of features are identified and these carry 

geometry and dimensional semantics as shown in the figure, for example, 

“Drilled_Hole_A” (A1) is an instance of the class “Drilled_Hole” (see Figure 8-

3 (J)) and has a diameter that measures 12 mm, a diameter tolerance of +/- 

0.8 mm and has a depth that measures 10 mm. Note that another instance 

“Drilled_Hole_C” of “Drilled_Hole” has also been defined but has not been 

shown in the diagram as it is hidden. The “Drilled_Hole_C” follows the same 

dimensional parameters as “Drilled_Hole_A” but has a different placement. All 

the specified instances that pertain to this domain ontology have been defined 

within the “machiningHoleFeatureOntologyA” context, which is the created 

namespace for the “Machining Hole Feature Ontology A”. 

 

8.3.2.5 Identifying Incorrect and Missing Entity Information Knowledge 

Figure 8-9 illustrates the process of loading facts and fact sentences into the 

KB linked to “Machining Hole Feature Ontology A” in IODE. The “Asserter” 

button (B1) is used to invoke the “Asserter” pane (C1). Required facts and 

fact sentences are copied and pasted from the appropriate SCL file containing 

the instances into the load window (D1) of the “Asserter”.  

 

It is of extreme importance to check the “Check ICs?” field (E1) prior to 

loading the SCL file, as this process is detrimental to saving instances in such 

a way that these follow the consistency of the ICs from the Foundation Layer 

and the “Machining Hole Feature Ontology A”. In this way any violated ICs are 

reported, thereby prompting the knowledge engineer to perform the necessary 

modifications to rectify incorrect and/or missing semantics in the SCL file 

containing the facts. In the first attempt to load and save entity information 

knowledge, two hard IC violations and three soft IC violations have been 

reported as shown in Figure 8-9 (F1). The source of the infringements appear 

at the end of each listed violated IC (not shown in Figure 8-9 for clarity). 

 

As a result of the hard IC violations, for example, “Every counterbore hole 

involves a drilled hole and a counterbore which are elements of the 
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counterbore hole” (G1), the first loading attempt is rejected. On consulting the 

appropriate SCL file, it is discovered that missing information is in fact present 

in the specification of the “Counterbore_Hole_A” instance (see Figure 8-8), 

where “Drilled_Hole_E” and “Counterbore_A” have not been aggregated 

under the compound feature “Counterbore_Hole_A”. Note also from Figure 8-

9 the soft IC violation “Every core entity holds some function” (H1), which is 

present because core entities from the machining viewpoint do not carry 

semantics about their functions, as this is more relevant to the functional 

design viewpoint. The consequence of the soft IC is not detrimental to the 

integrity of facts being populated under “Machining Hole Feature Ontology A”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Facts with hard IC violations are rectified accordingly, reloaded and checked 

for IC violations again, and saved in the KB. Figure 8-10 shows the 

“Counterbore_Hole_A” instance (I1) that has been successfully created and 

can be browsed from the “Instances” tab (J1) for the class 

“Counterbore_Hole” (I). In the test case, all entity information instances have 

Figure 8-9 Loading Entity Information Instances in the KB of "Machining Hole Feature 
Ontology A" Using the Asserter Tool in IODE 

(B1) 

(C1) 

(D1) 

(E1) 

(F1) 

(G1) 

(H1) 
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been successfully created, with consideration made to the list of IC violations 

reported in Figure 8-9 (F1).  

 

 

 

 

 

 

 

 

 

 

 

8.3.2.6 Instantiating Machining Process Concepts  

Based on the “Machining Hole Feature Ontology A”, a concrete state of the 

machining process concepts, and the relationships between process and 

entity information instances, have also  been captured as shown in Figure 8-

11. The figure depicts a complex instance of the foundation class “Activity 

Occurrence”, “occ_Make_Counterbore_Hole_A” (K1), from which the 

compound feature “Counterbore_Hole_A” is output (O1). Notice that the 

occurrence “occA_Hole_Centre_Drilling” (M1) is not only at the root of the 

machining process sequence “occ_Make_Counterbore_Hole_A” (K1), but is 

also positioned as the initial activity occurrence in the occurrence tree, and 

therefore precedes all other occurrences in the tree. The dotted arrows (N1) in 

the diagram capture the linear ordering semantics over the various 

occurrences. These linear ordering semantics are built based on the PSL 

Core Theory, the Theory of Subactivities, Occurrence Trees, Complex 

Activities and Activity Occurrences coming from the PSL Outer-Core. 

 

A complex occurrence “occ_Make_Reamed_Holes_AB” (L1) has also been 

specified from which “Reamed_Hole_A” and “Reamed_Hole_B” are output 

(O1). Recall from Figure 8-6 the linear ordering semantics involved in the 

specification of occurrences of the “Activity” class “Reamed_Hole_Making” 

Figure 8-10 Example of a Successfully Created Instance of 
the Class "Counterbore_Hole" 

(I1) 

(I) 

(J1) 
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from which “occ_Make_Reamed_Holes_AB” (L1) is an occurrence. Following 

these linear ordering semantics, the occurrences appearing under 

“occ_Make_Reamed_Holes_AB”, shown in Figure 8-11, are completely legal 

and allowable. This is because, for example, as long as all occurrences of 

“Centre_Drilling” are happening before occurrences of “Drilling”, which in turn 

are happening before all occurrences of “Reaming”, then the complex 

occurrence “occ_Make_Reamed_Holes_AB” can take place.  
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Drilling 
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occ_Make_Reamed_Holes

_AB 

(L1) 

(N1) 

Initial activity occurrence in 
the occurrence tree 

(M1) 

 

output 

Reamed_Hole_B 

Counterbore_Hole_A 

Reamed_Hole_A 

output 
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(O1) 

(O1) 

(O1) 

Linear ordering 
semantics over activity 
occurrences 

KEY: 

Figure 8-11 Populating Process Instances and Creating Relationships 
between Entity Information and Process Instances for Discrete 
Knowledge Representation 
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8.3.2.7 Identifying Incorrect and Missing Process Knowledge 

Facts and fact sentences that contain the semantics expressed in Figure 8-11 

are loaded into the KB of “Machining Hole Feature Ontology A”. During the 

loading process, a number of violations of ICs have been reported. This is 

illustrated in Figure 8-12. Five soft ICs (P1) are present and, therefore, do not 

constitute a problem to committing the loaded instances into the KB. 

However, the soft ICs being flagged raise the awareness of the knowledge 

engineer about the possible options available to assert additional semantics if 

needed. In other words, the action of ensuring that soft IC violations are 

corrected is not obligatory but may help to add extra semantics to the 

represented discrete knowledge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-13 then portrays all the successfully created instances of the class 

“Activity_Occurrence” (Q1) relevant to the “Machining Hole Feature Ontology 

A”. The complex occurrence “occ_Make_Reamed_Holes_AB” (R1) has been 

highlighted. Reviewing Figure 8-11 with Figure 8-13 reveals that all the 

subactivity occurrences of complex occurrences have also been asserted. 

 

 

 

Figure 8-12 Loading Process Instances in the KB of “Machining Hole Feature A” Using 
the Asserter Tool in IODE 

(P1) 
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8.3.3 Discussions and Validation of Results 

Test Case 1 has demonstrated how the integrity-driven specialisation of a 

domain model, “Machining Hole Feature Ontology A”, can be achieved using 

the supported semantic structures present in the Foundation Layer of SMIF. 

The competency questions featured in section 8.3.1 are next reviewed. 

 

 Can the ontological mechanisms that allow specialisation to occur, be 

used during the development of “Machining Hole Feature Ontology A”? 

 

The simplest of the ontological mechanisms that allows specialisation to occur 

is concerned with the statement of a context (namespace) for the “Machining 

Hole Feature Ontology A”. In the test case, this context has been named 

“machiningHoleFeatureOntologyA”. Secondly, the primary type of ontological 

relationship used to specialise the concepts from the Foundation Layer to 

appropriate concepts in the domain ontology has been specified through 

super/sub-class relationships. Instance-of relationships have been employed 

whenever facts have been populated.  

 

Since the controlled specialisation approach is under consideration, this 

indicates that the domain ontology has not defined new relations but instead 

reused the relations already present in the heavyweight manufacturing 

ontological foundation. Overall, Test Case 1 provides a solid confirmation that 

(Q1) 

(R1) 

Figure 8-13 Example of Successfully Created Instances of the 
class "Activity_Occurrence" 
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the ontological mechanisms that allow specialisation to take place can fully be 

exploited during domain model specialisation.  

 

 Can the specification of domain-defined integrity constraints be achieved 

in a flexible way while not violating foundation semantics? 

 

A number of integrity constraints of varied formal meaning, relevant to the 

domain ontology, has been documented in this section. These ICs have been 

defined in order to capture the constraints pertinent to the semantics of 

“Machining Hole Feature Ontology A”. It is evident that the approach fosters 

the desired level of flexibility in the specialisation of domain-defined ICs. 

Perceivable mistakes and inconsistencies in the logical theory of the domain 

ontology have been reported during the KFL file loading phase. However, it is 

worth pointing out that IODE is an ontological environment as opposed to a 

theorem prover, and therefore the underlying computational principle of IODE 

differs slightly from theorem provers. 

 

 Is it possible to accurately represent discrete knowledge through 

instantiation, based on the semantics captured in the “Machining Hole 

Feature Ontology A” and foundation semantics? 

 

Instance files written in SCL contain the necessary semantics for the 

representation of discrete knowledge to be loaded in the KB of a domain 

model. In Test Case 1, a number of facts and fact sentences have been 

populated in the KB of “Machining Hole Feature Ontology A”. During the 

assertion process of these instances, a number of IC violations have been 

reported and rectified. Therefore it is possible, through the specification of 

correctly structured and rectified SCL instance files, based on domain and 

foundation semantics, to support the accurate representation of discrete 

knowledge. 
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8.4 Test Case 2: Reconciliation Using Semantic Mapping 

Concepts Based on Foundation Semantics  

8.4.1 Aim and Objectives 

The aim of Test Case 2 is to provide a proof of concept for the reconciliation 

between two inter-system domains. The mode in which reconciliation is to 

take place is through the use of semantic mapping concepts based on 

foundation semantics. Two domain models are under consideration namely 

(1) “Machining Hole Feature Ontology A” and (2) another hole feature 

ontology identified as “Machining Hole Feature Ontology B”. The following 

competency questions apply to Test Case 2: 

 

 Is it possible to exploit the semantic mapping concepts based on 

foundation semantics to evaluate and verify the correspondences at the 

class level between “Machining Hole Feature Ontology A” and “Machining 

Hole Feature Ontology B”? 

 Is it possible to exploit the semantic mapping concepts based on 

foundation semantics to evaluate and verify the correspondences at the 

function level between “Machining Hole Feature Ontology A” and 

“Machining Hole Feature Ontology B”? 

 Is it possible to exploit the semantic mapping concepts based on 

foundation semantics to evaluate and verify the correspondences at the 

instance level between “Machining Hole Feature Ontology A” and 

“Machining Hole Feature Ontology B”? 

 

There are three main objectives involved namely (1) the deployment of the 

Semantic Reconciliation and Interoperability Evaluation layers for reconciling 

between the two domain models, (2) the deployment of semantic mapping 

concepts based on foundation semantics and (3) the use of the relevant set of 

tools identified in Chapter 7 notably IODE, the Interoperability Evaluation 

Assistant and the query tool in IODE for evaluating and verifying cross-

domain correspondences. 
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8.4.2 Machining Hole Feature Ontology B 

The ontology development process for “Machining Hole Feature Ontology B” 

follows a similar approach to that of “Machining Hole Feature Ontology A”. All 

the concepts and ICs developed in this domain ontology can be browsed from 

Appendix D.3. The diagram in Figure 8-14 illustrates the types of entity 

information and process concepts being investigated in “Machining Hole 

Feature Ontology B” pertaining to a “Crank_Pulley_Part_Family”. A number of 

classes of features form the basis for the representation of entity information 

semantics, for example, the class “Pulley_Core_Feature” (S1) identifies a 

category of feature of compound property expressed in terms of “Bored_Hole” 

(T1), “Large_Bored_Hole” (U1) and the foundation class “Cylinder”.  
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Entity Information Semantics  
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Figure 8-14 Example of Entity Information and Process Semantics Developed in 
"Machining Hole Feature Ontology B" 
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Process concepts are also present in order to further capture the machining 

process planning viewpoint of the domain ontology. Figure 8-14 illustrates an 

example featuring “Bore_Hole_Making” (V1), a sub-class of the foundation 

class “Activity”, which captures the semantics of hole boring operations for the 

types of hole features represented in the ontology.  

 

Based on the entity information and process concepts explored in “Machining 

Hole Feature Ontology B”, a concrete state of the ontology is then presented 

in Figure 8-15. The figure identifies the instantiation of concepts from Figure 

8-14 used for representing and populating discrete knowledge in the KB of 

“Machining Hole Feature Ontology B”. Entity information instances have been 

specified such as “Crank_Pulley_Series_01” (W1) and “Pulley_Core_A” (X1). 

Note that the instances “Cylinder_A” (Y1) and “Large_Bored_Hole_A” (Z1) are 

hidden features which cannot be directly labelled in the figure but have been 

defined in order to obtain a full representation of “Crank_Pulley_Series_01”.  

 

Figure 8-15 also depicts a defined branch of the occurrence tree containing 

the linear ordering semantics over atomic “Activity_Occurrence” instances, 

used for capturing the ordering semantics within an execution of the complex 

occurrence “occ_Make_Bored_Holes_ABCDE” (A2), from which the hole 

features “Bored_Hole_A” to “Bored_Hole_E” are output. Under the formalised 

version of the process semantics expressed in Figure 8-14 (see Appendix 

D.3), such a process execution sequence as shown in Figure 8-15 is 

completely legal according to the domain-defined process semantics.  
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Figure 8-15 Populated Entity Information and Process Instances for Discrete 
Knowledge Representation in the KB of “Machining Hole Feature Ontology B” 
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8.4.3 Reconciliation Scenarios 

A number of reconciliation scenarios are to be proved in this test case. These 

scenarios are based on the reconciliation of “Machining Hole Feature 

Ontology A” with “Machining Hole Feature Ontology B”. The class, function 

and instance levels of both models are under consideration, and where 

appropriate, reconciliation is to be shown for entity information as well as 

process semantics between both domain models. 

 

8.4.3.1 Reconciliation at the Class Level 

Figure 8-16 illustrates the concepts to be reconciled at the class level. These 

involve the discovery of correspondences between the entity information 

classes “Reamed_Hole” and “Bored_Hole” (B2), and the process classes 

“Reaming” and “Finish_Boring” (C2).  
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8.4.3.2 Reconciliation at the Function Level 

Two unary domain-defined ontological functions are to be reconciled as 

shown in Figure 8-17. The correspondences that hold between the functions 

“inch” and “inches” (D2) are to be discovered. 

 

 

 

 

 

 

 

8.4.3.3 Reconciliation at the Instance Level 

Figure 8-18 depicts the individuals to be reconciled at the instance level. 

Correspondences need to be discovered between the entity information 

instances “Reamed_Hole_A” and “Bored_Hole_E” (E2), and the compound 

features “Counterbore_Hole_A” and “Pulley_Core_A” (F2). 
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Figure 8-17 Reconciliation Scenario at the Function Level 

Figure 8-18 Reconciliation Scenario at the Instance Level 
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Other correspondences are to be discovered between the primitive activity 

occurrences “occA_Hole_Centre_Drilling” and “occA_Rough_Boring” (G2), 

and the complex activity occurrences “occ_Make_Reamed_Holes_AB” and 

“occ_Make_Bored_Holes_ABCDE” (H2).  

 

8.4.4 Ontology Mapping Process 

The deployment of the Semantic Reconciliation Layer necessitates the 

application of the ontology mapping process concepts explained in Chapter 6. 

Figure 8-19 demonstrates the order in which the ontology mapping process 

concepts are executed, while picturing the result of each stage during 

implementation. The context “machiningHoleFeatureOntologyA” defined for 

the “Machining Hole Feature Ontology A” is first adjusted to “DomainX” (I2) in 

the KFL file for the domain ontology. The same step is carried out for the 

“Machining Hole Feature Ontology B” whose context is adjusted to 

“DomainY”. Instance files pertaining to both domain models also have their 

contexts adjusted to “DomainX” and “DomainY” respectively.  

 

The OMS for the “Foundation Layer” (J2) is cloned and renamed accordingly 

(K2). The context-adjusted “Machining Hole Feature Ontology A” is loaded 

and saved (L2) into the new OMS named “Test Case 2”. “Machining Hole 

Feature Ontology B” is loaded and saved in the same OMS resulting in the 

merged ontologies. Instance files are merged into the KB of “Test Case 2”. 

Figure 8-19 (M2) identifies the taxonomy of merged domain-defined classes 

pertaining to both domain ontologies and carrying their adjusted contexts, for 

example, “DomainX.Reamed_Hole” and “DomainY.Bored_Hole”. Following 

the simple merging stage, the KFL file for semantic mapping concepts based 

on foundation semantics (see Appendix E.1 if needed) is loaded and saved 

(N2) in “Test Case 2”.  

 

During the latter process, semantic alignments are automatically assigned to 

the appropriate cross-domain arguments, but remain invisible to the user. The 

discovery of applicable correspondences between cross-domain arguments is 

performed by deploying the Interoperability Evaluation Layer. 
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 Machining Hole Feature 
Ontology A using 

“DomainX” Context 

 Machining Hole Feature 
Ontology B using 

“DomainY” Context 

Merged Domain Models 

Foundation Layer 

DomainX DomainY 

Load and Save 

Merged and Aligned Domain 
Models 

Foundation Layer 

DomainX DomainY 

Semantic Mapping 
Concepts 

Load 
and 

Save 

Load 
and 

Save 

(I2) 

(J2) 

(K2) 

(L2) 

(M2) 

(N2) 

Figure 8-19 Deploying Ontology Mapping Concepts in the Semantic Reconciliation 
Layer 
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8.4.5 Interoperability Evaluation and Verification 

In the Interoperability Evaluation Layer, two main tools are deployed namely 

the web-based Interoperability Evaluation Assistant interface and the query 

tool in IODE. Note that in this test case only the Java-based modules of the 

Interoperability Evaluation Assistant have been used in order to build queries 

for retrieving all semantic mapping concepts between known cross-domain 

arguments in a single transaction (see section 7.3.4.1 in Chapter 7). This is 

used particularly for a quicker approach to analysing query results. 

 

8.4.5.1 Discovery of Semantic Mapping Concepts at the Class Level 

“Reamed_Hole” v/s “Bored_Hole” 

 

The home page for the Interoperability Evaluation Assistant is invoked as 

shown in Figure 8-20. Using the Java-based module for building queries 

involving semantic mapping concepts based on foundation semantics, the 

names of the classes are typed in the relevant text field (O2). On clicking the 

submit button, the query is retrieved (P2), copied and pasted in the query tool 

in IODE as illustrated in Figure 8-21 (Q2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-20 Using the Interoperability Evaluation Assistant to Build a Query 

(O2) (P2) 
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Figure 8-21 Running a Query, Viewing Results and Verifying Semantic Mapping 
Concepts between the Classes “Reamed_Hole” and “Bored_Hole” 

(Q2) (R2) 

(S2) (T2) 

(U2) 

(V2) 
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The query is run and appropriate results are tabulated (R2). In this case, there 

is only one correspondence “classMappingRelation_018” that has been 

aligned between the class “Reamed_Hole” from “Machining Hole Feature 

Ontology A” and “Bored_Hole” from “Machining Hole Feature Ontology B”. 

The semantic mapping concept can be browsed to view the nature of the 

interoperability (S2). The remarks available during browsing provide a view on 

the commonalities as well as the possible uncertainties that may exist 

between the two classes. The result can further be viewed as a fact and 

proved (T2) using logic. During this verification stage, an informal 

interpretation of the verification is provided (U2) alongside the more formal 

proof structure (V2).  

 

“Reaming” v/s “Finish_Boring” 

 

A similar procedure is applied for finding the semantic mapping concepts 

between the classes “Reaming” and “Finish_Boring” (see Figure 8-16). Figure 

8-22 shows a single result, “classMappingRelation_022”, obtained. Browsing 

the semantic mapping concept reveals the nature of the commonalities and 

possible differences between both cross-domain classes. The verification 

stage resembles the one shown previously and has not been indicated here. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-22 Browsing the Semantic Mapping Concept between the Classes "Reaming" 
and "Finish_Boring" 
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8.4.5.2 Discovery of Semantic Mapping Concepts at the Function Level 

“inch” v/s “inches” 

 

The names of the ontological functions to be reconciled are typed into the 

required text fields from the Interoperability Evaluation Assistant. The built 

query is pasted into the query tool in IODE and executed as shown in Figure 

8-23. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(W2) 
(X2) 

(Y2) 

(Z2) 

Figure 8-23 Browsing and Verifying the Semantic Mapping Concept between the 
Ontological Functions "inch" and "inches" 
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On running the query, one result called “functionMappingRelation_003” (W2) 

is retained. The browsed result (X2) informally identifies the correspondences 

between “inch” in “Machining Hole Feature Ontology A” and “inches” in 

“Machining Hole Feature Ontology B”. The result can also be viewed as a fact 

and proved (Y2) in order to verify the reason behind the alignment of the 

semantic mapping concept “functionMappingRelation_003” to “inch” and 

“inches”. Part of the proof, which is informally expressed, (Z2) is also 

identified in Figure 8-23.  

 

8.4.5.3 Discovery of Semantic Mapping Concepts at the Instance Level 

“Reamed_Hole_A” v/s “Bored_Hole_E” 

 

A number of query results are obtained while interrogating the semantic 

mapping concepts that hold between the two entity information instances 

“Reamed_Hole_A” and “Bored_Hole_E” (see Figure 8-24). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 8-24 Viewing and Browsing Semantic Mapping Concepts between the Instances 
"Reamed_Hole_A" and "Bored_Hole_E" 
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These results represent the commonalities and differences that occur 

between the geometric and dimensional semantics carried by these 

instances. The verification and proof structure stage has not been shown here 

due to the lengthy proof structures present. However, in any situation where 

semantic mapping concepts are discovered to the held between two cross-

domain arguments, it is always possible to verify them.  

 

“Counterbore_Hole_A” v/s “Pulley_Core_A” 

 

Two feature instances of compound property namely “Counterbore_Hole_A” 

from “Machining Hole Feature Ontology A” and “Pulley_Core_A” from 

“Machining Hole Feature Ontology B” have been compared. Figure 8-25 

illustrates the established semantic mapping concepts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-25 Viewing and Browsing Semantic Mapping Concepts between the Instances 
“Counterbore_Hole_A” and “Pulley_Core_A” 
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“occA_Hole_Centre_Drilling” v/s “occA_Rough_Boring” 

 

Figure 8-26 depicts the established semantic mapping concepts between two 

atomic activity occurrences which form part of distinct branches of the 

occurrence tree in both domains. 

 

 

 

 

 

 

 

 

 

 

 

 

“occ_Make_Reamed_Holes_AB” v/s “occ_Make_Bored_Holes_ABCDE” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-26 Viewing and Browsing Semantic Mapping Concepts between the Instances 
"occA_Hole_Centre_Drilling" and "occA_Rough_Boring" 

Figure 8-27 Viewing and Browsing Semantic Mapping Concepts between the Instances 
“occ_Make_Reamed_Holes_AB” and “occ_Make_Bored_Holes_ ABCDE” 
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Figure 8-27 illustrates the results of querying for all the semantic mapping 

concepts that hold between the instances “occ_Make_Reamed_Holes_AB” 

and “occ_Make_Bored_Holes_ABCDE”. 

 

8.4.6 Discussions and Validation of Results 

Test Case 2 has demonstrated that it is possible, following the SMIF 

approach, to exploit semantic mapping concepts based on foundation 

semantics. These semantic mapping concepts have been used to evaluate 

and verify the correspondences that hold between cross-domain arguments 

that could be present at the class, function and instance levels of domain 

models. Based on the test case results, the competency questions identified 

in section 8.4.1 have been answered positively.  

 

Carefully selected pairs of cross-domain arguments have been chosen in 

order to illustrate the applicability of semantic mapping concepts for the 

reconciliation of inter-domain semantics. However, in reality, any suitable 

pairs of cross-domain arguments could be identified and queried for semantic 

mapping concepts. Results would be obtained in the event that semantic 

mapping concepts can be logically verified between the pairs of arguments. It 

is to be noted that the verification stage is heavily logic-dependent and 

necessitates a good user knowledge of Common Logic and KFL in order to 

interpret the proof structures. However, it is seen that the verification stage is 

more appropriate to the system as it is through this process that the results for 

queries can be interpreted. 
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8.5 Test Case 3: Reconciliation Using Semantic Mapping 

Concepts Based on an External Domain 

8.5.1 Aim and Objectives 

The aim of Test Case 3 is to provide a proof of concept for the reconciliation 

between two inter-system domains. The mode in which reconciliation is to 

take place is through the use of semantic mapping concepts based on an 

external domain model (see section 6.2.2.3 in Chapter 6), which has been 

specialised from the Foundation Layer. In this test case, “Machining Hole 

Feature Ontology A” and “Machining Hole Feature Ontology B” are again 

under consideration. The competency question relevant to this test case is 

listed next: 

 

 Can the knowledge structures contained in an external domain model be 

employed as semantic mapping concepts in order to evaluate and verify 

the correspondences between cross-domain arguments? 

 

The objectives of this test case include (1) the deployment of the Semantic 

Reconciliation and Interoperability Evaluation layers, (2) the deployment of 

semantic mapping concepts based on the “ISO Tolerance Band Model” 

(adapted from ISO 286-2, 1988) and (3) the use of IODE, the Interoperability 

Evaluation Assistant and the query tool in IODE for evaluating and verifying 

cross-domain correspondences. 

 

8.5.2 ISO Tolerance Band Model as External Domain 

The understanding behind the formalisation of the “ISO Tolerance Band 

Model”, as external domain ontology under construction, has previously been 

explained in section 6.2.2.3 from Chapter 6. Therefore, this section 

concentrates on providing a global picture on the domain model and how a 

logic-based approach has been devised for allowing inferences to be made 

based on the formalised knowledge contained within the domain model. 
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The “ISO Tolerance Band Model” is based on foundation semantics. The 

formalised semantic structures for the model can be accessed in Appendix 

D.4. The “ISO Tolerance Band Model” can firstly help establish the possible 

hole making processes that could be used to produce known domain-defined 

“Round_Hole” instances, based on their nominal diameters and diameter 

tolerances. Tables 8-1 and 8-2, adapted from the documentation in ISO 286-

2, serve as the source of knowledge formalised in the external domain 

ontology. Nominal hole diameters of up to 50 mm (see Table 8-1) and six 

common hole machining processes (see Table 8-2) have been considered in 

the domain model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Secondly, using the same knowledge it becomes possible to compare 

domain-defined hole making processes to standard hole machining processes 

from the “ISO Tolerance Band Model”. For example, it is possible to infer from 

the “ISO Tolerance Band Model” whether a certain domain-defined instance 

of “Round_Hole” satisfies the reaming criteria. If such is the case, and if the 

“Round_Hole” instance is an output from some “Activity_Occurrence” 

instance, then this could potentially imply that the “Activity_Occurrence” 

Table 8-1 ISO Tolerance Band Table for Nominal Hole Diameters up to 50 mm 

Table 8-2 ISO Tolerance Band Process Chart for Six Common Hole Machining Processes 
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instance in question would match the tolerance range capability of a reaming 

process under the “ISO Tolerance Band Model”, regardless of the name of the 

occurrence. The screen shot in Figure 8-28 identifies all the inference 

relations present and the remarks associated to two inference relations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.5.3 Reconciliation Scenario 

The reconciliation scenario in this test case is to take place at the instance 

level, due to the nature of the knowledge captured in the external domain 

model, which interacts only with discretely-represented knowledge. The 

formalised inference relations in the “ISO Tolerance Band Model” are to be 

used as semantic mapping concepts in order to help establish cross-domain 

correspondences. Figure 8-29 depicts three pairs of instances to be 

reconciled: “Reamed_Hole_A” and “Bored_Hole_E” (A3), “Drilled_Hole_A” 

and “Bored_Hole_E” (B3) and “occ_Make_Reamed_Holes_AB” and 

“occ_Make_Bored_Holes_ABCDE” (C3). 

 

 

Figure 8-28 Inference Relations Defined in the ISO Tolerance Band Model 
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It is to be noted that the ontology mapping process used in Test Case 3 

follows a similar implementation to the one explained in section 8.4.4 (see 

Figure 8-19). The only difference is that instead of loading semantic mapping 

concepts based on foundation semantics, the KFL file for the “ISO Tolerance 

Band Model” is loaded and saved. The various actions involved in this 

ontology mapping process use a new OMS named “Test Case 3”.  

 

8.5.4 Interoperability Evaluation and Verification 

“Reamed_Hole_A” v/s “Bored_Hole_E” 

 

To build the query for reconciling “Reamed_Hole_A” and “Bored_Hole_E”, the 

appropriate cell in the matrix configuration on the main panel of the 

Interoperability Evaluation Assistant is activated (see Figure 8-30 label (D3)). 

A new window is opened and the required text fields (E3) are used to input 

the names of the two cross-domain instances of “Round_Hole”. The “Submit” 

button is pressed and the relevant query is retrieved (F3). The query is copied 

and pasted in the query tool in IODE and run. The results of the query are 

illustrated in Figure 8-31. 
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occ_Make_Reamed_ 
Holes_AB 

 

occ_Make_Bored_ 
Holes_ABCDE 

 

?? 

Machining Hole Feature Ontology A Machining Hole Feature Ontology B 

Reamed_Hole_A 
Ø (7.5 ± 0.1) mm 

30 mm Deep 
1x1 mm Chf‟ Both Sides 

 

Drilled_Hole_A 
Ø (12 ± 0.8) mm 

10 mm Deep 

?? 

(A3) 

(B3) 

(C3) 

Figure 8-29 Reconciliation Scenario at the Instance Level 
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(D3) 

(E3) (F3) 

Figure 8-30 Using the Interoperability Evaluation Assistant to Build a Query for 
Reconciling Two “Round_Hole” Instances  

(G3) 

(H3) 

(I3) 

(J3) 

Figure 8-31 Viewing and Browsing Semantic Mapping Concepts between 
"Reamed_Hole_A" and "Bored_Hole_E" 
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Figure 8-31 shows that using the semantics from the “ISO Tolerance Band 

Model” it is possible to understand the machining processes that could be 

associated to “Round_Hole” instances of given diameters and diameter 

tolerances. In this case, the “Reamed_Hole_A” from “Machining Hole Feature 

Ontology A” has been inferred, via the external domain model, as being a 

feature that could be produced using internal grinding (G3), internal broaching 

(H3), reaming (I3) as well as boring (J3). “Bored_Hole_E” from “Machining 

Hole Feature Ontology B”, on the other hand, has been inferred as a suitable 

candidate which can be produced using some boring machining process (J3). 

These results have been logically formulated based on the nominal diameter 

and diameter tolerances carried by the various domain-defined hole features, 

and articulated through the “ISO Tolerance Band Model” semantics.  

 

“Drilled_Hole_A” v/s “Bored_Hole_E” 

 

Figure 8-32 depicts the results of processing a query to determine cross-

domain correspondences, based on the “ISO Tolerance Band Model”, 

between the “Round_Hole” instances “Drilled_Hole_A” and “Bored_Hole_E”. It 

is seen that both instances are suitable candidates which could be produced 

using boring as machining process. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8-32 Viewing and Browsing Semantic Mapping Concepts 
between “Drilled_Hole_A” and “Bored_Hole_E”  
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“occ_Make_Reamed_Holes_AB” v/s “occ_Maked_Bored_Holes_ABCDE” 

To determine the correspondences that hold between “occ_Make_Reamed_ 

Holes_AB” and “occ_Make_Bored_Holes_ABCDE” a query is built as shown 

in Figure 8-33. 

 

 

 

 

 

 

 

 

The query is copied and pasted in IODE‟s query tool and executed. Figure 8-

34 portrays the results of processing the query where the deductions indicate 

that the occurrence “occ_Make_Reamed_Holes_AB” could potentially be 

matched to the tolerance range capability of internal grinding (K3), internal 

broaching (L3), reaming (M3) and boring processes (N3). The occurrence 

“occ_Make_Bored_Holes_ABCDE” conforms to the tolerance range of boring 

machining processes (N3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-33 Using the Interoperability Evaluation Assistant to Build a Query for 
Reconciling Two “Activity_Occurrence” Instances  

(K3) 

(L3) 

(M3) 

(N3) 

Figure 8-34 Viewing and Browsing Semantic Mapping Concepts between "occ_Make_ 
Reamed_Hole_AB" and "occ_Make_Bored_Holes_ABCDE"  
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8.5.5 Discussions and Validation of Results 

This test case has shown that the knowledge structures contained in an 

external domain ontology, notably the inference relations present within the 

“ISO Tolerance Band Model”, can be employed as semantic mapping 

concepts in order to evaluate and verify the correspondences between cross-

domain arguments. The external domain model, based on the Foundation 

Layer, carries valuable semantics which help articulate cross-domain 

arguments. It is to be noted that in this test case, emphasis has not been laid 

on logical proof (verification), since the evaluation of queries retaining results 

already points to their verification at computational level.  

 

The type of reconciliation mechanism under consideration in Test Case 3 has 

proved its benefits at the instance level. This is because the formalised 

knowledge in the “ISO Tolerance Band Model” facilitates interactions with 

instances carrying discrete knowledge. For extending the reconciliation 

capabilities using external domains, it is possible to further exploit other 

standards-based models such as ISO limits and fits for holes and shafts. 

Similar domain models would require specialisation from the Foundation 

Layer. 

 

 

 

 

 

 

 

 

 

 

 



  
203 

8.6 Test Case 4: Reconciliation Using Semantic Mapping 

Concepts Based on Known Cross Domain 

Correspondences 

8.6.1 Aim and Objectives 

The aim of Test Case 4 is to provide a proof of concept for the reconciliation 

between two intra-system domains. The mode in which reconciliation is to 

take place is through the use of semantic mapping concepts based on known 

cross-domain correspondences. Two domain models are under scrutiny 

namely (1) “Machining Hole Feature Ontology A” (machining process 

viewpoint) and (2) “Design Hole Feature Ontology A” (functional design 

viewpoint). The following competency question applies to Test Case 4: 

 

 Is it possible to exploit the semantic mapping concepts based on known 

cross-domain correspondences to evaluate and verify correspondences 

between “Machining Hole Feature Ontology A” and “Design Hole Feature 

Ontology A”? 

 

There are three objectives to this test case namely (1) the deployment of the 

Semantic Reconciliation and Interoperability Evaluation layers for reconciling 

between the two domain models, which are in the same system domain, (2) 

the deployment of semantic mapping concepts based on known cross-domain 

correspondences and (3) the use of IODE, the Interoperability Evaluation 

Assistant and the query tool in IODE for evaluating and verifying intra-domain 

correspondences. 

 

8.6.2 Design Hole Feature Ontology A 

The “Design Hole Feature Ontology A” captures entity information semantics 

from viewpoints including GD & T and design function. Figure 8-35 identifies 

the classes of concepts that are being explored in this domain ontology. 

These classes adopt terminologies and semantic definitions that are relevant 

to the field of design. In particular, the dimensional parameters carried by the 
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various classes of features have been specifically chosen in order to reflect 

the design perspective on the features pertaining to “Housing_Part_Family”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Locating_Pin_ 
Hole 

    Plain_Diameter 
_Hole 

External_Flange 

   Boss 

Secondary_ 
Hole 

             Bolt_Hole 

Housing_Part_Family 

Secondary_ 
Diameter 

Primary_ 
Diameter 

Primary
_Depth 

Secondary_ 
Depth 

Plain_Diameter

_Hole 

Secondary 

_Hole 

Bolt_Hole (O3) 

Primary_ 
Depth 

Primary_ 
Diameter 

Locating_Pin_Hole (P3) 

Bolt_Hole 
 

 A bolt hole is a compound feature 

 Every bolt hole involves a plain diameter hole and a 
secondary hole which are elements of the bolt hole 

 The plain diameter hole of a bolt hole is the base feature 
of the bolt hole 

 The secondary hole element of a bolt hole has a 
diameter value which is always greater than that of the 
plain diameter hole element of the same bolt hole. 

Locating_Pin_Hole 
 

 Every locating pin hole holds exactly two circular 
closed profiles of identical primary diameter. 

 Every locating pin hole holds exactly one linear 
path of primary depth.  

 Every locating pin hole that has a through hole 
bottom condition needs to be chamfered in order 
to facilitate easy insertion. 

Miscellaneous (Q3) 
 

 Every instance of feature and artifact in the Design Hole Feature Ontology A holds some design function. 

 Every housing has some compulsory external flange, boss, bolt hole, plain diameter hole and locating pin hole as 
features present on the housing. 

 Every housing is made up of some aluminium material. 

Figure 8-35 Examples of Classes and Informal ICs captured in the "Design Hole Feature 
Ontology A" 



  
205 

Two example features have been elaborated in Figure 8-35. The entity 

information class “Bolt_Hole” (O3) of compound feature property has been 

rigorously defined using a number of ICs. The same understanding applies to 

the class “Locating_Pin_Hole” (P3) in terms of the dimensional parameters 

that define the latter and other necessary conditions such as “every locating 

pin hole that has a through hole bottom condition needs to be chamfered in 

order to facilitate easy insertion”. This captures a necessary design aspect 

that needs to be fulfilled during the population of instances in the KB for the 

“Design Hole Feature Ontology A”. Figure 8-35 further depicts other forms of 

ICs (Q3) relevant to the functional design viewpoint in the domain ontology. 

Appendix D.2 can be consulted for a formalised interpretation of all the 

concepts and ICs explored for this domain ontology.  

 

A concrete state of the “Design Hole Feature Ontology A” has also been 

captured by defining the semantic representation of discrete knowledge 

through instantiation. Figure 8-36 portrays this concrete state of design entity 

information.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

External_Flange_A 

Function: Seal 

Housing_A (R3) 
Material: Aluminium_2000_Series_Alloy 

Function: Seal_and_Assemble 

Boss_A 
Function: 

Align_and_Assemble 

Plain_Hole_A 
Function: 

Accommodate_Screw 

Plain_Hole_B 
Function: 

Accommodate_Screw 

Plain_Hole_D 
Function: 

Accommodate_Screw 

Locating_Hole_B 

Function: Alignment Locating_Hole_A 

Function: Alignment 

Plain_Hole_E 
Function: 

Accommodate_Bolt

_Length 

Secondary_Hole_A 
Function: 

Accommodate_Bolt_Head 
 

Bolt_Hole_A 
Function: 

Accommodate_Bolt 

x y 

z 

Figure 8-36 Populated Entity Information Semantics for Capturing a Concrete 
State of "Design Hole Feature Ontology A" 
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The various features present on “Housing_A” (R3) carry exact dimensional 

semantics to that of “Machined_Housing_A” (see Figure 8-8 section 8.3.2.4), 

but the terminologies and semantics of their defining structures are different 

since, for example, in the “Design Hole Feature Ontology A”, functional 

information of features is a prerequisite, which is not the case in its machining 

viewpoint counterpart. Note that the instance “Plain_Hole_C” has not been 

shown on the diagram because it is hidden. Figure 8-37 then identifies part of 

the implemented taxonomy for the “Design Hole Feature Ontology A” and 

sample instances that satisfy both foundation and domain-defined ICs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.6.3 Reconciliation Scenarios 

The ontology mapping process used in Test Case 4 follows a similar 

implementation approach to the one previously explained in section 8.4.4 (see 

Figure 8-19). However, instead of loading semantic mapping concepts based 

on foundation semantics, the KFL file for the semantic mapping concepts 

based on known cross-domain correspondences between “Design Hole 

Feature Ontology A” and “Machining Hole Feature Ontology A” (see Appendix 

E.2 if needed) is loaded and saved. The various actions involved in this 

ontology mapping process use a new OMS named “Test Case 4”. In the 

Figure 8-37 Example of Classes and Instances Defined in the "Design 
Hole Feature Ontology A" 
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process, the context for “Design Hole Feature Ontology A” has been renamed 

to “DomainX” and that of “Machining Hole Feature Ontology A” to “DomainY”. 

 

8.6.3.1 Reconciliation at the Class Level 

Figure 8-38 illustrates the concepts to be reconciled at the class level. These 

involve the discovery of correspondences between three pairs of entity 

information classes namely “Boss” and “Turned_Boss” (S3), “Bolt_Hole” and 

“Counterbore_Hole” (T3) and “Primary_Depth” and “Drilled_Hole_Depth” (U3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.6.3.2 Reconciliation at the Function Level 

Two unary domain-defined ontological functions are to be reconciled as 

shown in Figure 8-39. The correspondences that hold between the functions 

“inch” in “Design Hole Feature Ontology A” and “inch” in “Machining Hole 

Feature Ontology A” (V3) are to be discovered.  

Figure 8-38 Reconciliation Scenario at the Class Level 

E
n
ti
ty

 I
n
fo

rm
a

ti
o

n
 S

e
m

a
n
ti
c
s
 

Machining Hole Feature Ontology B 

Turned_Boss 

Boss 

E
n
ti
ty

 I
n
fo

rm
a

ti
o

n
 S

e
m

a
n
ti
c
s
 

Design Hole Feature Ontology A 

Primary

_Depth 

Secondary_ 
Depth 

Bolt_Hole Counterbore_Hole 

Drilled_ 
Hole_ 

Depth 

Counterbore_ 
Depth 

?? 

?? 

?? 

(S3) 

(T3) 

(U3) 



  
208 

 

 

 

 

 

 

8.6.3.3 Reconciliation at the Instance Level 

Figure 8-40 depicts two pairs of individuals to be reconciled at the instance 

level. Correspondences need to be discovered between the entity information 

instances “External_Flange_A” and “Turned_Flange_A” (W3), and the 

“Plain_Hole_A” and “Drilled_Hole_D” (F2). 

 

 

 

 

 

 

 

 

 

 

 

8.6.4 Interoperability Evaluation and Verification 

8.6.4.1 Discovery of Semantic Mapping Concepts at the Class Level 

Boss v/s Turned_Boss 

 

The Interoperability Evaluation Assistant is first invoked as shown in Figure 8-

41. The Java-based module for building queries involving semantic mapping 

concepts based on known cross-domain correspondences is used, where the 

names of the classes are typed in the relevant text field (Y3). On clicking the 

?? 

Design Hole Feature Ontology A Machining Hole Feature Ontology A 

(V3) 

Figure 8-39 Reconciliation Scenario at the Function Level 
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Figure 8-40 Reconciliation Scenario at the Instance Level 
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submit button, the query is retrieved (Z3) and is copied and pasted in the 

query tool in IODE. 

 

 

 

 

 

 

 

 

 

 

 

 

The results of executing the above query is illustrated in Figure 8-42. Two 

mapping results have been discovered and the nature of the interoperability 

between the classes “Boss” and “Turned_Boss” has been captured in the 

informal remarks associated to each semantic mapping concept. Note that the 

results could easily be verified through the logic-based proof structure. In all 

cases, the verification is confirmed through the presence of query results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Y3) 

(Z3) 

Figure 8-41 Using the Interoperability Evaluation Assistant to Build a Query for 
Reconciling the Classes “Boss” and “Turned_Boss” 

Figure 8-42 Viewing and Browsing Semantic Mapping Concepts between the 
Classes "Boss" and "Turned_Boss" 
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Bolt_Hole v/s Counterbore_Hole 

 

The query to be processed to discover the semantic mapping concepts 

between the classes “Bolt_Hole” and “Counterbore_Hole” is retrieved in a 

similar way as documented previously. Figure 8-43 depicts the results of 

processing the relevant query. Note that the semantic mapping concept 

“classMappingRelation_001” is the same as the one shown in Figure 8-42. 

The other alignment “classMappingRelation_002”, when browsed, provides an 

enhanced view of the differences between the two classes.  

 

 

 

  

 

 

 

 

 

Primary_Depth v/s Drilled_Hole_Depth 

 

A query is also formulated in order to process the semantic mapping concepts 

between the classes “Primary_Depth” and “Drilled_Hole_Depth”. The results 

between the two classes are shown in Figure 8-44. In addition to the semantic 

mapping concept “classMappingRelation_001”, another mapping concept 

identified as “classMappingRelation_003” is also present. Browsing the 

remarks clearly depicts some clear differences between the two classes. 

 

 

 

 

 

 

 

Figure 8-43 Viewing and Browsing Semantic Mapping Concepts between the 
Classes "Bolt_Hole" and "Counterbore_Hole" 

Figure 8-44 Viewing and Browsing Semantic Mapping Concepts between the 
Classes "Primary_Depth" and "Drilled_Hole_Depth" 
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8.6.4.2 Discovery of Semantic Mapping Concepts at the Function Level 

inch v/s inch 

 

Figure 8-45 identifies the result of executing a query to retrieve all semantic 

mapping concepts that exist between the two ontological functions “inch” in 

“Design Hole Feature Ontology A” and “inch” in “Machining Hole Feature 

Ontology A”. It is clear from the result that both functions are semantically 

equivalent as there are no perceivable mismatches between them. 

 

 

 

 

 

 

 

 

8.6.4.3 Discovery of Semantic Mapping Concepts at the Instance Level 

External_Flange_A v/s Turned_Flange_A 

 

There exists only one alignment between the instances “External_Flange_A” 

and “Turned_Flange_A”. As can be seen in Figure 8-46, the remarks 

associated to the semantic mapping concept “instanceMappingRelation_002” 

include similarities and limitations to the interoperability between the two 

individuals. 

 

 

 

 

 

 

 

 

Figure 8-45 Viewing and Browsing Semantic Mapping Concepts between the 
Ontological Functions "inch" and "inch" 
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Plain_Hole_A v/s Drilled_Hole_D 

 

When the query for finding semantic mapping concepts between the 

instances “Plain_Hole_A” and “Drilled_Hole_D” is retrieved and executed, one 

correspondence is obtained (see Figure 8-47). The semantic mapping 

concept “instanceMappingRelations_001” carries valuable informal semantics 

in the form of remarks, which the user can interpret. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-46 Viewing and Browsing Semantic Mapping Concepts between the 
Instances "External_Flange_A" and "Turned_Flange_A" 

Figure 8-47 Viewing and Browsing Semantic Mapping Concepts between the 
Instances "Plain_Hole_A" and "Drilled_Hole_D" 
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8.6.5 Discussions and Validation of Results 

Test Case 4 has illustrated the effectiveness of semantic mapping concepts 

based on known cross-domain correspondences. These semantic mapping 

concepts have been used to evaluate and verify the correspondences that 

hold between cross-domain arguments that could be present at the class, 

function and instance levels of domain models within a single system domain. 

The test case results confirm that the competency question identified in 

section 8.6.1 has been positively answered. 

 

The principle for semantic reconciliation documented in this section could also 

be used for inter-system interoperability. If two inter-system domains are to 

the reconciled using this approach, this would require that the knowledge 

engineer understands the ontological structures from both domain 

representations before formulating the relevant semantic mapping concepts. 

Furthermore, unlike the other two modes of semantic mapping concepts, 

those based on known cross-domain correspondences carry more accurate 

interoperability information.  

 

However, the formal logic governing these semantic mapping concepts may, 

in certain cases, be less rigorous than in the other two modes of semantics 

mapping concepts. For example, it has not been possible to fully capture the 

formal semantics to express that the class “Primary_Depth”, when applied to 

the “Bolt_Hole” class, is the subtraction of the “Counterbore_Depth” from the 

“Drilled_Hole_Depth” classes. Consequently, this indicates that extensions to 

the logical basis of semantic mapping concepts based on known cross-

domain correspondences may be required in certain situations. 

 

8.7 Summary of Chapter  

This chapter has concentrated on four test cases as part of a complete case 

study in order to provide a proof of concept for the Semantic Manufacturing 

Interoperability Framework (SMIF) (meets the fifth objective of this research in 

Chapter 1 section 1.3.1). Figure 8-48 identifies how the four test cases 
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implemented in this chapter demonstrate that the framework satisfies the 

semantic requirements (see Chapter 3). The four test cases altogether show 

that it has been possible to capture a number of viewpoints in domain models 

(A4) (Requirement 1). The various semantic relationships present in the 

ontological definition of the heavyweight manufacturing ontological foundation 

have enabled the implemented domain models in the test cases to reuse 

these relationships to link multiple viewpoints (B4) (Requirement 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Requirement 1 

 

Requirement 2 

 

Requirement 3 

 

Requirement 4 

 

Requirement 4a 

 

Requirement 4b 

 

Requirement 4c 

 

Requirement 4d 

Combined approach using 
PSL, CPM and ISO 10303 
AP224 in the Foundation 
Layer 

Definition of relationships 
between entities and 
processes, entities and 
their functions, etc. in the 
Foundation Layer 

Heavyweight semantics of 
core concepts developed 
in the Foundation Layer, 
which are extended in the 
Domain Ontology Layer 

 
Combined semantic 
technologies used 
throughout the SMIF 

 
Exploitation of the 
Knowledge Framework 
Language (KFL) 

 
The Semantic 
Reconciliation Layer  

Specification of logic-
based semantic mapping 
concepts and ontology 
mapping processes in the 
third framework layer 

The Semantic 
Reconciliation and 
Interoperability Evaluation 
layers  

Framework Components 

A number of viewpoints have been considered in 
the various test cases including GD & T, design 
entity information, machining entity information, 
design function and process planning. 

Test Cases 

Defined relations supported in the heavyweight 
manufacturing ontological foundation have been 
reused during the implementation of the various 
domain models in the test cases.  

The semantics from the Foundation Layer have 
been reused and extended for the construction of 
domain models in test cases 1 and 2. These 
domain models occur across system domains. 

 
The implementation of the SMIF using the IODE 
platform has been useful for enabling the 
deployment of the various test cases.  

 

The maintained use of the Common Logic-based 
KFL provides a highly expressive formalism to 
encode ontology-based content and discrete 
knowledge in KBs. Appendix B also supports the 
motivation for the use of KFL.  

 
Commitment of the test case ontologies to the 
Foundation Layer help reduce relation 
mismatches via the controlled specialisation 
approach. Semantic mapping concepts have 
helped to identify possible semantic mismatches.  

The three modes in which semantic mapping 
concepts can occur have been tested in test 
cases 2, 3 and 4. Reconciliation has been shown 
at the class, function and instance levels of 
domain models.  

The use of the Interoperability Evaluation 
assistant interface and the query tool in IODE 
enable rapid query responses to be obtained. The 
Interoperability Evaluation Assistant has been 
optimised for use with the SMIF components. 

(A4) 

(B4) 

(C4) 

(D4) 

(E4) 

(F4) 

(G4) 

(H4) 

Figure 8-48 Implications of the Test Cases on the Semantic Requirements 
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It has been possible using the set of core concepts from the Foundation Layer 

to develop the “Machining Hole Feature Ontology A” and “Machining Hole 

Feature Ontology B” domain models, which reside across system domains 

(C4) (Requirement 3). Furthermore, the implementation of all the levels of the 

SMIF using the IODE platform, as providing a suite of semantic technologies, 

has enabled the deployment and reconciliation of the test case domain 

models (D4) (Requirement 4). It has also been possible via the 

implementation of the four test cases to satisfy the sub-requirements of 

Requirement 4 (refer to labels (E4) to (H4) on Figure 8-48).  

 

The first test case has focused on the integrity-driven specialisation of a 

“Machining Hole Feature Ontology A” and during the process, it has been 

possible to prove that the first aspect of the research hypothesis is feasible. 

Overall, Test Case 1 has demonstrated that the specification of a heavyweight 

manufacturing ontological foundation provides a basis for the integrity-driven 

specialisation of domain models. The understanding has also been applied to 

“Design Hole Feature Ontology A”, “Machining Hole Feature Ontology B” as 

well as the “ISO Tolerance Band Model”. Test cases 2, 3 and 4 have 

specifically looked at the second aspect of the research hypothesis. These 

test cases have shown that the specification of a heavyweight manufacturing 

ontological foundation also supports the capability to evaluate and verify 

correspondences between pairs of domain models that have been specialised 

from the heavyweight manufacturing ontological foundation.  

 

The logic-based definitions of semantic mapping concepts is key to enabling 

the interoperability evaluation and verification process. In the various test 

cases, the verification part is included in the successful retrieval of semantic 

mapping concepts, as these results already confirm that they have been 

verified through deductive reasoning before being displayed. Furthermore, 

this chapter has shown the importance of a system for aiding the 

management and formulation of interoperable knowledge queries prior to 

being executed. The significance of the Interoperability Evaluation Assistant 

has been particularly pertinent in satisfying this purpose. 
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9 Discussions, Conclusions and Future Work 

9.1 Introduction 

The research work documented in this thesis has investigated a novel 

ontology-based framework to support semantic interoperability in product 

design and manufacture. The four levels of the Semantic Manufacturing 

Interoperability Framework (SMIF) have been explored alongside the 

interactions and mechanisms that hold between the different levels. The 

deployment of an experimental system and conduction of a number of test 

cases applied to the framework has culminated in a valuable understanding of 

the potentials and limitations of the researched approach. 

 

This chapter compiles the overall understanding developed in this research 

and exposes a discussion of the outcome of the implemented framework with 

respect to various issues and concerns in section 9.2. Section 9.3 provides 

the concluding remarks to this work and section 9.4 proposes important 

recommendations for future work.  

 

9.2 Discussions 

9.2.1 Ontology Development Methodology 

The ontology development methodology applied to this research has 

consisted of the Knowledge Engineering Methodology (Noy and McGuinness, 

2001) accompanied by the use of IDEF5 schematics (Knowledge Based 

Systems Inc., 1994) for graphically representing ontological content prior to 

implementation. The two combined methods have proved adequate into 

setting a strategic view on the ontology-based framework, for example, 

through the investigation of requirements to support semantic interoperability 

in product design and manufacture investigated in Chapter 3, as well as to 

support the design and implementation of the various ontological structures. 
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The only probable issue with the actual state of IDEF5 schematics for 

ontology development is that there is currently no commercially-available tool 

which could be sourced for directly deriving Common Logic code from the 

schematics. Therefore, at present, IDEF5 schematics only visually help the 

ontology development process. An attractive step ahead would involve closely 

interfaced ontology graphical tools in order to enhance the development of 

ontologies using Common Logic-based formalisms.  

 

9.2.2 Semantic Technologies 

The alignment of the SMIF with the investigated requirements has been 

documented in Chapter 4 (section 4.8). In this section, one of the 

requirements is further reviewed, namely Requirement 4, which has been 

restated next.  

 

 Requirement 4: There is a need for harnessing the appropriate semantic 

technologies in order to facilitate the formal capture of domain semantics 

and to support shared meaning across domain ontologies. 

 

Additional understanding gathered during the experimental implementation 

and case study has shown distinct benefits in relationship to the above 

requirement. These include the idea of supporting heavyweight semantics 

using expressive Common Logic-based formalisms, such as KFL, and the 

performance of semantic mapping mechanisms using the SMIF and its 

implementation platform. One of the factors related to the performance of 

semantic reconciliation is related to the time for processing semantic 

alignments as well as the time spent in deductive reasoning during querying.  

 

During implementation it was observed that the loading and saving of about 

100 semantic mapping concepts, accompanied by heavyweight logic, took 

about one minute to be performed. Querying procedures for resolving all 

semantic mapping concepts, that hold between two cross-domain arguments, 

in a single transaction took less or about 10 seconds to be processed. This 

clearly indicates that an attractive direction for ontology matching exists when 
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weighted against other ontology mapping methods which may take several 

minutes, hours or even days to complete a matching task (Shvaiko and 

Euzenat, 2008). However, it should not be forgotten that the performance of 

mapping is dependent on the size of the ontologies to be reconciled as well as 

the size of the file containing the semantic alignments. Overall, opportunities 

still remain for comparing various ontology mapping methods in terms of their 

performance and exactness of semantic reconciliation processes as well as 

their support for the evaluation and verification of interoperable knowledge. 

 

9.2.3 Semantic Structures 

In the context and scope of this work, a specific set of semantics of core 

feature-based concepts arising in product design and manufacture has been 

investigated. However, it is seen that the semantic structures have been 

narrowed down to simple product representations, involving hole features and 

process ordering semantics from PSL, in order to provide the ability to explore 

all the levels of the SMIF. Hence, it is clear that the breadth of concepts 

arising in the Foundation Layer needs to be expanded to embrace more 

complex product lifecycle semantics, for example from (1) Product Life Cycle 

Support (PLCS) (ISO 10303 AP239) and (2) the inclusion of other theories 

supported in PSL. 

 

PSL, for example, comprises concepts from various other theories like the 

duration and ordering theories and resource theories (PSL Website, 2009). 

The latter would be particularly relevant for capturing the semantics of 

resource requirements in process execution sequences, where its extensions 

would allow the definition of resource roles and the way resources are 

consumed during the course of manufacturing process sequences. These 

important aspects in the world of product design and manufacture have not 

been considered in this work, and for this reason, a need is identified for 

supporting similar core intuitions. 

 

Furthermore, from the case study, it is evident that confined samples of 

common hole features have been considered in the design and manufacturing 
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domains. It is well-known that an extensive range of hole features exist such 

as gun-drilled holes, ground holes and electrical discharge machined holes. 

Considerations for similar hole features would imply alternative 

representations through the extension and application of the modelling 

approach explored in the various domain models from the case study. Such 

representations on real parts would not only imply understanding the 

relationships between the hole features but also relationships between the 

types of parts on which the hole features are designed and manufactured. 

 

Hence, another attractive opportunity exists for incorporating additional core 

semantics for capturing feature definitions in the context of design and 

manufacturing part families. Studies in the area of part families and features 

and their relationships would provide a suitable basis for formalising more 

complex semantics between entity and manufacturing resource information as 

well as process concepts with respect to the notion of part families. Figure 9-1 

shows an IDEF5 schematic version of a significant portion of the original high-

level UML diagram proposed by Gunendran and Young (2008), identifying a 

generic, yet meaningful interpretation of the need to reinforce relationship 

semantics between manufacturing features within a part family context. 

 

The branch of the diagram following “Machining Operation Sequence”, 

“Machining Operation”, “Setup Sequence”, “Setup”, “Step Sequence” and 

“Step”, provides the necessary details for part family manufacturing method 

descriptions. The other branch corresponding to “Stage Sequence”, “Stage”, 

“Step Sequence” and “Step”, on the other hand, supports the description of 

manufacturing methods in relationship to manufacturing features. The main 

observation made from the high-level model is that there is a need to 

understand and define semantic relationships between the classes 

“Machining Operation Sequence” (A) and “Stage Sequence” (B) and to 

establish the conditional relationships between different kinds of information 

sets (Gunendran and Young, 2008) such as the influential semantics between 

the class “Stage Sequence” (B) and “Setup Sequence” (C).  
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Figure 9-1 The Need for Capturing Relationship Semantics between Part Families and 
Features (Adapted from Gunendran and Young (2008)) 

 

In the context of the Foundation Layer, visible associations can be made 

between the foundation class “Artifact” and “Part Family” (D). Moreover, the 

foundation class “Feature” neatly maps to the “Feature Range” (E) concept, 

thereby implying that the Foundation Layer is able to support extensions to 

accommodate part family semantics as well. It should not be forgotten, 

however, that the proposed heavyweight manufacturing ontological foundation 

in this work has focused on a restricted set of product viewpoints. Therefore, 

from a product lifecycle perspective, the expansion of foundation semantics 

should also be attuned to the representation of core operation, service and 

disposal semantics across system boundaries. 

 

9.2.4 Knowledge Bases  

The current approach taken during the proposal and implementation of the 

framework has witnessed the interoperation at the instance level of domain 

models, i.e. at the KB level, between systems that use the same type of KB. 

(A) 

(B) 

(C) 

(D) 

(E) 
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For example, in the various test cases, the Object Management System 

(OMS) KB had been deployed, and reconciliation has taken place between 

OMSs of the same sort (with their reasoning engine all based on Java SQL). 

An issue is likely to emerge in the situation that different types of KBs are 

developed from the same or different domain ontologies. This understanding 

is illustrated in Figure 9-2 at the KB level (F). 

 

An initial concern is linked to the interoperation of multiple KBs that have been 

based on the same domain ontology (see label (G) on Figure 9-2). This is 

because different KBs naturally imply different applied computational 

principles. This issue is further aggravated when different KBs, coming from 

heterogeneous domain ontologies require interoperation (H). It is, therefore, 

necessary to explore the related implications in more detail, as the mentioned 

situation is bound to happen in supply chain premises and collaborative 

product development. A possible direction in order to tackle similar problems 

would require a solid understanding of the software technologies and platform 

independent and specific structures innate to the various KBs that are being 

deployed, and that need to interoperate. 
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Figure 9-2 Developing Multiple KBs from the Same Domain Ontologies 
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9.2.5 Knowledge Sharing 

In concurrent engineering and collaborative supply chain premises, 

knowledge sharing remains a relatively delicate aspect as far as inter-system 

interoperability is concerned. In many situations, due to data protection 

agreements, intellectual property rights, trust and security issues linked to 

proprietary information, the sharing of knowledge across domain ontologies 

and their related KBs may not always be a straightforward task.  

 

Specifically for this purpose, the “simple merging process” explored in the 

Semantic Reconciliation Layer may not provide an optimal ontology mapping 

process. Two possible approaches could be applied in order to remedy the 

problem. The first involves keeping different domain ontologies and KBs in 

their distinct OMSs so that full control on sensitive ontological content is 

maintained. Then using Application Programming Interfaces (APIs), semantic 

mapping concepts would be applied to relevant portions of the domain models 

to be reconciled. The understanding is pictured in Figure 9-3, where for 

example, the two domain models “Machining Hole Feature Ontology A” and 

“Machining Hole Feature Ontology B” have remained distinct to their OMSs. 

Protection on appropriate ontological content would be supported in each 

model and semantic mapping concepts would interface only with the 

allowable cross-domain arguments for reconciliation. 

 

 

 

 

 

 

 

 

 

 

The second way of ensuring that only the relevant ontological content and KB 

objects are reconciled between two domains, is to prune sensitive semantic 

Semantic 
Mapping 
Concepts 

Figure 9-3 Interfacing Semantic Mapping Concepts to Domain Models 
without Undergoing the Simple Merging Process 
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structures prior to undergoing the simple merging process. In this way only 

specific portions of the domain models would undergo reconciliation and 

knowledge sharing.  

 

At present, the Interoperability Evaluation Layer supports useful methods for 

discovering and interpreting cross-domain correspondences. However, 

because the interoperability discovery process is dependent on a view of what 

is to be reconciled between domains in the first place, there is a need to 

include a way for reporting established cross-domain correspondences. A 

possible way for so doing would be to support the compilation of an evaluation 

report, post-interoperability evaluation and verification at the fourth level of the 

SMIF. On the other hand, the interpretation of cross-domain semantic 

mapping concepts would prove more effective if accompanied by diagrams in 

the ontological environment itself. Unfortunately, the current status of the 

IODE ontological environment does not allow pictures nor hyperlinks to 

pictures to be referenced in the informal remarks for interpreting semantic 

mapping concepts.  

 

9.2.6 Positioning of the Framework 

The literature review in Chapter 2 has identified the importance of positioning 

the concepts proposed in this research according to the Model Driven 

Architecture (MDA) and Model Driven Interoperability (MDI). Based on an 

understanding of MDA and MDI related to the various concepts developed in 

the SMIF, Figure 9-4 depicts the relevant MDI view on the investigated 

ontology-based framework for supporting semantic interoperability in product 

design and manufacture.  

 

The diagram first shows that the investigated requirements for supporting 

semantic interoperability in product design and manufacture (Chapter 3) fall at 

the CIM level (I). This is because the strategic nature of the requirements 

remains at a high-level for identifying the intended expectations of the 

developed framework.  
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The development of the Foundation Layer can be established at the PIM level 

of the MDA (J). It is evident, from the ontology development methodology 

adopted, that IDEF5 schematics used to model the fundamental semantics of 

the heavyweight manufacturing ontological foundation provide a platform-

independent way of representing ontological content. However, because KFL-

based semantics have been added to the Foundation Layer, this implies that 

the PIM level is accompanied by a Platform Description Model (PDM). A PDM 

is used to specify the architecture for implementation and relevant 

technologies being harnessed. In this case, the PDM occurs as the 

consequence of the dependence of KFL on the configuration of the IODE 

implementation platform. Had the Common Logic Interchange Format (CLIF) 

been purely used, this would have implied that the Foundation Layer would 

have resided at a standalone PIM level without the related PDM. 

Figure 9-4 Model Driven Interoperability View on the Research 
Framework 
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The combination of the PIM and PDM for the Foundation Layer has then been 

exploited to develop other PIMs and PDMs, during specialisation into domain 

models such as two virtual ontologies “Domain X” (K) and “Domain Y” (L). 

Semantic mapping concepts (M) constitute the interoperability models for 

reconciling between pairs of domain models. The Foundation Layer, domain 

models and models for semantic mapping concepts are driven to the PSM 

level (N) during implementation in IODE. One important observation to be 

made is that the various models have been implemented under the same 

implementation environment (i.e. IODE), which to some extent contributes to 

the ability to interoperate at the PSM level. Different platform-specific models 

using different implementation environments would lead to the heterogeneous 

KB issue identified previously in section 9.2.4. 

 

Based on an understanding of the SMIF and its implementation, it also 

becomes possible to position the framework in relation to other interoperability 

frameworks. The SMIF, as opposed to interoperability frameworks such as 

IDEAS interoperability framework (Chen et al, 2004), the Framework for 

Enterprise Interoperability (CEN/ISO 11354, 2008), the Zachman Framework 

(The Zachman Framework Website, 2009) and The Open Group Architecture 

Framework (TOGAF) (TOGAF Website, 2009), does not aim at providing a 

novel way of redefining general concepts for interoperability. This is because, 

the SMIF remains focused at the issue of semantic interoperability in design 

and manufacture. Figure 9-5 positions the main concepts of the SMIF, using 

the Framework for Enterprise Interoperability as a benchmark. 

 

As can be seen in the picture, the main concepts explored in the SMIF fall 

under three main blocks as a result of (1) considerations for unified processes 

using PSL, (2) considerations for unified entity information semantics at the 

unified (product) data level and (3) the harnessing of appropriate semantic 

technologies to support integrated technological advances. 
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Compared to other similar approaches attuned specifically to semantic 

interoperability such as the eCOIN framework (Firat et al, 2007), the approach 

explored by Patil et al (2005) and that of Gupta and Gurumoorthy (2008), the 

SMIF has contributed to the identification and application of more formal ways 

(heavyweight Common Logic-driven) for capturing knowledge, starting at a 

low level of abstraction, including the geometry, dimensional and process 

sequencing semantics. In addition to this, more effective methods have been 

investigated in order to achieve meaningful interoperable knowledge sharing 

between domain models during their reconciliation. The interpretation of the 

interoperable knowledge, backed by tractable reasoning, overtakes the simple 

mapping relations used, for instance, in OWL-based reconciliation and 

reasoning.  

 

More recently, an initial proposal for a future SC4 architecture has been 

realised (Leal et al, 2009). Interestingly, the structure of this future 

architecture bears some striking similarities to the fundamental concepts 

explored in the SMIF. The underlying understanding behind this proposed 

architecture is portrayed in Figure 9-6. The architecture is composed of: 
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 Natural language terms and their definitions related to the concepts within 

the SC4 standards (O).  

 The ontology-driven formalised representation of the more general 

concepts covered by the SC4 standards, referred to as “resource parts” 

(P). This is analogous to the semantics of core concepts in the Foundation 

Layer of the SMIF. 

 The ontology-driven formalised representation of the more discipline-

specific concepts covered by the SC4 standards, referred to as “domain 

extensions” (Q). In the context of the SMIF, this understanding is reflected 

in the Domain Ontology Layer.  

 A set of implementation technology solutions for specific use cases that 

are mapped to and from the elements in the formal ontological 

representations, examples of which are called “constrained exchange 

subsets” (R) and “web service definitions” (S) (Leal et al, 2009). When 

viewed from the SMIF approach, this may involve the development of 

multiple domain KBs from domain models, thereby resulting in the plural 

nature of PSMs. This aspect, however, has not been probed into in the 

current research framework, but the necessary implications have been 

identified in section 9.2.4. 

 Appropriately-formalised mappings and/or references between the terms 

and definitions, ontology-driven representations and implementation 

technology solutions (T). In the SMIF, the definition of semantic mapping 

concepts to support interoperable knowledge sharing, provides a useful 

means of performing the required mappings.  

 

It is further to be noted that during the proposal of the above-mentioned SC4 

architecture, references have been made to possible modelling languages 

such as OWL, CL, UML, XML Schema and the Web Service Description 

Language (WSDL). This clearly illustrates that Common Logic-based 

knowledge representation formalisms have been acknowledged as forming 

part of the category of ontological formalisms that possess attractive 

capabilities to address the requirements of future standards-based integration 

architectures.  
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9.2.7 Potential Industrial Applications 

There exist wide-ranging potential applications of the proposed Semantic 

Manufacturing Interoperability Framework (SMIF) in manufacturing 

enterprises. At present, the relevance of ontologies in industry is obvious as 

several enterprises like DaimlerChrysler are, for example, adopting ontology-

driven methods to support a range of design activities (Lukibanov, 2005). 

 

Figure 9-7 illustrates a possible configuration of the SMIF with respect to its 

interactions with elements of wider design and manufacturing systems in 

PLM, within individual manufacturing enterprises. Domain ontologies that 

derive from the Foundation Layer of the SMIF could be interfaced with CAE 

applications, for example, a CAD environment could be linked to a domain 

ontology that fully captures the semantics in solid modelling (see label (U) on 

Figure 9-7). The KB related to the domain ontology would be used as a 

repository for storing, accessing, updating and creating parts information.  

 

Resource 

Parts (P) 

Domain 

Extensions (Q) 

 
Constrained 
Exchange 
Subsets  

(R) 

 
 

Web  
Service 

Definitions 

 (S) 

Terms and Definitions for People (O) 

(T) 

OWL + Named Graphs 
CL, and other dictionary languages 

XML Schema + Schematron 
OWL + SWRL 

WSDL 

Figure 9-6 Future SC4 Architecture Based on Ontology 
Representations of Engineering Data (Adapted from Leal et al (2009)) 
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In addition, rigorous heavyweight semantics from PSL could be exploited 

towards monitoring shop-floor activities such as automated machining and 

assembly sequences following process planning (V). This is one example 

where the applied importance of ICs would be witnessed. These ICs would 

ensure that correct and complete information is captured and adequate 

procedures carried out. Extensions to the framework aided through the set up 

Figure 9-7 Visualising the SMIF within Integrated and Interoperability-Driven PLM 
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of interfaces with PLM environments (W) would potentially help support not 

only the integration (X), but also the level of semantic interoperability required 

in effectively sharing knowledge across multi-disciplinary teams involved in 

collaborative PLM (Y). 

 

The SMIF approach could further be integrated as part of a knowledge 

management initiative for building large repositories of design and 

manufacture knowledge. Knowledge would be accessed via shared 

ontologies and mapping mechanisms would be present for comparing various 

information sources for effectively clarifying intent and sharing knowledge. 

The ability to create and reuse meaningful best practice knowledge in 

computational form could also be supported, as this constitutes a powerful 

asset for the utilisation of historical as well as future information gathered 

during the continuous evolution of company structures. Additionally, Web-

based company applications could be linked to the appropriate levels of the 

SMIF to support information searches and user-defined queries (Z).  

 

It is to be noted that unless appropriate user interfaces are supported for 

building such queries, adequate training of users would be required for 

interacting with an ontological platform such as IODE. In terms of 

performance, the use of IODE Object Management Systems (OMSs) would 

not provide a scalable approach to the creation of large KBs. This is because 

an IODE OMS is limited to the number of knowledge elements stored. Hence, 

this clearly implies that for meeting the needs of large design and 

manufacture KBs, industry-robust KBs would be required. In addition to this, 

important concerns are likely to remain notably in terms of the costs involved 

in carrying out technology change procedures and the general acceptance of 

the approach.  

 

 

 

 



  
231 

9.3 Conclusions 

The Semantic Manufacturing Interoperability Framework (SMIF) investigated 

in this work has supported a further step towards the overall improvement of 

interoperability for effectively sharing knowledge across decision support 

systems. It has been possible through the proposal, thorough investigation 

and relevant testing of the framework, to achieve the aim of progressing 

knowledge on ontology-based approaches to support semantic interoperability 

applied to the field of product design and manufacture.  

 

Sections 9.2 and 9.4 of this chapter document the relevant proposition for 

extensions and modifications to the SMIF in order to support future work, 

thereby meeting the sixth and final objective of this work (see Chapter 1 

section 1.3.1). Furthermore, the various objectives set at the beginning of the 

thesis have been met (refer to cross-references between the objectives in 

Chapter 1 section 1.3.1 to the occurrence of their achievement at various 

points throughout the thesis). This clearly suggests that the research 

methodology undertaken in this work has successfully supported the 

achievement of the aim of this research.  

 

Figure 9-8 depicts a diagram that summarises the key aspects of the SMIF 

with respect to the relevance of automation at various stages namely: 

ontology development, semantic reconciliation and interoperable knowledge 

discovery. It is clear from the concepts explored in this work that the process 

of ontology development is semi-automatic, especially since the knowledge 

engineer and the ontological environment are the prime agents in ontology 

building and deployment. Moreover, the first two stages of the semantic 

reconciliation phase, notably that of context adjustment and the simple 

merging of domain models, are semi-automatic processes. 

 

Context adjustment of domain models, as witnessed in some of the test cases 

(see test cases 2 and 4 in Chapter 8) is essentially a manual process. The 

simple merging process as part of semantic reconciliation is a semi-automatic 

stage as it requires the user choosing the necessary ontology and instance 
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files to be processed by the ontological environment. The semantic alignment 

process is entirely automated, as a result of logic-based definitions for 

semantic mapping concepts, which automatically align cross-domain content. 

The final phase related to interoperable knowledge discovery is semi-

automatic as it relies on appropriate user actions and interactions with 

interfaces for creating and running queries as well as for browsing the results 

of queries.  

 

 

 

 

 

 

 

 

 

 

 

 

 

This view on the current state of automation of the main phases involved in 

the SMIF illustrates that there exist potentials for enhancing the performance 

of the framework by automating relevant processes. The ontology 

development and knowledge discovery phases are very likely to remain semi-

automatic as user interactions are unavoidable. However, additional tools and 

methods need to be integrated with the SMIF implementation environment in 

order to support automatic context adjustment and simple merging.  

 

In the knowledge discovery phase, it has been witnessed that the query tool in 

IODE supports the rapid processing of complex Common Logic-based queries 

performed on a single workstation. However, in rare cases when queries are 

not well-formed by the user, this may result in excessive memory 

consumption in trying to retrieve a possible answer to an inaccurate query. In 

other situations, it may be impossible to reach the result of a query based on 
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deductive reasoning especially if certain facts do not exist in a KB. This 

consequently implies that in industrial settings, adequate user training would 

be required in order to interact with the various elements of the SMIF. 

 

The issue of processing time is likely to have a repercussion during 

collaborative activities between different agents. Therefore, it is still important 

to understand the extent to which the processing time remains beneficial 

across a collaborative environment. It is possible that there would be a need 

for optimisation which would result in higher performance, thereby enabling 

multiple queries to be performed from various workstations, whose query tools 

are simultaneously linked to the same KB found on a server. Figure 9-9 

identifies a possible configuration of a server based system for querying 

against a KB. The potentials of Graphical Processing Units (GPUs) may be 

required for their high computing power, in order to compensate for the lower 

speed of Central Processing Units (CPUs) against GPUs. 

 

 

 

 

 

 

 

 

 

 

 

Based on the observations made during the discussions section of this 

chapter, a number of concerns have been depicted. The primary observation 

is that framework extensions are required. These extensions should 

accommodate further types of generic intuitions towards more defined product 

lifecycle semantics, altogether captured within the heavyweight manufacturing 

ontological foundation. Moreover, there is a need for refining the Domain 

Ontology Layer to include a clear demarcation between domain ontologies 

over which several platform-specific KBs could be established.  

KB on server 

CPU -> GPU CPU -> GPU 

CPU -> GPU CPU -> GPU 

Figure 9-9 A Server-Based Configuration for Multiple Interacting Workstations  
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Hence, supporting the continuous evolution of the SMIF would help foster a 

leap towards intelligent automated paper-free knowledge sharing. The overall 

benefits would promote the enhancement of knowledge management 

strategies. On the whole, a progression of the framework shall continue to 

provide a competitive edge related to (1) the use of effective foundation 

ontology approaches to support knowledge capture and (2) the application of 

semantic methods for knowledge sharing across decision support systems in 

product design and manufacture. 

 

9.4 Recommendations for Future Work 

The discussions section of this chapter has helped orientate appropriate 

attention onto relevant areas where future work could apply. First of all, it 

would be highly desirable to explore an extended heavyweight manufacturing 

ontological foundation which would capture more complicated feature ranges 

such as pockets, splines, complex closed profiles, etc. Moreover, to enable 

the unambiguous definition of manufacturing features, the semantics of part 

families would deserve attention. An engaging starting point would consist of 

a mapping of the high-level diagram proposed by Gunendran and Young 

(2008) (see Figure 9-1) to foundation semantics, or vice versa. 

 

Future work should also concentrate on identifying the different nuances 

within the Foundation Layer. At present, the Foundation Layer consists of two 

blocks namely the Common Logic-based ontological formalism over which the 

heavyweight manufacturing ontological foundation is established. However, 

this heavyweight foundation, during expansion and implementation would 

inevitably lead to different levels of conceptualisations within a single 

foundation. Figure 9-10 summarises this understanding and exemplifies the 

idea behind having different harmonised nuances within a single foundation. 

 

From the figure, it becomes clear that some meta-ontology is bound to exist, 

such as the Ontology Works ULO, at the bottommost section of the 

Foundation Layer, over which the main ontological formalism is built. Generic 

intuitions need to be developed to capture broad concepts that cut across 
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several more specific product lifecycle intuitions. Such extensible generic 

concepts may include (1) the Process Specification Language (PSL) as a 

basis for describing processes of various sorts, (2) the Core Product Model 

(CPM) for capturing generic product model information, (3) generic models 

such as the model of measures (Ontology Works Inc., 2009) implementing 

NIST‟s publication on the International System of Units (SI) (Taylor and 

Thompson, 2008), (4) models of events featuring the participation semantics 

of objects in relation to events and (5) the temporal model based on the 

Temporal Interval Calculus of J.F. Allen (Ontology Works Inc., 2009).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the view that different foundation levels of conceptualisation would 

arise as a result of an expansion of the Foundation Layer, this would 

necessarily imply that the methods for facilitating the reconciliation and 

verification across different domain extensions would also require evolvement. 

On the other hand, to further explore the application-oriented benefits of using 

heavyweight ontological approaches, it would be a challenging task to 

experience with the programming of application interfaces between, for 

example, CAD/CAM software and the KBs supported by domain ontologies 

developed from the Foundation Layer. In this way a concrete opportunity 

would arise to test the true potentials of ICs for articulating user inputs, 
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providing intelligent suggestions and preventing unwanted actions from being 

committed during the use of ontology-driven CAD/CAM environments.  

 

Finally, there is still a need to conduct test cases, applied to the SMIF, based 

on comprehensive industrial scenarios. These scenarios would bring 

considerable value to the applicability of the proposed framework within an 

industrial setting. Possible case studies originating, for example, from the 

aerospace and automotive industries would help support the breadth of 

product lifecycle concepts required for further testing the Semantic 

Manufacturing Interoperability Framework.     
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Determine the domain and scope of the ontology Strategic 
Dimension 

Consider reusing other ontologies/methods 

List down important terms in the ontology 

Define classes and class hierarchy 

Define other ontological structures 

Instantiate the ontology 

Perform relevant ontological tests 

Structural 
Dimension 

A The Knowledge Engineering Methodology and 

IDEF5 Schematics for Ontology Development 

A.1 The Knowledge Engineering Methodology 

The Knowledge Engineering Methodology has been prescribed by Noy and 

McGuinness (2001) and consists of a stepwise approach in the process of 

developing ontologies. The diagram in Figure A-1 illustrates a typical ontology 

development process following the Knowledge Engineering Methodology and 

applied to this research work. 

 

 

 

 

 

 

 

 

 

 

 

 

The first stage in the process is concerned with the specification of the 

domain and scope of the ontology. Some questions that need to be asked at 

this stage are, for example: 

 

 What should the domain and scope of the ontology cover? 

 Who are the parties involved in exploiting the ontology? 

 For what types of questions should the concepts developed in the ontology 

support answers to? 

 

This first strategic dimension of the Knowledge Engineering Methodology is 

generally accompanied by the definition of competency questions to be 

Figure A-1 The Knowledge Engineering Methodology (Adapted 
from Noy and McGuinness (2001)) 
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answered after the ontology development process is performed. These 

competency questions form part of a checklist for assessing whether the 

objectives of the ontology have been achieved or not. 

 

The second stage in the process involves the consideration for reusing other 

ontologies and/or methods. This process also forms part of the strategic view 

on the ontology. For example, in this research work, the Process Specification 

Language ontology has been reused and formalised in the framework under 

development. In this way, the time taken to develop an ontology can be 

shortened. 

 

The third process considers the enumeration of vital terms to go in the 

ontology. It is important to list down the terms, concepts, verbs and 

statements that fall within the scope of the ontology intended to be modelled. 

This acts as a mind-map which can later be refined as the structural 

dimension of the ontology is tackled. 

 

As part of the structural dimension of an ontology, and subsequently a KB 

based on the ontology, classes and the class hierarchy are first defined. 

These capture the taxonomy, or backbone, of main concepts in the ontology. 

 

Next, other ontological structures are modelled. These involve relations of the 

required arities in order to bind classes together to create statements. 

Ontological functions, which are a special case of relations, are also defined 

at this stage. Relevant axioms governing the way in which ontological content 

is to be formally interpreted are also specified. 

 

The next stage consists of populating the ontology with instances of the 

developed classes, and using the ontological structures to create fact 

sentences, in order to capture discrete knowledge in the KB supported by the 

ontology. 

 

Relevant ontological tests are performed in order to investigate the extent to 

which the initially-set competency questions are met. 
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A.2 IDEF5 Schematics 

At present, the graphical representation of ontological content is partly 

dependent on the implementation platform in which an ontology is being 

modelled. There is currently no de facto ontology representation schematics 

in order to aid the visual communication of ontological content. Diagrams 

provided in the Unified Modelling Language (UML), for example, UML class 

diagrams or EXPRESS-G schematics could be exploited towards the 

graphical representation of ontologies. However, the unique issue with similar 

diagrams is that they do not allow the complete representation of certain types 

of relations, notably higher-arity relations.  

 

After careful scrutiny, it was discovered that the IDEF5 schematic language 

(Knowledge Based Systems Inc., 1994) serves as a very suitable candidate 

for allowing the informal representation of ontological content in the form of 

schematics with a clear set of primitive semantics. Figure A-2 identifies the 

primitive symbols from the IDEF5 schematic language exploited in this work. 

Note that because no commercial tool is currently available for drawing IDEF5 

schematics, a Microsoft Visio template has been constructed for optimising 

the reuse of symbols in the IDEF5 schematic language. 

 

 

 

 

 

 

 

 

 

 

 

 

An overview on how the various symbols are put together to represent 

ontological content is next identified. Figure A-3 illustrates how a taxonomy of 

Figure A-2 Microsoft Visio Template and Symbols Used in the IDEF5 Schematic 
Language 
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classes is organised by using “kind symbols” and the “2-place second order 

relation symbol” with or without labelling (note that the relation without the 

“sup” labelling assumes the same semantics as with the “sup” labelling. Both 

refer to the notion of “has super-class”). In the event that a certain class 

possesses a hidden taxonomy of its own, this is represented using the symbol 

“kind with hidden classification”.  

 

 

 

 

 

 

 

 

 

 

 

IDEF5 schematics can also be used to capture statements about how classes 

are bound together through relations of various arities. Figure A-4 depicts a 

binary relation (of arity 2) named “occurrence_of” which binds the classes 

“Activity_Occurrence” and “Activity”, read in the direction of the arrows. In the 

figure, two alternative ways of representing the same information is illustrated.  

 

 

 

 

 

 

 

Relations of higher arities can readily be captured using the IDEF5 schematic 

language. The diagram portrayed in Figure A-5 exemplifies a ternary relation 

(of arity 3), called “participates_in”, which involves three argument classes to 

one relation. The way in which the relation is read follows the order in which 

the numbers appear in the relation. In this case the interpretation would state 

sup sup

C

Object

Origin

Activity
Activity_

Occurrence

Timepoint

Figure A-3 Representing a Taxonomy of Classes 
Using IDEF5 Schematics 

Activity_

Occurrence
Activity

occurrence_of Activity_

Occurrence
occurrence_of Activity

Figure A-4 Alternative Ways of Representing a Binary Relation between Two Classes 
Using IDEF5 Schematics 
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that the class “Object” in the first argument position “participates_in” the class 

“Activity_Occurrence” in the second argument position at the class 

“Timepoint” in the third argument position. 

 

 

 

 

 

 

 

 

 

 

Instances are organised using the “2-place second order relation symbol” with 

the directive “inst” as a label to the relation. The “inst” labelling captures the 

“instance-of” relation that holds between classes and their individuals. Figure 

A-6 illustrates two instances of the class “Timepoint” namely “inf-“ and “inf+”.  

 

 

 

 

 

 

 

 

 

 

Similar to the way in which classes can be bound to relations, individuals 

(instances) can also be stated as being bound to the relations inherited from 

the classes that the individuals instantiate. Overall, IDEF5 schematics provide 

an attractive way of organising and representing ontological content prior to 

implementation in a suitable ontological environment. In other words, IDEF5 

schematics help obtain a platform independent model of ontological 

information, which an important facet in Model Driven Architectures. 

1

2

3

participates_in

Activity_

Occurrence

C

Object Timepoint

Figure A-5 Representing a Ternary Relation among Three Classes Using 
IDEF5 Schematics 

in
st

in
st

inf- inf+

Timepoint

Figure A-6 Organising Instances of Classes Using IDEF5 Schematics 
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B Justification of the Chosen Common Logic-Based 

Ontological Formalism 

B.1 Introduction 

The present capability that ontology-based approaches offer to formally 

represent and share product design and manufacture semantics is partly 

dependent on the choice of ontology representation formalism. Since there 

currently exists a spectrum of these formalisms, it is an important requirement 

to understand which family of formalisms allows the expressive capture and 

representation of product design and manufacture semantics (see 

Requirement 4a, section 3.3.4.1). The aim of this chapter is to justify the 

choice of the Common Logic-based formalism used throughout this work, as a 

viable direction to meet the semantic interoperability needs across product 

design and manufacture. In order to establish this direction, two recognised 

heavyweight ontological formalisms are first explored and tested, namely:  

 

 Frames and First Order Logic (Gómez-Pérez et al, 2004). In this case, 

Protégé Frames with its first order constraint language PAL (Protégé 

Axiom Language) are investigated in section B.2. 

 Description Logics (Gómez-Pérez et al, 2004). In this case, the Web 

Ontology Language (OWL) with the rule language SWRL (Semantic Web 

Rule Language) are investigated in section B.3. 

 

The main focus of investigating the two above-mentioned ontological 

formalisms is to identify their potentials and limitations for expressively 

capturing and representing entity information and process semantics, a 

significant requirement which the framework concept needs to satisfy. In the 

explorations, sample ontologies are constructed following the knowledge 

engineering methodology prescribed by Noy and McGuiness (2001). Section 

B.4 then covers the main reasons why Common Logic-based formalisms 

possess better semantic capabilities compared to the two analysed 

formalisms. Finally, section B.5 summarises this appendix. 
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B.2 An Exploration of Frames with a First Order Constraint 

Language 

B.2.1 Aim of Investigation 

The aim of this exploration is to comprehensively evaluate the capabilities and 

suitability of Frames with a first order constraint language as ontological 

formalism to model heavyweight entity information and process semantics. 

Following the knowledge engineering methodology (Noy and McGuiness, 

2001), a number of competency questions have been identified. The 

significance of the competency questions is such that at the discussion stage, 

these questions can be checked against the observations made in order to 

propose appropriate recommendations. In this first study, the following list of 

competency questions has been formulated: 

 

 Is Frames with a first order constraint language sufficiently expressive to 

support the representation of entity information semantics? 

 Is Frames with a first order constraint language sufficiently expressive to 

support the representation of process semantics? 

 Is it possible using Frames with a first order constraint language to specify 

entity information and process semantic relationships? 

 

B.2.2 Objectives 

A number of objectives has been identified in order to meet the aim of the 

investigation: 

 

 Firstly, it is required to verify the extent to which the semantics of different 

contexts can be captured in a Machining Hole Feature Ontology. Basic 

entity information semantics are being considered partly from an external 

source (Canciglieri, 1999) and a view on STEP 10303-224, whilst selected 

Process Specification Language (PSL) concepts provide the fundamental 

process semantics. 
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 To use Protégé Frames with the Protégé Axiom Language (PAL) as 

heavyweight ontological formalism in the Protégé version 3.4 ontology 

environment (Protégé Website, 2009). This is primarily because the 

Protégé environment is consensually regarded as the most mature tool for 

knowledge modelling (PABADIS‟ PROMISE Deliverable 3.1, 2006). 

 

B.2.3 Machining Hole Feature Ontology 

A number of reasons account for the choice of a Machining Hole Feature 

Ontology in the first instance. The main one lies in the fact that the test 

ontology acts as a suitable starting point as it regroups three contexts (not be 

to be confused with namespaces in this case). These contexts involve a 

manufacturing process viewpoint to capture process semantics and a feature 

representation coupled with a geometry context to capture entity information 

semantics of hole features from a machining and GD & T viewpoint. The 

second reason is concerned with feature information serving as the bridge to 

a high level integration between design, analysis, process planning and 

manufacturing (Zhou et al, 2007), hence implying that certain relationships 

can be captured between process and entity information semantics in the test 

ontology. 

 

B.2.3.1 Entity Information Semantics 

Several classes and their respective taxonomy, relationships to other classes, 

ontological functions and instances have been defined for capturing entity 

information semantics following the ontology development procedure. Figure 

B-1 which follows identifies a screenshot of the Machining Hole Feature 

Ontology developed in the Protégé environment. A number of ontological 

entities are highlighted in the diagram along with short comments detailing the 

nature of these entities. 

 

Consider the concrete class “Simple Hole” (A) found in the hierarchy of the 

abstract class “Machining Hole Feature” (B). The latter can purposely be 

made abstract so as to imply that it cannot have direct instances or 
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individuals, meaning any machining hole feature should in fact exist as an 

instance of one of the concrete subclasses of the abstract class. Instances 

are regarded as being the most specific concepts represented in a knowledge 

base (Noy and McGuiness, 2001). In the figure, for example, it is possible to 

depict an instance of “Simple Hole” named “Hole 13.00” (C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ontological formalism under investigation also allows binary relations to 

be captured. Binary relations are ontological entities that bind two sets of 

classes or arguments together. The “hasDimension” (D) relation in Figure B-1 

is an example of a binary relation defined to relate the class “Simple Hole” (A) 

to a union of the classes “Diameter” (E) and “Depth” (F). An example of an 

ontological function is the parameter called “Name” (G), whose value is of 

type string. This function (in the ontological sense) works very similar to 

attributes in Object-Oriented languages. 
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(D) 
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Figure B-1 Entity Information Semantics in the Machining Hole Feature Ontology 
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So far, the types of entity information semantic structures exposed remain 

lightweight in nature. In order to account for heavyweight semantics in the 

ontology, an additional axiom layer is required. The capability to do so is 

dependent on the specification of axioms or integrity constraints using the 

Protégé Axiom Language (PAL). This constraint language accommodates first 

order semantics which is very expressive.  

 

The underlying philosophy of PAL is model-checking (Protégé Website, 2009) 

and hence, PAL-formalised integrity constraints are used in the heavyweight 

approach to restrict the interpretation of ontological entities. These constraints 

are primarily written to ascertain that the semantic structures are carefully 

respected when knowledge is asserted in the ontology and are an essential 

asset for the capture of semantics and intent. In order to verify whether 

asserted ontological knowledge violates or conforms to semantics, integrity 

constraints can be processed and a number of results are retained in the 

event that these constraints are infringed. In other words, integrity constraints 

contribute to the semantic integrity and enrichment of ontologies.  

 

In the Machining Hole Feature Ontology, a number of integrity constraints 

have been specified. The expression listed next (Expression B-1) gives an 

example of a simple integrity constraint axiom whose purpose is to ensure 

that all instances of the class “Simple Hole” (A) are only allowed to have 

exactly two allowable related dimensional parameters and it is compulsory 

that these parameters include one instance of the class “Diameter” (E) and 

one instance of the class “Depth” (F) (see Figure B-1). If, for example, an 

instance of “Simple Hole” were asserted as having (1) more than two related 

dimensional parameters or (2) a combination of two dimensional parameters 

that did not comprise of a diameter and a depth or (3) no dimensional 

parameters at all, then an execution of the PAL constraint would show that 

this instance violates the constrained semantics captured in the integrity 

constraint.  
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B.2.3.2 Process Semantics 

A number of relevant ontological entities are considered for the definition of 

machining process semantics. Some of these notions derive from PSL since 

the latter explicitly and clearly defines the concepts intrinsic to manufacturing 

process information (Schlenoff et al, 1999). Hence, for describing the 

semantics of machining sequences, it is necessary to characterise processes 

such as “Centre Drilling” (H) (see Figure B-2) in terms of their beginning and 

completion times. In Figure B-2, two binary relations are present namely 

“hasStartTime” (I) and “hasEndTime” (J), which directly relate instances of the 

concrete subclasses of “Hole Machining Operation” (K) to instances of the 

class “Timepoint” (L). Another binary relation named “precedes” (M) has been 

defined with the intention of permitting the specification of precedence 

relationships over processes. From Figure B-2, it can also be seen that there 

is the notion of the class “Timepoint” (L) and a binary relation named “before” 

(N) that only holds between timepoints and provides linear ordering over 

timepoints. A timepoint instance also has a floated value type hence the 

“hasValue” (O) ontological function.  

 

To attempt at capturing some of the heavyweight axioms governing the 

relation “before” (N) from PSL, PAL statements are written. Expression B-2 

identifies one axiom that constraints the “before” (N) relation by assigning an 

irreflexive property to the relation. This expression informally states that if 

(defrange ?hole :FRAME „Simple Hole‟) 
(defrange ?dia :FRAME „Diameter‟) 
(defrange ?depth :FRAME „Depth‟) 
(forall ?hole 
 (=> (instance-of ?hole „Simple Hole‟) 
        (and (= (number-of-slot-values hasDiameter ?hole) 2)) 
    (exists ?dia (exists ?depth 
   (and (instance-of ?dia „Diameter‟) 
           (instance-of ?depth „Depth‟) 
           (hasDimension ?hole ?dia) 
           (hasDimension ?hole ?depth))))))) 
 

Expression B-1 A Simple Integrity Constraint Written in the Protégé 
Axiom Language (PAL) 
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there is a timepoint, then this timepoint can never happen before itself. 

Furthermore, a second axiom placed on the “before” (N) relation depicts the 

transitive nature of the relation i.e. if a timepoint ?t1 is before another 

timepoint ?t2 which is before another timepoint ?t3, then it is evident that ?t1 

is before ?t3. The statement in Expression B-3 captures the transitive property 

of the relation.  
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Figure B-2 Process Semantics in the Machining Hole Feature Ontology 

(defrange ?t1 :FRAME Timepoint) 
(forall ?t1 

(=> (instance-of ?t1 Timepoint) 
      (not (before ?t1 ?t1)))) 

 

Expression B-2 Irreflexive Axiom for the 
“before” Relation 
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B.2.3.3 Entity Information and Process Semantic Relationships 

As previously discussed in section 3.3.2 (Requirement 2), providing semantic 

relationships among viewpoints conveys the capability to link entity 

information semantics to process semantics in a knowledgeable way. For 

example, in manufacturing, the dimensional and tolerance parameters of 

features have a direct influence on the choice of machining processes.  

 

In order to further explore this understanding in the “Machining Hole Feature 

Ontology” using Protégé Frames and PAL, a binary relation called 

“canBeManufacturedUsing” (P) has been defined (see Figure B-3). This 

relation binds the subclasses of “Machining Hole Feature” (B) to subclasses 

of “Hole Machining Operation” (K) so that it can, for example, be stated that 

an instance “Hole 13.00” (C) of the class “Simple Hole” (A) can be 

manufactured using some instance of the class “Drilling” (Q).  

 

To support the knowledge which leads to the decision of which machining 

operation can be used to manufacture a certain machining hole feature, 

knowledge contained in tables from ISO Tolerance Band and machining 

processes associated with ISO IT Tolerance Grade (ISO 286-2, 1988) are 

exploited. Figure B-4 briefly demonstrates this knowledge acquisition process 

facilitated through the heavyweight formalisation of a relevant subset of the 

knowledge using PAL statements. 

 

 

(defrange ?t1 :FRAME „Timepoint‟) 
(defrange ?t2 :FRAME „Timepoint‟) 
(defrange ?t3 :FRAME „Timepoint‟) 
(forall ?t1 (forall ?t2 (forall ?t3 
 (=> (and (before ?t1 ?t2) 
   (before ?t2 ?t3)) 
       (before ?t1 ?t3))))) 
 

Expression B-3 Transitive Axiom for the 
“before” Relation 
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The main reason which accounts for the use of information from ISO IT 

Tolerance Grade is because ISO Tolerance Band tables provide different 

ranges of dimensions and tolerances that different IT Grades can achieve. 

These IT Grades are reflected in the machining process table relating various 

machining processes and their corresponding IT Grade capabilities (see 

Figure B-4). For example, knowing that a reaming process can achieve 

nominal dimensions and dimensional tolerances in the range between IT5 and 

IT9 both inclusive (R), then if the diameter of an instance of “Simple Hole” (A) 

is between 10 mm (exclusive) and 18 mm (inclusive) (S) with an absolute 

value for the diameter tolerance between 0.008 mm and 0.043 mm both 

inclusive (T) based on ISO Tolerance Band tables, this would imply that the 

simple hole feature fits the reaming process criteria (U).  

 

 

 

Figure B-3 Example of a Semantic Relationship between Entity Information and 
Process Semantics 
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Figure B-5 illustrates the result of evaluating the PAL constraint. The query 

responses clearly show that two instances of “Simple Hole” (A) conform to the 

formalised reaming constraint. This further implies that any instance of the 

class “Simple Hole” (A) that satisfies the reaming constraint can in fact exist 

as a “Reamed Hole” (V)  which can in turn be produced by some defined 

“Reaming” process (W) (see Figure B-3). Such information can additionally be 

asserted in the ontology.  

 

 

 

 

 

 

 

 

 

(R) 

(S) 

(T) 

(U) 

Figure B-4 Formalising Heavyweight Semantic Relationships across Contexts Using 
the Protégé Axiom Language (PAL) 

Figure B-5 Example of Query Responses Processed from a PAL Constraint 
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B.2.4 Discussions 

The basic, primarily lightweight, representation of entity information and 

process semantics and their corresponding relationships is achievable 

through the specification of classes and their taxonomy accompanied by 

relations and ontological functions that hold for specific classes and between 

classes respectively. Furthermore, it is evident that the specification of an 

ontological axiom layer provides the additional heavyweight semantic 

structures needed to constrain and verify the interpretation of semantics at 

computational level. This axiom layer provides an enhanced basis for 

capturing semantically-enriched ontological concepts, formalised as a set of 

integrity constraints written in the Protégé Axiom Language (PAL). 

Competency questions set in section B.2.1 are reviewed next. 

 

 Is Frames with a first order constraint language sufficiently expressive to 

support the representation of entity information semantics? 

 

It is possible to conclude that Frames with a first order constraint language 

can be used to capture and represent the most critical types of entity 

information semantics, from a research scope point of view. However, the 

extent to which this ontological formalism is able to model more complex 

entity information semantics is debatable. For example, the ontological 

formalism only allows the representation of binary relations, which are 

relations that hold between two sets of classes. This could pose a problem if a 

relation should hold between three sets of classes. As an example, suppose a 

relation needs to be defined to express the positional tolerance of a feature. 

Then, it is very likely that this relation needs to encompass three sets of 

classes namely (1) the feature that holds the (2) positional tolerance with 

respect to some (3) toleranced dimension. Such a relation is referred to as a 

ternary relation as it involves three arguments. Higher-arity relations, i.e. 

relations with three arguments or more, cannot be captured using Frames 

with a first order constraint language.  
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 Is Frames with a first order constraint language sufficiently expressive to 

support the representation of process semantics?  

 

To an appreciable extent, some of the very basic ontological entities 

fundamental for expressing process semantics have been represented. The 

ontological formalism allows some relations, pertinent to the description of 

manufacturing process sequences, to be defined. For example, it has been 

possible to probe into a subset of the semantics of the “before” (N) relation. 

However, more complex semantics from PSL cannot be represented since 

they involve, to a large extent, higher-arity relations and functions (in the 

ontological sense). Therefore, this where it is primarily perceived that 

heavyweight Frames with a first order constraint language does not provide 

sufficient expressivity. The issue with capturing PSL-based process semantics 

is further scrutinised in section B.3. 

 

 Is it possible using Frames with a first order constraint language to specify 

entity information and process semantic relationships? 

 

It has been possible to gather an understanding that as long as the defined 

relationships between entity information and process semantics remain binary 

relations, the ontological formalism is proficient. The investigation has shown 

that complex integrity constraints (see Figure B.4) can be specified using 

PAL. However, in certain cases, if PAL statements involve several different 

variables to be processed, then query time and responses tend to breakdown. 

This applies to any PAL constraint, viewed as being overly complex, although 

the latter could be syntactically sound. This drawback, however, is likely to be 

related to a limitation of the ontological environment itself rather than the 

ontological formalism. 
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B.3 An Exploration of OWL with a Rule Language 

B.3.1 Aim of Investigation 

The previous exploration suggests that process semantics based on the 

Process Specification Language (PSL) are the most intricate and difficult to 

capture and formalise compared to entity information semantics and semantic 

relationships across viewpoints. Hence, the investigation explained in this 

section is fully dedicated to the formalisation of PSL semantics, by exploiting 

another heavyweight ontological formalism namely the Web Ontology 

Language (OWL) with the Semantic Web Rule Language (SWRL) (W3C 

Website, 2009). It is to be noted that previous work indicates that OWL is 

capable of modelling entity information semantics (AIM@SHAPE Product 

Design Ontology, 2004; Kim et al, 2006; Chungoora and Young, 2008b) and, 

therefore, this exploration only targets the core issue of process semantics. In 

this study, a single key competency question is present: 

 

 Is OWL with SWRL sufficiently expressive to support the representation of 

PSL-based process semantics? 

 

B.3.2 Objectives 

The objectives identified in order to meet the aim of the investigation are: 

 

 It is essential to understand to what extent can PSL semantics be captured 

using OWL and SWRL. This is to be tested through the formalisation of 

concepts from the PSL Core theory involving PSL primitives and axioms.  

 To use a combination of OWL Full, Description Logic-based ontological 

formalism, with SWRL in the Protégé OWL ontology development 

environment (Protégé version 3.4). Throughout this study, for simplicity, 

only the term OWL and SWRL are used. 
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B.3.3 Modelling PSL Core Semantics Using OWL with SWRL 

B.3.3.1 PSL Core Original Semantics 

The purpose of PSL Core is to axiomatise a set of intuitive semantic primitives 

that is adequate for describing the fundamental concepts of manufacturing 

processes (PSL Website, 2009). There are four kinds of entities that are 

required for describing process semantics namely: 

 

 Activities which are reusable behaviours in the domain. 

 Activity occurrences which are runtime executions of activities. 

 Timepoints which provide a linear ordering of the points at which activity 

occurrences are taking place. 

 Objects which are entity information semantics that are neither activities, 

nor activity occurrences nor timepoints.  

 

PSL Core (refer to Appendix C if needed) consists of (1) a primitive and 

defined lexicon that identifies the basic semantic structures i.e. classes, 

relations, ontological functions and individuals, (2) a series of axioms that 

ensure semantic integrity of the ontology and (3) supporting definitions that 

provide rules for inference purposes (not investigated in this study as they are 

essentially axioms too). The following section, therefore, demonstrates how 

OWL with SWRL can be employed to attempt at modelling PSL semantics. 

 

B.3.3.2 Classes and Binary Relations 

OWL allows all PSL classes and binary relations (called properties in OWL) to 

be easily captured in the ontology. Note that at this stage, only the purely 

lightweight semantics are under consideration. Figure B-6 identifies the four 

classes and five binary relations that exist in PSL Core.  
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B.3.3.3 Ternary Relations Approximation to Binary Relations 

Since OWL only allows binary relations that hold between two sets of classes, 

i.e. two arguments, to be represented, ternary relations from PSL Core cannot 

be exactly represented in the OWL ontology. The most obvious and probably 

closest approximation to a ternary relation in OWL can be obtained by 

specifying the relation to be binary in nature. Such a binary relation 

approximation to a ternary relation has one domain (A) to reflect one 

argument to the relation, with a range consisting of a union of two classes (B) 

to reflect the other two class arguments to the relation (see Figure B-7). It is 

also possible to break down a ternary relation to form two separate binary 

relations, but this aspect is not discussed in this study.  

 

Figure B-7 depicts how the original semantics from the ternary relation 

“participates_in” should be interpreted versus a binary relation approximation 

of the “participates_in” relation specified in OWL. The ternary “participates_in” 

relation has been illustrated using a simple IDEF5 schematic. The figure also 

shows all the other binary relations that are used to approximate ternary 

relations from the original PSL Core ontology. 

 

 

 

 

Figure B-6 Classes and Binary Relations from PSL Core in OWL 
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B.3.3.4 Unary Functions Approximation to Binary Relations 

Functions in ontological terms may be regarded as being particular traits that 

can hold for the individuals of classes in order to denote individuals from other 

classes. Two unary functions are present in original PSL Core semantics and 

they are (1) “beginof” and (2) “endof”. In the informal semantics of PSL Core, 

it is said that the begin of and end of activity occurrences or objects are 

timepoints. So, for example, the beginning of an activity occurrence 

“Drill_Hole_1” can be used to denote a specific timepoint i.e. (beginof 

Drill_Hole_1) denotes some timepoint ?t, although ?t does not need to be 

identified in the ontology since “beginof” “Drill_Hole_1” is known. 

 

Functions like “beginof” and “endof” that are used to define the individuals of a 

class using individuals from another class cannot be specified in OWL. 

However, OWL does account for datatype properties which are very similar to 

unary functions used to associate float, integer, string and other types of 

values to individuals of classes. Due to the inability to model PSL functions in 

OWL, approximations to these have to be made. In the investigated OWL 

version of PSL Core, the original “beginof” and “endof” unary functions are 

Figure B-7 Example of a Ternary Relation Approximation to a Binary 
Relation in OWL 

IDEF5 Schematic 
of  a Ternary 
Relation in PSL 

(A) (B) 
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modelled as binary relations. Figure B-8 next illustrates how these binary 

relations in OWL attempt to capture the semantics behind unary functions, 

although original semantics are not preserved. 

 

 

 

 

 

 

 

 

 

 

B.3.3.5 Individuals 

Two individuals are present from PSL Core theory and they are “inf-“ and 

“inf+”. These are instances of the class “Timepoint” and are used in the theory 

to refer to the timepoints that are before and after all other timepoints 

respectively. Figure B-9 below shows the two individuals of the class 

“Timepoint”. Note that they have been renamed to “inf_minus” (C) and 

“inf_plus” (D) respectively because the symbol “+” cannot be used in the 

name string of an individual in the Protégé OWL environment. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-8 Example of a Unary Function Approximation to a Binary Relation 
in OWL 

Figure B-9 Capturing Individuals from PSL Core in OWL 

(C) 

(D) 
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B.3.3.6 PSL Core Axioms 

Until now, only the modelling of basic ontological structures of the PSL Core 

ontology have been explained. Heavyweight ontology development involves, 

apart from basic ontological structures, axioms or rules that are formalised to 

ensure the semantic integrity of the ontology.  

 

Although OWL can be used to capture some notions of integrity constraints as 

necessary and necessary and sufficient conditions of classes, the 

representation of more complex constraints is either not straightforward or 

cannot be formalised. SWRL, on the other hand, has specifically been 

developed for adding an extra logic layer to OWL ontologies and to an extent 

allows more complex rules to be captured where these axioms are written in 

Horn-type logic. In the Protégé OWL ontology editor, a number of SWRL built-

ins have been developed to improve the reasoning infrastructures of OWL 

ontologies. Documented next is a detailed account of how OWL with SWRL 

can be used to model the axioms from PSL Core. 

 

Axiom 1 The before relation only holds between timepoints. 

The semantics from the logical expression that governs Axiom 1 can readily 

be satisfied through the specification of the domain and range of the binary 

relation "before". The domain is the class “Timepoint” as well as the range. 

 

Axiom 2 The before relation is total ordering. 

This axiom states that if there are any two timepoints, then in the domain, 

these two timepoints can either be the same individuals, or take place before 

each other. OWL on its own cannot be used to specify such an axiom, and, 

therefore, in this case, SWRL is used to write it. However, this axiom cannot 

be captured in a single statement in SWRL primarily because SWRL does not 

support disjunctions of atoms i.e. logical statements involving “or”. So, three 

SWRL statements have to be written in Expression B-4 in order to capture the 

single axiom. 
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Axiom 3 The before relation is irreflexive. 

This axiom states that an instance of the class “Timepoint” cannot be before 

itself. In order to capture this axiom in SWRL, the statement has to be worked 

around to preserve original semantics. This is because SWRL does not 

support negation as failure in its rules i.e. logical statements involving “not”. 

The rule listed in Expression B-5 approximates PSL Core Axiom 3 and 

captures the fact that if one timepoint ?t1 is before a timepoint ?t2, then ?t1 

must be different from ?t2. 

 

 

 

 

Axiom 4 The before relation is transitive. 

This axiom can be fully captured in OWL on its own because of its support for 

relations as having transitive properties. 

 

Axiom 5 The timepoint inf_minus is before all other timepoints. 

This axiom has to be slightly worked around in SWRL due to the fact that 

SWRL does not support negation as failure e.g. to imply that the timepoint ?t 

is not the individual “inf_minus”, the “tbox:notEqualTo” built-in in used in the 

expression below (Expression B-6) to convey the same semantics. 

 

 

 

 

Axiom 6 Every other timepoint is before inf_plus. 

For the same reason as in Axiom 5, a minor work around results in the SWRL 

statement listed next (Expression B-7), with original semantics preserved. 

 

Timepoint(?t1)  ^ Timepoint(?t2) → sameAs(?t1, ?t2)  
Timepoint(?t1)  ^ Timepoint(?t2) → before(?t1, ?t2) 
Timepoint(?t1)  ^ Timepoint(?t2)  → before(?t2, ?t1) 
 

Expression B-4 SWRL Expression for PSL Core Axiom 2 

Timepoint(?t1)  ^ Timepoint(?t2)  ^ before(?t1, ?t2) → 
differentFrom(?t1, ?t2) 

Expression B-5 SWRL Expression for PSL Core Axiom 3 

Timepoint(?t)  ^ tbox:notEqualTo(?t, inf_minus) → 
before(inf_minus, ?t) 

Expression B-6 SWRL Expression for PSL Core Axiom 5 
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Axiom 7 Given any timepoint ?t other than inf_minus and inf_plus, there is a timepoint 
between inf_minus and ?t. 

The original axiom is used to imply the existence of some timepoint ?u that 

always lies between the timepoint inf_minus and another timepoint ?t. In 

OWL, it is not possible to refer to instance values like “inf_minus” within 

existential restrictions. When SWRL is used to formalise the semantics of 

Axiom 7, Expression B-8 is captured where the semantics of the SWRL 

expression differs slightly from the original version because SWRL 

expressions cannot accommodate existential quantification. 

 

 

 

 

 

 

Axiom 8 Given any timepoint ?t other than inf_plus and inf_minus, there is a timepoint 
between ?t and inf_plus. 

The same problem and partial solution to the problem is encountered in 

Axiom 8 as in Axiom 7. Expression B-9 listed next exposes the SWRL rule. 

 

 

 

 

 

 

Axiom 9 Everything is either an activity, activity occurrence, timepoint or object. 

In the PSL Core theory, Axiom 9 implies that only the classes “Activity”, 

“Activity_Occurrence”, “Timepoint”  and “Object” are instantiable. This can 

readily be accounted for in OWL. 

Timepoint(?t)  ^ tbox:notEqualTo(?t, inf_plus) → 
before(?t, inf_plus) 

Expression B-7 SWRL Expression for PSL Core Axiom 6 

Timepoint(?t)  ^ Timepoint(?u)  ^ tbox:notEqualTo(?t, ?u)  ^ 
tbox:notEqualTo(?t, inf_plus)  ^ tbox:notEqualTo(?t, inf_minus)  ^ 
tbox:notEqualTo(?u, inf_plus)  ^ tbox:notEqualTo(?u, inf_minus) → 
between(?u, inf_minus)  ^ between(?u, ?t) 

Expression B-8 SWRL Expression for PSL Core Axiom 7 

Timepoint(?t)  ^ Timepoint(?u)  ^ tbox:notEqualTo(?t, ?u)  ^ 
tbox:notEqualTo(?t, inf_plus)  ^ tbox:notEqualTo(?t, inf_minus)  ^ 
tbox:notEqualTo(?u, inf_plus)  ^ tbox:notEqualTo(?u, inf_minus) → 
between(?u, inf_plus)  ^ between(?u, ?t) 

Expression B-9 SWRL Expression for PSL Core Axiom 8 
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Axiom 10 Objects, activities, activity occurrences, and timepoints are all distinct kinds 
of things. 

The specification of disjointness among the classes “Activity”, 

“Activity_Occurrence”, “Timepoint” and “Object” ensures that this axiom is 

satisfied (see Figure B-10). OWL supports the specification of disjoint classes. 

 

Axiom 11 The occurrence relation only holds between activities and activity 
occurrences. 

The semantics from the logical expression that governs Axiom 11 can readily 

be satisfied through the specification of the domain and range of the binary 

relation "occurrence_of", where the domain is the class “Activity_Occurrence” 

while the range being the class “Activity”. 

 

Axiom 12 Every activity occurrence is an occurrence of some activity. 

Although the original axiom involves an existential quantifier, yet, a necessary 

condition to the class “Activity_Occurrence” can be specified in OWL, and this 

fully preserves original semantics. The figure next (Figure B-10) identifies how 

it can be made compulsory that the specification of an instance of the class 

“Activity_Occurrence” needs to be accompanied by the specification of an 

“occurrence_of” some instance of “Activity”. 

 

 

 

 

 

 

 

 

 

 

Axiom 13 An activity occurrence is associated with a unique activity. 

By specifying that the "occurrence_of" relation is a functional binary relation, 

this axiom can be captured in OWL, thereby preserving the semantics that the 

original Axiom 13 carries. 

Figure B-10 Adding a Necessary Condition to 
Capture PSL Core Axiom 12 
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Axiom 14 The begin and end of an activity occurrence or object are timepoints. 

Since OWL does not support the capture of functions, with the “beginof” and 

“endof” unary functions approximated to binary relations, a specification of the 

domain of both relations to be the class “Timepoint” with the range being the 

union of the classes “Activity_Occurrence” and “Object” attempts to capture 

the semantics of Axiom 14 (see Figure B-8). However, the approximation only 

provides an acceptable work around of the original axiom. 

 

Axiom 15 The begin point of every activity occurrence is before or equal to its end 
point. 

By treating the unary functions “beginof” and “endof” as relations, the 

semantics of Axiom 15 can be covered using SWRL. The SWRL statement is 

identified next (Expression B-10). 

 

 

 

 

Axiom 16 The participates_in relation only holds between objects, activity 
occurrences, and timepoints, respectively. 

Since the original “participates_in” ternary relation is approximated to a binary 

relation to allow implementation in OWL Full with SWRL, a specification of the 

domain and range of the relation ensures that it holds between the three 

classes “Object”, “Activity_Occurrence” and “Timepoint”. However, the initial 

ternary relation semantics are lost in the approximation process. 

 

Axiom 17 An object can participate in an activity occurrence only at those timepoints 
at which both the object exists and the activity is occurring 

This axiom informally states that if an object ?x is participating in an activity 

occurrence ?occ at a timepoint ?t, then it means that ?x exists at this 

timepoint ?t and that the activity occurrence ?occ is occurring at the same 

timepoint ?t. With “participates_in” approximated to a binary relation, the full 

semantics of the axiom can be captured in SWRL as follows (Expression B-

11). 

 

Activity_Occurrence(?occ)  ^ Timepoint(?t1)  ^ Timepoint(?t2)  
^ beginof(?t1, ?occ)  ^ endof(?t2, ?occ) → beforeEq(?t1, ?t2) 

Expression B-10 SWRL Expression for PSL Core Axiom 15 
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B.3.4 Verification of the OWL with SWRL Model of PSL Core  

In order to delimit OWL used in conjunction with SWRL to model the PSL 

Core ontology, a simple scenario has been explored where a few individuals 

have been instantiated with some basic fact sentences asserted to these 

instances. Figure B-11 provides an IDEF5 schematic that depicts all the 

individuals defined with all relations asserted among them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure B-11 IDEF5 Schematic of Asserted Instances in the OWL with SWRL-Formalised 
PSL Core Ontology 
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Object(?x)  ^ Activity_Occurrence(?occ)  ^ Timepoint(?t)  ^ 
participates_in(?x, ?occ)  ^ participates_in(?x, ?t) → 
exists_at(?x, ?t)  ^ is_occurring_at(?occ, ?t) 

Expression B-11 SWRL Expression for PSL Axiom 17 
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The scenario highlighted is based on a typical machining process sequence 

for the creation of a standard counterbore hole on a cylindrical part. The 

sequence informally consists of an execution of “Centre_Drill” (E) followed by 

an execution of “Drill” (F) followed by an execution of “Counterbore” (G). The 

instance “Cylinder” (H) initially participates in “Centre_Drill_Cylinder” (E) at the 

timepoint “Centre_Drill_Start” (I). Each activity occurrence is then sequentially 

carried out. 

 

B.3.4.1 Expected Results 

Based on the scenario identified in Figure B-11, it is clear that certain key 

results are expected on running SWRL rules that attempt to model the 

relevant PSL axioms. In this section, three of these axioms are considered 

although during the actual experiment, all axioms have been evaluated. The 

three axioms are: 

 

 Axiom 5: The timepoint inf_minus is before all other timepoints. 

 Axiom 8: Given any timepoint ?t other than inf_plus and inf_minus, there is 

a timepoint between ?t and inf_plus. 

 Axiom 17: An object can participate in an activity occurrence only at those 

timepoints at which both the object exists and the activity is occurring. 

 

On running the SWRL rule that models Axiom 5, it is expected that the rule 

engine would identify that the timepoint “inf_minus”, is before all the defined 

timepoints that have been instantiated e.g. logically, before(inf_minus, 

Counterbore_Finish), although this fact has not been asserted in the first 

place. Similarly, on evaluating Axiom 8, the inference engine should be able 

to depict a series of inferred facts, for example, between(Drill_Start, 

Centre_Drill_Finish) and between(Drill_Start, Counterbore_Start). Note that 

the original “between” ternary relation has been approximated to a binary 

relation in the OWL-based PSL Core ontology.  

 

While the expected list of results on running axioms 5 and 8 is likely to consist 

of more than six derived facts due to the different combinations of 
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possibilities, the expected result on running Axiom 17 should consist of 

exactly two facts derived from the asserted information. The facts should 

include: exists_at(Cylinder, Centre_Drill_Start) and  

is_occurring_at(Centre_Drill_Cylinder, Centre_Drill_Start).  

 

B.3.4.2 Actual Results  

Figure B-12 next illustrates some of the results obtained after the rule engine 

has been executed for PSL Core axioms 5, 8 and 17 formalised in SWRL. All 

the results retrieved for axioms 5 and 17 have been shown in the figure. Due 

to an extensive list of 36 results that has been obtained on running Axiom 8, 

only a subset of these results containing six inferred facts over the timepoint 

“Drill_Start” (J) (see Figure B-11) has been shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.3.5 Discussions 

The actual results related to the execution of SWRL rules that model PSL 

Core axioms all agree with the expected results. This implies that, the 

semantics carried by SWRL rules can be used to infer new consequent 

Axiom 5 

Axiom 8 

Axiom 17 

Figure B-12 Sample Results Obtained from the Evaluation of PSL Core Axioms 
Formalised in SWRL 
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knowledge from existing asserted facts in a heavyweight ontology of process 

semantics. Furthermore, SWRL in Protégé OWL is accompanied by a set of 

more than 220 built-ins including built-ins for comparison, maths built-ins, 

built-ins for querying an OWL TBox and many more (SWRL Built-ins, 2009). 

These predefined SWRL built-ins can readily be exploited by the user to 

formulate different types of rules, for instance, in this current exploration, the 

“tbox:notEqualTo” built-in has been used to distinguish two separate 

instances in SWRL expressions. 

 

During the execution of SWRL rules, it is important that the user runs them 

one at a time. However, if a SWRL rule has to be run and the antecedent of 

that rule involves the consequent of another SWRL rule, then both rules have 

to be executed concurrently. At one stage of the experiment, all SWRL rules 

that model axioms in PSL Core were simultaneously processed. This not only 

resulted in an extensive and confusing list of more than 150 inferred facts, but 

also led to unexpected behaviours and some incorrectly-derived facts. When 

SWRL rules were run individually or in small batches, this problem did not 

occur. The initial competency question set in section B.3.1 is answered next. 

 

 Is OWL with SWRL sufficiently expressive to support the representation of 

PSL-based process semantics? 

 

OWL used in conjunction with SWRL increases the logic expressiveness of 

Description Logic-based approaches to model heavyweight manufacturing 

ontologies. SWRL is highly effective as a rule language to drive knowledge 

inferences and with a competent rule engine, it compensates for the lower 

ability that OWL reasoners currently have to infer information over instances 

of classes. However, SWRL is not purposely a constraint language and, 

therefore, its support for PSL Core axioms used as integrity constraints falls 

slightly behind. In the experiment, it has nevertheless been shown that it is 

possible to infer from SWRL rules that attempt to model PSL Core axioms. 

Additionally, it is the user‟s task to ensure that axioms are properly identified 

in an ontology thereby ascertaining the correct way to interpret the derived 

facts after executing rules. 
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OWL with SWRL as a heavyweight ontological formalism is not able to 

capture higher-arity relations present in the PSL Core theory, although 

workarounds are possible. However, having to approximate higher-arity 

relations and ontological functions to binary relations inevitably leads to a loss 

of original semantics. Such an approximation can lead to ambiguously-defined 

instances and the issue is inevitably carried forward to the SWRL logic layer, 

thereby producing incorrectly-derived facts. Thus, it can be extrapolated that 

OWL with SWRL is sufficiently robust to support heavyweight semantics as 

long as these structures do not involve higher-arity relations and functions (in 

the ontological sense). Unfortunately, to meet the requirements of the 

Semantic Manufacturing Interoperability Framework in this work, it is evident 

that a more powerful formalism is required to address the formal semantics of 

the PSL ontology. 

 

B.4 Motivation for a Common Logic-Based Ontological 

Formalism 

From a semantic point of view, it has been demonstrated that there is one 

major issue in relation to Frames with a first order constraint language and 

OWL with a rule language as possible ontological formalisms to be used 

within the framework. This issue is concerned with the inability of these two 

knowledge representation formalisms to fully capture and represent the 

semantics from the Process Specification Language (PSL). Since PSL 

constitutes a fundamental element of the framework concept, it is thus 

necessary to identity a suitable ontological formalism, which helps support the 

semantic needs throughout the four layers of the framework. 

 

Based on an understanding of the explored ontological formalisms, it is 

possible to extrapolate that Common Logic-based formalisms are favoured. 

This is because Common Logic is a First Order Logic language for knowledge 

interchange that provides a core semantic framework for logic together with 

the basis for a set of syntactic forms (dialects) all sharing a common 

semantics (Delugach, 2005). Furthermore, the PSL ontology is available in a 
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number of first order formats including the Common Logic Interchange Format 

(CLIF) (PSL Website, 2009). This implies that in order to replicate the exact 

semantics of PSL from its CLIF form, it is necessary to identify a suitable 

Common Logic-based formalism that is either completely CLIF-based or has 

equal semantic potentials to CLIF.  

 

After careful scrutiny, it was decided that the Knowledge Framework 

Language (KFL) developed by Ontology Works Inc. (Ontology Works Inc., 

2009) constitutes an ideal candidate. KFL is a Common Logic-based 

ontological formalism that provides expressive logic in which to encode the 

subject matter ontology (Ontology Works Inc., 2009). Broadly speaking, 

Common Logic is a logical framework intended for information exchange and 

transmission and has some novel features, chief among them being a syntax 

that is signature-free, while preserving a first-order model theory (ISO/IEC 

24707, 2007). This clearly implies that KFL as an ontological formalism is able 

to provide the necessary syntax and expressive first-order semantics for 

developing the heavyweight manufacturing ontological foundation as well as 

to support the semantic considerations needed in the other layers of the 

SMIF. 

 

B.5 Summary 

The arguments discussed in this appendix have revealed that the ability to 

support the semantic needs of the ontology-based Semantic Manufacturing 

Interoperability Framework (SMIF) is directly dependent on the choice of 

ontological formalism. This is particularly significant for allowing PSL-based 

process semantics to be fully captured and exploited in the framework. The 

choice of the Knowledge Framework Language (KFL) used in this work has 

been justified based on an exploration of the capabilities and limitations of two 

other known heavyweight ontological methods (sections B.2 and B.3) and an 

assessment of the acknowledged benefits of Common Logic (section B.4).  

 

In the first place, an investigation of Frames with a first order constraint 

language (Protégé Frames and Protégé Axiom Language) has been carried 
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out. A sample “Machining Hole Feature Ontology” regrouping different 

viewpoints across product design and manufacture has been tested to reveal 

the ability of the formalism to model simple entity information semantics, 

process semantics and semantic relationships between entities and 

processes. The main conclusion derived from this experiment has pointed 

towards important limitations of the ontological formalism for capturing and 

representing PSL-type process semantics.  

 

This has constructively led to a second experiment, which this time uses the 

formalism OWL with SWRL, to attempt at maximising the formal heavyweight 

representation of PSL semantics. The exploration involving OWL with SWRL 

has shown that this particular formalism, as part of Semantic Web 

technologies, is not rigorous enough to model PSL semantics. Furthermore, it 

has become evident that several workarounds and approximations need to be 

made, which lead to a loss of original PSL semantics. Thus, the second 

exploration has been a turning point for enabling the identification of a suitable 

ontological formalism with enhanced expressivity, capable of replicating 

higher-arity relations and ontological functions from PSL.  

 

A brief account of the key benefits of Common Logic, in addition to a view on 

the resources available for research purposes, have decisively pointed 

towards KFL as best-fit ontological formalism. Hence, throughout the four 

levels of the SMIF explained in chapters 5 and 6, Common Logic-based KFL 

is exploited to provide the syntax and first order semantics necessary for the 

specification of relevant concepts, definitions and integrity constraints.  
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C Foundation Layer 

Context Declaration 

 
:Ctx Foundation 
:Inst UserContext 
:supCtx TopUserCtx 
:name "Foundation Context" 
:rem "This context enfolds the Process Specification Language (ISO 18629), and adapted 
concepts from ISO 10303 AP224 and the Core Product Model developed by NIST." 
 
:Use Foundation 
 
 

C.1 Process Specification Language (PSL) 

C.1.1 PSL Core 

The purpose of PSL Core is to axiomatise a set of intuitive semantic primitives 

that is adequate for describing the fundamental concepts of manufacturing 

processes. It is based on the following intuitions (PSL Website, 2009): 

 

 There are four kinds of entities required for reasoning about processes 

namely activities, activity occurrences, timepoints, and objects.  

 Activities may have multiple occurrences, or there may exist activities that 

do not occur at all. 

 Timepoints are linearly ordered, forwards into the future, and backwards 

into the past. 

 Activity occurrences and objects are associated with unique timepoints 

that mark the begin and end of the occurrence or object.  

 

The following set of figures capture the IDEF5 schematics for the concepts 

present in PSL and the coding used during implementation. A list of the 

relevant implemented axioms is also displayed. Figure C-1 illustrates the 

initial organisation of PSL Core classes. Notice the class “Origin” which 

provides a root class for defining the taxonomy and is only present in order to 

keep the taxonomy tidy. 
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Classes 

 

 

 

 

 

 

 

 

:Prop Origin 
:Inst Property 
:sup Top 
:name "Origin" 
:rem "This abstract class is at the root of the taxonomy of the concepts explored in the 
Foundation Layer." 
 
:Prop Object 
:Inst Property 
:sup Origin 
:name "Object" 
:rem "(Object ?x) is TRUE in an interpretation of the Foundation Layer if and only if ?x is a 
member of the set of objects in the universe of discourse of the interpretation. An object is 
anything that is not a timepoint, nor an activity nor an activity-occurrence. Intuitively, an object 
is a concrete or abstract thing that can participate in an activity. Objects can come into 
existence and go out of existence at certain points in time. In such cases, an object has a 
begin and an end point. In some contexts it may be useful to consider some ordinary objects 
as having no such points either." 
 
:Prop Activity 
:Inst Property 
:sup Origin 
:name "Activity" 
:rem "(Activity ?a) is TRUE in an interpretation of the Foundation Layer if and only if ?a is a 
member of the set of activities in the universe of discourse of the interpretation. Intuitively, 
activities can be considered to be reusable behaviours within the domain." 
 
:Prop Activity_Occurrence 
:Inst Property 
:sup Origin 
:name "Activity Occurrence" 
:rem "(Activity_Occurrence ?occ) is TRUE in an interpretation of the Foundation Layer if and 
only if ?occ is a member of the set of activity occurrences in the universe of discourse of the 
interpretation. An activity occurrence is associated with a unique activity and begins and ends 
at specific points in time. Although there may exist activities that have no activity occurrence, 
all activity occurrences must be associated with an activity." 
 
:Prop Timepoint 
:Inst Property 
:sup Origin 
:name "Timepoint" 
:rem "(Timepoint ?t) is TRUE in an interpretation of the Foundation Layer if and only if ?t is a 
member of the set of timepoints in the universe of discourse of the interpretation. Timepoints 
form an infinite linear ordering with endpoints at infinity." 
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Relations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
:Rel before 
:Inst BinaryRel 
:Inst IrreflexiveBR ;;; Axiom 3 
:Inst TransitiveBR ;;; Axiom 4 
:Sig Timepoint Timepoint 
:name "before" 
:rem "(before ?t1 ?t2) is TRUE in an interpretation of the Foundation Layer if and only if the 
timepoint ?t1 is earlier than ?t2 in the linear ordering over timepoints in the interpretation." 
 
:Rel occurrence_of 
:Inst BinaryRel 
:Sig Activity_Occurrence Activity 
:name "occurrence_of" 
:rem "(occurrence_of ?occ ?a) is TRUE in an interpretation of the Foundation Layer if and 
only if ?occ is a particular occurrence of the activity ?a. occurrence_of is the basic relation 
between activities and activity occurrences. Every activity occurrence is associated with a 
unique activity. An activity may have no occurrences or multiple occurrences." 
 
:Rel participates_in 
:Inst TernaryRel 
:Sig Object Activity_Occurrence Timepoint 
:name "participates_in" 
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:rem "(participates_in ?x ?occ ?t) is TRUE in an interpretation of the Foundation Layer if and 
only if ?x plays some role that is not pre-specified in an occurrence of the activity occurrence 
?occ at the timepoint ?t in the interpretation. An object can participate in an activity 
occurrence only at those timepoints at which both the object exists and the activity is 
occurring." 
 
:Rel between 
:Inst TernaryRel 
:Sig Timepoint Timepoint Timepoint 
:name "between" 
:rem "(between ?t2 ?t1 ?t3) is TRUE in an interpretation of the Foundation Layer if and only if 
?t1 is strictly less than ?t3 and strictly greater than ?t2 in the linear ordering over timepoints in 
the interpretation." 
 
:Rel beforeEq 
:Inst BinaryRel 
:Sig Timepoint Timepoint 
:name "beforeEq" 
:rem "(beforeEq ?t1 ?t2) is TRUE in an interpretation of the Foundation Layer if and only if ?t1 
is less or equal to ?t2 in the linear ordering over timepoints in the interpretation." 
 
:Rel betweenEq 
:Inst TernaryRel 
:Sig Timepoint Timepoint Timepoint 
:name "betweenEq" 
:rem "(betweenEq ?t2 ?t1 ?t3) is TRUE in an interpretation of the Foundation Layer if and 
only if ?t1 is less or equal to ?t3 and greater or equal to ?t2 in the linear ordering over 
timepoints in the interpretation." 
 
:Rel exists_at 
:Inst BinaryRel 
:Sig Object Timepoint 
:name "exists_at" 
:rem "The object exists at the given timepoint." 
 
:Rel is_occurring_at 
:Inst BinaryRel 
:Sig Activity_Occurrence Timepoint 
:name "is_occurring_at" 
:rem "The specified activity occurrence is occurring at the specified timepoint." 
 
 

Functions 

 
:Fun beginof 
:Inst UnaryFun 
:Sig Activity_Occurrence -> Timepoint 
:name "beginof" 
:rem "If ?x is an activity occurence in the universe of discourse of an interpretation of the 
Foundation Layer, then (beginof ?x) has the value ?t if and only if ?t is the timepoint at which 
the activity occurrence ?x begins. If ?x is an object in the universe of discourse of an 
interpretation of the Foundation Layer, then (beginof ?x) has the value ?x if and only if ?t is 
the timepoint at which the object ?x becomes possible to participate in an activity." 
 
:Fun endof 
:Inst UnaryFun 
:Sig Activity_Occurrence -> Timepoint 
:name "endof" 
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:rem "If ?x is an activity occurrence in the universe of discourse of an interpretation of the 
Foundation Layer, then (endof ?x) has the value ?x if and only if ?t is the timepoint at which 
the activity occurrence ?x ends. If ?x is an object in the universe of discourse of an 
interpretation of the Foundation Layer, then (endof ?x) has the value ?x if and only if ?t is the 
timepoint at which the object ?x becomes no longer possible to participate in an activity." 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Individuals 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(Timepoint Foundation.inf-) 
(RootCtx.rem Foundation.inf- "(= ?t inf-) is TRUE in an interpretation of the Foundation Layer 
if and only if ?t is the unique timepoint that is before all other timepoints in the linear ordering 
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over timepoints in the universe of discourse of the interpretation. inf- plays the role of negative 
infinity. It is needed to specify objects that have not been created.") 
 
(Timepoint Foundation.inf+)  
(RootCtx.rem Foundation.inf+ "(= ?t inf+) is TRUE in an interpretation of the Foundation Layer 
if and only if ?t is the unique timepoint that is after all other timepoints in the linear ordering 
over timepoints in the universe of discourse of the interpretation. inf+ plays the role of positive 
infinity. It is needed to specify objects that are never destroyed.") 
 
 

Axioms 

 
 (=> (Foundation.before ?t1 ?t2) 
       (and (Timepoint ?t1)  
               (Timepoint ?t2))) 
:IC hard "The before relation only holds between timepoints." 
 
 
 (=> (and (Timepoint ?t)  
   (/= ?t Foundation.inf-)) 
       (Foundation.before Foundation.inf- ?t)) 
:IC weak "The timepoint inf- is before all other timepoints." 
 
 (=> (and (Timepoint ?t)  
   (/= ?t Foundation.inf+)) 
       (Foundation.before ?t Foundation.inf+)) 
:IC weak "Every other timepoint is before inf+."   
 
 (or (Activity ?x)  
      (Activity_Occurrence ?x)  
      (Timepoint ?x) 
      (Object ?x)) 
:IC hard "Everything is either an activity, activity occurrence, timepoint or object." 
   
 (and (=> (Activity ?x) 
    (not (or (Activity_Occurrence ?x) (Object ?x) (Timepoint ?x)))) 
         (=> (Activity_Occurrence ?x) 
    (not (or (Object ?x) (Timepoint ?x)))) 
         (=> (Object ?x) 
    (not (Timepoint ?x)))) 
:IC hard "Objects, activities, activity occurrences, and timepoints are all distinct kinds 
of things." 
 
(=> (occurrence_of ?occ ?a) 
      (and (Activity ?a) 
  (Activity_Occurrence ?occ))) 
:IC hard "The occurrence relation only holds between activities and activity 
occurrences." 
 
(=> (Activity_Occurrence ?occ) 
      (exists (?a) 
           (and (Activity ?a) 
       (occurrence_of ?occ ?a)))) 
:IC hard "Every activity occurrence is an occurrence of some activity." 
 
 (=> (and (Activity ?a1) 
   (Activity ?a2) 
   (Activity_Occurrence ?occ) 
               (occurrence_of ?occ ?a1) 
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   (occurrence_of ?occ ?a2)) 
        (= ?a1 ?a2)) 
:IC hard "An activity occurrence is associated with a unique activity." 
 
(=> (and (Activity_Occurrence ?occ) 
  (Activity ?a) 
  (occurrence_of ?occ ?a)) 
      (and (Timepoint (beginof ?occ)) 
  (Timepoint (endof ?occ)))) 
:IC hard "The begin and end of an activity occurrence are timepoints." 
 
 (=> (and (Activity_Occurrence ?occ) 
   (Timepoint (beginof ?occ)) 
  (Timepoint (endof ?occ))) 
       (beforeEq (beginof ?occ) (endof ?occ))) 
:IC hard "The begin point of every activity occurrence is before or equal to its end 
point." 
 
 
 (=> (participates_in ?x ?occ ?t) 
       (and (Object ?x)  
   (Activity_Occurrence ?occ)  
   (Timepoint ?t))) 
:IC hard "The participates_in relation only holds between objects, activity occurrences, 
and timepoints, respectively." 
 
 (=> (and (Object ?x) 
   (Activity_Occurrence ?occ) 
   (Timepoint ?t) 
   (participates_in ?x ?occ ?t)) 
       (and (exists_at ?x ?t) 
   (is_occurring_at ?occ ?t))) 
:IC hard "An object can participate in an activity occurrence only at those timepoints at 
which both the object exists and the activity is occurring." 
 
 

Definitions 

  
(<= (between ?t1 ?t2 ?t3) 
      (and (Timepoint ?t1) 
  (Timepoint ?t2) 
              (Timepoint ?t3) 
  (Foundation.before ?t1 ?t2)  
  (Foundation.before ?t2 ?t3))) 
:rem "Timepoint ?t2 is between timepoints ?t1 and ?t3 if and only if ?t1 is before ?t2 
and ?t2 is before ?t3." 
 
 (<= (beforeEq ?t1 ?t2) 
      (and (Timepoint ?t1)  
  (Timepoint ?t2) 
  (or (Foundation.before ?t1 ?t2)  
  (= ?t1 ?t2)))) 
:rem "Timepoint ?t1 is beforeEq Timepoint ?t2 if and only if ?t1 is before or equal to 
?t2." 
 
 (<= (betweenEq ?t1 ?t2 ?t3) 
       (and (Timepoint ?t1) 
   (Timepoint ?t2) 
   (Timepoint ?t3) 
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   (beforeEq ?t1 ?t2) 
   (beforeEq ?t2 ?t3))) 
:rem "Timepoint ?t2 is between or equal to timepoints ?t1 and ?t3 if and only if ?t1 is 
before or equal to ?t2, and ?t2 is before or equal to ?t3." 
 
 (<= (exists_at ?x ?t) 
       (and (Object ?x) 
   (Timepoint (beginof ?x)) 
   (Timepoint (endof ?x)) 
   (Timepoint ?t) 
   (betweenEq (beginof ?x) ?t (endof ?x)))) 
:rem "An object exists at a timepoint ?t if and only if ?t is between or equal its begin 
and end points."  
 
(<= (is_occurring_at ?occ ?t) 
      (and (Activity_Occurrence ?occ) 
  (Timepoint (beginof ?occ)) 
  (Timepoint (endof ?occ)) 
  (Timepoint ?t) 
  (betweenEq (beginof ?occ) ?t (endof ?occ)))) 
:rem "An activity is occurring at a timepoint t1 if and only if t1 is between or equal to the 
activity occurrence’s begin and end points." 
 
 

C.1.2 PSL Outer-Core 

PSL Outer-Core introduces new terminology and concepts that extend PSL 

Core in order to provide more logical expressiveness to PSL semantics. 

 

C.1.2.1 Theory of Subactivities 

Relations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
:Rel subactivity 
:Inst BinaryRel 
:Inst PartialOrderBR ;;; Axioms 2,3 and 4 
:Sig Activity Activity 
:name "subactivity" 
:rem "(subactivity ?a1 ?a2) is TRUE in an interpretation of the Foundation Layer if and only if 
activity ?a1 is a subactivity of activity ?a2. The subactivity relation forms a discrete partial 
ordering over the set of activities." 
 

Activity Activity
subactivity

Activity primitive
1

Figure C-5 Theory of Subactivities Relations 



  
306 

:Rel primitive 
:Inst UnaryRel 
:Sig Activity 
:name "primitive" 
:rem "(primitive ?a) is TRUE in an interpretation of the Foundation Layer if and only if the 
activity ?a has no subactivities except for itself." 
 

Axioms 

 
 (=> (subactivity ?a1 ?a2) 
       (and (Activity ?a1) 
   (Activity ?a2))) 
:IC hard "subactivity is a relation over activities." 
 
 (=> (and (Activity ?a1) 
   (Activity ?a2) 
   (/= ?a1 ?a2) 
   (subactivity ?a1 ?a2)) 
       (exists (?a3) 
 (and (Activity ?a3) 
         (/= ?a3 ?a1) 
         (subactivity ?a1 ?a3) 
         (subactivity ?a3 ?a2)))) 
:IC hard "The subactivity relation is a discrete ordering, so every activity has a 
downwards successor in the ordering." 
    
(=> (and (Activity ?a1) 
  (Activity ?a2) 
  (/= ?a1 ?a2) 
  (Activity ?a4) 
  (subactivity ?a1 ?a2) 
  (subactivity ?a1 ?a4) 
  (subactivity ?a4 ?a3) 
       (exists (?a3) 
 (and (Activity ?a3) 
         (/= ?a3 ?a1) 
         (subactivity ?a1 ?a3) 
         (subactivity ?a3 ?a2)))) 
         (or (= ?a4 ?a1) 
  (= ?a4 ?a3))) 
:IC hard "The subactivity relation is a discrete ordering, so every activity has a 
downwards successor in the ordering." 
            
 (=> (and (Activity ?a1) 
   (Activity ?a2) 
   (/= ?a1 ?a2) 
   (subactivity ?a1 ?a2)) 
       (exists (?a3) 
 (and (Activity ?a3) 
         (/= ?a3 ?a2) 
         (subactivity ?a1 ?a3) 
         (subactivity ?a3 ?a2)))) 
:IC hard "The subactivity relation is a discrete ordering, so every activity has an 
upwards successor in the ordering."  
 
(=> (and (Activity ?a1) 
  (Activity ?a2) 
  (/= ?a1 ?a2) 
  (Activity ?a4) 
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  (subactivity ?a1 ?a2) 
  (subactivity ?a3 ?a4) 
  (subactivity ?a4 ?a2) 
       (exists (?a3) 
 (and (Activity ?a3) 
         (/= ?a3 ?a2) 
         (subactivity ?a1 ?a3) 
         (subactivity ?a3 ?a2)))) 
         (or (= ?a4 ?a2) 
  (= ?a4 ?a3))) 
:IC hard "The subactivity relation is a discrete ordering, so every activity has an 
upwards successor in the ordering." 
  
 

Definitions 

 (<= (primitive ?a) 
       (and (Activity ?a) 
   (Activity ?a1) 
   (subactivity ?a1 ?a) 
   (= ?a1 ?a) 
        (not (exists (?a2) 
  (and (Activity ?a2) 
          (subactivity ?a2 ?a) 
          (/= ?a2 ?a1) 
          (/= ?a2 ?a)))))) 
:rem "An activity is primitive if and only if it has no subactivities except for itself." 
 
 

C.1.2.2 Theory of Occurrence Trees 

Relations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:Rel earlier 
:Inst BinaryRel 

Activity_

Occurrence

Activity_

Occurrence

earlier Activity_

Occurrence
initial

1

Activity
Activity_

Occurrence

poss

Activity_

Occurrence

Activity_

Occurrence

precedes

Activity_

Occurrence

Activity_

Occurrence

earlierEq

Activity_

Occurrence
legal

1

Activity_

Occurrence
arboreal

1

Activity generator
1

Figure C-6 Theory of Occurrence Trees Relations 



  
308 

:Inst IrreflexiveBR ;;; Axiom 2  
:Inst TransitiveBR ;;; Axiom 3 
:Sig Activity_Occurrence Activity_Occurrence 
:name "earlier" 
:rem "(earlier ?occ1 ?occ2) is TRUE in an interpretation of the Foundation Layer if and only if 
the two activity occurrences ?occ1 and ?occ2 are on the same branch of the tree and ?occ1 
is closer to the root of the tree than ?occ2. In interpretations of Occurrence Trees, the set of 
all sequences of activity occurrences forms a tree; the earlier relation specifies the partial 
ordering over the activity occurrences in this tree." 
 
:Rel initial 
:Inst UnaryRel 
:Sig Activity_Occurrence 
:name "initial" 
:rem "(initial ?occ) is TRUE in an interpretation of the Foundation Layer if and only if the 
activity occurrence ?occ is the root of an occurrence tree." 
 
:Rel legal 
:Inst UnaryRel 
:Sig Activity_Occurrence 
:name "legal" 
:rem "(legal ?occ) is TRUE in an interpretation of the Foundation Layer if and only if the 
activity occurrence ?occ is an element of the legal occurrence tree." 
 
:Rel precedes 
:Inst BinaryRel 
:Sig Activity_Occurrence Activity_Occurrence 
:name "precedes" 
:rem "(precedes ?occ1 ?occ2) is TRUE in an interpretation of the Foundation Layer if and 
only if the activity occurrence ?occ1 is earlier than the activity occurrence ?occ2 in the 
occurrence tree and such that all activity occurrences between them correspond to activities 
that are possible. This relation specifies the sub-tree of the occurrence tree in which every 
activity occurrence is the occurrence of an activity that is possible." 
 
:Rel earlierEq 
:Inst BinaryRel 
:Sig Activity_Occurrence Activity_Occurrence 
:name "earlierEq" 
:rem "(earlierEq ?occ1 ?occ2) is TRUE in an interpretation of the Foundation Layer if and only 
if the two activity occurrences ?occ1 and ?occ2 are on the same branch of the tree and ?occ1 
is closer to the root of the tree than ?occ2, or ?occ1 and ?occ2 are the same activity 
occurrences." 
 
:Rel poss 
:Inst BinaryRel 
:Sig Activity Activity_Occurrence 
:name "poss" 
:rem "(poss ?a ?occ2) is TRUE in an interpretation of the Foundation Layer if and only if the 
activity ?a has a legal occurrence that is a successor of the activity occurrence ?occ in the 
occurrence tree." 
 
:Rel generator 
:Inst UnaryRel 
:Sig Activity 
:name "generator" 
:rem "(generator ?a) is TRUE in an interpretation of the Occurrence Tree Theory if and only if 
?a is an activity whose occurrences are elements of the occurrence tree." 
 
:Rel arboreal 
:Inst UnaryRel 
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:Sig Activity_Occurrence 
:rem "(arboreal ?s) is TRUE in an interpretation of the Occurrence Tree Theory if and only if 
?s is an element of the occurrence tree." 
 
 

Functions 

 
:Fun successor 
:Inst BinaryFun 
:Sig Activity Activity_Occurrence -> Activity_Occurrence 
:name "successor" 
:rem "(= ?occ2 (successor ?a ?occ1)) is TRUE in an interpretation of the Occurrence Tree 
Theory if and only if ?occ2 denotes the occurrence of ?a that follows consecutively after the 
activity occurrence ?occ in the occurrence tree." 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Axioms 

 (=> (earlier ?s1 ?s2) 
       (and (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2))) 
:IC hard "The earlier relation is restricted to arboreal activity occurrences (that is, 
activity occurrences that are elements of the occurrence tree)." 
 
 (=> (and (Activity_Occurrence ?s) 
   (initial ?s)) 
       (and (arboreal ?s) 
   (not (exists (?sp) 
  (and (Activity_Occurrence ?sp) 
         (earlier ?sp ?s)))))) 
:IC hard "No occurrence in the occurrence tree is earlier than an initial occurrence." 
 
 (=> (and (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (earlier ?s1 ?s2)) 
       (exists (?sp) 
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 (and (Activity_Occurrence ?sp) 
        (initial ?sp) 
        (earlierEq ?sp ?s1)))) 
:IC hard "Every branch of the occurrence tree has an initial occurrence." 
     
 (=> (and (Activity ?a) 
   (Activity_Occurrence ?s) 
   (occurrence_of ?s ?a) 
   (generator ?a)) 
       (arboreal ?s)) 
:IC hard "There is an initial occurrence of each activity." 
 
 (=> (and (Activity ?a) 
   (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (initial ?s1) 
   (initial ?s2) 
   (occurrence_of ?s1 ?a) 
   (occurrence_of ?s2 ?a)) 
       (= ?s1 ?s2)) 
:IC hard "No two initial activity occurrences in the occurrence tree are occurrences of 
the same activity." 
   
(=> (and (Activity ?a) 
  (Activity_Occurrence ?o) 
  (Activity_Occurrence (successor ?a ?o)) 
  (occurrence_of (successor ?a ?o) ?a)) 
       (and (generator ?a) 
   (arboreal ?o))) 
:IC hard "The successor of an arboreal activity occurrence is an occurrence of a 
generator activity." 
 
 
(=> (and (Activity_Occurrence ?s1) 
  (Activity_Occurrence ?s2) 
  (earlier ?s1 ?s2)) 
       (exists (?a ?s3) 
 (and (Activity ?a) 
        (Activity_Occurrence ?s3) 
        (generator ?a) 
        (= ?s2 (successor ?a ?s3))))) 
:IC weak "Every non-initial activity occurrence is the successor of another activity 
occurrence." 
      
 (=> (and (Activity ?a) 
   (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (Activity_Occurrence (successor ?a ?s2)) 
   (generator ?a) 
   (earlierEq ?s1 ?s2)) 
       (earlier ?s1 (successor ?a ?s2))) 
:IC hard "An occurrence ?s1 is earlier than the successor occurrence of ?s2 if and only 
if the occurrence ?s2 is later than ?s1." 
 
 (=> (and (Activity_Occurrence ?s) 
   (legal ?s)) 
       (arboreal ?s)) 
:IC hard "The legal relation restricts arboreal activity occurrences." 
 
 (=> (and (Activity_Occurrence ?s1) 
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   (Activity_Occurrence ?s2) 
   (legal ?s1) 
   (earlier ?s2 ?s1)) 
       (legal ?s2)) 
:IC hard "If an activity occurrence is legal, all earlier activity occurrences in the 
occurrence tree are also legal." 
 
 (=> (and (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (earlier ?s1 ?s2)) 
       (and (Timepoint (beginof ?s2)) 
   (Timepoint (endof ?s1)) 
   (Foundation.before (endof ?s1) (beginof ?s2)))) 
:IC hard "The endof an activity occurrence is before the beginof the successor of the 
activity occurrence." 
 
 
 

Definitions 

 (<= (precedes ?s1 ?s2) 
       (and (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (earlier ?s1 ?s2) 
   (legal ?s2))) 
:rem "An activity occurrence ?s1 precedes another activity occurrence ?s2 if and only 
if ?s1 is earlier than ?s2 in the occurrence tree and ?s2 is legal." 
 
 (<= (earlierEq ?s1 ?s2) 
       (and (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (arboreal ?s1) 
   (arboreal ?s2) 
   (or (earlier ?s1 ?s2) 
        (= ?s1 ?s2)))) 
:rem "An activity occurrence ?s1 is earlierEq than an activity occurrence ?s2 if and 
only if it is either earlier than ?s2 or it is equal to ?s2." 
 
(<= (poss ?a ?s) 
      (and (Activity ?a) 
  (Activity_Occurrence ?s) 
  (Activity_Occurrence (successor ?a ?s)) 
  (legal (successor ?a ?s)))) 
:rem "An activity is poss at some occurrence if and only if the successor occurrence of 
the activity is legal." 
 
 (<= (generator ?a) 
       (and (Activity ?a) 
   (exists (?s) 
       (and (Activity_Occurrence ?s) 
   (initial ?s) 
   (occurrence_of ?s ?a))))) 
:rem "An activity is a generator if and only if it has an initial occurrence in the 
occurrence tree." 
 
 (<= (arboreal ?s) 
       (and (Activity_Occurrence ?s) 
   (exists (?sp) 
        (and (Activity_Occurrence ?sp) 
    (earlier ?s ?sp))))) 
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:rem "An activity occurrence is arboreal if and only if it is an element of an occurrence 
tree." 
  
 

C.1.2.3 Theory of Discrete States 

Classes 

 
 
 
 
 
 
 
 
 
:Prop State 
:Inst Type 
:sup Object 
:name "State" 
:rem "(state ?f) is TRUE in an interpretation of the Foundation Layer if and only if ?f is a 
member of the set of states in the universe of discourse of the interpretation. States are a 
subcategory of object. They intuitively represent properties and relationships in the domain 
that can change as the result of the occurrence of activities." 
 
 

Relations 

 
 
 
 
 
 
 
 
 
 
 
 
 
:Rel holds 
:Inst BinaryRel 
:Sig State Activity_Occurrence 
:name "holds" 
:rem "(holds ?f ?occ) is TRUE in an interpretation of the Foundation Layer if and only if the 
state ?f is true after the activity occurrence ?occ." 
 
:Rel prior 
:Inst BinaryRel 
:Sig State Activity_Occurrence 
:name "prior" 
:rem "(prior ?f ?occ) is TRUE in an interpretation of the Foundation Layer if and only if the 
state ?f is true prior to the activity occurrence ?occ." 
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Axioms 

 (=> (State ?f) 
       (Object ?f)) 
:IC hard "States are objects." 
 
(=> (holds ?f ?occ) 
      (and (State ?f) 
  (Activity_Occurrence ?occ) 
  (arboreal ?occ))) 
:IC hard "The holds relation is only between states and arboreal activity occurrences." 
 
 (=> (prior ?f ?occ) 
       (and (State ?f) 
   (Activity_Occurrence ?occ) 
   (arboreal ?occ))) 
:IC hard "The prior relation is only between states and arboreal activity occurrences." 
 
 (=> (and (Activity_Occurrence ?occ1) 
   (Activity_Occurrence ?occ2) 
   (initial ?occ1) 
   (initial ?occ2) 
   (State ?f) 
   (prior ?f ?occ2)) 
       (prior ?f ?occ1)) 
:IC hard "All initial occurrences agree on the states that hold prior to them." 
 
(=> (and (State ?f) 
  (Activity_Occurrence ?occ) 
  (Activity ?a) 
  (Activity_Occurrence (successor ?a ?occ)) 
  (holds ?f ?occ) 
  (generator ?a)) 
       (prior ?f (successor ?a ?occ))) 
:IC hard "A state holds after an arboreal activity occurrence if and only if it holds prior 
to the successor occurrence."  
 
 (=> (and (State ?f) 
   (Activity_Occurrence ?occ1) 
   (holds ?f ?occ1)) 
       (exists (?occ2) 
 (and (Activity_Occurrence ?occ2) 
         (earlierEq ?occ2 ?occ1) 
         (holds ?f ?occ2) 
         (or (initial ?occ2) 
   (not (prior ?f ?occ2)))))) 
:IC hard "If a fluent holds after some activity occurrence, then there exists an earliest 
activity occurrence along the branch where the fluent holds." 
 
(=> (and (State ?f) 
  (Activity_Occurrence ?occ1) 
  (holds ?f ?occ1) 
        (exists (?occ2) 
        (and (Activity_Occurrence ?occ2) 
         (earlierEq ?occ2 ?occ1) 
           (holds ?f ?occ2) 
           (or (initial ?occ2) 
    (not (prior ?f ?occ2))))) 
    (Activity_Occurrence ?occ3) 
    (earlier ?occ2 ?occ3) 
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    (earlier ?occ3 ?occ1)) 
       (holds ?f ?occ3)) 
:IC hard "If a fluent holds after some activity occurrence, then there exists an earliest 
activity occurrence along the branch where the fluent holds." 
 
 (=> (and (State ?f) 
   (Activity_Occurrence ?occ1) 
   (arboreal ?occ1) 
   (not (holds ?f ?occ1))) 
       (exists (?occ2) 
 (and (Activity_Occurrence ?occ2) 
         (earlierEq ?occ2 ?occ1) 
         (not (holds ?f ?occ2)) 
         (or (initial ?occ2) 
   (prior ?f ?occ2))))) 
:IC hard "If a fluent does not hold after some activity occurrence, then there exists an 
earliest activity occurrence along the branch where the fluent does not hold." 
 
(=> (and (State ?f) 
   (Activity_Occurrence ?occ1) 
   (arboreal ?occ1) 
   (not (holds ?f ?occ1)) 
   (exists (?occ2) 
  (and (Activity_Occurrence ?occ2) 
          (earlierEq ?occ2 ?occ1) 
          (not (holds ?f ?occ2)) 
          (or (initial ?occ2) 
               (prior ?f ?occ2)))) 
          (Activity_Occurrence ?occ3) 
          (earlier ?occ2 ?occ3) 
          (earlier ?occ3 ?occ1)) 
        (holds ?f ?occ3)) 
:IC hard "If a fluent does not hold after some activity occurrence, then there exists an 
earliest activity occurrence along the branch where the fluent does not hold." 
         
 (=> (and (State ?f) 
   (Activity_Occurrence ?s1) 
   (holds ?f ?s1)) 
       (exists (?s2) 
 (and (Activity_Occurrence ?s2) 
         (holds ?f ?s2) 
         (earlierEq ?s2 ?s1)))) 
:IC hard "If a fluent holds, there exists an earliest activity occurrence where it holds." 
 
(=> (and (State ?f) 
  (Activity_Occurrence ?s1) 
  (holds ?f ?s1) 
  (Activity_Occurrence ?s2) 
  (holds ?f ?s2) 
  (earlierEq ?s2 ?s1) 
  (Activity_Occurrence ?s3) 
  (holds ?f ?s3)) 
       (not (earlier ?s3 ?s2)))    
:IC hard "If a fluent holds, there exists an earliest activity occurrence where it holds." 
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C.1.2.4 Theory of Atomic Activities 

Relations 

 
 
 
 
 
 
 
 
:Rel atomic 
:Inst UnaryRel 
:Sig Activity 
:name "atomic" 
:rem "(atomic ?a) is TRUE in an interpretation of the Foundation Layer if and only if either ?a 
is primitive or it is the concurrent superposition of a set of primitive activities." 
 
 

Functions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:Fun conc 
:Inst BinaryFun 
:Sig Activity Activity -> Activity 
:name "conc" 
:rem "(= ?a3 (conc ?a1 ?a2)) is TRUE in an interpretation of the Foundation Layer if and only 
if ?a3 is the atomic activity that is the concurrent superposition of the two atomic activities ?a1 
and ?a2." 
 
 

Axioms 

 (=> (and (Activity ?a) 
   (primitive ?a)) 
       (atomic ?a)) 
:IC hard "Primitive activities are atomic." 
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 (=> (and (Activity ?a) 
   (Activity ?a1) 
   (Activity (conc ?a ?a)) 
   (= ?a1 (conc ?a ?a))) 
        (= ?a ?a1)) ;;; Work Around 
:IC weak "The function conc is idempotent." 
 
 (= (conc ?a1 ?a2) (conc ?a2 ?a1)) 
:IC weak "The function conc is commutative." 
 
 (and (= ?a4 (conc ?a2 ?a3)) 
         (= ?a5 (conc ?a1 ?a2)) 
         (= (conc ?a1 ?a4) (conc ?a5 ?a3))) ;;; Work Around 
:IC weak "The function conc is associative." 
 
 (=> (and (Activity ?a1) 
   (Activity ?a2) 
   (Activity ?a3) 
   (atomic ?a1) 
   (atomic ?a2) 
   (= ?a3 (conc ?a1 ?a2)) 
   (= ?a2 ?a3)) 
       (subactivity ?a1 ?a2)) ;;; Work Around 
:IC hard "An atomic activity ?a1 is a subactivity of an atomic activity ?a2 if and only if 
?a2 is an idempotent for ?a1." 
 
 (=> (and (Activity ?a1) 
   (Activity ?a2) 
   (atomic ?a2) 
   (subactivity ?a1 ?a2) 
   (/= ?a1 ?a2)) 
       (exists (?a3) 
 (and (Activity ?a3) 
         (atomic ?a3) 
         (= ?a2 (conc ?a1 ?a3)) 
         (not (exists (?a4) 
          (and (Activity ?a4) 
      (atomic ?a4) 
      (subactivity ?a4 ?a1) 
      (subactivity ?a4 ?a3))))))) 
:IC hard "An atomic action has a proper subactivity if and only if there exists another 
atomic activity which can be concurrently aggregated." 
 
 (=> (and (Activity ?a) 
   (Activity ?b0) 
   (Activity ?b1) 
   (atomic ?a) 
   (atomic ?b0) 
   (atomic ?b1) 
   (subactivity ?a (conc ?b0 ?b1)) 
   (not (primitive ?a))) 
       (exists (?a0 ?a1) 
 (and (Activity ?a0) 
         (Activity ?a1) 
         (subactivity ?a0 ?a) 
         (subactivity ?a1 ?a) 
         (= ?a (conc ?a0 ?a1))))) 
:IC hard "The semilattice of atomic activities is distributive." 
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 (=> (and (Activity ?a) 
   (generator ?a)) 
       (atomic ?a)) 
:IC hard "Only atomic activities can be generator activities. Equivalently, only 
occurrences of atomic activities can be elements of an occurrence tree." 
 
 (=> (atomic ?a) 
       (Activity ?a)) 
:IC hard "Atomic activities are activities." 
 
 

C.1.2.5 Theory of Complex Activities 

Relations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:Rel min_precedes 
:Inst TernaryRel 
:Sig Activity_Occurrence Activity_Occurrence Activity 
:name "min_precedes" 
:rem "(min_precedes ?s1 ?s2 ?a) is TRUE in an interpretation of the Foundation Layer if and 
only if ?s1 and ?s2 are subactivity occurrences in the activity tree for ?a, and ?s1 precedes 
?s2 in the subtree. Any occurrence of an activity ?a corresponds to an activity tree (which is a 
subtree of the occurrence tree). The activity occurrences within this subtree are the 
subactivity occurrences of the occurrence of ?a." 
 
:Rel root 
:Inst BinaryRel 
:Sig Activity_Occurrence Activity 
:name "root" 
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:rem "(root ?s ?a) is TRUE in an interpretation of the Foundation Layer if and only if the 
activity occurrence ?s is the root of an activity tree for ?a." 
 
:Rel do 
:Inst TernaryRel 
:Sig Activity Activity_Occurrence Activity_Occurrence 
:name "do" 
:rem "(do ?a ?s1 ?s2) is TRUE in an interpretation of the Foundation Layer if and only if ?s1 is 
the root of an activity tree and ?s2 is a leaf of the same activity tree such that both activity 
occurrences are elements of the same branch of the activity tree." 
 
:Rel leaf 
:Inst BinaryRel 
:Sig Activity_Occurrence Activity 
:name "leaf" 
:rem "(leaf ?s ?a) is TRUE in an interpretation of the Foundation Layer if and only if the 
activity occurrence ?s is the leaf of an activity tree for ?a." 
 
:Rel next_subocc 
:Inst TernaryRel 
:Sig Activity_Occurrence Activity_Occurrence Activity 
:name "next_subocc" 
:rem "(next_subocc ?s1 ?s2 ?a) is TRUE in an interpretation of the Foundation Layer if and 
only if ?s1 precedes ?s2 in the tree and there does not exist a subactivity occurrence that is 
between them in the tree." 
 
:Rel subtree 
:Inst TernaryRel 
:Sig Activity_Occurrence Activity Activity 
:name "subtree" 
:rem "(subtree ?s ?a1 ?a2) is TRUE in an interpretation of the Foundation Layer if and only if 
every atomic subactivity occurrence in the activity tree for ?a1 is an element of the activity 
tree for ?a2." 
 
:Rel sibling 
:Inst TernaryRel 
:Sig Activity_Occurrence Activity_Occurrence Activity 
:name "sibling" 
:rem "(sibling ?s1 ?s2 ?a) is TRUE in an interpretation of the Foundation Layer if and only if 
the atomic subactivity occurrences ?s1 and ?s2 are siblings in an activity tree for ?a where 
they either have a common predecessor in the activity tree or they are both roots of activity 
trees that have a common predecessor in the occurrence tree." 
 
 

Axioms 

 
 (=> (and (Activity ?a) 
  (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (min_precedes ?s1 ?s2 ?a)) 
       (exists (?a1 ?a2) 
 (and (Activity ?a1) 
         (Activity ?a2) 
         (atomic ?a2) 
         (subactivity ?a1 ?a) 
         (subactivity ?a1 ?a2) 
         (occurrence_of ?s1 ?a2)))) 
:IC hard "Occurrences in the activity tree for an activity correspond to atomic 
subactivity occurrences of the activity."  
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(=> (and (Activity ?a) 
  (Activity_Occurrence ?s1) 
  (Activity_Occurrence ?s2) 
  (min_precedes ?s1 ?s2 ?a)) 
       (exists (?a2 ?a3) 
 (and (Activity ?a2) 
         (Activity ?a3) 
         (atomic ?a3) 
         (subactivity ?a2 ?a) 
         (subactivity ?a2 ?a3) 
         (occurrence_of ?s2 ?a3)))) 
:IC hard "Occurrences in the activity tree for an activity correspond to atomic 
subactivity occurrences of the activity." 
 
 (=> (and (Activity ?a) 
   (Activity_Occurrence ?s) 
   (root ?s ?a)) 
       (exists (?a2 ?a3) 
 (and (Activity ?a2) 
                     (Activity ?a3) 
         (atomic ?a3) 
         (subactivity ?a2 ?a3) 
         (subactivity ?a2 ?a) 
         (occurrence_of ?s ?a3)))) 
:IC hard "Root occurrences in the activity tree correspond to atomic subactivity 
occurrences of the activity." 
 
 (=> (and (Activity ?a) 
   (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (min_precedes ?s1 ?s2 ?a)) 
       (exists (?s3) 
 (and (Activity_Occurrence ?s3) 
         (root ?s3 ?a) 
         (min_precedes ?s3 ?s2 ?a)))) 
:IC hard "All activity trees have a root subactivity occurrence." 
 
 (=> (and (Activity ?a) 
   (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (min_precedes ?s1 ?s2 ?a)) 
       (not (root ?s2 ?a))) 
:IC hard "No subactivity occurrences in an activity tree occur earlier than the root 
subactivity occurrence." 
 
 (=> (and (Activity ?a) 
    (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (min_precedes ?s1 ?s2 ?a)) 
       (precedes ?s1 ?s2)) 
:IC hard "An activity tree is a subtree of the occurrence tree." 
 
 (=> (and (Activity ?a)  
   (Activity_Occurrence ?s) 
   (root ?s ?a)) 
       (legal ?s)) 
:IC hard "Root occurrences are elements of the occurrence tree." 
 
 (=> (and (Activity ?a1) 
   (Activity ?a2) 
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   (atomic ?a1) 
   (subactivity ?a2 ?a1) 
   (/= ?a2 ?a1) 
   (Activity_Occurrence ?s) 
   (occurrence_of ?s ?a1) 
   (legal ?s)) 
       (root ?s ?a2)) 
:IC hard "Every legal atomic activity occurrence is an activity tree containing only one 
occurrence." 
 
 (=> (and (Activity ?a) 
   (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (min_precedes ?s1 ?s2 ?a)) 
       (exists (?s3) 
 (and (Activity_Occurrence ?s3) 
        (next_subocc ?s1 ?s3 ?a)))) 
:IC hard "Activity trees are discrete." 
 
(=> (and (Activity ?a) 
  (Activity_Occurrence ?s1) 
  (Activity_Occurrence ?s2) 
  (Activity_Occurrence ?s3) 
  (min_precedes ?s1 ?s2 ?a) 
  (min_precedes ?s1 ?s3 ?a) 
  (precedes ?s2 ?s3)) 
       (min_precedes ?s2 ?s3 ?a)) 
:IC hard "Subactivity occurrences on the same branch of the occurrence tree are on the 
same branch of the activity tree." 
 
(=> (and (Activity ?a1) 
  (Activity ?a1) 
  (Activity_Occurrence ?s) 
  (subtree ?s ?a1 ?a2)) 
      (not (subactivity ?a2 ?a1))) 
:IC hard "The activity tree for a complex subactivity occurrence is a subtree of the 
activity tree for the activity occurrence." 
 
 (=> (and (Activity ?a) 
   (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (min_precedes ?s1 ?s2 ?a)) 
       (not (atomic ?a))) 
:IC hard "Only complex activities can be arguments to the min_precedes relation." 
  
 (=> (and (Activity ?a) 
   (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (Activity_Occurrence ?s3) 
   (min_precedes ?s2 ?s1 ?a) 
   (min_precedes ?s3 ?s1 ?a) 
   (precedes ?s2 ?s3)) 
       (min_precedes ?s2 ?s3 ?a)) 
:IC hard "Subactivity occurrences on the same branch of the activity tree are linearly 
ordered by the min_precedes relation." 
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Definitions 

 
 (<= (leaf ?s ?a) 
       (and (Activity ?a) 
   (Activity_Occurrence ?s) 
   (or (root ?s ?a) 
   (exists (?s1) 
        (and (Activity_Occurrence ?s1) 
    (min_precedes ?s1 ?s ?a) 
    (not (exists (?s2) 
    (and (Activity_Occurrence ?s2) 
            (min_precedes ?s ?s2 ?a))))))))) 
:rem "An occurrence is the leaf of an activity tree if and only if there exists an earlier 
atomic subactivity occurrence but there does not exist a later atomic subactivity 
occurrence." 
 
 (<= (do ?a ?s1 ?s2) 
       (and (Activity ?a) 
   (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (root ?s1 ?a) 
   (leaf ?s2 ?a) 
   (or (min_precedes ?s1 ?s2 ?a) 
        (= ?s1 ?s2)))) 
:rem "The do relation specifies the initial and final atomic subactivity occurrences of an 
occurrence of an activity." 
 
 (<= (next_subocc ?s1 ?s2 ?a) 
       (and (Activity ?a) 
   (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (min_precedes ?s1 ?s2 ?a) 
   (not (exists (?s3) 
          (and (Activity_Occurrence ?s3) 
     (min_precedes ?s1 ?s3 ?a) 
     (min_precedes ?s3 ?s2 ?a)))))) 
:rem "An activity occurrence ?s2 is the next subactivity occurrence after ?s1 in an 
activity tree for ?a if and only of ?s1 precedes ?s2 in the tree and there does not exist a 
subactivity occurrence that is between them in the tree." 
 
 (<= (subtree ?s1 ?a1 ?a2) 
       (and (Activity ?a1) 
   (Activity_Occurrence ?s1) 
   (root ?s1 ?a1) 
   (exists (?s2 ?s3) 
         (and (Activity_Occurrence ?s2) 
     (Activity_Occurrence ?s3) 
     (root ?s2 ?a2) 
     (min_precedes ?s1 ?s2 ?a1) 
     (min_precedes ?s1 ?s3 ?a1) 
     (not (min_precedes ?s2 ?s3 ?a2)))))) 
:rem "The activity tree for ?a1 with root occurrence ?s1 contains an activity tree for ?a2 
as a subtree if and only if every atomic subactivity occurrence in the activity tree for 
?a2 is an element of the activity tree for ?a1, and there is an atomic subactivity 
occurrence in the activity tree for ?a1 that is not in the activity tree for ?a2."  
 
 (<= (sibling ?s1 ?s2 ?a) 
       (and (Activity ?a) 
   (Activity_Occurrence ?s1) 
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   (Activity_Occurrence ?s2) 
   (or (exists (?s3) 
   (and (Activity_Occurrence ?s3) 
           (next_subocc ?s3 ?s1 ?a) 
           (next_subocc ?s3 ?s2 ?a))) 
           (and (root ?s1 ?a) 
       (root ?s2 ?a) 
       (or (and (initial ?s1) 
        (initial ?s2)) 
       (exists (?s4 ?a1 ?a2) 
   (and (Activity ?a1) 
           (Activity ?a2) 
           (Activity_Occurrence ?s4) 
           (= ?s1 (successor ?a1 ?s4)) 
           (= ?s2 (successor ?a2 ?s4))))))))) 
:rem "The atomic subactivity occurrences ?s1 and ?s2 are siblings in an activity tree 
for ?a if and only if they either have a common predecessor in the activity tree or they 
are both roots of activity trees that have a common predecessor in the occurrence 
tree." 
 
 
 

C.1.2.6 Theory of Activity Occurrences 

Relations 
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:Rel subactivity_occurrence 
:Inst BinaryRel 
:Inst TransitiveBR ;;; Axiom 9 
:Sig Activity_Occurrence Activity_Occurrence 
:name "subactivity_occurrence" 
:rem "(subactivity_occurrence ?occ1 ?occ2) is TRUE in an interpretation of the Foundation 
Layer if and only if the branch corresponding to the activity occurrence ?occ1 is a subset of 
the branch corresponding to activity occurrence ?occ2." 
 
:Rel mono 
:Inst TernaryRel 
:Sig Activity_Occurrence Activity_Occurrence Activity 
:name "mono" 
:rem "(mono ?occ1 ?occ2 ?a) is TRUE in an interpretation of the Foundation Layer if and only 
if there is a one-to-one mapping between branches of an activity tree for ?a that maps the 
atomic subactivity occurrence ?s1 to the atomic subactivity occurrence ?s2." 
 
:Rel iso_occ 
:Inst TernaryRel 
:Sig Activity_Occurrence Activity_Occurrence Activity 
:name "iso_occ" 
:rem "(iso_occ ?occ1 ?occ2 ?a) is TRUE in an interpretation of the Foundation Layer if and 
only if both ?occ1 and ?occ2 are occurrences of an atomic activity that contain a common 
subactivity." 
 
:Rel hom 
:Inst TernaryRel 
:Sig Activity_Occurrence Activity_Occurrence Activity 
:name "hom" 
:rem "(hom ?occ1 ?occ2 ?a) is TRUE in an interpretation of the Foundation Layer if and only 
if there is a mapping between branches of an activity tree for ?a that maps the atomic 
subactivity occurrence ?s1 to the atomic subactivity occurrence ?s2." 
 
:Rel root_occ 
:Inst BinaryRel 
:Sig Activity_Occurrence Activity_Occurrence 
:name "root_occ" 
:rem "(root_occ ?occ1 ?occ2) is TRUE in an interpretation of the Foundation Layer if and only 
if activity occurrence ?occ1 is the root occurrence in the branch of the activity tree for ?a 
corresponding to the activity occurrence ?occ2." 
 
:Rel leaf_occ 
:Inst BinaryRel 
:Sig Activity_Occurrence Activity_Occurrence 
:name "leaf_occ"  
:rem "(leaf_occ ?occ1 ?occ2) is TRUE in an interpretation of the Foundation Layer if and only 
if activity occurrence ?occ1 is the leaf occurrence in the branch of the activity tree for ?a 
corresponding to the activity occurrence ?occ2." 
 
:Rel same_grove 
:Inst BinaryRel 
:Sig Activity_Occurrence Activity_Occurrence 
:name "same_grove" 
:rem "(same_grove ?occ1 ?occ2) is TRUE in an interpretation of the Foundation Layer if and 
only if activity occurrences ?occ1 and ?occ2 of ?a correspond to branches in the same 
activity tree for ?a."  
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Axioms 

 
 (=> (subactivity_occurrence ?o1 ?o2) 
       (and (Activity_Occurrence ?o1) 
   (Activity_Occurrence ?o2))) 
:IC hard "The subactivity_occurrence relation is between activity occurrences." 
 
 (=> (and (Activity ?a) 
   (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (min_precedes ?s1 ?s2 ?a)) 
       (exists (?occ) 
 (and (Activity_Occurrence ?occ) 
         (occurrence_of ?occ ?a) 
         (subactivity_occurrence ?s1 ?occ) 
         (subactivity_occurrence ?s2 ?occ)))) 
:IC hard "There exists an occurrence of an activity ?a for every branch of an activity 
tree for ?a. All atomic subactivity occurrences on the branch are subactivity 
occurrences of the occurrence of ?a." 
 
 (=> (and (Activity ?a) 
   (Activity_Occurrence ?s) 
    (root ?s ?a) 
   (not (atomic ?a))) 
       (exists (?occ) 
 (and (Activity_Occurrence ?occ) 
  (occurrence_of ?occ ?a) 
  (subactivity_occurrence ?s ?occ)))) 
:IC hard "There exists an occurrence of an activity ?a for every branch of an activity 
tree for ?a. All root subactivity occurrences on the branch are subactivity occurrences 
of the occurrence of ?a." 
 
 (=> (and (Activity ?a) 
   (Activity_Occurrence ?occ) 
   (occurrence_of ?occ ?a) 
   (not (atomic ?a))) 
       (exists (?s) 
 (and (Activity_Occurrence ?s) 
         (root ?s ?a) 
         (subactivity_occurrence ?s ?occ)))) 
:IC hard "Every occurrence of a complex activity ?a contains an atomic subactivity 
occurrence that is the root of an activity tree for ?a." 
 
 (=> (and (Activity ?a) 
   (Activity_Occurrence ?occ1) 
   (Activity_Occurrence ?occ2) 
   (occurrence_of ?occ1 ?a) 
   (occurrence_of ?occ2 ?a) 
   (/= ?occ1 ?occ2) 
   (not (atomic ?a))) 
       (exists (?s) 
    (and (Activity_Occurrence ?s) 
          (arboreal ?s) 
          (subactivity_occurrence ?s ?occ1) 
          (not (subactivity_occurrence ?s ?occ2))))) 
:IC hard "Distinct occurrences of an activity correspond to distinct branches of an 
activity tree." 
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 (=> (and (Activity ?a) 
   (Activity_Occurrence ?occ) 
   (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (occurrence_of ?occ ?a) 
   (arboreal ?s1) 
   (arboreal ?s2) 
   (subactivity_occurrence ?s1 ?occ) 
   (subactivity_occurrence ?s2 ?occ)) 
       (or (min_precedes ?s1 ?s2 ?a) 
 (min_precedes ?s2 ?s1 ?a) 
 (= ?s1 ?s2))) 
:IC weak "All atomic subactivity occurrences of a complex activity occurrence are 
elements of the same branch of the activity tree." 
  
 (=> (and (Activity ?a) 
   (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (Activity_Occurrence ?occ) 
   (min_precedes ?s1 ?s2 ?a) 
   (occurrence_of ?occ ?a) 
   (subactivity_occurrence ?s2 ?occ)) 
       (subactivity_occurrence ?s1 ?occ)) 
:IC hard "All elements of the same branch of an activity tree are atomic subactivity 
occurrences of the same activity occurrences." 
 
 (=> (and (Activity ?a1) 
   (Activity ?a2) 
   (Activity_Occurrence ?occ1) 
   (Activity_Occurrence ?occ2) 
   (occurrence_of ?occ1 ?a1) 
   (occurrence_of ?occ2 ?a2) 
   (not (atomic ?a1)) 
   (subactivity_occurrence ?occ1 ?occ2)) 
       (subactivity ?a1 ?a2)) 
:IC hard "The subactivity_occurrence relation preserves the subactivity relation." 
 
 (=> (and (Activity ?a1) 
   (Activity ?a2) 
   (Activity_Occurrence ?occ1) 
   (Activity_Occurrence ?occ2) 
   (occurrence_of ?occ1 ?a1) 
   (occurrence_of ?occ2 ?a2) 
   (subactivity ?a1 ?a2) 
   (/= ?a1 ?a2) 
   (not (subactivity_occurrence ?occ1 ?occ2))) 
       (exists (?s) 
 (and (Activity_Occurrence ?s) 
         (subactivity_occurrence ?s ?occ2) 
         (not (subactivity_occurrence ?s ?occ1))))) 
:IC hard "Occurrences of subactivities are subactivity occurrences if the occurrences 
satisfy branch containment." 
 
 (=> (and (Activity ?a) 
   (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (mono ?s1 ?s2 ?a)) 
       (hom ?s1 ?s2 ?a))  
:IC hard "The mono relation is a branch homomorphism." 
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 (=> (and (Activity ?a) 
   (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (hom ?s1 ?s2 ?a) 
   (not (mono ?s1 ?s2 ?a))) 
       (exists (?s3) 
 (and (Activity_Occurrence ?s3) 
         (or (and (min_precedes ?s3 ?s2 ?a) 
          (mono ?s1 ?s3 ?a)) 
              (and (min_precedes ?s3 ?s1 ?a) 
          (mono ?s2 ?s3 ?a)))))) 
:IC hard "If an atomic subactivity occurrence is mapped in a branch homomorphism, 
then there exists another atomic subactivity occurrence that is mono with it." 
 
 (=> (and (Activity ?a) 
   (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (Activity_Occurrence ?s3) 
   (mono ?s1 ?s2 ?a) 
   (mono ?s3 ?s2 ?a)) 
       (not (or (min_precedes ?s1 ?s3 ?a) 
       (min_precedes ?s3 ?s1 ?a)))) 
:IC hard "The mono relation is restricted to one-to-one homomorphisms between 
different branches of the activity tree." 
 
 (=> (and (Activity ?a) 
   (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (mono ?s1 ?s2 ?a)) 
        (mono ?s2 ?s1 ?a)) 
:IC soft "The mono relation is symmetric on activity occurrences." 
 
 (=> (and (Activity ?a) 
   (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (Activity_Occurrence ?s3) 
   (mono ?s1 ?s2 ?a) 
   (mono ?s2 ?s3 ?a)) 
       (mono ?s1 ?s3 ?a)) 
:IC soft "The mono relation is transitive on activity occurrences." 
    
     

Definitions 

 
 (<= (iso_occ ?s1 ?s2 ?a) 
       (and (Activity ?a) 
   (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (exists (?a1 ?a2 ?a3) 
       (and (Activity ?a1) 
   (Activity ?a2) 
   (Activity ?a3) 
   (atomic ?a1) 
   (atomic ?a2) 
   (atomic ?a3) 
   (subactivity ?a3 ?a) 
   (occurrence_of ?s1 (conc ?a1 ?a3)) 
   (occurrence_of ?s2 (conc ?a2 ?a3)))))) 
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:rem "Two activity occurrences are occurrence isomorphic if and only if they are 
occurrences of atomic activities that have a common subactivity with the complex 
activity ?a." 
 
(<= (iso_occ ?s1 ?s2 ?a) 
      (and (Activity ?a) 
              (Activity_Occurrence ?s1) 
  (Activity_Occurrence ?s2) 
  (exists (?a1 ?a2 ?a3) 
       (and (Activity ?a1) 
   (Activity ?a2) 
   (Activity ?a3) 
   (atomic ?a1) 
   (atomic ?a2) 
   (atomic ?a3) 
   (subactivity ?a3 ?a) 
   (occurrence_of ?s1 (conc ?a1 ?a3)) 
   (occurrence_of ?s2 (conc ?a2 ?a3)))) 
   (Activity ?a4) 
   (subactivity ?a4 (conc ?a3 ?a1)) 
   (subactivity ?a4 (conc ?a3 ?a2)) 
   (subactivity ?a4 ?a) 
   (not (subactivity ?a3 ?a4)))) 
:rem "Two activity occurrences are occurrence isomorphic if and only if they are 
occurrences of atomic activities that have a common subactivity with the complex 
activity ?a." 
 (<= (hom ?s1 ?s2 ?a) 
       (and (Activity ?a) 
   (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (exists (?occ1 ?occ2) 
       (and (Activity_Occurrence ?occ1) 
   (Activity_Occurrence ?occ2) 
   (iso_occ ?s1 ?s2 ?a) 
   (not (min_precedes ?s1 ?s2 ?a)) 
   (not (min_precedes ?s2 ?s1 ?a)) 
   (subactivity_occurrence ?s1 ?occ1) 
   (subactivity_occurrence ?s2 ?occ2) 
   (occurrence_of ?occ1 ?a) 
   (occurrence_of ?occ2 ?a))))) 
:rem "For every two occurrences of the same activity on different branches of an 
activity tree, there exist homomorphic occurrences on those branches." 
 
 (<= (root_occ ?s ?occ) 
       (and (Activity_Occurrence ?s) 
   (Activity_Occurrence ?occ) 
   (exists (?a) 
       (and (Activity ?a) 
   (occurrence_of ?occ ?a) 
   (subactivity_occurrence ?s ?occ) 
   (root ?s ?a))))) 
:rem "An occurrence ?occ is the root occurrence of an occurrence of ?a if and only if it 
is a subactivity occurrence and it is the root of an activity tree for ?a." 
 
 (<= (leaf_occ ?s ?occ) 
       (and (Activity_Occurrence ?s) 
   (Activity_Occurrence ?occ) 
   (exists (?a) 
       (and (Activity ?a) 
   (occurrence_of ?occ ?a) 
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   (subactivity_occurrence ?s ?occ) 
   (leaf ?s ?a))))) 
:rem "An occurrence ?occ is the leaf occurrence of an occurrence of ?a if and only if it 
is a subactivity occurrence and it is the leaf of an activity tree for ?a." 
 
 (<= (same_grove ?occ1 ?occ2) 
       (and (Activity_Occurrence ?occ1) 
   (Activity_Occurrence ?occ1) 
   (Activity_Occurrence ?s1) 
   (Activity_Occurrence ?s2) 
   (exists (?a) 
       (and (Activity ?a) 
   (occurrence_of ?occ1 ?a) 
   (occurrence_of ?occ2 ?a) 
   (root_occ ?s1 ?occ1) 
   (root_occ ?s2 ?occ2) 
   (or (and (initial ?s1) 
     (initial ?s2)) 
     (exists (?s4 ?a1 ?a2) 
         (and (= ?s1 (successor ?a1 ?s4)) 
     (= ?s2 (successor ?a2 ?s4))))))))) 
:rem "Two complex activity occurrences are in the same grove if and only if they are 
occurrences of the same activity and their root occurrences are siblings." 
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C.2 Entity Information Semantics 

C.2.1 Core Entities and Core Properties 

Classes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:Prop Core_Entity 
:Inst Property 
:sup Object 
:name "Core Entity" 
:rem "(Core_Entity ?coreEnt) is TRUE in an interpretation of the Foundation Layer if and only 
if Core_Entity is an abstract kind of object from which the Artifact and Feature classes are 
specialised." 
 
:Prop Core_Property 
:Inst Property 
:sup Object 
:name "Core Property" 
:rem "(Core_Property ?coreProp) is TRUE in an interpretation of the the Foundation Layer if 
and only if Core_Property is an abstract kind of object from which a number of subclasses are 
specialised." 
 
:Prop Material 
:Inst Property 
:sup Core_Property 
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:name "Material" 
:rem "(Material ?m) is TRUE in an interpretation of the Foundation Layer if and only if ?m is a 
member of a set of materials. Materials describe the internal composition of features with 
positive geometry and the internal composition of artifacts." 
 
:Prop Function 
:Inst Property 
:sup Core_Property 
:name "Function" 
:rem "(Function ?func) is TRUE in an interpretation of the Foundation Layer if and only if 
?func is a member of a set of functions. Functions are intended behaviours that represent 
aspects of what features and artifacts are supposed to do." 
 
 

Relations 

 
 
 
 
 
 
 
 
 
 
 
 
 
:Rel holds_material 
:Inst BinaryRel 
:Sig Core_Entity Material 
:name "holds_material" 
:rem "(holds_material ?coreEnt ?m) is TRUE in an interpretation of the Foundation Layer if 
and only if the core entity ?coreEnt is composed of the material ?m." 
 
:Rel holds_function 
:Inst BinaryRel 
:Sig Core_Entity Function 
:name "holds_function" 
:rem "(holds_function ?coreEnt ?func) is TRUE in an interpretation of the Foundation Layer if 
and only if the core entity ?coreEnt has an intended function ?func." 
 
 

Axioms 

 
 (=> (Core_Entity ?coreEnt) 
       (Object ?coreEnt)) 
:IC hard "Core entities are objects." 
 
 (=> (Core_Property ?coreProp) 
       (Object ?coreProp)) 
:IC hard "Core properties are objects." 
 
 (=> (Material ?m) 
       (Core_Property ?m)) 
:IC hard "Materials are core properties." 
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 (=> (Function ?func) 
       (Core_Property ?func)) 
:IC hard "Functions are core properties." 
 
 (=> (Core_Entity ?coreEnt) 
       (exists (?func) 
 (and (Function ?func) 
        (holds_function ?coreEnt ?func)))) 
:IC soft "Every core entity holds some function." 
 
 

C.2.2 Geometry and Measure Items 

Classes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:Prop Geometry_Item 
:Inst Property 
:sup Core_Property 
:name "Geometry Item" 
:rem "(Geometry_Item ?geo) is TRUE in an interpretation of the Foundation Layer if and only 
if Geometry_Item is an abstract kind of Core_Property where an instance of Geometry_Item 
?geo can only exist as an instance of one of the instantiable subclasses of Geometry_Item." 
 
:Prop Point 
:Inst Property 
:sup Geometry_Item 
:name "Point" 
:rem "(Point ?pt) is TRUE in an interpretation of the Foundation Layer if and only if ?pt is a 
member of a set of points described in terms of a position in space relative to the X, Y and Z 
Cartesian axes." 
 
:Prop Vector_Direction 
:Inst Property 
:sup Geometry_Item 
:name "Vector Direction" 
:rem "(Vector_Direction ?v) is TRUE in an interpretation of the Foundation Layer if and only if 
?v is a member of a set of vector directions stated in terms of a position in space relative to 
the X, Y and Z Cartesian axes. Vector directions are unitless." 
 
:Prop Placement 
:Inst Property 
:sup Geometry_Item 
:name "Placement" 
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:rem "(Placement ?p) is TRUE in an interpretation of the Foundation Layer if and only if ?p is 
a member of a set of placements. A placement is the direction and location of the basic shape 
of a part, feature on a part or of the components of a feature which are profile objects and 
path objects." 
 
:Prop Measure_Item 
:Inst Property 
:sup Core_Property 
:name "Measure Item" 
:rem "(Measure_Item ?mea) is TRUE in an interpretation of the Foundation Layer if and only if 
Measure_Item is an abstract kind of Core_Property where an instance of Measure_Item 
?mea can only exist as an instance of one of the instantiable subclasses of Measure_Item." 
 
:Prop Length_Measure 
:Inst Property 
:sup Measure_Item 
:name "Length Measure" 
:rem "(Length_Measure ?length) is TRUE in an interpretation of the Foundation Layer if and 
only if ?length is a member of a set of length measures." 
 
:Prop Angle_Measure 
:Inst Property 
:sup Measure_Item 
:name "Angle Measure" 
:rem "(Angle_Measure ?angle) is TRUE in an interpretation of the Foundation Layer if and 
only if ?angle is a member of a set of angle measures." 
 
 

Relations 

 
 
 
 
 
 
 
 
 
 
 
 
:Rel is_oriented_at 
:Inst TernaryRel 
:Sig Placement Point Vector_Direction 
:name "is_oriented_at" 
:rem "(is_oriented_at ?p ?pt ?v) is TRUE in an interpretation of the Foundation Layer if and 
only if the placement ?p is specified relative to a point ?pt in space which is the origin of the 
vector direction ?v." 
 
 

Functions 

 
:Fun coordinates 
:Inst TernaryFun 
:Sig Length_Measure Length_Measure Length_Measure -> Point 
:name "coordinates" 
:rem "(= ?pt (coordinates ?length1 ?length2 ?length3)) is TRUE in an interpretation of the 
Foundation Layer if and only if ?pt is the point whose coordinates are given by length 
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measures ?length1, ?length2 and ?length3 relative to the X, Y and Z Cartesian axes 
respectively." 
 
:Fun direction 
:Inst TernaryFun 
:Sig RealNumber RealNumber RealNumber -> Vector_Direction 
:name "direction" 
:rem "(= ?v (direction ?real1 ?real2 ?real3)) is TRUE in an interpretation of the Foundation 
Layer if and only if ?v is the vector direction whose direction is given by real numbers ?real1, 
?real2 and ?real3 relative to the X, Y and Z Cartesian axes respectively." 
 
:Fun mm 
:Inst UnaryFun 
:Sig RealNumber -> Length_Measure 
:name "millimetre" 
:rem "(= ?length (mm ?real)) is TRUE in an interpretation of the Foundation Layer if and only 
if ?length is a length measure whose value in millimeters is given by a real number ?real." 
 
:Fun degree 
:Inst UnaryFun 
:Sig RealNumber -> Angle_Measure 
:name "degree" 
:rem "(= ?angle (degree ?real)) is TRUE in an interpretation of the Foundation Layer if and 
only if ?angle is angle measure whose value in degrees is given by a real number ?real." 
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Axioms 

 
 (=> (Geometry_Item ?geo) 
      (Core_Property ?geo)) 
:IC hard "Geometry items are core properties." 
 
 (=> (Geometry_Item ?geo) 
       (exists (?class) 
 (and (RootCtx.sup ?class Geometry_Item) 
         (RootCtx.inst ?geo ?class) 
         (/= ?class Geometry_Item)))) 
:IC hard "Any instance of geometry item can only be an instance of one of its 
subclasses." 
 
 (and (=> (Point ?geo) 
               (not (or (Vector_Direction ?geo) (Placement ?geo)))) 
         (=> (Vector_Direction ?geo) 
    (not (Placement ?geo)))) 
:IC hard "Points, vector directions and placements are all distinct kinds of things." 
 
 (=> (is_oriented_at ?p ?pt ?v) 
       (and (Placement ?p) 
   (Point ?pt) 
   (Vector_Direction ?v))) 
:IC hard "The orientation relation only holds between placements, points and vector 
directions." 
 
 (=> (Measure_Item ?mea) 
       (Core_Property ?mea)) 
:IC hard "Measure items are core properties." 
 
 (=> (Measure_Item ?mea) 
       (exists (?class) 
 (and (RootCtx.sup ?class Measure_Item) 
         (RootCtx.inst ?mea ?class) 
         (/= ?class Measure_Item)))) 
:IC hard "Any instance of measure item can only be an instance of one of its 
subclasses." 
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 (=> (Length_Measure ?mea) 
       (not (Angle_Measure ?mea))) 
:IC hard "Length measures and angle measures are all distinct kinds of things." 
 
 (=> (Length_Measure ?length) 
       (exists (?real) 
 (and (RootCtx.RealNumber ?real) 
         (= ?length (Foundation.mm ?real))))) 
:IC hard "Every length measure is given by some unit of measurement and some real 
value." 
 
 (=> (Angle_Measure ?angle) 
       (exists (?real) 
 (and (RootCtx.RealNumber ?real) 
         (= ?angle (Foundation.degree ?real))))) 
:IC hard "Every angle measure is given by some unit of measurement and some real 
value." 
 
 (=> (Point ?pt) 
       (exists (?length1 ?length2 ?length3) 
 (and (Length_Measure ?length1) 
         (Length_Measure ?length2) 
         (Length_Measure ?length3) 
         (= ?pt (coordinates ?length1 ?length2 ?length3))))) 
:IC hard "Every point is given by some x, y and z coordinates." 
 
 (=> (Vector_Direction ?v) 
       (exists (?real1 ?real2 ?real3) 
 (and (RootCtx.RealNumber ?real1) 
         (RootCtx.RealNumber ?real2) 
         (RootCtx.RealNumber ?real3) 
         (= ?v (direction ?real1 ?real2 ?real3))))) 
:IC hard "Every vector direction is given by some x, y and z direction ratio." 
 
 (=> (and (is_oriented_at ?p ?pt1 ?v1) 
   (is_oriented_at ?p ?pt2 ?v2)) 
       (and (= ?pt1 ?pt2) 
   (= ?v1 ?v2))) 
:IC hard "A placement is associated with a unique point and a unique vector direction." 
 
 (=> (Placement ?p) 
       (exists (?pt ?v) 
 (and (Point ?pt) 
         (Vector_Direction ?v) 
         (is_oriented_at ?p ?pt ?v)))) 
:IC hard "Every placement is oriented at some point and vector direction." 
 
 

C.2.3 Shape Aspects 

Classes 

 
:Prop Shape_Aspect 
:Inst Property 
:sup Core_Property 
:name "Shape Aspect" 
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:rem "(Shape_Aspect ?sa) is TRUE in an interpretation of the Foundation Layer if and only if 
Shape_Aspect is an abstract kind of Core_Property where an instance of Shape_Aspect ?sa 
can only exist as an instance of one of the instantiable subclasses of Shape_Aspect." 
 
:Prop Circular_Closed_Profile 
:Inst Property 
:sup Shape_Aspect 
:name "Circular Closed Profile" 
:rem "(Circular_Closed_Profile ?ccp) is TRUE in an interpretation of the Foundation Layer if 
and only if ?ccp is a member of a set of circular closed profiles. A circular closed profile is an 
enclosed 2D area which is defined according to its diameter. The orientation is at the centre 
of the circular arc." 
 
:Prop Rectangular_Closed_Profile 
:Inst Property 
:sup Shape_Aspect 
:name "Rectangular Closed Profile" 
:rem "(Rectangular_Closed_Profile ?rcp) is TRUE in an interpretation of the Foundation Layer 
if and only if ?rcp is a member of a set of rectangular closed profiles. A rectangular closed 
profile is an enclosed area bounded by four sides with opposite sides equal in length and 
corners at 90 degrees. The orientation is at the centre of the rectangle." 
 
:Prop Linear_Path 
:Inst Property 
:sup Shape_Aspect 
:name "Linear Path" 
:rem "(Linear_Path ?lin) is TRUE in an interpretation of the Foundation Layer if and only if ?lin 
is a member of a set of linear paths. A linear path defines a direction of travel along a line and 
is defined according to the length of the path." 
 
:Prop Linear_Profile 
:Inst Property 
:sup Shape_Aspect 
:name "Linear Profile" 
:rem "(Linear_Profile ?lp) is TRUE in an interpretation of the Foundation Layer if and only if 
?lp is a member of a set of linear profiles. A linear profile can be regarded as being an open 
profile that involves exactly two connected points in a straight line with a specified length." 
 
:Prop Taper 
:Inst Property 
:sup Shape_Aspect 
:name "Taper" 
:rem "(Taper ?tap) is TRUE in an interpretation of the Foundation Layer if and only if ?tap is a 
member of a set of tapers. A taper is a type of shape aspect which represents a constant 
change in shape of a feature or a part. A taper starts at the location of placement of a feature 
and is applied to the entire feature." 
 
:Prop Transition_Feature 
:Inst Property 
:sup Shape_Aspect 
:name "Transition Feature" 
:rem "(Transition_Feature ?tf) is TRUE in an interpretation of the Foundation Layer if and only 
if Transition_Feature is an abstract kind of Shape_Aspect where an instance of 
Transition_Feature ?tf can only exist as an instance of one of the instantiable subclasses of 
Transition_Feature." 
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Relations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:Rel holds_placement 
:Inst BinaryRel 
:Sig Shape_Aspect Placement 
:name "holds_placement" 
:rem "(holds_placement ?sa ?p) is TRUE in an interpretation of the Foundation Layer if and 
only if the shape aspect ?sa holds a placement ?p. A shape aspect may have one and only 
one placement." 
 
:Rel measures 
:Inst BinaryRel 
:Sig Shape_Aspect Measure_Item 
:name "measures" 
:rem "(measures ?sa ?measure) is TRUE in an interpretation of the Foundation Layer if and 
only if the shape aspect ?sa has ?measure as its measure representation item." 
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:Rel sweeps 
:Inst BinaryRel 
:Sig Shape_Aspect Shape_Aspect 
:name "sweeps" 
:rem "(sweeps ?sa1 ?sa2) is TRUE in an interpretation of the Foundation Layer if and only if 
the shape aspect ?sa1 is a linear path or taper that sweeps another existing shape aspect 
?sa2 to produce a 3D feature." 
 
:Rel meets 
:Inst TernaryRel 
:Sig Linear_Profile Point Point 
:name "meets" 
:rem "(meets ?lp ?pt1 ?pt2) is TRUE in an interpretation of the Foundation Layer if and only if 
the linear profile ?lp meets the points ?pt1 and ?pt2 forming a straight line." 
 
:Rel blind 
:Inst UnaryRel 
:Sig Circular_Closed_Profile 
:name "blind" 
:rem "(blind ?ccp) is TRUE in an interpretation of the Foundation Layer if and only if the 
circular closed profile ?ccp describes a blind hole bottom condition of a round hole feature.  A 
blind hole bottom condition is one where the hole feature does not go through the material 
completely." 
 
:Rel through 
:Inst UnaryRel 
:Sig Circular_Closed_Profile 
:name "through" 
:rem "(through ?ccp) is TRUE in an interpretation of the Foundation Layer if and only if the 
circular closed profile ?ccp describes a through hole bottom condition of a round hole feature. 
A through hole bottom condition is one where the hole feature goes through the material 
completely." 
 
 

Axioms 

 
 (=> (Shape_Aspect ?sa) 
       (Core_Property ?sa)) 
:IC hard "Shape aspects are core properties." 
 
 (=> (Shape_Aspect ?sa) 
       (exists (?class) 
 (and (RootCtx.sup ?class Shape_Aspect) 
         (RootCtx.inst ?sa ?class) 
         (/= ?class Shape_Aspect)))) 
:IC hard "Any instance of shape aspect can only be an instance of one of its 
subclasses." 
 
 (and (=> (Circular_Closed_Profile ?sa) 
               (not (or (Rectangular_Closed_Profile ?sa) (Linear_Path ?sa) (Linear_Profile ?sa) 
(Taper ?sa) (Transition_Feature ?sa)))) 
         (=> (Rectangular_Closed_Profile ?sa) 
    (not (or (Linear_Path ?sa) (Linear_Profile ?sa) (Taper ?sa) (Transition_Feature 
?sa)))) 
         (=> (Linear_Path ?sa) 
   (not (or (Linear_Profile ?sa) (Taper ?sa) (Transition_Feature ?sa)))) 
         (=> (Linear_Profile ?sa) 
   (not (or (Taper ?sa) (Transition_Feature ?sa)))) 
         (=> (Taper ?sa) 
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    (not (Transition_Feature ?sa)))) 
:IC hard "Circular closed profiles, rectangular closed profiles, linear paths, linear 
profiles, tapers and transition features are all distinct kinds of things." 
 
 (=> (holds_placement ?sa ?p) 
       (and (Shape_Aspect ?sa) 
   (Placement ?p))) 
:IC hard "The relation holds_placement only holds between shape aspects and 
placements." 
 
 (=> (and (holds_placement ?sa ?p1) 
   (holds_placement ?sa ?p2)) 
       (= ?p1 ?p2)) 
:IC hard "A shape aspect is associated with a unique placement." 
 
 (=> (meets ?lp ?pt1 ?pt2) 
       (and (Linear_Profile ?lp) 
   (Point ?pt1) 
   (Point ?pt2) 
   (/= ?pt1 ?pt2))) 
:IC hard "The relation meets only holds between linear profiles and two distinct points." 
 
 (=> (meets ?lp ?pt1 ?pt2) 
       (meets ?lp ?pt2 ?pt1)) 
:IC soft "The relation meets is symmetric over linear profiles and points." 
 
 (=> (and (Linear_Profile ?lp) 
   (Point ?pt)) 
       (not (meets ?lp ?pt ?pt))) 
:IC hard "The relation meets is irreflexive on points." 
 
 (=> (measures ?sa ?mea) 
       (and (Shape_Aspect ?sa) 
   (Measure_Item ?mea))) 
:IC hard "The relation measures only holds between shape aspects and measure items." 
 
 (=> (sweeps ?sa1 ?sa2) 
       (and (or (Linear_Path ?sa1) 
        (Taper ?sa1)) 
               (Shape_Aspect ?sa2) 
    (not (or (Linear_Path ?sa2) 
    (Taper ?sa2))))) 
:IC hard "The relation sweeps holds over shape aspects that are linear paths or tapers 
and other shape aspects." 
 
 (=> (blind ?ccp) 
       (Circular_Closed_Profile ?ccp)) 
:IC hard "The relation blind only holds for circular closed profiles." 
 
 (=> (through ?ccp) 
       (Circular_Closed_Profile ?ccp)) 
:IC hard "The relation through only holds for circular closed profiles." 
 
 (=> (Circular_Closed_Profile ?ccp) 
       (exists (?length) 
 (and (Length_Measure ?length) 
         (measures ?ccp ?length)))) 
:IC hard "Every circular closed profile has an associated length measure which 
represents the diameter of the profile." 
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 (=> (Circular_Closed_Profile ?ccp) 
       (exists (?p) 
 (and (Placement ?p) 
         (holds_placement ?ccp ?p)))) 
:IC hard "Every circular closed profile has an associated placement." 
 
 (=> (Rectangular_Closed_Profile ?rcp) 
       (exists (?length1 ?length2) 
 (and (Length_Measure ?length1) 
         (Length_Measure ?length2) 
         (measures ?rcp ?length1) 
         (measures ?rcp ?length2)))) 
:IC hard "Every rectangular closed profile has two associated length measures which 
represent the width and breadth of the profile." 
 
 (=> (Rectangular_Closed_Profile ?rcp) 
       (exists (?p) 
 (and (Placement ?p) 
         (holds_placement ?rcp ?p)))) 
:IC hard "Every rectangular closed profile has an associated placement." 
 
 (=> (Linear_Path ?lin) 
       (exists (?length) 
 (and (Length_Measure ?length) 
         (measures ?lin ?length)))) 
:IC hard "Every linear path has an associated length measure which represents the 
distance of the linear path." 
 
 (=> (Linear_Path ?lin) 
       (exists (?p) 
 (and (Placement ?p) 
         (holds_placement ?lin ?p)))) 
:IC hard "Every linear path has an associated placement." 
 
 (=> (Linear_Path ?lin) 
       (exists (?sa) 
 (and (Shape_Aspect ?sa) 
         (sweeps ?lin ?sa)))) 
:IC hard "Every linear path has an associated shape aspect that the linear path sweeps." 
 
 (=> (Linear_Profile ?lp) 
       (exists (?length) 
 (and (Length_Measure ?length) 
         (measures ?lp ?length)))) 
:IC hard "Every linear profile has an associated length measure which represents the 
length of the profile." 
 
 (=> (Linear_Profile ?lp) 
       (exists (?pt1 ?pt2) 
 (and (Point ?pt1) 
         (Point ?pt2) 
         (meets ?lp ?pt1 ?pt2)))) 
:IC hard "Every linear profile meets two distinct points." 
 
 (=> (Taper ?tap) 
       (exists (?angle) 
 (and (Angle_Measure ?angle) 
         (measures ?tap ?angle)))) 
:IC hard "Every taper has an associated angle measure which represents the taper 
angle." 
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 (=> (Taper ?tap) 
       (exists (?p) 
 (and (Placement ?p) 
         (holds_placement ?tap ?p)))) 
:IC hard "Every taper has an associated placement." 
 
 (=> (Taper ?tap) 
       (exists (?sa) 
 (and (Shape_Aspect ?sa) 
         (sweeps ?tap ?sa)))) 
:IC hard "Every taper has an associated shape aspect that the taper sweeps." 
 
 

C.2.4 Features and Artifacts 

Classes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
:Prop Artifact 
:Inst Property 
:sup Core_Entity 
:name "Artifact" 
:rem "(Artifact ?art) is TRUE in an interpretation of the Foundation Layer if and only if ?art is a 
member of a set of artifacts in the universe of discourse of the interpretation. Intuitively, 
artifacts represent a distinct entity in a product whether that entity is a component, part, 
subassembly or assembly. Artifacts can involve intuitions about part families." 
 
:Prop Feature 
:Inst Property 
:sup Core_Entity 
:name "Feature" 
:rem "(Feature ?f) is TRUE in an interpretation of the Foundation Layer if and only if ?f is a 
member of a set of features. A feature represents a portion or element of interest of an 
artifact‟s form." 
 
:Prop Round_Hole 
:Inst Property 
:sup Feature 
:name "Round Hole" 
:rem "(Round_Hole ?hole) is TRUE in an interpretation of the Foundation Layer if and only if 
?hole is a member of a set of round holes. A round hole is regarded as the removal of a 
volume of cylindrical shape from a part. A round hole has its orientation at a point in the 
bottom of the hole with the direction pointing out of the hole through the axis. A round hole 
may be tapered." 
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:Prop Block 
:Inst Property 
:sup Feature 
:name "Block" 
:rem "(Block ?b) is TRUE in an interpretation of the Foundation Layer if and only if ?b is a 
member of a set of blocks. A block specifies the representation of a feature that is a 
rectangular volume defined as a rectangular closed profile swept along a linear path. The 
orientation of a block is at the centre point of the rectangular closed profile with the direction 
pointing out of the block along the axis of the rectangular closed profile." 
 
:Prop Cylinder 
:Inst Property 
:sup Feature 
:name "Cylinder" 
:rem "(Cylinder ?c) is TRUE in an interpretation of the Foundation Layer if and only if ?c is a 
member of a set of cylinders. A cylinder specifies the representation of a feature that is a 
cylindrical volume defined as a circular closed profile swept along a linear path. The 
orientation of the cylinder is at the centre point of the circular closed profile with the direction 
pointing out of the cylinder along the axis of the circular closed profile." 
 
 

Relations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:Rel holds_shape 
:Inst BinaryRel 
:Sig Feature Shape_Aspect 
:name "holds_shape" 
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:rem "(holds_shape ?f ?sa) is TRUE in an interpretation of the Foundation Layer if and only if 
the feature ?f has a related shape aspect ?sa that is used towards the definition of the feature 
?f." 
 
:Rel compound 
:Inst UnaryRel 
:Sig Feature 
:name "compound" 
:rem "(compound ?f) is TRUE in an interpretation of the Foundation Layer if and only if the 
feature ?f is a compound feature that is the union of more than one feature to create a more 
complex feature definition." 
 
:Rel element_of 
:Inst BinaryRel 
:Inst ReflexiveBR 
:Sig Feature Feature 
:name "element_of" 
:rem "(element_of ?f1 ?f) is TRUE in an interpretation of the Foundation Layer if and only if 
the feature ?f1 is an element of a compound feature ?f." 
 
:Rel base 
:Inst UnaryRel 
:Sig Feature 
:name "base" 
:rem "(base ?f) is TRUE in an interpretation of the Foundation Layer if and only if the feature 
?f is an element of a compound feature such that ?f is the base feature from which other 
element features are aggregated." 
 
:Rel predecessor 
:Inst TernaryRel 
:Sig Feature Feature Feature 
:name "predecessor" 
:rem "(predecessor_of ?f1 ?f2 ?f) is TRUE in an interpretation of the Foundation Layer if and 
only if the feature ?f1 is an element of a compound feature ?f, the latter having the highest 
precedence over ?f2, a second element of the compound feature ?f." 
 
:Rel holds_feature 
:Inst BinaryRel 
:Sig Artifact Feature 
:name "holds_feature" 
:rem "(holds_feature ?art ?f) is TRUE in an interpretation of the Foundation Layer if and only if 
the artifact ?art holds a given feature ?f. This is the basic relation between artifacts and 
features." 
 
:Rel sub_artifact_of 
:Inst BinaryRel 
:Inst IrreflexiveBR 
:Inst TransitiveBR 
:Sig Artifact Artifact 
:name "sub_artifact_of" 
:rem "(sub_artifact_of ?sub ?art) is TRUE in an interpretation of the Foundation Layer if and 
only if the artifact ?sub is a sub-artifact of the artifact ?art." 
 
:Rel holds_orientation 
:Inst BinaryRel 
:Sig Feature Placement 
:name "holds_orientation" 
:rem "(holds_orientation ?f ?p) is TRUE in an interpretation of the Foundation Layer if and 
only if the feature ?f holds an orientation given by a placement ?p. The orientation of a feature 
corresponds to the placement of one of the shape aspects that make up the feature." 
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:Rel holds_axis 
:Inst BinaryRel 
:Sig Feature Linear_Profile 
:name "holds_axis" 
:rem "(holds_axis ?f ?lp) is TRUE in an interpretation of the Foundation Layer if and only if the 
feature ?f holds an axis given by the linear profile ?lp." 
 
 

Axioms 

 
 (=> (and (Feature ?f) 
               (Artifact ?art)) 
       (and (Core_Entity ?f) 
   (Core_Entity ?art))) 
:IC hard "Features and artifacts are core entities." 
 
 (and (=> (Round_Hole ?f) 
   (not (or (Block ?f) (Cylinder ?f)))) 
         (=> (Block ?f) 
   (not (Cylinder ?f)))) 
:IC hard "Round holes, blocks and cylinders are all distinct kinds of things." 
 
 (=> (holds_shape ?f ?sa) 
       (and (Feature ?f) 
   (Shape_Aspect ?sa))) 
:IC hard "The relation holds_shape only holds between features and shape aspects." 
 
 (=> (compound ?f) 
       (Feature ?f)) 
:IC hard "The relation compound only holds for features." 
 
 (=> (element_of ?f1 ?f) 
       (and (Feature ?f1) 
   (Feature ?f))) 
:IC hard "The element_of relation only holds between features." 
 
 (=> (base ?f) 
       (Feature ?f)) 
:IC hard "The relation base only holds for features." 
 
 (=> (predecessor ?f1 ?f2 ?f) 
        (and (Feature ?f1) 
    (Feature ?f2) 
    (Feature ?f) 
    (compound ?f))) 
:IC hard "The relation predecessor only holds between features." 
 
 (=> (and (Feature ?f1) 
   (Feature ?f)) 
       (not (predecessor ?f1 ?f1 ?f))) 
:IC hard "The relation predecessor is irreflexive." 
 
 (=> (and (predecessor ?f1 ?f2 ?f) 
   (predecessor ?f2 ?f3 ?f)) 
       (predecessor ?f1 ?f3 ?f)) 
:IC soft "The relation predecessor is transitive on compound features." 
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 (=> (holds_feature ?art ?f) 
       (and (Feature ?f) 
   (Artifact ?art))) 
:IC hard "The holds_feature relation only holds between artifacts and features." 
 
 (=> (sub_artifact_of ?sub ?art) 
       (and (Artifact ?sub) 
   (Artifact ?art))) 
:IC hard "The sub_artifact_of relation only holds between artifacts." 
 
 (=> (holds_orientation ?f ?p) 
       (and (Feature ?f) 
   (Placement ?p))) 
:IC hard "The relation holds_orientation only holds between features and placements." 
 
 (=> (and (Feature ?f) 
   (Placement ?p1) 
   (Placement ?p2) 
   (holds_orientation ?f ?p1) 
   (holds_orientation ?f ?p2)) 
       (= ?p1 ?p2)) 
:IC hard "A feature is associated with a unique placement." 
 
 (=> (holds_axis ?f ?lp) 
       (and (Feature ?f) 
   (Linear_Profile ?lp))) 
:IC hard "The relation holds_axis on holds between features and linear profiles." 
 
 (=> (compound ?f) 
       (exists (?f1 ?f2) 
 (and (Feature ?f1) 
         (Feature ?f2) 
         (/= ?f1 ?f2) 
         (element_of ?f1 ?f) 
         (element_of ?f2 ?f)))) 
:IC hard "If a feature is compound, then there should exist any two features that are 
elements of the compound feature." 
 
(=> (compound ?f) 
      (exists (?f1) 
 (and (Feature ?f1) 
         (base ?f1) 
         (element_of ?f1 ?f)))) 
:IC hard "If a feature is compound, then there exists a base feature that is an element of 
the compound feature." 
 
 (=> (and (compound ?f) 
   (base ?f1) 
   (element_of ?f1 ?f)) 
       (not (exists (?f2) 
       (and (Feature ?f2) 
   (predecessor ?f2 ?f1 ?f))))) 
:IC hard "No feature can be a predecessor of a base feature in a compound feature." 
         
 (=> (and (compound ?f) 
   (base ?f1) 
   (element_of ?f1 ?f)) 
       (exists (?f2) 
 (and (Feature ?f2) 
         (element_of ?f2 ?f) 
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          (predecessor ?f1 ?f2 ?f)))) 
:IC hard "Every feature stated to be a base feature implies the existence of another 
feature which the base feature precedes on a compound feature." 
 
 (=> (and (Artifact ?art) 
   (Round_Hole ?hole) 
   (holds_feature ?art ?hole)) 
       (exists (?f) 
 (and (Feature ?f) 
         (holds_feature ?art ?f) 
         (not (Round_Hole ?f))))) 
:IC hard "An artifact can only hold a round hole provided it holds another feature that is 
not a round hole i.e. a round hole cannot be the sole feature describing an artifact." 
 
 (=> (Artifact ?art) 
       (exists (?m) 
 (and (Material ?m) 
         (holds_material ?art ?m)))) 
:IC soft "Every artifact holds some material that describes its internal composition."  
 
 (=> (and (Cylinder ?c) 
   (Circular_Closed_Profile ?ccp) 
   (Linear_Path ?lin) 
   (holds_shape ?c ?ccp) 
   (holds_shape ?c ?lin) 
   (holds_placement ?ccp ?p1) 
   (sweeps ?lin ?ccp)) 
       (exists (?p2) 
 (and (holds_orientation ?c ?p2) 
         (= ?p1 ?p2)))) 
:IC hard "The orientation of a cylinder corresponds to the placement of its circular 
closed profile that its linear path sweeps." 
   
(=> (and (Cylinder ?c) 
  (Circular_Closed_Profile ?ccp1) 
  (Linear_Path ?lin) 
  (Length_Measure ?length1) 
  (holds_shape ?c ?ccp1) 
  (holds_shape ?c ?lin) 
  (sweeps ?lin ?ccp1) 
  (measures ?ccp1 ?length1)) 
       (exists (?ccp2 ?length2) 
 (and (Circular_Closed_Profile ?ccp2) 
         (Length_Measure ?length2) 
         (holds_shape ?c ?ccp2) 
         (measures ?ccp2 ?length2) 
         (= ?length1 ?length2)))) 
:IC hard "For any cylinder the diameter of its circular closed profile that its linear path 
sweeps is the same as the diameter of its other existing circular closed profile." 
 
 (=> (and (Block ?b) 
   (Rectangular_Closed_Profile ?rcp) 
   (Linear_Path ?lin) 
   (holds_shape ?b ?rcp) 
   (holds_shape ?b ?lin) 
   (holds_placement ?rcp ?p1) 
   (sweeps ?lin ?rcp)) 
       (exists (?p2) 
 (and (holds_orientation ?b ?p2) 
         (= ?p1 ?p2)))) 
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:IC hard "The orientation of a block corresponds to the placement of its rectangular 
closed profile that its linear path sweeps."   
 
 (=> (Cylinder ?c) 
       (exists (?ccp1 ?ccp2) 
 (and (Circular_Closed_Profile ?ccp1) 
                     (Circular_Closed_Profile ?ccp2) 
         (/= ?ccp1 ?ccp2) 
         (holds_shape ?c ?ccp1) 
         (holds_shape ?c ?ccp2)))) 
:IC hard "Every cylinder holds exactly two circular closed profiles." 
 
 (=> (Cylinder ?c) 
       (exists (?lin) 
 (and (Linear_Path ?lin) 
         (holds_shape ?c ?lin)))) 
:IC hard "Every cylinder holds exactly one linear path." 
 
 (=> (and (Cylinder ?c) 
   (Circular_Closed_Profile ?ccp1) 
   (Circular_Closed_Profile ?ccp2) 
   (Point ?pt1) 
   (Point ?pt2) 
   (Vector_Direction ?v1) 
   (Vector_Direction ?v2) 
   (holds_shape ?c ?ccp1) 
   (holds_shape ?c ?ccp2) 
   (holds_placement ?ccp1 ?p1) 
   (holds_placement ?ccp2 ?p2) 
   (is_oriented_at ?p1 ?pt1 ?v1) 
   (is_oriented_at ?p2 ?pt2 ?v2)) 
        (exists (?lp) 
 (and (Linear_Profile ?lp) 
         (holds_axis ?c ?lp) 
         (meets ?lp ?pt1 ?pt2)))) 
:IC soft "Every cylinder may hold an axis which meets the centre points of the two 
circular closed profiles of the cylinder." 
 
(=> (Block ?b) 
      (exists (?rcp1 ?rcp2  ?rcp3 ?rcp4 ?rcp5 ?rcp6) 
 (and (Rectangular_Closed_Profile ?rcp1) 
         (Rectangular_Closed_Profile ?rcp2) 
         (Rectangular_Closed_Profile ?rcp3) 
         (Rectangular_Closed_Profile ?rcp4) 
         (Rectangular_Closed_Profile ?rcp5) 
         (Rectangular_Closed_Profile ?rcp6) 
         (holds_shape ?b ?rcp1) 
         (holds_shape ?b ?rcp2) 
         (holds_shape ?b ?rcp3) 
         (holds_shape ?b ?rcp4) 
         (holds_shape ?b ?rcp5) 
         (holds_shape ?b ?rcp6)))) 
:IC hard "Every block holds six rectangular closed profiles." 
 
 (=> (Block ?b) 
       (exists (?lin) 
(and (Linear_Path ?lin) 
         (holds_shape ?b ?lin)))) 
:IC hard "Every block holds exactly one linear path." 
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 (=> (and (Round_Hole ?hole) 
   (Circular_Closed_Profile ?ccp) 
   (Linear_Path ?lin) 
   (holds_shape ?hole ?ccp) 
   (holds_shape ?hole ?lin) 
   (sweeps ?lin ?ccp)) 
       (exists (?p) 
 (and (Placement ?p) 
         (holds_placement ?ccp ?p) 
         (holds_placement ?lin ?p)))) 
:IC hard "For a given round hole, the placement of the linear path is the same as the 
placement of one of the circular closed profiles that its linear path sweeps." 
 
 (=> (and (Round_Hole ?hole) 
   (Placement ?p1) 
   (holds_orientation ?hole ?p1) 
   (Circular_Closed_Profile ?ccp) 
   (or (blind ?ccp) 
        (through ?ccp)) 
   (holds_shape ?hole ?ccp) 
   (holds_placement ?ccp ?p2)) 
       (= ?p1 ?p2)) 
:IC hard "The orientation of a round hole corresponds to the placement of either the 
blind or through circular closed profile of the hole." 
 
 (=> (and (Round_Hole ?hole) 
   (Circular_Closed_Profile ?ccp1) 
   (Circular_Closed_Profile ?ccp2) 
   (holds_shape ?hole ?ccp1) 
   (holds_shape ?hole ?ccp2) 
   (or (blind ?ccp2) 
        (through ?ccp2)) 
   (RealNumber ?real1) 
   (RealNumber ?real2) 
   (measures ?ccp1 (mm ?real1)) 
   (measures ?ccp2 (mm ?real2)) 
   (ltNum ?real2 ?real1)) 
       (exists (?tap) 
 (and (Taper ?tap) 
         (sweeps ?tap ?ccp1)))) 
:IC soft "If the nominal diameter of a blind or through circular closed profile of a round 
hole is less than that of the diameter of the other circular closed profile for the same 
hole, then a taper parameter that sweeps the non-blind or non-through circular closed 
profile may be specified." 
 
 (=> (Round_Hole ?hole) 
       (exists (?ccp1 ?ccp2) 
 (and (Circular_Closed_Profile ?ccp1) 
         (Circular_Closed_Profile ?ccp2) 
         (/= ?ccp1 ?ccp2) 
         (holds_shape ?hole ?ccp1) 
         (holds_shape ?hole ?ccp2)))) 
:IC hard "Every round hole feature can hold exactly two circular closed profiles." 
 
 (=> (Round_Hole ?hole) 
       (exists (?lin) 
 (and (Linear_Path ?lin) 
        (holds_shape ?hole ?lin)))) 
:IC hard "Every round hole feature can hold exactly one linear path." 
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 (=> (and (Round_Hole ?hole) 
   (Circular_Closed_Profile ?ccp1) 
   (holds_shape ?hole ?ccp1) 
   (blind ?ccp1)) 
       (not (exists (?ccp2) 
       (and (Circular_Closed_Profile ?ccp2) 
   (holds_shape ?hole ?ccp2) 
   (through ?ccp2))))) 
:IC hard "Every round hole that holds a blind circular closed profile cannot have a 
through circular closed profile." 
 
 (=> (and (Round_Hole ?hole) 
   (Circular_Closed_Profile ?ccp1) 
   (holds_shape ?hole ?ccp1) 
   (through ?ccp1)) 
       (not (exists (?ccp2) 
       (and (Circular_Closed_Profile ?ccp2) 
   (holds_shape ?hole ?ccp2) 
   (blind ?ccp2))))) 
:IC hard "Every round hole that holds a through circular closed profile cannot have a 
blind circular closed profile." 
 
 (=> (and (Round_Hole ?hole) 
   (Circular_Closed_Profile ?ccp1) 
   (Circular_Closed_Profile ?ccp2) 
   (Point ?pt1) 
   (Point ?pt2) 
   (Vector_Direction ?v1) 
   (Vector_Direction ?v2) 
   (holds_shape ?hole ?ccp1) 
   (holds_shape ?hole ?ccp2) 
   (holds_placement ?ccp1 ?p1) 
   (holds_placement ?ccp2 ?p2) 
   (is_oriented_at ?p1 ?pt1 ?v1) 
   (is_oriented_at ?p2 ?pt2 ?v2)) 
        (exists (?lp) 
 (and (Linear_Profile ?lp) 
         (holds_axis ?hole ?lp) 
         (meets ?lp ?pt1 ?pt2)))) 
:IC soft "Every round hole feature may hold an axis which meets the centre points of 
the two circular closed profiles of the hole feature." 
 

Definitions 

 
(<= (holds_function ?art ?func) 
      (and (Feature ?f) 
  (Artifact ?art) 
  (Function ?func) 
  (holds_feature ?art ?f) 
  (holds_function ?f ?func))) 
:rem "An artifact ?art can hold some function ?func that derives from its feature ?f that 
holds the function ?func." 
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C.2.5 Transition Features 

Classes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:Prop Constant_Radius_Edge_Round 
:Inst Property 
:sup Transition_Feature 
:name "Constant Radius Edge Round" 
:rem "(Constant_Radius_Edge_Round ?edge) is TRUE in an interpretation of the Foundation 
Layer if and only if ?edge is a member of a set of constant radius edge rounds. A constant 
radius edge round intuitively is a type of transition feature that is a convex circular arc 
transition of constant radius between two intersecting surfaces where the blend surface 
produced is tangent to both of the adjacent surface edges." 
 
:Prop Constant_Radius_Fillet 
:Inst Property 
:sup Transition_Feature 
:name "Constant Radius Fillet" 
:rem "(Constant_Radius_Fillet ?fill) is TRUE in an interpretation of the Foundation Layer if 
and only if ?fill is a member of a set of constant radius fillets. A constant radius fillet intuitively 
is a type of transition feature that is a concave circular arc transition of constant radius 
between two intersecting surfaces. The blend surface may be tangent to both of the adjacent 
surfaces edges." 
 
:Prop Chamfer 
:Inst Property 
:sup Transition_Feature 
:name "Chamfer" 
:rem "(Chamfer ?chf) is TRUE in an interpretation of the Foundation Layer if and only if ?chf is 
a member of a set of chamfers. A chamfer intuitively is a type of transition feature that is a 
transition between two joining non-coplanar surfaces, having a flat orthogonal cross-section. 
A chamfer description requires an offset length from one face and an offset length from a 
second face, which forms an angle with respect to the first face." 
 
 

Relations 

 
 
:Rel is_offset_at 
:Inst TernaryRel 
:Sig Transition_Feature Length_Measure Shape_Aspect 
:name "is_offset_at" 
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:rem "(is_offset_at ?tf ?length ?sa) is TRUE in an interpretation of the Foundation Layer if and 
only if the transition feature ?tf is offset at a given length measure ?length with respect to a 
given shape aspect ?sa." 
 
:Rel is_angled_at 
:Inst TernaryRel 
:Sig Transition_Feature Angle_Measure Shape_Aspect 
:name "is_angled_at" 
:rem "(is_angled_at ?tf ?angle ?sa) is TRUE in an interpretation of the Foundation Layer if 
and only if the transition feature ?tf is angled at a given angle measure ?angle with respect to 
a given shape asepct ?sa." 
 
:Rel blends 
:Inst BinaryRel 
:Sig Transition_Feature Shape_Aspect 
:name "blends" 
:rem "(blends ?tf ?sa) is TRUE in an interpretation of the Foundation Layer if and only if the 
transition feature ?tf blends the shape aspects ?sa." 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Axioms 

  
(=> (Transition_Feature ?tf) 
      (Shape_Aspect ?tf)) 
:IC hard "Transition features are shape aspects." 
 
 (=> (Transition_Feature ?tf) 
       (exists (?class) 
 (and (RootCtx.sup ?class Transition_Feature) 
         (RootCtx.inst ?tf ?class) 
         (/= ?class Transition_Feature)))) 
:IC hard "Any instance of transition feature can only be an instance of one of its 
subclasses." 
 
 (and (=> (Constant_Radius_Edge_Round ?tf) 
    (not (or (Constant_Radius_Fillet ?tf) (Chamfer ?tf)))) 
         (=> (Constant_Radius_Fillet ?tf) 
    (not (Chamfer ?tf)))) 
:IC hard "Constant radius edge rounds, constant radius fillets and chamfers are all 
distinct kinds of things." 
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 (=> (is_offset_at ?tf ?length ?sa) 
       (and (Transition_Feature ?tf) 
   (Length_Measure ?length) 
   (Shape_Aspect ?sa))) 
:IC hard "The relation is_offset_at only holds between transition features, length 
measures and shape aspects." 
 
 (=> (is_angled_at ?tf ?angle ?sa) 
       (and (Transition_Feature ?tf) 
   (Angle_Measure ?angle) 
   (Shape_Aspect ?sa))) 
:IC hard "The relation is_angled_at only holds between transition features, angle 
measures and shape aspects." 
 
 (=> (blends ?tf ?sa) 
       (and (Transition_Feature ?tf) 
   (Shape_Aspect ?sa))) 
:IC hard " The relation blends only holds between transition features and shape 
aspects." 
 
 (=> (Transition_Feature ?tf) 
       (not (exists (?p) 
       (and (Placement ?p) 
   (holds_placement ?tf ?p))))) 
:IC hard "Transition features are shape aspects that do not have placements." 
 
 (=> (Constant_Radius_Edge_Round ?edge) 
       (exists (?length) 
 (and (Length_Measure ?length) 
         (measures ?edge ?length)))) 
:IC hard "Every constant radius edge round is a transition feature with exactly one 
length measure which represents the radius of curvature of the transition area." 
 
 (=> (Constant_Radius_Edge_Round ?edge) 
       (exists (?sa1 ?sa2) 
 (and (Shape_Aspect ?sa1) 
         (Shape_Aspect ?sa2) 
         (/= ?sa1 ?sa2) 
         (blends ?edge ?sa1) 
         (blends ?edge ?sa2)))) 
:IC hard "Every constant radius edge round is a transition feature with exactly two 
blended shape aspects." 
      
 (=> (Constant_Radius_Fillet ?fill) 
       (exists (?length) 
 (and (Length_Measure ?length) 
         (measures ?fill ?length)))) 
:IC hard "Every constant radius fillet is a transition feature with exactly one length 
measure which represents the radius of curvature of the transition area." 
 
 (=> (Constant_Radius_Fillet ?fill) 
       (exists (?sa1 ?sa2) 
 (and (Shape_Aspect ?sa1) 
         (Shape_Aspect ?sa2) 
         (/= ?sa1 ?sa2) 
         (blends ?fill ?sa1) 
         (blends ?fill ?sa2)))) 
:IC hard "Every constant radius fillet is a transition feature with exactly two blended 
shape aspects." 
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 (=> (Constant_Radius_Fillet ?fill) 
       (exists (?sa ?length) 
 (and (Shape_Aspect ?sa) 
         (Length_Measure ?length) 
         (blends ?fill ?sa) 
         (is_offset_at ?fill ?length ?sa)))) 
:IC hard "Every constant radius fillet has an offset dimension specification from the 
shape aspect that it blends." 
 
 (=> (Chamfer ?chf) 
       (exists (?sa1 ?sa2) 
 (and (Shape_Aspect ?sa1) 
         (Shape_Aspect ?sa2) 
         (/= ?sa1 ?sa2) 
         (blends ?chf ?sa1) 
         (blends ?chf ?sa2)))) 
:IC hard "Every chamfer is a transition feature with exactly two blended shape aspects." 
 
 (=> (Chamfer ?chf) 
       (exists (?sa ?length) 
 (and (Shape_Aspect ?sa) 
         (Length_Measure ?length) 
        (blends ?chf ?sa) 
         (is_offset_at ?chf ?length ?sa)))) 
:IC hard "Every chamfer has an offset dimension specification from the shape aspect 
that it blends." 
 
 (=> (Chamfer ?chf) 
       (exists (?sa ?angle) 
 (and (Shape_Aspect ?sa) 
         (Angle_Measure ?angle) 
         (blends ?chf ?sa) 
         (is_angled_at ?chf ?angle ?sa)))) 
:IC soft "Every chamfer may have an angle measure specification from the shape 
aspect that the chamfer blends." 
 
 (=> (and (Round_Hole ?hole) 
   (Circular_Closed_Profile ?ccp) 
   (Linear_Path ?lin) 
   (holds_shape ?hole ?ccp) 
   (holds_shape ?hole ?lin) 
   (blind ?ccp) 
   (Transition_Feature ?tf) 
   (blends ?tf ?ccp) 
   (blends ?tf ?lin)) 
        (or (Chamfer ?tf) 
  (Constant_Radius_Fillet ?tf))) 
:IC hard "Only chamfers and fillets can be transition features that blend the blind 
circular closed profile and the linear path of a round hole." 
 
 (=> (and (Round_Hole ?hole) 
   (Linear_Path ?lin) 
   (holds_shape ?hole ?lin) 
   (Feature ?f) 
   (Shape_Aspect ?sa) 
   (holds_shape ?f ?sa) 
   (/= ?hole ?f) 
   (Transition_Feature ?tf) 
   (blends ?tf ?lin) 
   (blends ?tf ?sa)) 
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       (or (Chamfer ?tf) 
 (Constant_Radius_Edge_Round ?tf))) 
:IC hard "Only chamfers and edge rounds can be transition features that blend the 
linear path of a round hole and some other shape aspect from another feature." 
 
 (=> (and (Cylinder ?c) 
   (Circular_Closed_Profile ?ccp) 
   (Linear_Path ?lin) 
   (holds_shape ?c ?ccp) 
   (holds_shape ?c ?lin) 
   (Transition_Feature ?tf) 
   (blends ?tf ?ccp) 
   (blends ?tf ?lin)) 
       (or (Chamfer ?tf) 
 (Constant_Radius_Edge_Round ?tf))) 
:IC hard "Only chamfers and edge rounds can be transition features that blend the 
linear path and the circular closed profile of a cylinder." 
 
 (=> (and (Block ?b) 
   (Rectangular_Closed_Profile ?rcp1) 
   (Rectangular_Closed_Profile ?rcp2) 
   (holds_shape ?b ?rcp1) 
   (holds_shape ?b ?rcp2) 
   (Transition_Feature ?tf) 
   (blends ?tf ?rcp1) 
   (blends ?tf ?rcp2)) 
       (or (Chamfer ?tf) 
 (Constant_Radius_Edge_Round ?tf))) 
:IC hard "Only chamfers and edge rounds can be transition features that blend two of 
the rectangular closed profiles of a block." 
 
 

C.2.6 Dimensional Tolerances 

Classes 

 
:Prop Dimensional_Tolerance 
:Inst Property 
:sup Core_Property 
:name "Dimensional Tolerance" 
:rem "(Dimensional_Tolerance ?dtol) is TRUE in an interpretation of the Foundation Layer if 
and only if ?dtol is a member of a set of dimensional tolerances." 
 
 

Relations 

 
:Rel holds_size_tolerance 
:Inst TernaryRel 
:Sig Shape_Aspect Dimensional_Tolerance Measure_Item 
:name "holds_size_tolerance" 
:rem "(holds_size_tolerance ?sa ?dtol ?mea) is TRUE in an interpretation of the Foundation 
Layer if and only if the shape aspect ?sa holds a given dimensional size tolerance ?dtol with 
respect to the toleranced measure item ?mea of ?sa." 
 
:Rel holds_location_tolerance 
:Inst QuaternaryRel 
:Sig Feature Dimensional_Tolerance Measure_Item Feature 



  
355 

:name "holds_location_tolerance" 
:rem "(holds_location_tolerance ?f1 ?dtol ?mea ?f2) is TRUE in an interpretation of the 
Foundation Layer if and only if the feature ?f1 holds a given dimensional location tolerance 
?dtol with respect to the toleranced measure item ?mea that separates feature ?f1 from 
another feature ?f2." 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Functions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:Fun tolerance_value 
:Inst BinaryFun 
:Sig Measure_Item Measure_Item -> Dimensional_Tolerance 
:name "tolerance_value" 
:rem "(= ?dtol (tolerance_value ?mea1 ?mea2)) is TRUE in an interpretation of the 
Foundation Layer if and only if ?dtol is the dimensional tolerance whose lower-bound value 
(or minimum value) is given by the measure item ?mea1 and whose upper-bound value (or 
maximum value) is given by the measure item ?mea2." 
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Axioms 

 
(=> (Dimensional_Tolerance ?dtol) 
      (Core_Property ?dtol)) 
:IC hard "Dimensional tolerances are core properties." 
 
 (=> (holds_size_tolerance ?sa ?dtol ?mea) 
       (and (Shape_Aspect ?sa) 
               (Dimensional_Tolerance ?dtol) 
   (Measure_Item ?mea))) 
:IC hard "The holds_size_tolerance relation only holds between shape aspects, 
dimensional tolerances and measure items." 
     
 (=> (holds_location_tolerance ?f1 ?dtol ?mea ?f2) 
       (and (Feature ?f1) 
   (Feature ?f2) 
   (Dimensional_Tolerance ?dtol) 
   (Measure_Item ?mea))) 
:IC hard "The holds_location_tolerance relation only holds between features, 
dimensional tolerances and measure items." 
  
 (=> (and (Dimensional_Tolerance ?dtol) 
   (RootCtx.RealNumber ?real1) 
   (RootCtx.RealNumber ?real2) 
   (or (= ?dtol (tolerance_value (Foundation.mm ?real1) (Foundation.mm ?real2))) 
        (= ?dtol (tolerance_value (Foundation.degree ?real1) (Foundation.degree 
?real2))))) 
        (ltNum ?real1 ?real2)) 
:IC hard "The lowerbound value of a dimensional tolerance is always numerically less 
than that of its upperbound value." 
 
 (=> (and (Dimensional_Tolerance ?dtol) 
   (RootCtx.RealNumber ?real1) 
   (RootCtx.RealNumber ?real2)) 
       (not (or (= ?dtol (tolerance_value (Foundation.mm ?real1) (Foundation.degree ?real2))) 
       (= ?dtol (tolerance_value (Foundation.degree ?real1) (Foundation.mm ?real2)))))) 
:IC hard "Both the lowerbound value and upperbound value of a dimensional tolerance 
have the same unit of measurement function." 
     
 (=> (Dimensional_Tolerance ?dtol) 
       (exists (?mea1 ?mea2) 
 (and (Measure_Item ?mea1) 
         (Measure_Item ?mea2) 
         (= ?dtol (tolerance_value ?mea1 ?mea2))))) 
:IC hard "Every dimensional tolerance is given by some lowerbound and upperbound 
measure value." 
 
 (=> (and (Circular_Closed_Profile ?ccp) 
   (Length_Measure ?length) 
   (measures ?ccp ?length) 
   (Dimensional_Tolerance ?stol1) 
   (Dimensional_Tolerance ?stol2) 
   (holds_size_tolerance ?ccp ?stol1 ?length) 
   (holds_size_tolerance ?ccp ?stol2 ?length)) 
       (= ?stol1 ?stol2)) 
:IC hard "A circular closed profile can only hold a unique size tolerance." 
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 (=> (and (Rectangular_Closed_Profile ?rcp) 
   (Length_Measure ?length1) 
   (Length_Measure ?length2) 
   (measures ?rcp ?length1) 
   (measures ?rcp ?length2) 
   (Dimensional_Tolerance ?stol1) 
   (Dimensional_Tolerance ?stol2) 
   (holds_size_tolerance ?rcp ?stol1 ?length1) 
   (holds_size_tolerance ?rcp ?stol2 ?length2)) 
       (or (= ?stol1 ?stol2) 
 (/= ?stol1 ?stol2))) 
:IC hard "A rectangular closed profile can hold only two size tolerances." 
 
 (=> (and (Linear_Path ?lin) 
   (Length_Measure ?length) 
   (measures ?lin ?length) 
   (Dimensional_Tolerance ?stol1) 
   (Dimensional_Tolerance ?stol2) 
   (holds_size_tolerance ?lin ?stol1 ?length) 
   (holds_size_tolerance ?lin ?stol2 ?length)) 
       (= ?stol1 ?stol2)) 
:IC hard "A linear path can only hold a unique size tolerance." 
 
 (=> (and (Taper ?tap) 
   (Angle_Measure ?angle) 
   (measures ?tap ?angle) 
   (Dimensional_Tolerance ?stol1) 
   (Dimensional_Tolerance ?stol2) 
   (holds_size_tolerance ?tap ?stol1 ?angle) 
   (holds_size_tolerance ?tap ?stol2 ?angle)) 
       (= ?stol1 ?stol2)) 
:IC hard "A taper can only hold a unique size tolerance." 
 
 (=> (and (Linear_Profile ?lp) 
   (Length_Measure ?length) 
   (measures ?lp ?length) 
   (Dimensional_Tolerance ?stol1) 
   (Dimensional_Tolerance ?stol2) 
   (holds_size_tolerance ?lp ?stol1 ?length) 
   (holds_size_tolerance ?lp ?stol2 ?length)) 
       (= ?stol1 ?stol2)) 
:IC hard "A linear profile can only hold a unique size tolerance." 
 
 (=> (and (Round_Hole ?hole) 
   (Circular_Closed_Profile ?ccp1) 
   (Circular_Closed_Profile ?ccp2) 
   (Dimensional_Tolerance ?stol1) 
   (Length_Measure ?length1) 
   (Length_Measure ?length2) 
   (holds_shape ?hole ?ccp1) 
   (holds_shape ?hole ?ccp2) 
   (measures ?ccp1 ?length1) 
   (measures ?ccp2 ?length2) 
   (holds_size_tolerance ?ccp1 ?stol1 ?length1) 
   (not (exists (?stol2) 
        (and (Dimensional_Tolerance ?stol2) 
    (holds_size_tolerance ?ccp2 ?stol2 ?length2) 
    (/= ?stol1 ?stol2))))) 
       (holds_size_tolerance ?ccp2 ?stol1 ?length2)) 
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:IC soft "If one of the circular closed profiles of a round hole has a size tolerance while 
the other does not, then the same size tolerance may apply to the non-toleranced 
circular closed profile of the hole." 
 
 (=> (and (Cylinder ?c) 
   (Circular_Closed_Profile ?ccp1) 
   (Circular_Closed_Profile ?ccp2) 
   (Dimensional_Tolerance ?stol1) 
   (Length_Measure ?length1) 
   (Length_Measure ?length2) 
   (holds_shape ?c ?ccp1) 
   (holds_shape ?c ?ccp2) 
   (measures ?ccp1 ?length1) 
   (measures ?ccp2 ?length2) 
   (holds_size_tolerance ?ccp1 ?stol1 ?length1) 
   (not (exists (?stol2) 
        (and (Dimensional_Tolerance ?stol2) 
    (holds_size_tolerance ?ccp2 ?stol2 ?length2) 
    (/= ?stol1 ?stol2))))) 
        (holds_size_tolerance ?ccp2 ?stol1 ?length2)) 
:IC soft "If one of the circular closed profiles of a cylinder has a size tolerance while the 
other does not, then the same size tolerance may apply to the non-toleranced circular 
closed profile of the cylinder." 
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C.3 Flow Objects 

Relations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
:Rel flow_object 
:Inst UnaryRel 
:Sig Object 
:name "flow_object" 
:rem "(flow_object ?flow) is TRUE in an interpretation of the Foundation Layer if and only if 
?flow is an object that participates as a precondition and/or postcondition on activity 
occurrences." 
 
:Rel explicit 
:Inst UnaryRel 
:Sig Object 
:name "explicit" 
:rem "(explicit ?flow) is TRUE in an interpretation of the Foundation Layer if and only if the 
flow object ?flow has been explicitly defined using the relevant necessary conditions. The 
?flow object must be an explicitly defined shape aspect, feature or artifact that the user 
asserts." 
 
:Rel implicit 
:Inst UnaryRel 
:Sig Object 
:name "implicit" 
:rem "(implicit ?flow) is TRUE in an interpretation of the Foundation Layer if and only if the 
flow object ?flow has not been explicitly defined using the relevant necessary conditions. The 
?flow object is not an explicitly defined shape aspect, feature or artifact that the user asserts." 
 
:Rel input 
:Inst BinaryRel 
:Sig Object Activity_Occurrence 
:name "input" 
:rem "(input ?flow ?occ) is TRUE in an interpretation of the Foundation Layer if and only if the 
flow object ?flow is a precondition to an activity occurrence ?occ, which demands that the flow 
object ?flow is made available to the activity occurrence ?occ in a given way." 
 
:Rel output 
:Inst BinaryRel 
:Sig Object Activity_Occurrence 
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:name "output" 
:rem "(output ?flow ?occ) is TRUE in an interpretation of the Foundation Layer if and only if 
the flow object ?flow is a postcondition from an activity occurrence ?occ, where the flow 
object ?flow can participate in other activity occurrences." 
 
 

Axioms 

 
 (=> (flow_object ?flow) 
       (Object ?flow)) 
:IC hard "The relation flow_object only holds for objects." 
 
 (=> (input ?flow ?occ) 
       (and (Object ?flow) 
   (flow_object ?flow) 
   (Activity_Occurrence ?occ))) 
:IC hard "The input relation only holds between flow objects and activity occurrences."
  
(=> (output ?flow ?occ) 
      (and (Object ?flow) 
  (flow_object ?flow) 
  (Activity_Occurrence ?occ))) 
:IC hard "The output relation only holds between flow objects and activity occurrences." 
 
 (=> (explicit ?flow) 
       (and (Object ?flow) 
   (flow_object ?flow))) 
:IC hard "The relation explicit only holds for flow objects." 
     
 (=> (implicit ?flow) 
       (and (Object ?flow) 
   (flow_object ?flow))) 
:IC hard "The relation implicit only holds for flow objects." 
 
 (=> (and (Object ?flow) 
   (flow_object ?flow) 
   (Activity_Occurrence ?occ2) 
   (input ?flow ?occ2)) 
       (or (exists (?occ1 ?a) 
       (and (Activity_Occurrence ?occ1) 
   (Activity ?a) 
   (output ?flow ?occ1) 
   (or (min_precedes ?occ1 ?occ2 ?a) 
        (next_subocc ?occ1 ?occ2 ?a)) 
   (/= ?occ1 ?occ2))) 
 (exists (?occ) 
       (and (Activity_Occurrence ?occ) 
   (input ?flow ?occ) 
   (subactivity_occurrence ?occ2 ?occ) 
   (/= ?occ2 ?occ))))) 
:IC hard "An activity occurrence that depends on an input flow object must be either 
executed after another activity occurrence has provided the input as an output flow 
object or participate in a complex activity occurrence that requires the flow object as 
an input." 
 
 (=> (and (Object ?flow) 
   (flow_object ?flow)) 
       (or (Shape_Aspect ?flow) 
 (Feature ?flow) 
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 (Artifact ?flow))) 
:IC hard "A flow object is a shape aspect, feature or artifact." 
 
 (=> (and (Object ?flow) 
   (flow_object ?flow)) 
       (or (explicit ?flow) 
 (implicit ?flow))) 
:IC hard "A flow object is either an explicitly or implicitly defined object." 
 
 (=> (and (Object ?flow) 
   (flow_object ?flow) 
   (implicit ?flow)) 
       (not (explicit ?flow))) 
:IC hard "An implicit flow object cannot be an explicitly defined object." 
 
 (=> (and (Object ?flow) 
   (flow_object ?flow) 
   (explicit ?flow)) 
       (not (implicit ?flow))) 
:IC hard "An explicit flow object cannot be an implicitly defined object." 
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C.4 Controlled Specialisation Approach 

Relations 

:Rel holdsArg 
:Inst TernaryRel 
:Sig Relation PosInt Property 
:name "holdsArg" 
:rem "(holdsArg ?rel ?posInt ?prop) applies if and only if the relation ?rel is an applicable 
relation that holds for a given argument position ?posInt the argument ?prop. holdsArg is a 
system relation that binds semantic mapping relations to cross-domain arguments in the order 
that they appear." 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Axioms 

 
(=> (and (RootCtx.Relation ?rel) 
  (RootCtx.withinContext ?rel Foundation) 
  (not (RootCtx.Property ?rel))) 
      (not (exists (?subrel) 
       (and (RootCtx.Relation ?subrel) 
   (RootCtx.supRel ?subrel ?rel))))) 
:IC hard "Subsumptions involving foundation relations are not permitted." 
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D Domain Ontology Layer 

D.1 Machining Hole Feature Ontology A 

Context Declaration 

 
:Ctx machiningHoleFeatureOntologyA 
:Inst UserContext 
:supCtx TopUserCtx 
:name "Context for the Machining Hole Feature Ontology A" 
:rem "This context explores the integrity-driven domain ontology development for hole 
features defined from a machining process viewpoint using the semantics from the 
Foundation Layer." 
 
:Use machiningHoleFeatureOntologyA 
 
 

Classes 

 
:Prop Housing_Part_Family 
:Inst Property 
:sup Foundation.Artifact 
:name "Housing_Part_Family" 
:rem "A housing part family is a type of artifact which is manufactured through a series of 
turning and hole making machining processes." 
 
:Prop Centre_Drilled_Hole 
:Inst Property 
:sup Foundation.Round_Hole 
:name "Centre_Drilled_Hole" 
:rem "A centre drilled hole is a round hole feature which is machined using a centre drilling 
process." 
  
:Prop Counterbore 
:Inst Property 
:sup Foundation.Round_Hole 
:name "Counterbore" 
:rem "A counterbore is a round hole feature which is machined using a counterboring 
process." 
  
:Prop Counterbore_Hole 
:Inst Property 
:sup Foundation.Feature 
:name "Counterbore_Hole" 
:rem "A counterbore hole is a compound hole feature which is machined using a sequence of 
centre-drilling, followed by drilling, followed by counterboring processes." 
 
:Prop Drilled_Hole 
:Inst Property 
:sup Foundation.Round_Hole 
:name "Drilled_Hole" 
:rem "A drilled hole is a round hole feature which is machined using a sequence of centre-
drilling, followed by drilling processes." 
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:Prop Turned_Boss 
:Inst Property 
:sup Foundation.Cylinder 
:name "Turned_Boss" 
:rem "A turned boss is a cylindrical feature which makes up a housing and is machined using 
turning processes." 
 
:Prop Turned_Flange 
:Inst Property 
:sup Foundation.Cylinder 
:name "Turned_Flange" 
:rem "A turned flange is a cylindrical feature which makes up a housing and is machined 
using turning processes." 
 
:Prop Reamed_Hole 
:Inst Property 
:sup Foundation.Round_Hole 
:name "Reamed_Hole" 
:rem "A reamed hole is a round hole feature which is machined using a sequence of centre-
drilling, followed by drilling, followed by reaming processes." 
  
:Prop Drilled_Hole_Depth 
:Inst Property 
:sup Foundation.Length_Measure 
:name "Drilled_Hole_Depth" 
:rem "A drilled hole depth is the length measure for the overall depth of a drilled hole." 
  
:Prop Drilled_Hole_Diameter 
:Inst Property 
:sup Foundation.Length_Measure 
:name "Drilled_Hole_Diameter" 
:rem "A drilled hole diameter is the length measure for the diameter of a drilled hole." 
 
:Prop Counterbore_Depth 
:Inst Property 
:sup Foundation.Length_Measure 
:name "Counterbore_Depth" 
:rem "A counterbore depth is the length measure for the depth of a counterbore." 
  
:Prop Counterbore_Diameter 
:Inst Property 
:sup Foundation.Length_Measure 
:name "Counterbore_Diameter" 
:rem "A counterbore diameter is the length measure for the diameter of a counterbore." 
  
:Prop Reamed_Hole_Depth 
:Inst Property 
:sup Foundation.Length_Measure 
:name "Reamed_Hole_Depth" 
:rem "A reamed hole depth is the length measure for the overall depth of a reamed hole." 
  
:Prop Reamed_Hole_Diameter 
:Inst Property 
:sup Foundation.Length_Measure 
:name "Reamed_Hole_Diameter" 
:rem "A reamed hole diameter is the length measure for the diameter of a reamed hole." 
 
:Prop Centre_Drilling 
:Inst Property 
:sup Foundation.Activity 
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:name "Centre_Drilling" 
:rem "A centre drilling activity is a reusable process behaviour whose occurrences produce 
centre-drilled holes as outputs. An occurrence of a centre drilling activity, for which a centre 
drilled hole is output, is an atomic activity occurrence." 
 
:Prop Counterboring 
:Inst Property 
:sup Foundation.Activity 
:name "Counterboring" 
:rem "A counterboring activity is a reusable process behaviour whose occurrences produce 
centre-drilled holes as outputs. An occurrence of a counterboring activity, for which a 
counterbore is output, is an atomic activity occurrence." 
 
:Prop Drilling 
:Inst Property 
:sup Foundation.Activity 
:name "Drilling" 
:rem "A drilling activity is a reusable process behaviour whose occurrences produce drilled 
holes as outputs. An occurrence of a drilling activity, for which a drilled hole is output, is an 
atomic activity occurrence." 
 
:Prop Reaming 
:Inst Property 
:sup Foundation.Activity 
:name "Reaming" 
:rem "A reaming activity is a reusable process behaviour whose occurrences produce reamed 
holes as outputs. An occurrence of a reaming activity, for which a reamed hole is output, is an 
atomic activity occurrence." 
 
:Prop Counterbore_Hole_Making 
:Inst Property 
:sup Foundation.Activity 
:name "Counterbore_Hole_Making" 
:rem "A counterbore hole making activity is a reusable process behaviour whose occurrences 
produce counterbore holes as outputs. An occurrence of a counterbore hole making activity, 
for which a counterbore hole is output, is a complex process sequence involving an 
occurrence of centre-drilling, followed by an occurrence of drilling, followed by an occurrence 
of counterboring." 
 
:Prop Reamed_Hole_Making 
:Inst Property 
:sup Foundation.Activity 
:name "Reamed_Hole_Making" 
:rem "A reamed hole making activity is a reusable process behaviour whose occurrences 
produce reamed holes as outputs. An occurrence of a reamed hole making activity, for which 
a reamed hole is output, is a complex process sequence involving an occurrence of centre-
drilling, followed by an occurrence of drilling, followed by an occurrence of reaming." 
 
:Prop Aluminium 
:Inst Property 
:sup Foundation.Material 
:name "Aluminium" 
:rem "Aluminium is a material that represents the chemical element aluminium, which is a 
silvery ductile metallic element found primarily in bauxite." 
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Functions 

 
:Fun inch 
:Inst UnaryFun 
:Sig RealNumber -> Foundation.Length_Measure 
:name "inch" 
:rem "(= ?length (inch ?real)) is used to denote the value of a length measure in inches." 
 
 

Axioms 

 
(=> (Housing_Part_Family ?house) 
      (exists (?flange ?boss ?cbore ?dhole ?rhole) 
 (and (Turned_Flange ?flange) 
         (Turned_Boss ?boss) 
         (Counterbore_Hole ?cbore) 
         (Drilled_Hole ?dhole) 
         (Reamed_Hole ?rhole) 
         (Foundation.holds_feature ?house ?flange) 
         (Foundation.holds_feature ?house ?boss) 
         (Foundation.holds_feature ?house ?cbore) 
         (Foundation.holds_feature ?house ?dhole) 
         (Foundation.holds_feature ?house ?rhole)))) 
:IC hard "Every housing has some compulsory turned flange, turned boss, counterbore 
hole, drilled hole and reamed hole as features present on the housing." 
 
(=> (Housing_Part_Family ?house) 
      (exists (?al) 
 (and (Aluminium ?al) 
         (Foundation.holds_material ?house ?al)))) 
:IC hard "Every housing is made up of some aluminium material." 
  
(=> (and (Centre_Drilled_Hole ?cDrillHole) 
  (Foundation.flow_object ?cDrillHole)) 
      (exists (?cDrill ?cDrillOcc) 
 (and (Centre_Drilling ?cDrill) 
         (Foundation.Activity_Occurrence ?cDrillOcc) 
         (Foundation.occurrence_of ?cDrillOcc ?cDrill) 
         (Foundation.output ?cDrillHole ?cDrillOcc)))) 
:IC soft "Every centre drilled hole that is a flow object is an output from a potential 
occurrence of a centre drilling activity." 
 
(=> (Counterbore ?chole) 
      (exists (?ccp1 ?ccp2 ?cdia1 ?cdia2) 
 (and (Foundation.Circular_Closed_Profile ?ccp1) 
         (Foundation.Circular_Closed_Profile ?ccp2) 
         (Foundation.holds_shape ?chole ?ccp1) 
         (Foundation.holds_shape ?chole ?ccp2) 
         (Counterbore_Diameter ?cdia1) 
         (Counterbore_Diameter ?cdia2) 
         (Foundation.measures ?ccp1 ?cdia1) 
         (Foundation.measures ?ccp2 ?cdia2) 
         (= ?cdia1 ?cdia2)))) 
:IC hard "Every counterbore holds exactly two circular closed profiles of identical 
counterbore diameter." 
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(=> (Counterbore ?chole) 
      (exists (?lin ?cdepth) 
 (and (Foundation.Linear_Path ?lin) 
                     (Foundation.holds_shape ?chole ?lin) 
                     (Counterbore_Depth ?cdepth) 
         (Foundation.measures ?lin ?cdepth)))) 
:IC hard "Every counterbore holds exactly one linear path of counterbore depth." 
  
(=> (and (Counterbore ?chole) 
   (Foundation.flow_object ?chole)) 
      (exists (?cbore ?cboreOcc) 
 (and (Counterboring ?cbore) 
         (Foundation.Activity_Occurrence ?cboreOcc) 
         (Foundation.occurrence_of ?cboreOcc ?cbore) 
         (Foundation.output ?chole ?cboreOcc)))) 
:IC soft "Every counterbore that is a flow object is an output from a potential 
occurrence of a counterboring activity." 
 
(=> (Counterbore_Hole ?cbhole) 
      (Foundation.compound ?cbhole)) 
:IC hard "A counterbore hole is a compound feature." 
 
(=> (Counterbore_Hole ?cbhole) 
      (exists (?dhole ?chole) 
 (and (Drilled_Hole ?dhole) 
         (Counterbore ?chole) 
         (Foundation.element_of ?dhole ?cbhole) 
         (Foundation.element_of ?chole ?cbhole)))) 
:IC hard "Every counterbore hole involves a drilled hole and a counterbore which are 
elements of the counterbore hole." 
 
(=> (and (Counterbore_Hole ?cbhole) 
   (Drilled_Hole ?dhole) 
   (Foundation.element_of ?dhole ?cbhole)) 
      (Foundation.base ?dhole)) 
:IC hard "The drilled hole of a counterbore hole is the base feature of the counterbore 
hole." 
 
(=> (and (Counterbore_Hole ?cbhole) 
  (Drilled_Hole ?dhole) 
  (Counterbore ?chole) 
  (Foundation.element_of ?dhole ?cbhole) 
  (Foundation.element_of ?chole ?cbhole) 
  (Foundation.Circular_Closed_Profile ?ccp1) 
  (Foundation.Circular_Closed_Profile ?ccp2) 
  (Foundation.holds_shape ?dhole ?ccp1) 
  (Foundation.holds_shape ?chole ?ccp2)) 
       (exists (?real1 ?real2) 
 (and (RootCtx.RealNumber ?real1) 
         (RootCtx.RealNumber ?real2) 
         (Foundation.measures ?ccp1 (Foundation.mm ?real1)) 
         (Foundation.measures ?ccp2 (Foundation.mm ?real2)) 
         (/= ?real1 ?real2) 
         (gtNum ?real2 ?real1)))) 
:IC hard "The counterbore element of a counterbore hole has a diameter value which is 
always greater than that of the drilled hole element of the same counterbore hole." 
   
(=> (and (Counterbore_Hole ?cbhole) 
  (Drilled_Hole ?dhole) 
  (Counterbore ?chole) 
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  (Foundation.element_of ?dhole ?cbhole) 
  (Foundation.element_of ?chole ?cbhole) 
  (Foundation.Linear_Path ?lin1) 
  (Foundation.Linear_Path ?lin2) 
  (Foundation.holds_shape ?dhole ?lin1) 
  (Foundation.holds_shape ?chole ?lin2)) 
       (exists (?real1 ?real2) 
 (and (RootCtx.RealNumber ?real1) 
         (RootCtx.RealNumber ?real2) 
         (Foundation.measures ?lin1 (Foundation.mm ?real1)) 
         (Foundation.measures ?lin2 (Foundation.mm ?real2)) 
         (/= ?real1 ?real2) 
         (gtNum ?real1 ?real2)))) 
:IC hard "The drilled hole element of a counterbore hole has a depth value which is 
always greater than that of the counterbore element of the same counterbore hole." 
   
 (=> (and (Counterbore_Hole ?cbhole) 
  (Foundation.flow_object ?cbhole)) 
       (exists (?cboreMake ?cboreMakeOcc) 
 (and (Counterbore_Hole_Making ?cboreMake) 
         (Foundation.Activity_Occurrence ?cboreMakeOcc) 
         (Foundation.occurrence_of ?cboreMakeOcc ?cboreMake) 
         (Foundation.output ?cbhole ?cboreMakeOcc)))) 
:IC soft "Every compound counterbore hole that is a flow object is an output from a 
potential occurrence of a complex counterbore hole making activity." 
  
(=> (Drilled_Hole ?dhole) 
      (exists (?ccp1 ?ccp2 ?dhdia1 ?dhdia2) 
 (and (Foundation.Circular_Closed_Profile ?ccp1) 
         (Foundation.Circular_Closed_Profile ?ccp2) 
         (Foundation.holds_shape ?dhole ?ccp1) 
         (Foundation.holds_shape ?dhole ?ccp2) 
         (Drilled_Hole_Diameter ?dhdia1) 
         (Drilled_Hole_Diameter ?dhdia2) 
         (Foundation.measures ?ccp1 ?dhdia1) 
         (Foundation.measures ?ccp2 ?dhdia2) 
         (= ?dhdia1 ?dhdia2)))) 
:IC hard "Every drilled hole holds exactly two circular closed profiles of identical drilled 
hole diameter." 
 
(=> (Drilled_Hole ?dhole) 
      (exists (?lin ?dhdepth) 
 (and (Foundation.Linear_Path ?lin) 
         (Foundation.holds_shape ?dhole ?lin) 
         (Drilled_Hole_Depth ?dhdepth) 
         (Foundation.measures ?lin ?dhdepth)))) 
:IC hard "Every drilled hole holds exactly one linear path of drilled hole depth." 
  
(=> (and (Drilled_Hole ?dhole) 
  (Foundation.flow_object ?dhole)) 
      (exists (?drill ?drillOcc) 
  (and (Drilling ?drill) 
          (Foundation.Activity_Occurrence ?drillOcc) 
          (Foundation.occurrence_of ?drillOcc ?drill) 
          (Foundation.output ?dhole ?drillOcc)))) 
:IC soft "Every drilled hole that is a flow object is an output from a potential occurrence 
of a drilling activity." 
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(=> (Reamed_Hole ?rhole) 
      (exists (?ccp1 ?ccp2 ?rhdia1 ?rhdia2) 
 (and (Foundation.Circular_Closed_Profile ?ccp1) 
         (Foundation.Circular_Closed_Profile ?ccp2) 
         (Foundation.holds_shape ?rhole ?ccp1) 
         (Foundation.holds_shape ?rhole ?ccp2) 
         (Reamed_Hole_Diameter ?rhdia1) 
         (Reamed_Hole_Diameter ?rhdia2) 
         (Foundation.measures ?ccp1 ?rhdia1) 
         (Foundation.measures ?ccp2 ?rhdia2) 
         (= ?rhdia1 ?rhdia2)))) 
:IC hard "Every reamed hole holds exactly two circular closed profiles of identical 
reamed hole diameter." 
 
(=> (Reamed_Hole ?rhole) 
      (exists (?lin ?rhdepth) 
 (and (Foundation.Linear_Path ?lin) 
         (Foundation.holds_shape ?rhole ?lin) 
        (Reamed_Hole_Depth ?rhdepth) 
        (Foundation.measures ?lin ?rhdepth)))) 
:IC hard "Every reamed hole holds exactly one linear path of reamed hole depth." 
 
(=> (and (Reamed_Hole ?rhole) 
  (Foundation.Linear_Path ?lin) 
  (Foundation.Circular_Closed_Profile ?ccp) 
  (Foundation.through ?ccp) 
  (Foundation.holds_shape ?rhole ?lin) 
  (Foundation.holds_shape ?rhole ?ccp)) 
       (exists (?chf1 ?chf2) 
 (and (Foundation.Chamfer ?chf1) 
         (Foundation.Chamfer ?chf2) 
         (Foundation.blends ?chf1 ?lin) 
         (Foundation.blends ?chf2 ?lin)))) 
:IC hard "Every reamed hole that has a through hole bottom condition requires two 
chamfers that blend the linear path of the reamed hole." 
  
(=> (and (Reamed_Hole ?rhole) 
  (Foundation.flow_object ?rhole)) 
       (exists (?rholeMake ?rholeMakeOcc ?ream ?reamOcc) 
 (and (Reamed_Hole_Making ?rholeMake) 
         (Reaming ?ream) 
         (Foundation.Activity_Occurrence ?rholeMakeOcc) 
         (Foundation.Activity_Occurrence ?reamOcc) 
         (Foundation.occurrence_of ?rholeMakeOcc ?rholeMake) 
         (Foundation.occurrence_of ?reamOcc ?ream) 
         (Foundation.output ?rhole ?rholeMakeOcc) 
         (Foundation.output ?rhole ?reamOcc)))) 
:IC soft "Every reamed hole that is a flow object is both an output from a potential 
occurrence of a complex reamed hole making activity and an output from a potential 
occurrence of an atomic reaming activity." 
  
(=> (and (Centre_Drilling ?cdrill) 
  (Foundation.Activity_Occurrence ?cdrillOcc) 
  (Foundation.occurrence_of ?cdrillOcc ?cdrill) 
  (Foundation.legal ?cdrillOcc) 
  (Drilling ?drill)) 
       (Foundation.legal (Foundation.successor ?drill ?cdrillOcc))) 
:IC soft "If an occurrence of centre drilling is allowed, then an occurrence of drilling 
immediately after it may be allowed." 
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(=> (and (Drilling ?drill) 
  (Foundation.Activity_Occurrence ?drillOcc) 
  (Foundation.occurrence_of ?drillOcc ?drill) 
  (Foundation.legal ?drillOcc) 
  (Counterboring ?cboring)) 
       (Foundation.legal (Foundation.successor ?cboring ?drillOcc))) 
:IC soft "If an occurrence of drilling is allowed, then an occurrence of counterboring 
immediately after it may be allowed." 
 
(=> (and (Drilling ?drill) 
  (Foundation.Activity_Occurrence ?drillOcc) 
  (Foundation.occurrence_of ?drillOcc ?drill) 
  (Foundation.legal ?drillOcc) 
  (Reaming ?ream)) 
       (Foundation.legal (Foundation.successor ?ream ?drillOcc))) 
:IC soft "If an occurrence of drilling is allowed, then an occurrence of reaming 
immediately after it may be allowed." 
 
(=> (and (Counterbore_Hole_Making ?cboreMake) 
  (Foundation.Activity_Occurrence ?cboreMakeOcc) 
  (Foundation.occurrence_of ?cboreMakeOcc ?cboreMake)) 
       (exists (?cDrill ?drill ?cDrillOcc ?drillOcc) 
 (and (Centre_Drilling ?cDrill) 
        (Drilling ?drill) 
        (Foundation.Activity_Occurrence ?cDrillOcc) 
        (Foundation.Activity_Occurrence ?drillOcc) 
        (Foundation.occurrence_of ?cDrillOcc ?cDrill) 
        (Foundation.occurrence_of ?drillOcc ?drill) 
        (Foundation.min_precedes ?cDrillOcc ?drillOcc ?cboreMake)))) 
:IC hard "An occurrence of centre drilling must precede an occurrence of drilling under 
a complex occurrence of counterbore hole making. Other behaviours under the 
complex counterbore hole making activity may occur in between." 
 
(=> (and (Counterbore_Hole_Making ?cboreMake) 
  (Foundation.Activity_Occurrence ?cboreMakeOcc) 
  (Foundation.occurrence_of ?cboreMakeOcc ?cboreMake)) 
       (exists (?drill ?cbore ?drillOcc ?cboreOcc) 
 (and (Drilling ?drill) 
         (Counterboring ?cbore) 
         (Foundation.Activity_Occurrence ?drillOcc) 
         (Foundation.Activity_Occurrence ?cboreOcc) 
         (Foundation.occurrence_of ?drillOcc ?drill) 
         (Foundation.occurrence_of ?cboreOcc ?cbore) 
         (Foundation.min_precedes ?drillOcc ?cboreOcc ?cboreMake)))) 
:IC hard "An occurrence of drilling must precede an occurrence of counterboring under 
a complex occurrence of counterbore hole making. Other behaviours under the 
complex counterbore hole making activity may occur in between." 
 
(=> (and (Counterbore_Hole_Making ?cboreMake) 
  (Foundation.Activity_Occurrence ?cboreMakeOcc) 
  (Foundation.occurrence_of ?cboreMakeOcc ?cboreMake)) 
       (exists (?cDrill ?cDrillOcc) 
 (and (Centre_Drilling ?cDrill) 
         (Foundation.subactivity ?cDrill ?cboreMake) 
         (Foundation.Activity_Occurrence ?cDrillOcc) 
         (Foundation.occurrence_of ?cDrillOcc ?cDrill) 
         (Foundation.subactivity_occurrence ?cDrillOcc ?cboreMakeOcc) 
         (Foundation.root_occ ?cDrillOcc ?cboreMakeOcc)))) 
:IC hard "An occurrence of centre drilling under a complex occurrence of counterbore 
hole making must be at the extreme beginning of the complex occurrence." 
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(=> (and (Counterbore_Hole_Making ?cboreMake) 
  (Foundation.Activity_Occurrence ?cboreMakeOcc) 
  (Foundation.occurrence_of ?cboreMakeOcc ?cboreMake)) 
       (exists (?cbore ?cboreOcc) 
 (and (Counterboring ?cbore) 
         (Foundation.subactivity ?cbore ?cboreMake) 
         (Foundation.Activity_Occurrence ?cboreOcc) 
         (Foundation.occurrence_of ?cboreOcc ?cbore) 
         (Foundation.subactivity_occurrence ?cboreOcc ?cboreMakeOcc) 
         (Foundation.leaf_occ ?cboreOcc ?cboreMakeOcc)))) 
:IC hard "An occurrence of counterboring under a complex occurrence of counterbore 
hole making must be at the extreme end of the complex occurrence." 
 
(=> (and (Reamed_Hole_Making ?rholeMake) 
  (Foundation.Activity_Occurrence ?rholeMakeOcc) 
  (Foundation.occurrence_of ?rholeMakeOcc ?rholeMake)) 
       (exists (?cDrill ?drill ?cDrillOcc ?drillOcc) 
 (and (Centre_Drilling ?cDrill) 
         (Drilling ?drill) 
         (Foundation.Activity_Occurrence ?cDrillOcc) 
         (Foundation.Activity_Occurrence ?drillOcc) 
         (Foundation.occurrence_of ?cDrillOcc ?cDrill) 
         (Foundation.occurrence_of ?drillOcc ?drill) 
         (Foundation.min_precedes ?cDrillOcc ?drillOcc ?rholeMake)))) 
:IC hard "An occurrence of centre drilling must precede an occurrence of drilling under 
a complex occurrence of reamed hole making. Other behaviours under the complex 
reamed hole making activity may occur in between." 
 
(=> (and (Reamed_Hole_Making ?rholeMake) 
  (Foundation.Activity_Occurrence ?rholeMakeOcc) 
  (Foundation.occurrence_of ?rholeMakeOcc ?rholeMake)) 
       (exists (?drill ?ream ?drillOcc ?reamOcc) 
 (and (Drilling ?drill) 
         (Reaming ?ream) 
         (Foundation.Activity_Occurrence ?drillOcc) 
         (Foundation.Activity_Occurrence ?reamOcc) 
         (Foundation.occurrence_of ?drillOcc ?drill) 
         (Foundation.occurrence_of ?reamOcc ?ream) 
         (Foundation.min_precedes ?drillOcc ?reamOcc ?rholeMake)))) 
:IC hard "An occurrence of drilling must precede an occurrence of reaming under a 
complex occurrence of reamed hole making. Other behaviours under the complex 
reamed hole making activity may occur in between." 
 
(=> (and (Reamed_Hole_Making ?rholeMake) 
  (Foundation.Activity_Occurrence ?rholeMakeOcc) 
  (Foundation.occurrence_of ?rholeMakeOcc ?rholeMake)) 
       (exists (?cDrill ?cDrillOcc) 
 (and (Centre_Drilling ?cDrill) 
         (Foundation.subactivity ?cDrill ?rholeMake) 
         (Foundation.Activity_Occurrence ?cDrillOcc) 
         (Foundation.occurrence_of ?cDrillOcc ?cDrill) 
         (Foundation.subactivity_occurrence ?cDrillOcc ?rholeMakeOcc) 
         (Foundation.root_occ ?cDrillOcc ?rholeMakeOcc)))) 
:IC hard "An occurrence of centre drilling under a complex occurrence of reamed hole 
making must be at the extreme beginning of the complex occurrence." 
 
(=> (and (Reamed_Hole_Making ?rholeMake) 
  (Foundation.Activity_Occurrence ?rholeMakeOcc) 
  (Foundation.occurrence_of ?rholeMakeOcc ?rholeMake)) 
      (exists (?ream ?reamOcc) 
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 (and (Reaming ?ream) 
         (Foundation.subactivity ?ream ?rholeMake) 
         (Foundation.Activity_Occurrence ?reamOcc) 
         (Foundation.occurrence_of ?reamOcc ?ream) 
         (Foundation.subactivity_occurrence ?reamOcc ?rholeMakeOcc) 
         (Foundation.leaf_occ ?reamOcc ?rholeMakeOcc)))) 
:IC hard "An occurrence of reaming under a complex occurrence of reamed hole 
making must be at the extreme end of the complex occurrence." 
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D.2 Design Hole Feature Ontology A 

Context Declaration  

 
:Ctx designHoleFeatureOntologyA 
:Inst UserContext 
:supCtx TopUserCtx 
:name "Context for the Design Hole Feature Ontology A" 
:rem "This context captures an ontology for hole features defined from a functional design 
viewpoint using the semantics from the Foundation Layer." 
 
:Use designHoleFeatureOntologyA 
 

Classes 

 
:Prop Housing_Part_Family 
:Inst Property 
:sup Foundation.Artifact 
:name "Housing_Part_Family" 
:rem "A housing part family is a type of artifact which is manufactured through a series of 
turning and hole making machining processes." 
 
:Prop Bolt_Hole 
:Inst Property 
:sup Foundation.Feature 
:name "Bolt_Hole" 
:rem "A bolt hole is a compound hole feature which is composed of a plain diameter hole and 
a secondary hole." 
  
:Prop Boss 
:Inst Property 
:sup Foundation.Cylinder 
:name "Boss" 
:rem "A boss is a cylinder of compound property which is composed of a cylinder and a round 
hole." 
 
:Prop External_Flange 
:Inst Property 
:sup Foundation.Cylinder 
:name "External_Flange" 
:rem "An external flange is a cylindrical feature which makes up a housing." 
  
:Prop Locating_Pin_Hole 
:Inst Property 
:sup Foundation.Round_Hole 
:name "Locating_Pin_Hole" 
:rem "A locating pin hole is a round hole feature whose function is to provide an accurate 
positioning of a housing." 
  
:Prop Plain_Diameter_Hole 
:Inst Property 
:sup Foundation.Round_Hole 
:name "Plain_Diameter_Hole" 
:rem "A plain diameter hole is a round hole feature which may be a standalone hole or an 
element of a bolt hole." 
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:Prop Secondary_Hole 
:Inst Property 
:sup Foundation.Round_Hole 
:name "Secondary_Hole" 
:rem "A secondary hole is a round hole feature which is an element of a bolt hole." 
   
:Prop Boss_Height 
:Inst Property 
:sup Foundation.Length_Measure 
:name "Boss_Height" 
:rem "A boss height is the length measure for the height of a boss." 
  
:Prop Boss_Diameter 
:Inst Property 
:sup Foundation.Length_Measure 
:name "Boss_Diameter" 
:rem "A boss diameter is the length measure for the diameter of a boss." 
  
:Prop Flange_Thickness 
:Inst Property 
:sup Foundation.Length_Measure 
:name "Flange_Thickness" 
:rem "A flange thickness is the length measure for the height of an external flange." 
  
:Prop Flange_Diameter 
:Inst Property 
:sup Foundation.Length_Measure 
:name "Flange_Diameter" 
:rem "A flange diameter is the length measure for the diameter of an external flange." 
 
:Prop Primary_Depth 
:Inst Property 
:sup Foundation.Length_Measure 
:name "Primary_Depth" 
:rem "A primary depth is the length measure for the overall depth of a plain diameter hole or 
locating pin hole." 
  
:Prop Primary_Diameter 
:Inst Property 
:sup Foundation.Length_Measure 
:name "Primary_Diameter" 
:rem "A primary diameter is the length measure for the diameter of a plain diameter hole or 
locating pin hole." 
 
:Prop Secondary_Depth 
:Inst Property 
:sup Foundation.Length_Measure 
:name "Secondary_Depth" 
:rem "A secondary depth is the length measure for the depth of a secondary hole." 
  
:Prop Secondary_Diameter 
:Inst Property 
:sup Foundation.Length_Measure 
:name "Secondary_Diameter" 
:rem "A secondary diameter is the length measure for the diameter of a secondary hole." 
 
:Prop Aluminium 
:Inst Property 
:sup Foundation.Material 
:name "Aluminium" 
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:rem "Aluminium is a material that represents the chemical element aluminium, which is a 
silvery ductile metallic element found primarily in bauxite." 
 
:Prop Design_Function 
:Inst Property 
:sup Foundation.Function 
:name "Design_Function" 
:rem "A design function represents the intended purpose of a core entity defined in the Design 
Hole Feature Ontology A." 
 
 

Functions 

 
:Fun inch 
:Inst UnaryFun 
:Sig RealNumber -> Foundation.Length_Measure 
:name "inch" 
:rem "(= ?length (inch ?real)) is used to denote the value of a length measure in inches." 
 
 

Axioms 

 
(=> (and (Foundation.Feature ?f) 
  (RootCtx.withinContext ?f designHoleFeatureOntologyA) 
  (Foundation.Artifact ?art) 
  (RootCtx.withinContext ?art designHoleFeatureOntologyA)) 
       (exists (?func1 ?func2) 
 (and (Design_Function ?func1) 
         (Design_Function ?func2) 
         (Foundation.holds_function ?f ?func1) 
         (Foundation.holds_function ?art ?func2)))) 
:IC hard "Every instance of feature and artifact in the Design Hole Feature Ontology A 
holds some design function." 
 
(=> (Housing_Part_Family ?house) 
      (exists (?flange ?boss ?bhole ?phole ?lphole) 
 (and (External_Flange ?flange) 
         (Boss ?boss) 
         (Bolt_Hole ?bhole) 
         (Plain_Diameter_Hole ?phole) 
         (Locating_Pin_Hole ?lphole) 
         (Foundation.holds_feature ?house ?flange) 
         (Foundation.holds_feature ?house ?boss) 
         (Foundation.holds_feature ?house ?bhole) 
         (Foundation.holds_feature ?house ?phole) 
         (Foundation.holds_feature ?house ?lphole)))) 
:IC hard "Every housing has some compulsory external flange, boss, bolt hole, plain 
diameter hole and locating pin hole as features present on the housing." 
 
(=> (Housing_Part_Family ?house) 
      (exists (?al) 
 (and (Aluminium ?al) 
         (Foundation.holds_material ?house ?al)))) 
:IC hard "Every housing is made up of some aluminium material." 
  
(=> (Bolt_Hole ?bhole) 
      (Foundation.compound ?bhole)) 
:IC hard "A bolt hole is a compound feature." 
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(=> (Bolt_Hole ?bhole) 
      (exists (?phole ?shole) 
 (and (Plain_Diameter_Hole ?phole) 
         (Secondary_Hole ?shole) 
         (Foundation.element_of ?phole ?bhole) 
         (Foundation.element_of ?shole ?bhole)))) 
:IC hard "Every bolt hole involves a plain diameter hole and a secondary hole which are 
elements of the bolt hole." 
 
(=> (and (Bolt_Hole ?bhole) 
  (Plain_Diameter_Hole ?phole) 
  (Foundation.element_of ?phole ?bhole)) 
       (Foundation.base ?phole)) 
:IC hard "The plain diameter hole of a bolt hole is the base feature of the bolt hole." 
 
(=> (and (Bolt_Hole ?bhole) 
  (Plain_Diameter_Hole ?phole) 
  (Secondary_Hole ?shole) 
  (Foundation.element_of ?phole ?bhole) 
  (Foundation.element_of ?shole ?bhole) 
  (Foundation.Circular_Closed_Profile ?ccp1) 
  (Foundation.Circular_Closed_Profile ?ccp2) 
  (Foundation.holds_shape ?phole ?ccp1) 
  (Foundation.holds_shape ?shole ?ccp2)) 
       (exists (?real1 ?real2) 
 (and (RootCtx.RealNumber ?real1) 
         (RootCtx.RealNumber ?real2) 
         (Foundation.measures ?ccp1 (Foundation.mm ?real1)) 
         (Foundation.measures ?ccp2 (Foundation.mm ?real2)) 
         (/= ?real1 ?real2) 
         (gtNum ?real2 ?real1)))) 
:IC hard "The secondary hole element of a bolt hole has a diameter value which is 
always greater than that of the plain diameter hole element of the same bolt hole." 
   
(=> (Boss ?boss) 
      (Foundation.compound ?boss)) 
:IC hard "A boss is a compound feature." 
 
(=> (Boss ?boss) 
      (exists (?c ?rhole) 
 (and (Foundation.Cylinder ?c) 
         (Foundation.Round_Hole ?rhole) 
         (Foundation.element_of ?c ?boss) 
         (Foundation.element_of ?rhole ?boss)))) 
:IC hard "Every boss involves a cylinder and a round hole which are elements of the 
boss." 
 
(=> (and (Boss ?boss) 
  (Foundation.Cylinder ?c) 
  (Foundation.element_of ?c ?boss)) 
      (Foundation.base ?c)) 
:IC hard "The cylinder element of a boss is the base feature of the boss." 
  
(=> (Boss ?boss) 
      (exists (?ccp1 ?ccp2 ?bdia1 ?bdia2) 
 (and (Foundation.Circular_Closed_Profile ?ccp1) 
         (Foundation.Circular_Closed_Profile ?ccp2) 
         (Foundation.holds_shape ?boss ?ccp1) 
         (Foundation.holds_shape ?boss ?ccp2) 
         (Boss_Diameter ?bdia1) 
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         (Boss_Diameter ?bdia2) 
         (Foundation.measures ?ccp1 ?bdia1) 
         (Foundation.measures ?ccp2 ?bdia2) 
         (= ?bdia1 ?bdia2)))) 
:IC hard "Every boss holds exactly two circular closed profiles of identical boss 
diameter." 
 
(=> (Boss ?boss) 
      (exists (?lin ?bheight) 
 (and (Foundation.Linear_Path ?lin) 
         (Foundation.holds_shape ?boss ?lin) 
         (Boss_Height ?bheight) 
         (Foundation.measures ?lin ?bheight)))) 
:IC hard "Every boss holds exactly one linear path of boss height." 
 
(=> (External_Flange ?flange) 
      (exists (?ccp1 ?ccp2 ?fdia1 ?fdia2) 
 (and (Foundation.Circular_Closed_Profile ?ccp1) 
         (Foundation.Circular_Closed_Profile ?ccp2) 
         (Foundation.holds_shape ?flange ?ccp1) 
         (Foundation.holds_shape ?flange ?ccp2) 
         (Flange_Diameter ?fdia1) 
         (Flange_Diameter ?fdia2) 
         (Foundation.measures ?ccp1 ?fdia1) 
         (Foundation.measures ?ccp2 ?fdia2) 
        (= ?fdia1 ?fdia2)))) 
:IC hard "Every external flange holds exactly two circular closed profiles of identical 
flange diameter." 
 
(=> (External_Flange ?flange) 
      (exists (?lin ?fdepth) 
 (and (Foundation.Linear_Path ?lin) 
         (Foundation.holds_shape ?flange ?lin) 
         (Flange_Thickness ?fdepth) 
         (Foundation.measures ?lin ?fdepth)))) 
:IC hard "Every external flange holds exactly one linear path of flange thickness." 
  
(=> (Locating_Pin_Hole ?lphole) 
      (exists (?ccp1 ?ccp2 ?phdia1 ?phdia2) 
 (and (Foundation.Circular_Closed_Profile ?ccp1) 
         (Foundation.Circular_Closed_Profile ?ccp2) 
         (Foundation.holds_shape ?lphole ?ccp1) 
         (Foundation.holds_shape ?lphole ?ccp2) 
         (Primary_Diameter ?phdia1) 
         (Primary_Diameter ?phdia2) 
         (Foundation.measures ?ccp1 ?phdia1) 
         (Foundation.measures ?ccp2 ?phdia2) 
         (= ?phdia1 ?phdia2)))) 
:IC hard "Every locating pin hole holds exactly two circular closed profiles of identical 
primary diameter." 
 
(=> (Locating_Pin_Hole ?lphole) 
      (exists (?lin ?phdepth) 
 (and (Foundation.Linear_Path ?lin) 
         (Foundation.holds_shape ?lphole ?lin) 
         (Primary_Depth ?phdepth) 
         (Foundation.measures ?lin ?phdepth)))) 
:IC hard "Every locating pin hole holds exactly one linear path of primary depth." 
 
 



  
380 

(=> (and (Locating_Pin_Hole ?lphole) 
  (Foundation.Linear_Path ?lin) 
  (Foundation.Circular_Closed_Profile ?ccp) 
  (Foundation.through ?ccp) 
  (Foundation.holds_shape ?lphole ?lin) 
  (Foundation.holds_shape ?lphole ?ccp)) 
       (exists (?chf1 ?chf2) 
 (and (Foundation.Chamfer ?chf1) 
         (Foundation.Chamfer ?chf2) 
         (Foundation.blends ?chf1 ?lin) 
         (Foundation.blends ?chf2 ?lin)))) 
:IC hard "Every locating pin hole that has a through hole bottom condition requires two 
chamfers that blend the linear path of the reamed hole." 
  
(=> (Plain_Diameter_Hole ?phole) 
      (exists (?ccp1 ?ccp2 ?phdia1 ?phdia2) 
 (and (Foundation.Circular_Closed_Profile ?ccp1) 
         (Foundation.Circular_Closed_Profile ?ccp2) 
         (Foundation.holds_shape ?phole ?ccp1) 
         (Foundation.holds_shape ?phole ?ccp2) 
         (Primary_Diameter ?phdia1) 
         (Primary_Diameter ?phdia2) 
         (Foundation.measures ?ccp1 ?phdia1) 
         (Foundation.measures ?ccp2 ?phdia2) 
         (= ?phdia1 ?phdia2)))) 
:IC hard "Every plain diameter hole holds exactly two circular closed profiles of 
identical primary diameter." 
 
(=> (Plain_Diameter_Hole ?phole) 
      (exists (?lin ?phdepth) 
 (and (Foundation.Linear_Path ?lin) 
         (Foundation.holds_shape ?phole ?lin) 
         (Primary_Depth ?phdepth) 
         (Foundation.measures ?lin ?phdepth)))) 
:IC hard "Every plain diameter hole holds exactly one linear path of primary depth." 
  
(=> (Secondary_Hole ?shole) 
      (exists (?ccp1 ?ccp2 ?sdia1 ?sdia2) 
 (and (Foundation.Circular_Closed_Profile ?ccp1) 
         (Foundation.Circular_Closed_Profile ?ccp2) 
         (Foundation.holds_shape ?shole ?ccp1) 
         (Foundation.holds_shape ?shole ?ccp2) 
         (Secondary_Diameter ?sdia1) 
         (Secondary_Diameter ?sdia2) 
         (Foundation.measures ?ccp1 ?sdia1) 
         (Foundation.measures ?ccp2 ?sdia2) 
         (= ?sdia1 ?sdia2)))) 
:IC hard "Every secondary hole holds exactly two circular closed profiles of identical 
secondary diameter." 
 
(=> (Secondary_Hole ?shole) 
      (exists (?lin ?sdepth) 
 (and (Foundation.Linear_Path ?lin) 
         (Foundation.holds_shape ?shole ?lin) 
         (Secondary_Depth ?sdepth) 
         (Foundation.measures ?lin ?sdepth)))) 
:IC hard "Every secondary hole holds exactly one linear path of secondary depth." 
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D.3 Machining Hole Feature Ontology B 

Context Declaration 

 
:Ctx machiningHoleFeatureOntologyB 
:Inst UserContext 
:supCtx TopUserCtx 
:name "Context for the Machining Hole Feature Ontology B" 
:rem "This context explores a domain ontology developed for hole features defined from a 
machining process viewpoint using the semantics from the Foundation Layer." 
 
:Use machiningHoleFeatureOntologyB 
 

Classes 

 
:Prop Crank_Pulley_Part_Family 
:Inst Property 
:sup Foundation.Artifact 
:name "Crank_Pulley_Part_Family" 
:rem "A crank pulley part family is a type of artifact which is is forged and then machined 
using turning and boring operations." 
 
:Prop Bored_Hole 
:Inst Property 
:sup Foundation.Round_Hole 
:name "Bored_Hole" 
:rem "A bored hole is a round hole feature which is machined using a sequence of rough and 
finish boring operations." 
  
:Prop Large_Bored_Hole 
:Inst Property 
:sup Foundation.Round_Hole 
:name "Bored_Hole" 
:rem "A large bored hole is a round hole feature which is machined using a sequence of 
rough and finish boring operations." 
  
:Prop Pulley_Core_Feature 
:Inst Property 
:sup Foundation.Feature 
:name "Pulley_Core_Feature" 
:rem "A pulley core feature is a compound feature which defines the central portion of a crank 
pulley and is produced using turning and boring operations." 
  
:Prop Pulley_End_Feature 
:Inst Property 
:sup Foundation.Cylinder 
:name "Pulley_End_Feature" 
:rem "A pulley end feature is a cylindrical feature which defines a portion of a crank pulley and 
is machined using turning operations." 
 
:Prop Bore_Hole_Making 
:Inst Property 
:sup Foundation.Activity 
:name "Bore_Hole_Making" 
:rem "A bore hole making activity is a machining operation whose occurrences may produce 
both bored and large bored holes as outputs. An occurrence of a bored hole making activity, 
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which outputs a bored or large bored hole, consists of linear ordering semantics over rough 
boring followed by finish boring." 
  
:Prop Face_Turning 
:Inst Property 
:sup Foundation.Activity 
:name "Face_Turning" 
:rem "A face turning activity is a machining operation whose occurrences produce faces of on 
a crank pulley." 
  
:Prop Finish_Boring 
:Inst Property 
:sup Foundation.Activity 
:name "Finish_Boring" 
:rem "A finish boring activity is a machining operation whose occurrences produce bored and 
larged bored holes." 
 
:Prop Rough_Boring 
:Inst Property 
:sup Foundation.Activity 
:name "Rough_Boring" 
:rem "A rough boring activity is a machining operation whose occurrences always need to 
precede occurrences of finish boring machining operations." 
 
:Prop Mild_Steel 
:Inst Property 
:sup Foundation.Material 
:name "Mild_Steel" 
:rem "Mild steel is an alloy that contains between 0.16-0.29% carbon." 
 
 

Functions 

 
:Fun inches 
:Inst UnaryFun 
:Sig RealNumber -> Foundation.Length_Measure 
:name "inches" 
:rem "(= ?length (inches ?real)) is used to denote the value of a length measure in inches." 
 
 

Axioms 

  
(=> (Crank_Pulley_Part_Family ?pull) 
      (exists (?core ?end1 ?end2) 
 (and (Pulley_Core_Feature ?core) 
        (Pulley_End_Feature ?end1) 
        (Pulley_End_Feature ?end2) 
        (Foundation.holds_feature ?pull ?core) 
        (Foundation.holds_feature ?pull ?end1) 
        (Foundation.holds_feature ?pull ?end2) 
        (/= ?end1 ?end2)))) 
:IC hard "Every crank pulley consists of some pulley core feature and two distinct 
pulley end features." 
 
(=> (Crank_Pulley_Part_Family ?pull) 
      (exists (?steel) 
 (and (Mild_Steel ?steel) 
         (Foundation.holds_material ?pull ?steel)))) 
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:IC hard "Every crank pulley is made up of some mild steel material." 
 
(=> (Pulley_Core_Feature ?core) 
      (Foundation.compound ?core)) 
:IC hard "A pulley core feature is a compound feature." 
 
(=> (Pulley_Core_Feature ?core) 
      (exists (?lhole1 ?lhole2 ?bhole ?c) 
 (and (Large_Bored_Hole ?lhole1) 
         (Large_Bored_Hole ?lhole2) 
         (/= ?lhole1 ?lhole2) 
         (Bored_Hole ?bhole) 
         (Foundation.Cylinder ?c) 
          (Foundation.element_of ?lhole1 ?core) 
          (Foundation.element_of ?lhole2 ?core) 
          (Foundation.element_of ?bhole ?core) 
          (Foundation.element_of ?c ?core)))) 
:IC hard "Every pulley core feature consists of two distinct large bored holes, a 
minimum of one bored hole, and a cylinder which are elements of the pulley core 
feature." 
  
(=> (and (Pulley_Core_Feature ?core) 
  (Foundation.Cylinder ?c) 
  (Foundation.element_of ?c ?core)) 
       (Foundation.base ?c)) 
:IC hard "The cylinder element of a pulley core feature is the base feature of the pulley 
core feature." 
 
(=> (and (Bored_Hole ?bhole) 
  (Foundation.flow_object ?bhole)) 
       (exists (?fbore ?fboreOcc) 
 (and (Finish_Boring ?fbore) 
         (Foundation.Activity_Occurrence ?fboreOcc) 
         (Foundation.occurrence_of ?fboreOcc ?fbore) 
         (Foundation.output ?bhole ?fboreOcc)))) 
:IC hard "Every bored hole that is a flow object is an output from a finish boring activity 
occurrence." 
 
(=> (and (Large_Bored_Hole ?lbhole) 
  (Foundation.flow_object ?lbhole)) 
      (exists (?fbore ?fboreOcc) 
 (and (Finish_Boring ?fbore) 
        (Foundation.Activity_Occurrence ?fboreOcc) 
        (Foundation.occurrence_of ?fboreOcc ?fbore) 
        (Foundation.output ?lbhole ?fboreOcc)))) 
:IC hard "Every large bored hole that is a flow object is an output from a finish boring 
activity occurrence." 
  
(=> (and (Foundation.Circular_Closed_Profile ?ccp) 
  (Foundation.flow_object ?ccp) 
  (RootCtx.withinContext ?ccp machiningHoleFeatureOntologyB)) 
       (exists (?fturn ?fturnOcc) 
 (and (Face_Turning ?fturn) 
         (Foundation.Activity_Occurrence ?fturnOcc) 
         (Foundation.occurrence_of ?fturnOcc ?fturn) 
         (Foundation.output ?ccp ?fturnOcc)))) 
:IC hard "Every circular closed profile in machining hole feature ontology B that is a 
flow object is an output from a face turning activity occurrence." 
 
(=> (and (Finish_Boring ?fbore) 



  
385 

  (Foundation.Activity_Occurrence ?fboreOcc) 
  (Foundation.occurrence_of ?fboreOcc ?fbore) 
  (Foundation.legal ?fboreOcc)) 
       (exists (?rbore ?rboreOcc) 
 (and (Rough_Boring ?rbore) 
         (Foundation.Activity_Occurrence ?rboreOcc) 
         (Foundation.occurrence_of ?rboreOcc ?rbore) 
         (Foundation.legal ?rboreOcc) 
         (Foundation.earlier ?rboreOcc ?fboreOcc)))) 
:IC hard "Every legal finish boring activity occurrence implies the existence of some 
rough boring activity occurrence that is earlier than the finish boring activity 
occurrence in the occurrence tree." 
 
(=> (and (Bore_Hole_Making ?bholeMake) 
  (Foundation.Activity_Occurrence ?bholeMakeOcc) 
  (Foundation.occurrence_of ?bholeMakeOcc ?bholeMake)) 
       (exists (?rbore ?rboreOcc ?fbore ?fboreOcc) 
 (and (Rough_Boring ?rbore) 
        (Finish_Boring ?fbore) 
        (Foundation.Activity_Occurrence ?rboreOcc) 
        (Foundation.Activity_Occurrence ?fboreOcc) 
        (Foundation.occurrence_of ?rboreOcc ?rbore) 
        (Foundation.occurrence_of ?fboreOcc ?fbore) 
        (Foundation.min_precedes ?rboreOcc ?fboreOcc ?bholeMake)))) 
:IC hard "An occurrence of rough boring must always precede an occurrence of finish 
boring under a complex occurrence of bore hole making. Other behaviours under the 
complex bore hole making activity may occur in between." 
 
(=> (and (Bore_Hole_Making ?bholeMake) 
  (Foundation.Activity_Occurrence ?bholeMakeOcc) 
  (Foundation.occurrence_of ?bholeMakeOcc ?bholeMake)) 
       (exists (?rbore ?rboreOcc) 
 (and (Rough_Boring ?rbore) 
         (Foundation.subactivity ?rbore ?bholeMake) 
         (Foundation.Activity_Occurrence ?rboreOcc) 
         (Foundation.occurrence_of ?rboreOcc ?rbore) 
         (Foundation.subactivity_occurrence ?rboreOcc ?bholeMakeOcc) 
         (Foundation.root_occ ?rboreOcc ?bholeMakeOcc)))) 
:IC hard "An occurrence of rough boring at the root of the process sequence under a 
complex occurrence of bore hole making is a precondition to the complex occurrence." 
 
(=> (and (Bore_Hole_Making ?bholeMake) 
  (Foundation.Activity_Occurrence ?bholeMakeOcc) 
  (Foundation.occurrence_of ?bholeMakeOcc ?bholeMake)) 
       (exists (?fbore ?fboreOcc) 
 (and (Finish_Boring ?fbore) 
         (Foundation.subactivity ?fbore ?bholeMake) 
         (Foundation.Activity_Occurrence ?fboreOcc) 
         (Foundation.occurrence_of ?fboreOcc ?fbore) 
         (Foundation.subactivity_occurrence ?fboreOcc ?bholeMakeOcc) 
         (Foundation.leaf_occ ?fboreOcc ?bholeMakeOcc)))) 
:IC hard "An occurrence of finish boring at the leaf of the process sequence under a 
complex occurrence of bore hole making is a post-condition to the complex 
occurrence." 
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D.4 ISO Tolerance Band Model 

Context Declaration 

 
:Ctx isoToleranceBand 
:Inst UserContext 
:supCtx TopUserCtx 
:name "ISO Tolerance Band Domain Context" 
:rem "This context may be used to establish potential hole machining processes to produce 
round holes of known nominal entry diameter and diameter tolerances. This context can also 
be used to match the conformance of domain-defined hole making activity occurrences with 
respect to the hole machining processes identified under the ISO Tolerance Band Model." 
 
:Use isoToleranceBand 
 
 

Relations 

 
:Rel toleranceBandRelation_01 
:Inst UnaryRel 
:Sig Property 
:name "toleranceBandRelation_01" 
:rem "Based on the entry diameter and entry diameter size tolerance of the queried 
Foundation.Round_Hole  instance, it can be inferred that the feature can be produced using a 
Honing machining process." 
:limitationRem "This criteria is only satisfied under the ISO Tolerance Band domain model." 
 
:Rel toleranceBandRelation_02 
:Inst UnaryRel 
:Sig Property 
:name "toleranceBandRelation_02" 
:rem "Based on the entry diameter and entry diameter size tolerance of the queried 
Foundation.Round_Hole instance, it can be inferred that the feature can be produced using 
an Internal Grinding machining process." 
:limitationRem "This criteria is only satisfied under the ISO Tolerance Band domain model." 
 
:Rel toleranceBandRelation_03 
:Inst UnaryRel 
:Sig Property 
:name "toleranceBandRelation_03" 
:rem "Based on the entry diameter and entry diameter size tolerance of the queried 
Foundation.Round_Hole instance, it can be inferred that the feature can be produced using 
an Internal Broaching machining process." 
:limitationRem "This criteria is only satisfied under the ISO Tolerance Band domain model." 
 
:Rel toleranceBandRelation_04 
:Inst UnaryRel 
:Sig Property 
:name "toleranceBandRelation_04" 
:rem "Based on the entry diameter and entry diameter size tolerance of the queried 
Foundation.Round_Hole instance, it can be inferred that the feature can be produced using a 
Reaming machining process." 
:limitationRem "This criteria is only satisfied under the ISO Tolerance Band domain model." 
 
:Rel toleranceBandRelation_05 
:Inst UnaryRel 
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:Sig Property 
:name "toleranceBandRelation_05" 
:rem "Based on the entry diameter and entry diameter size tolerance of the queried 
Foundation.Round_Hole instance, it can be inferred that the feature can be produced using a 
Boring machining process." 
:limitationRem "This criteria is only satisfied under the ISO Tolerance Band domain model." 
 
:Rel toleranceBandRelation_06 
:Inst UnaryRel 
:Sig Property 
:name "toleranceBandRelation_06" 
:rem "Based on the entry diameter and entry diameter size tolerance of the queried 
Foundation.Round_Hole instance, it can be inferred that the feature can be produced using a 
Drilling machining process." 
:limitationRem "This criteria is only satisfied under the ISO Tolerance Band domain model." 
 
:Rel toleranceBandRelation_07 
:Inst UnaryRel 
:Sig Property 
:name "toleranceBandRelation_07" 
:rem "The queried Activity_Occurrence instance, which is a hole making occurrence, matches 
the tolerance range capability of a Honing machining process." 
:limitationRem "This criteria is only satisfied under the ISO Tolerance Band domain model."  
 
:Rel toleranceBandRelation_08 
:Inst UnaryRel 
:Sig Property 
:name "toleranceBandRelation_08" 
:rem "The queried Activity_Occurrence instance, which is a hole making occurrence, matches 
the tolerance range capability of a Internal Grinding machining process." 
:limitationRem "This criteria is only satisfied under the ISO Tolerance Band domain model."  
 
:Rel toleranceBandRelation_09 
:Inst UnaryRel 
:Sig Property 
:name "toleranceBandRelation_09" 
:rem "The queried Activity_Occurrence instance, which is a hole making occurrence, matches 
the tolerance range capability of a Internal Broaching machining process." 
:limitationRem "This criteria is only satisfied under the ISO Tolerance Band domain model."  
 
:Rel toleranceBandRelation_10 
:Inst UnaryRel 
:Sig Property 
:name "toleranceBandRelation_10" 
:rem "The queried Activity_Occurrence instance, which is a hole making occurrence, matches 
the tolerance range capability of a Reaming machining process." 
:limitationRem "This criteria is only satisfied under the ISO Tolerance Band domain model."  
 
:Rel toleranceBandRelation_11 
:Inst UnaryRel 
:Sig Property 
:name "toleranceBandRelation_11" 
:rem "The queried Activity_Occurrence instance, which is a hole making occurrence, matches 
the tolerance range capability of a Boring machining process." 
:limitationRem "This criteria is only satisfied under the ISO Tolerance Band domain model."  
 
:Rel toleranceBandRelation_12 
:Inst UnaryRel 
:Sig Property 
:name "toleranceBandRelation_12" 
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:rem "The queried Activity_Occurrence instance, which is a hole making occurrence, matches 
the tolerance range capability of a Drilling machining process." 
:limitationRem "This criteria is only satisfied under the ISO Tolerance Band domain model."  
 
 

Definitions 

 
 (<= (toleranceBandRelation_01 ?hole) 
       (and (Foundation.Round_Hole ?hole) 
   (Foundation.Circular_Closed_Profile ?ccp) 
   (Foundation.holds_shape ?hole ?ccp) 
   (not (Foundation.through ?ccp)) 
   (not (Foundation.blind ?ccp)) 
   (Foundation.measures ?ccp (Foundation.mm ?real)) 
   (Foundation.holds_size_tolerance ?ccp (Foundation.tolerance_value 
(Foundation.mm ?realmin) (Foundation.mm ?realmax)) (Foundation.mm ?real)) 
  (or (and (RootCtx.inInterval ?real (RootCtx.interval ex 1 3 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -0.04 -0.02 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.02 0.04 in))) 
       (and (RootCtx.inInterval ?real (RootCtx.interval ex 3 6 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -0.05 -0.025 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.025 0.05 in))) 
       (and (RootCtx.inInterval ?real (RootCtx.interval ex 6 10 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -0.06 -0.025 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.025 0.06 in))) 
       (and (RootCtx.inInterval ?real (RootCtx.interval ex 10 18 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -0.08 -0.03 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.03 0.08 in))) 
       (and (RootCtx.inInterval ?real (RootCtx.interval ex 18 30 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -0.09 -0.04 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.04 0.09 in))) 
       (and (RootCtx.inInterval ?real (RootCtx.interval ex 30 50 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -0.11 -0.04 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.04 0.11 in)))))) 
       
(=> (toleranceBandRelation_01 ?hole) 
 (RootCtx.holdsArg toleranceBandRelation_01 1 ?hole)) 
 
 (<= (toleranceBandRelation_02 ?hole) 
       (and (Foundation.Round_Hole ?hole) 
   (Foundation.Circular_Closed_Profile ?ccp) 
   (Foundation.holds_shape ?hole ?ccp) 
   (not (Foundation.through ?ccp)) 
   (not (Foundation.blind ?ccp)) 
   (Foundation.measures ?ccp (Foundation.mm ?real)) 
   (Foundation.holds_size_tolerance ?ccp (Foundation.tolerance_value 
(Foundation.mm ?realmin) (Foundation.mm ?realmax)) (Foundation.mm ?real)) 
   (or (and (RootCtx.inInterval ?real (RootCtx.interval ex 1 3 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -0.10 -0.03 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.03 0.10 in))) 
        (and (RootCtx.inInterval ?real (RootCtx.interval ex 3 6 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -0.12 -0.04 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.04 0.12 in))) 
        (and (RootCtx.inInterval ?real (RootCtx.interval ex 6 10 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -0.15 -0.04 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.04 0.15 in))) 
        (and (RootCtx.inInterval ?real (RootCtx.interval ex 10 18 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -0.18 -0.05 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.05 0.18 in))) 
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        (and (RootCtx.inInterval ?real (RootCtx.interval ex 18 30 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -0.21 -0.6 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.06 0.21 in))) 
        (and (RootCtx.inInterval ?real (RootCtx.interval ex 30 50 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -0.25 -0.07 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.07 0.25 in)))))) 
       
(=> (toleranceBandRelation_02 ?hole) 
 (RootCtx.holdsArg toleranceBandRelation_02 1 ?hole)) 
 
 (<= (toleranceBandRelation_03 ?hole) 
       (and (Foundation.Round_Hole ?hole) 
   (Foundation.Circular_Closed_Profile ?ccp) 
   (Foundation.holds_shape ?hole ?ccp) 
   (not (Foundation.through ?ccp)) 
   (not (Foundation.blind ?ccp)) 
   (Foundation.measures ?ccp (Foundation.mm ?real)) 
   (Foundation.holds_size_tolerance ?ccp (Foundation.tolerance_value 
(Foundation.mm ?realmin) (Foundation.mm ?realmax)) (Foundation.mm ?real)) 
   (or (and (RootCtx.inInterval ?real (RootCtx.interval ex 1 3 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -0.25 -0.04 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.04 0.25 in))) 
        (and (RootCtx.inInterval ?real (RootCtx.interval ex 3 6 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -0.30 -0.05 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.05 0.30 in))) 
        (and (RootCtx.inInterval ?real (RootCtx.interval ex 6 10 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -0.36 -0.06 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.06 0.36 in))) 
        (and (RootCtx.inInterval ?real (RootCtx.interval ex 10 18 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -0.43 -0.08 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.08 0.43 in))) 
        (and (RootCtx.inInterval ?real (RootCtx.interval ex 18 30 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -0.52 -0.09 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.09 0.52 in))) 
        (and (RootCtx.inInterval ?real (RootCtx.interval ex 30 50 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -0.62 -0.11 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.11 0.62 in)))))) 
       
(=> (toleranceBandRelation_03 ?hole) 
 (RootCtx.holdsArg toleranceBandRelation_03 1 ?hole)) 
       
 (<= (toleranceBandRelation_04 ?hole) 
       (and (Foundation.Round_Hole ?hole) 
   (Foundation.Circular_Closed_Profile ?ccp) 
   (Foundation.holds_shape ?hole ?ccp) 
   (not (Foundation.through ?ccp)) 
   (not (Foundation.blind ?ccp)) 
   (Foundation.measures ?ccp (Foundation.mm ?real)) 
   (Foundation.holds_size_tolerance ?ccp (Foundation.tolerance_value 
(Foundation.mm ?realmin) (Foundation.mm ?realmax)) (Foundation.mm ?real)) 
   (or (and (RootCtx.inInterval ?real (RootCtx.interval ex 1 3 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -0.25 -0.04 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.04 0.25 in))) 
        (and (RootCtx.inInterval ?real (RootCtx.interval ex 3 6 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -0.30 -0.05 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.05 0.30 in))) 
        (and (RootCtx.inInterval ?real (RootCtx.interval ex 6 10 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -0.36 -0.06 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.06 0.36 in))) 
        (and (RootCtx.inInterval ?real (RootCtx.interval ex 10 18 in)) 



  
391 

    (RootCtx.inInterval ?realmin (RootCtx.interval in -0.43 -0.08 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.08 0.43 in))) 
        (and (RootCtx.inInterval ?real (RootCtx.interval ex 18 30 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -0.52 -0.09 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.09 0.52 in))) 
        (and (RootCtx.inInterval ?real (RootCtx.interval ex 30 50 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -0.62 -0.11 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.11 0.62 in)))))) 
       
(=> (toleranceBandRelation_04 ?hole) 
 (RootCtx.holdsArg toleranceBandRelation_04 1 ?hole)) 
 
 (<= (toleranceBandRelation_05 ?hole) 
       (and (Foundation.Round_Hole ?hole) 
   (Foundation.Circular_Closed_Profile ?ccp) 
   (Foundation.holds_shape ?hole ?ccp) 
   (not (Foundation.through ?ccp)) 
   (not (Foundation.blind ?ccp)) 
   (Foundation.measures ?ccp (Foundation.mm ?real)) 
   (Foundation.holds_size_tolerance ?ccp (Foundation.tolerance_value 
(Foundation.mm ?realmin) (Foundation.mm ?realmax)) (Foundation.mm ?real)) 
   (or (and (RootCtx.inInterval ?real (RootCtx.interval ex 1 3 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -1.00 -0.06 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.06 1.00 in))) 
        (and (RootCtx.inInterval ?real (RootCtx.interval ex 3 6 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -1.20 -0.08 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.08 1.20 in))) 
        (and (RootCtx.inInterval ?real (RootCtx.interval ex 6 10 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -1.50 -0.09 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.09 1.50 in))) 
        (and (RootCtx.inInterval ?real (RootCtx.interval ex 10 18 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -1.80 -0.11 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.11 1.80 in))) 
        (and (RootCtx.inInterval ?real (RootCtx.interval ex 18 30 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -2.10 -0.13 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.13 2.10 in))) 
        (and (RootCtx.inInterval ?real (RootCtx.interval ex 30 50 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -2.50 -0.16 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.16 2.50 in)))))) 
       
(=> (toleranceBandRelation_05 ?hole) 
 (RootCtx.holdsArg toleranceBandRelation_05 1 ?hole)) 
     
 
   
 (<= (toleranceBandRelation_06 ?hole) 
       (and (Foundation.Round_Hole ?hole) 
   (Foundation.Circular_Closed_Profile ?ccp) 
   (Foundation.holds_shape ?hole ?ccp) 
   (not (Foundation.through ?ccp)) 
   (not (Foundation.blind ?ccp)) 
   (Foundation.measures ?ccp (Foundation.mm ?real)) 
   (Foundation.holds_size_tolerance ?ccp (Foundation.tolerance_value 
(Foundation.mm ?realmin) (Foundation.mm ?realmax)) (Foundation.mm ?real)) 
   (or (and (RootCtx.inInterval ?real (RootCtx.interval ex 1 3 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -1.00 -0.60 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.60 1.00 in))) 
        (and (RootCtx.inInterval ?real (RootCtx.interval ex 3 6 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -1.20 -0.75 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.75 1.20 in))) 
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        (and (RootCtx.inInterval ?real (RootCtx.interval ex 6 10 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -1.50 -0.90 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 0.90 1.50 in))) 
        (and (RootCtx.inInterval ?real (RootCtx.interval ex 10 18 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -1.80 -1.10 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 1.10 1.80 in))) 
        (and (RootCtx.inInterval ?real (RootCtx.interval ex 18 30 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -2.10 -1.30 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 1.30 2.10 in))) 
        (and (RootCtx.inInterval ?real (RootCtx.interval ex 30 50 in)) 
    (RootCtx.inInterval ?realmin (RootCtx.interval in -2.50 -1.60 in)) 
    (RootCtx.inInterval ?realmax (RootCtx.interval in 1.60 2.50 in)))))) 
       
 
(=> (toleranceBandRelation_06 ?hole) 
 (RootCtx.holdsArg toleranceBandRelation_06 1 ?hole)) 
 
 (<= (toleranceBandRelation_07 ?occ) 
       (and (RootCtx.inst ?occ Foundation.Activity_Occurrence) 
   (RootCtx.inst ?hole Foundation.Round_Hole) 
   (Foundation.output ?hole ?occ) 
   (toleranceBandRelation_01 ?hole))) 
    
(=> (toleranceBandRelation_07 ?occ) 
 (RootCtx.holdsArg toleranceBandRelation_07 1 ?occ)) 
    
 (<= (toleranceBandRelation_08 ?occ) 
       (and (RootCtx.inst ?occ Foundation.Activity_Occurrence) 
   (RootCtx.inst ?hole Foundation.Round_Hole) 
   (Foundation.output ?hole ?occ) 
   (toleranceBandRelation_02 ?hole))) 
    
(=> (toleranceBandRelation_08 ?occ) 
 (RootCtx.holdsArg toleranceBandRelation_08 1 ?occ)) 
    
 (<= (toleranceBandRelation_09 ?occ) 
       (and (RootCtx.inst ?occ Foundation.Activity_Occurrence) 
   (RootCtx.inst ?hole Foundation.Round_Hole) 
   (Foundation.output ?hole ?occ) 
   (toleranceBandRelation_03 ?hole))) 
    
 
(=> (toleranceBandRelation_09 ?occ) 
 (RootCtx.holdsArg toleranceBandRelation_09 1 ?occ)) 
    
 (<= (toleranceBandRelation_10 ?occ) 
       (and (RootCtx.inst ?occ Foundation.Activity_Occurrence) 
   (RootCtx.inst ?hole Foundation.Round_Hole) 
   (Foundation.output ?hole ?occ) 
   (toleranceBandRelation_04 ?hole))) 
    
(=> (toleranceBandRelation_10 ?occ) 
 (RootCtx.holdsArg toleranceBandRelation_10 1 ?occ)) 
    
 (<= (toleranceBandRelation_11 ?occ) 
       (and (RootCtx.inst ?occ Foundation.Activity_Occurrence) 
   (RootCtx.inst ?hole Foundation.Round_Hole) 
   (Foundation.output ?hole ?occ) 
   (toleranceBandRelation_05 ?hole))) 
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(=> (toleranceBandRelation_11 ?occ) 
 (RootCtx.holdsArg toleranceBandRelation_11 1 ?occ)) 
    
 (<= (toleranceBandRelation_12 ?occ) 
       (and (RootCtx.inst ?occ Foundation.Activity_Occurrence) 
   (RootCtx.inst ?hole Foundation.Round_Hole) 
   (Foundation.output ?hole ?occ) 
   (toleranceBandRelation_06 ?hole))) 
    
(=> (toleranceBandRelation_12 ?occ) 
 (RootCtx.holdsArg toleranceBandRelation_12 1 ?occ)) 
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E Semantic Reconciliation Layer 

E.1 Semantic Mapping Concepts Based on Foundation 

Semantics 

A large number of semantic mapping concepts based on foundation 

semantics has been explored in this work. As a consequence of this, only the 

ones that appear and contribute to the definition of semantic mapping 

concepts evaluated in Test Case 2 have been exposed in this section. 

 

Context Declaration 

 
:Ctx foundationMapping 
:Inst UserContext 
:supCtx TopUserCtx 
:name "Foundation Mapping Context" 
:rem "This context is used to define relevant semantic mapping concepts for use in the 
Semantic Reconciliation Layer purely based on foundation semantics." 
 
:Use foundationMapping 

 

Reconciliation of Classes 

 
:Rel classMappingRelation_018 
:Inst BinaryRel 
:Sig Property Property 
:name "classMappingRelation_018" 
:rem "There exists a correspondence between the class ?x in the DomainX context and the 
class ?y in the DomainY context as a result of both ?x and ?y being subclasses of the 
foundation class Foundation.Round_Hole. Both ?x and ?y capture the notion of a feature that 
is of cylindrical or conical negative (removal) volume. It is necessary for instances of ?x and 
?y be defined in terms of a first instance of Foundation.Circular_Closed_Profile swept along 
an instance of Foundation.Linear_Path resulting in a second instance of 
Foundation.Circular_Closed_Profile of identical or different dimensions. Every instance of ?x 
and ?y may hold a Foundation.Linear_Profile axis." 
:limitationRem "Without reference to the terms assigned to the concepts ?x and ?y, there 
could potentially be class mismatches present. This is because ?x and ?y could have been 
defined with a view on specific domain preferences, which vary across domains. Varying 
levels of abstraction of the foundation class Foundation.Round_Hole in both domains could 
also result in class mismatches." 
 
(<= (classMappingRelation_018 ?x ?y) 
      (and (RootCtx.sup ?x Foundation.Round_Hole) 
  (RootCtx.withinContext ?x DomainX) 
  (RootCtx.sup ?y Foundation.Round_Hole) 
  (RootCtx.withinContext ?y DomainY))) 
        
(=> (classMappingRelation_018 ?x ?y) 
      (and (RootCtx.holdsArg classMappingRelation_018 1 ?x) 



  
395 

  (RootCtx.holdsArg classMappingRelation_018 2 ?y))) 
 
:Rel classMappingRelation_022 
:Inst BinaryRel 
:Sig Property Property 
:name "classMappingRelation_022" 
:rem "There exists a correspondence between the class ?x in the DomainX context and the 
class ?y in the DomainY context as a result of both ?x and ?y being subclasses of the 
foundation class Foundation.Activity. Both ?x and ?y capture the notion of types of reusable 
process behaviours. Instances of ?x and ?y may have multiple occurrences present as 
instances of Foundation.Activity_Occurrence or present as instances of the subclasses of the 
latter defined in DomainX and DomainY respectively." 
:limitationRem "Without reference to the terms assigned to the concepts ?x and ?y, there 
could potentially be class mismatches present. This is because ?x and ?y could have been 
defined with a view on specific domain preferences, which vary across domains. Varying 
levels of abstraction of the foundation class Foundation.Activity  in both domains could also 
result in class mismatches."  
 
(<= (classMappingRelation_022 ?x ?y) 
      (and (RootCtx.sup ?x Foundation.Activity) 
  (RootCtx.withinContext ?x DomainX) 
  (RootCtx.sup ?y Foundation.Activity) 
  (RootCtx.withinContext ?y DomainY))) 
      
(=> (classMappingRelation_022 ?x ?y) 
      (and (RootCtx.holdsArg classMappingRelation_022 1 ?x) 
  (RootCtx.holdsArg classMappingRelation_022 2 ?y))) 
 
 

Reconciliation of Functions 

 
:Rel pointerRelation_003 
:Inst UnaryRel 
:Sig UnaryFun 
:name "pointerRelation_003" 
 
(<= (pointerRelation_003 ?funx) 
      (and (RootCtx.inst ?funx RootCtx.UnaryFun) 
  (RootCtx.withinContext ?funx DomainX) 
  (RootCtx.argProp ?funx 1 RootCtx.RealNumber) 
  (RootCtx.returnProp ?funx Foundation.Length_Measure))) 
    
:Rel pointerRelation_004 
:Inst UnaryRel 
:Sig UnaryFun 
:name "pointerRelation_004" 
 
(<= (pointerRelation_004 ?funy) 
      (and (RootCtx.inst ?funy RootCtx.UnaryFun) 
  (RootCtx.withinContext ?funy DomainY) 
  (RootCtx.argProp ?funy 1 RootCtx.RealNumber) 
  (RootCtx.returnProp ?funy Foundation.Length_Measure))) 
     
:Rel functionMappingRelation_003 
:Inst BinaryRel 
:Sig UnaryFun UnaryFun 
:name "functionMappingRelation_003" 
:rem "There exists a correspondence between the ontological functions ?funx in the DomainX 
context and ?funy in the DomainY context as a result of both ?funx and ?funy being used to 
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denote instances of the foundation class Foundation.Length_Measure. Both ?funx and ?funy 
capture the intuition about units of measurement for qualifying lengths. It is a necessary 
condition that all instances of Foundation.Length_Measure in DomainX and DomainY be 
characterised by units of measurement with RootCtx.RealNumber values." 
:limitationRem "Without reference to the terms assigned to the unit of measurement functions 
?funx and ?funy, there could be a Concept and Term CT mismatch present. This occurs if 
different terms are used to refer to two fundamentally different unit functions."  
:exampleRem "(m 10) v/s (inch 0.5) In this case, the ontological functions are m and inch 
which not only use different terms but are also conceptually different. However, the way in 
which they denote instances of Foundation.Length_Measure is the same." 
 
(<= (functionMappingRelation_003 ?funx ?funy) 
      (and (pointerRelation_003 ?funx) 
  (pointerRelation_004 ?funy))) 
       
(=> (functionMappingRelation_003 ?funx ?funy) 
      (and (RootCtx.holdsArg functionMappingRelation_003 1 ?funx) 
  (RootCtx.holdsArg functionMappingRelation_003 2 ?funy))) 
 
 

Reconciliation of Instances 

 
:Rel pointerRelation_005 
:Inst BinaryRel 
:Sig Property Property 
:name "pointerRelation_005" 
 
(<= (pointerRelation_005 ?ccpx ?lengthx) 
      (and (RootCtx.inst ?ccpx Foundation.Circular_Closed_Profile) 
  (RootCtx.withinContext ?ccpx DomainX) 
  (RootCtx.inst ?lengthx Foundation.Length_Measure) 
  (Foundation.measures ?ccpx ?lengthx))) 
    
:Rel pointerRelation_006 
:Inst BinaryRel 
:Sig Property Property 
:name "pointerRelation_006" 
 
(<= (pointerRelation_006 ?ccpy ?lengthy) 
      (and (RootCtx.inst ?ccpy Foundation.Circular_Closed_Profile) 
  (RootCtx.withinContext ?ccpy DomainY) 
  (RootCtx.inst ?lengthy Foundation.Length_Measure) 
  (Foundation.measures ?ccpy ?lengthy))) 
 
:Rel pointerRelation_009 
:Inst BinaryRel 
:Sig Property Property 
:name "pointerRelation_009" 
 
(<= (pointerRelation_009 ?linx ?lengthx) 
      (and (RootCtx.inst ?linx Foundation.Linear_Path) 
  (RootCtx.withinContext ?linx DomainX) 
  (RootCtx.inst ?lengthx Foundation.Length_Measure) 
  (Foundation.measures ?linx ?lengthx))) 
    
:Rel pointerRelation_010 
:Inst BinaryRel 
:Sig Property Property 
:name "pointerRelation_010" 
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(<= (pointerRelation_010 ?liny ?lengthy) 
      (and (RootCtx.inst ?liny Foundation.Linear_Path) 
  (RootCtx.withinContext ?liny DomainY) 
  (RootCtx.inst ?lengthy Foundation.Length_Measure) 
  (Foundation.measures ?liny ?lengthy))) 
 
:Rel pointerRelation_019 
:Inst TernaryRel 
:Sig Property Property Property 
:name "pointerRelation_019" 
 
(<= (pointerRelation_019 ?fx ?ptx ?vx) 
      (and (RootCtx.inst ?fx Foundation.Feature) 
  (RootCtx.withinContext ?fx DomainX) 
  (RootCtx.inst ?px Foundation.Placement) 
  (Foundation.holds_orientation ?fx ?px) 
  (RootCtx.inst ?ptx Foundation.Point) 
  (RootCtx.inst ?vx Foundation.Vector_Direction) 
  (Foundation.is_oriented_at ?px ?ptx ?vx))) 
       
:Rel pointerRelation_020 
:Inst TernaryRel 
:Sig Property Property Property 
:name "pointerRelation_020" 
 
(<= (pointerRelation_020 ?fy ?pty ?vy) 
      (and (RootCtx.inst ?fy Foundation.Feature) 
  (RootCtx.withinContext ?fy DomainY) 
  (RootCtx.inst ?py Foundation.Placement) 
  (Foundation.holds_orientation ?fy ?py) 
  (RootCtx.inst ?pty Foundation.Point) 
  (RootCtx.inst ?vy Foundation.Vector_Direction) 
  (Foundation.is_oriented_at ?py ?pty ?vy))) 
 
:Rel pointerRelation_027 
:Inst BinaryRel 
:Sig Property Property 
:name "pointerRelation_027" 
 
(<= (pointerRelation_027 ?holex ?edgex) 
      (and (RootCtx.inst ?edgex Foundation.Constant_Radius_Edge_Round) 
  (RootCtx.inst ?linx Foundation.Linear_Path) 
  (RootCtx.inst ?holex Foundation.Round_Hole) 
  (RootCtx.withinContext ?holex DomainX) 
  (Foundation.blends ?edgex ?linx) 
  (Foundation.holds_shape ?holex ?linx))) 
         
:Rel pointerRelation_028 
:Inst BinaryRel 
:Sig Property Property 
:name "pointerRelation_028" 
 
(<= (pointerRelation_028 ?holey ?edgey) 
      (and (RootCtx.inst ?edgey Foundation.Constant_Radius_Edge_Round) 
  (RootCtx.inst ?liny Foundation.Linear_Path) 
  (RootCtx.inst ?holey Foundation.Round_Hole) 
  (RootCtx.withinContext ?holey DomainY) 
  (Foundation.blends ?edgey ?liny) 
  (Foundation.holds_shape ?holey ?liny))) 
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:Rel pointerRelation_029 
:Inst BinaryRel 
:Sig Property Property 
:name "pointerRelation_029" 
 
(<= (pointerRelation_029 ?holex ?chfx) 
      (and (RootCtx.inst ?chfx Foundation.Chamfer) 
  (RootCtx.inst ?linx Foundation.Linear_Path) 
  (RootCtx.inst ?holex Foundation.Round_Hole) 
  (RootCtx.withinContext ?holex DomainX) 
  (Foundation.blends ?chfx ?linx) 
  (Foundation.holds_shape ?holex ?linx))) 
         
:Rel pointerRelation_030 
:Inst BinaryRel 
:Sig Property Property 
:name "pointerRelation_030" 
 
(<= (pointerRelation_030 ?holey ?chfy) 
      (and (RootCtx.inst ?chfy Foundation.Chamfer) 
  (RootCtx.inst ?liny Foundation.Linear_Path) 
  (RootCtx.inst ?holey Foundation.Round_Hole) 
  (RootCtx.withinContext ?holey DomainY) 
  (Foundation.blends ?chfy ?liny) 
  (Foundation.holds_shape ?holey ?liny))) 
 
:Rel pointerRelation_035 
:Inst UnaryRel 
:Sig Property 
:name "pointerRelation_035" 
 
(<= (pointerRelation_035 ?occx) 
      (and (RootCtx.inst ?occx Foundation.Activity_Occurrence) 
  (RootCtx.withinContext ?occx DomainX) 
  (RootCtx.inst ?holex Foundation.Round_Hole) 
  (RootCtx.withinContext ?holex DomainX) 
  (Foundation.output ?holex ?occx))) 
    
:Rel pointerRelation_036 
:Inst UnaryRel 
:Sig Property 
:name "pointerRelation_036" 
 
(<= (pointerRelation_036 ?occy) 
      (and (RootCtx.inst ?occy Foundation.Activity_Occurrence) 
  (RootCtx.withinContext ?occy DomainY) 
  (RootCtx.inst ?holey Foundation.Round_Hole) 
  (RootCtx.withinContext ?holey DomainY) 
  (Foundation.output ?holey ?occy))) 
 
:Rel instanceMappingRelation_003 
:Inst BinaryRel 
:Sig Property Property 
:name "instanceMappingRelation_003" 
:rem "There exists a correspondence between the instances ?ccpx and ?ccpy as a result of 
both being asserted instances of the foundation class Foundation.Circular_Close_Profile 
declared in DomainX and DomainY respectively. ?ccpx has a nominal diameter which is 
numerically smaller than that of ?ccpy." 
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(<= (instanceMappingRelation_003 ?ccpx ?ccpy) 
      (and (pointerRelation_005 ?ccpx ?lengthx) 
  (pointerRelation_006 ?ccpy ?lengthy) 
  (RootCtx.inst ?lengthx Foundation.Length_Measure) 
  (RootCtx.inst ?lengthy Foundation.Length_Measure) 
  (= ?lengthx (Foundation.mm ?realx)) 
  (= ?lengthy (Foundation.mm ?realy)) 
  (ltNum ?realx ?realy))) 
    
(=> (instanceMappingRelation_003 ?ccpx ?ccpy) 
      (and (RootCtx.holdsArg instanceMappingRelation_003 1 ?ccpx) 
  (RootCtx.holdsArg instanceMappingRelation_003 2 ?ccpy))) 
 
:Rel instanceMappingRelation_008 
:Inst BinaryRel 
:Sig Property Property 
:name "instanceMappingRelation_008" 
:rem "There exists a correspondence between the instances ?linx and ?liny as a result of both 
being asserted instances of the foundation class Foundation.Linear_Path declared in 
DomainX and DomainY respectively. ?linx has a nominal sweeping distance which is 
numerically greater than that of ?liny." 
 
(<= (instanceMappingRelation_008 ?linx ?liny) 
      (and (pointerRelation_009 ?linx ?lengthx) 
  (pointerRelation_010 ?liny ?lengthy) 
  (RootCtx.inst ?lengthx Foundation.Length_Measure) 
  (RootCtx.inst ?lengthy Foundation.Length_Measure) 
  (= ?lengthx (Foundation.mm ?realx)) 
  (= ?lengthy (Foundation.mm ?realy)) 
  (gtNum ?realx ?realy))) 
    
(=> (instanceMappingRelation_008 ?linx ?liny) 
      (and (RootCtx.holdsArg instanceMappingRelation_008 1 ?linx) 
  (RootCtx.holdsArg instanceMappingRelation_008 2 ?liny))) 
       
:Rel instanceMappingRelation_022 
:Inst BinaryRel 
:Sig Property Property 
:name "instanceMappingRelation_022" 
:rem "There exists a correspondence between the instances ?fx and ?fy as a result of both 
being asserted instances of the foundation class Foundation.Feature declared in DomainX 
and DomainY respectively. ?fx has a placement orientation which is spatially identical to that 
of ?fy." 
 
(<= (instanceMappingRelation_022 ?fx ?fy) 
      (and (pointerRelation_019 ?fx ?ptx ?vx) 
  (pointerRelation_020 ?fy ?pty ?vy) 
  (RootCtx.inst ?ptx Foundation.Point) 
  (RootCtx.inst ?pty Foundation.Point) 
  (= ?ptx (Foundation.coordinates (Foundation.mm ?realptx1) (Foundation.mm 
?realptx2) (Foundation.mm ?realptx3))) 
  (= ?pty (Foundation.coordinates (Foundation.mm ?realpty1) (Foundation.mm 
?realpty2) (Foundation.mm ?realpty3))) 
  (RootCtx.inst ?vx Foundation.Vector_Direction) 
  (RootCtx.inst ?vy Foundation.Vector_Direction) 
  (= ?vx (Foundation.direction ?realvx1 ?realvx2 ?realvx3)) 
  (= ?vy (Foundation.direction ?realvy1 ?realvy2 ?realvy3)) 
  (eqNum ?realptx1 ?realpty1) 
  (eqNum ?realptx2 ?realpty2) 
  (eqNum ?realptx3 ?realpty3) 
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  (eqNum ?realvx1 ?realvy1) 
  (eqNum ?realvx2 ?realvy2) 
  (eqNum ?realvx3 ?realvy3))) 
       
(=> (instanceMappingRelation_022 ?fx ?fy) 
      (and (RootCtx.holdsArg instanceMappingRelation_022 1 ?fx) 
  (RootCtx.holdsArg instanceMappingRelation_022 2 ?fy))) 
       
:Rel instanceMappingRelation_023 
:Inst BinaryRel 
:Sig Property Property 
:name "instanceMappingRelation_023" 
:rem "There exists a correspondence between the instances ?fx and ?fy as a result of both 
being asserted instances of the foundation class Foundation.Feature declared in DomainX 
and DomainY respectively. ?fx has a placement orientation which is spatially different from 
that of ?fy." 
 
(<= (instanceMappingRelation_023 ?fx ?fy) 
      (and (RootCtx.inst ?fx Foundation.Feature) 
  (RootCtx.withinContext ?fx DomainX) 
  (RootCtx.inst ?fy Foundation.Feature) 
  (RootCtx.withinContext ?fy DomainY) 
  (not (instanceMappingRelation_022 ?fx ?fy)))) 
       
(=> (instanceMappingRelation_023 ?fx ?fy) 
      (and (RootCtx.holdsArg instanceMappingRelation_023 1 ?fx) 
  (RootCtx.holdsArg instanceMappingRelation_023 2 ?fy))) 
 
:Rel instanceMappingRelation_041 
:Inst BinaryRel 
:Sig Property Property 
:name "instanceMappingRelation_041" 
:rem "There exists a correspondence between the instances ?holex and ?holey as a result of 
both being asserted instances of the foundation class Foundation.Round_Hole declared in 
DomainX and DomainY respectively. ?holex and ?holey both share in common the property 
of having Foundation.blind hole bottom conditions." 
 
(<= (instanceMappingRelation_041 ?holex ?holey) 
      (and (RootCtx.inst ?holex Foundation.Round_Hole) 
  (RootCtx.withinContext ?holex DomainX) 
  (RootCtx.inst ?ccpx Foundation.Circular_Closed_Profile) 
  (Foundation.holds_shape ?holex ?ccpx) 
  (Foundation.blind ?ccpx) 
  (RootCtx.inst ?holey Foundation.Round_Hole) 
  (RootCtx.withinContext ?holey DomainY) 
  (RootCtx.inst ?ccpy Foundation.Circular_Closed_Profile) 
  (Foundation.holds_shape ?holey ?ccpy) 
  (Foundation.blind ?ccpy))) 
         
(=> (instanceMappingRelation_041 ?holex ?holey) 
      (and (RootCtx.holdsArg instanceMappingRelation_041 1 ?holex) 
  (RootCtx.holdsArg instanceMappingRelation_041 2 ?holey))) 
         
:Rel instanceMappingRelation_042 
:Inst BinaryRel 
:Sig Property Property 
:name "instanceMappingRelation_042" 
:rem "There exists a correspondence between the instances ?holex and ?holey as a result of 
both being asserted instances of the foundation class Foundation.Round_Hole declared in 
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DomainX and DomainY respectively. ?holex and ?holey both share in common the property 
of having Foundation.through hole bottom conditions." 
 
(<= (instanceMappingRelation_042 ?holex ?holey) 
      (and (RootCtx.inst ?holex Foundation.Round_Hole) 
  (RootCtx.withinContext ?holex DomainX) 
  (RootCtx.inst ?ccpx Foundation.Circular_Closed_Profile) 
  (Foundation.holds_shape ?holex ?ccpx) 
  (Foundation.through ?ccpx) 
  (RootCtx.inst ?holey Foundation.Round_Hole) 
  (RootCtx.withinContext ?holey DomainY) 
  (RootCtx.inst ?ccpy Foundation.Circular_Closed_Profile) 
  (Foundation.holds_shape ?holey ?ccpy) 
  (Foundation.through ?ccpy))) 
 
(=> (instanceMappingRelation_042 ?holex ?holey) 
      (and (RootCtx.holdsArg instanceMappingRelation_042 1 ?holex) 
  (RootCtx.holdsArg instanceMappingRelation_042 2 ?holey))) 
         
:Rel instanceMappingRelation_043 
:Inst BinaryRel 
:Sig Property Property 
:name "instanceMappingRelation_043" 
:rem "There exists a correspondence between the instances ?holex and ?holey as a result of 
both being asserted instances of the foundation class Foundation.Round_Hole declared in 
DomainX and DomainY respectively. ?holex and ?holey do not share the same hole bottom 
conditions." 
 
(<= (instanceMappingRelation_043 ?holex ?holey) 
      (and (RootCtx.inst ?holex Foundation.Round_Hole) 
  (RootCtx.withinContext ?holex DomainX) 
  (RootCtx.inst ?ccpx Foundation.Circular_Closed_Profile) 
  (Foundation.holds_shape ?holex ?ccpx) 
  (Foundation.blind ?ccpx) 
  (RootCtx.inst ?holey Foundation.Round_Hole) 
  (RootCtx.withinContext ?holey DomainY) 
  (RootCtx.inst ?ccpy Foundation.Circular_Closed_Profile) 
  (Foundation.holds_shape ?holey ?ccpy) 
  (Foundation.through ?ccpy))) 
         
(=> (instanceMappingRelation_043 ?holex ?holey) 
      (and (RootCtx.holdsArg instanceMappingRelation_043 1 ?holex) 
  (RootCtx.holdsArg instanceMappingRelation_043 2 ?holey))) 
 
:Rel instanceMappingRelation_048 
:Inst BinaryRel 
:Sig Property Property 
:name "instanceMappingRelation_048" 
:rem "There exists a correspondence between the instances ?holex and ?holey as a result of 
both being asserted instances of the foundation class Foundation.Round_Hole declared in 
DomainX and DomainY respectively. ?holex has a nominal entry diameter which is 
numerically smaller than that of ?holey." 
 
(<= (instanceMappingRelation_048 ?holex ?holey) 
      (and (RootCtx.inst ?ccpx Foundation.Circular_Closed_Profile) 
  (not (Foundation.blind ?ccpx)) 
  (not (Foundation.through ?ccpx)) 
  (RootCtx.inst ?ccpy Foundation.Circular_Closed_Profile) 
  (not (Foundation.blind ?ccpy)) 
  (not (Foundation.through ?ccpy)) 
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  (instanceMappingRelation_003 ?ccpx ?ccpy) 
  (RootCtx.inst ?holex Foundation.Round_Hole) 
  (RootCtx.withinContext ?holex DomainX) 
  (Foundation.holds_shape ?holex ?ccpx) 
  (RootCtx.inst ?holey Foundation.Round_Hole) 
  (RootCtx.withinContext ?holey DomainY) 
  (Foundation.holds_shape ?holey ?ccpy))) 
         
(=> (instanceMappingRelation_048 ?holex ?holey) 
      (and (RootCtx.holdsArg instanceMappingRelation_048 1 ?holex) 
  (RootCtx.holdsArg instanceMappingRelation_048 2 ?holey))) 
 
:Rel instanceMappingRelation_054 
:Inst BinaryRel 
:Sig Property Property 
:name "instanceMappingRelation_054" 
:rem "There exists a correspondence between the instances ?holex and ?holey as a result of 
both being asserted instances of the foundation class Foundation.Round_Hole declared in 
DomainX and DomainY respectively. ?holex has a nominal hole bottom diameter which is 
numerically smaller than that of ?holey." 
 
(<= (instanceMappingRelation_054 ?holex ?holey) 
      (and (RootCtx.inst ?ccpx Foundation.Circular_Closed_Profile) 
  (RootCtx.inst ?ccpy Foundation.Circular_Closed_Profile) 
  (instanceMappingRelation_003 ?ccpx ?ccpy) 
  (or (instanceMappingRelation_041 ?holex ?holey) 
       (instanceMappingRelation_042 ?holex ?holey) 
       (instanceMappingRelation_043 ?holex ?holey)) 
  (RootCtx.inst ?holex Foundation.Round_Hole) 
  (RootCtx.withinContext ?holex DomainX) 
  (Foundation.holds_shape ?holex ?ccpx) 
  (RootCtx.inst ?holey Foundation.Round_Hole) 
  (RootCtx.withinContext ?holey DomainY) 
  (Foundation.holds_shape ?holey ?ccpy))) 
 
(=> (instanceMappingRelation_054 ?holex ?holey) 
      (and (RootCtx.holdsArg instanceMappingRelation_054 1 ?holex) 
  (RootCtx.holdsArg instanceMappingRelation_054 2 ?holey))) 
 
:Rel instanceMappingRelation_059 
:Inst BinaryRel 
:Sig Property Property 
:name "instanceMappingRelation_059" 
:rem "There exists a correspondence between the instances ?holex and ?holey as a result of 
both being asserted instances of the foundation class Foundation.Round_Hole declared in 
DomainX and DomainY respectively. ?holex has a nominal hole depth which is numerically 
greater than that of ?holey." 
 
(<= (instanceMappingRelation_059 ?holex ?holey) 
      (and (RootCtx.inst ?linx Foundation.Linear_Path) 
  (RootCtx.inst ?liny Foundation.Linear_Path) 
  (instanceMappingRelation_008 ?linx ?liny) 
  (RootCtx.inst ?holex Foundation.Round_Hole) 
  (RootCtx.withinContext ?holex DomainX) 
  (Foundation.holds_shape ?holex ?linx) 
  (RootCtx.inst ?holey Foundation.Round_Hole) 
  (RootCtx.withinContext ?holey DomainY) 
  (Foundation.holds_shape ?holey ?liny))) 
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(=> (instanceMappingRelation_059 ?holex ?holey) 
      (and (RootCtx.holdsArg instanceMappingRelation_059 1 ?holex) 
  (RootCtx.holdsArg instanceMappingRelation_059 2 ?holey))) 
 
:Rel instanceMappingRelation_068 
:Inst BinaryRel 
:Sig Property Property 
:name "instanceMappingRelation_068" 
:rem "There exists a correspondence between the instances ?holex and ?holey as a result of 
both being asserted instances of the foundation class Foundation.Round_Hole declared in 
DomainX and DomainY respectively. ?holex and ?holey both have 
Foundation.Transition_Feature instances that blend their entry and/or hole bottom surfaces. 
These Foundation.Transition_Feature instances are, however, different for both ?holex and 
?holey." 
 
(<= (instanceMappingRelation_068 ?holex ?holey) 
      (and (pointerRelation_027 ?holex ?edgex) 
  (pointerRelation_030 ?holey ?chfy) 
  (RootCtx.inst ?chfy Foundation.Chamfer) 
  (RootCtx.inst ?edgex Foundation.Constant_Radius_Edge_Round))) 
         
(<= (instanceMappingRelation_068 ?holex ?holey) 
      (and (pointerRelation_029 ?holex ?chfx) 
  (pointerRelation_028 ?holey ?edgey) 
  (RootCtx.inst ?chfx Foundation.Chamfer) 
  (RootCtx.inst ?edgey Foundation.Constant_Radius_Edge_Round))) 
 
(=> (instanceMappingRelation_068 ?holex ?holey) 
      (and (RootCtx.holdsArg instanceMappingRelation_068 1 ?holex) 
  (RootCtx.holdsArg instanceMappingRelation_068 2 ?holey))) 
 
:Rel instanceMappingRelation_070 
:Inst BinaryRel 
:Sig Property Property 
:name "instanceMappingRelation_070" 
:rem "There exists a correspondence between the instances ?fx and ?fy as a result of both 
being asserted instances of the foundation class Foundation.Feature declared in DomainX 
and DomainY respectively. ?fx and ?fy are both compound features which are composed of at 
least two Foundation.Round_Hole instances defined in DomainX and DomainY respectively." 
:limitationRem "It is not immediately possible to infer whether ?fx and ?fy have similar 
geometric complexity based on the features that they aggregate." 
 
(<= (instanceMappingRelation_070 ?fx ?fy) 
      (and (RootCtx.inst ?fx Foundation.Feature) 
  (RootCtx.inst ?fx1 Foundation.Round_Hole) 
  (RootCtx.inst ?fx2 Foundation.Round_Hole) 
  (Foundation.compound ?fx) 
  (RootCtx.withinContext ?fx DomainX) 
  (Foundation.element_of ?fx1 ?fx) 
  (Foundation.element_of ?fx2 ?fx) 
  (RootCtx.inst ?fy Foundation.Feature) 
  (RootCtx.inst ?fy1 Foundation.Round_Hole) 
  (RootCtx.inst ?fy2 Foundation.Round_Hole) 
  (Foundation.compound ?fy) 
  (RootCtx.withinContext ?fy DomainY) 
  (Foundation.element_of ?fy1 ?fy) 
  (Foundation.element_of ?fy2 ?fy))) 
 
 
      



  
404 

(=> (instanceMappingRelation_070 ?fx ?fy) 
      (and (RootCtx.holdsArg instanceMappingRelation_070 1 ?fx) 
  (RootCtx.holdsArg instanceMappingRelation_070 2 ?fy))) 
 
:Rel instanceMappingRelation_071 
:Inst BinaryRel 
:Sig Property Property 
:name "instanceMappingRelation_071" 
:rem "There exists a correspondence between the instances ?occx and ?occy as a result of 
both being asserted instances of the foundation class Foundation.Activity_Occurrence 
declared in DomainX and DomainY respectively. ?occx and ?occy are both hole making 
activity occurrences based on the reasoning that instances of Foundation.Round_Hole 
defined in DomainX and DomainY respectively are Foundation.output from ?occx and ?occy." 
:limitationRem "It is not immediately possible to infer whether ?occx and ?occy are the same 
activity occurrences purely based on the fact that hole features are Foundation.output from 
them. Explication mismatches could be present between the two instances as a result of 
possible Concept C, Definiens D and Term T disagreements." 
 
(<= (instanceMappingRelation_071 ?occx ?occy) 
      (and (pointerRelation_035 ?occx) 
  (pointerRelation_036 ?occy))) 
      
(=> (instanceMappingRelation_071 ?occx ?occy) 
      (and (RootCtx.holdsArg instanceMappingRelation_071 1 ?occx) 
  (RootCtx.holdsArg instanceMappingRelation_071 2 ?occy))) 
 
:Rel instanceMappingRelation_072 
:Inst BinaryRel 
:Sig Property Property 
:name "instanceMappingRelation_072" 
:rem "There exists a correspondence between the instances ?occx and ?occy as a result of 
both being asserted instances of the foundation class Foundation.Activity_Occurrence 
declared in DomainX and DomainY respectively. ?occx and ?occy are both complex 
Foundation.Activity_Occurrence instances defined in DomainX and DomainY respectively. 
Both ?occx and ?occy hold a number of subactivity occurrences." 
 
(<= (instanceMappingRelation_072 ?occx ?occy) 
      (and (RootCtx.inst ?occx Foundation.Activity_Occurrence) 
  (RootCtx.withinContext ?occx DomainX) 
  (RootCtx.inst ?occx1 Foundation.Activity_Occurrence) 
  (Foundation.subactivity_occurrence ?occx1 ?occx) 
  (RootCtx.inst ?occy Foundation.Activity_Occurrence) 
  (RootCtx.withinContext ?occy DomainY) 
  (RootCtx.inst ?occy1 Foundation.Activity_Occurrence) 
  (Foundation.subactivity_occurrence ?occy1 ?occy))) 
      
(=> (instanceMappingRelation_072 ?occx ?occy) 
      (and (RootCtx.holdsArg instanceMappingRelation_072 1 ?occx) 
  (RootCtx.holdsArg instanceMappingRelation_072 2 ?occy))) 
 
:Rel instanceMappingRelation_074 
:Inst BinaryRel 
:Sig Property Property 
:name "instanceMappingRelation_074" 
:rem "There exists a correspondence between the instances ?occx and ?occy as a result of 
both being asserted instances of the foundation class Foundation.Activity_Occurrence 
declared in DomainX and DomainY respectively. ?occx and ?occy are both Foundation.initial 
Foundation.Activity_Occurrence instances defined in DomainX and DomainY respectively. 
This implies that both ?occx and ?occy are the very first occurrences in their respective 
occurrence trees." 
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(<= (instanceMappingRelation_074 ?occx ?occy) 
      (and (RootCtx.inst ?occx Foundation.Activity_Occurrence) 
  (RootCtx.withinContext ?occx DomainX) 
  (Foundation.initial ?occx) 
  (RootCtx.inst ?occy Foundation.Activity_Occurrence) 
  (RootCtx.withinContext ?occy DomainY) 
  (Foundation.initial ?occy))) 
      
(=> (instanceMappingRelation_074 ?occx ?occy) 
      (and (RootCtx.holdsArg instanceMappingRelation_074 1 ?occx) 
  (RootCtx.holdsArg instanceMappingRelation_074 2 ?occy))) 
    
:Rel instanceMappingRelation_075 
:Inst BinaryRel 
:Sig Property Property 
:name "instanceMappingRelation_075" 
:rem "There exists a correspondence between the instances ?occx and ?occy as a result of 
both being asserted instances of the foundation class Foundation.Activity_Occurrence 
declared in DomainX and DomainY respectively. ?occx and ?occy are both 
Foundation.arboreal and Foundation.legal Foundation.Activity_Occurrence instances defined 
in DomainX and DomainY respectively. This implies that both ?occx and ?occy are allowable 
occurrences in their respective occurrence trees." 
  
(<= (instanceMappingRelation_075 ?occx ?occy) 
      (and (RootCtx.inst ?occx Foundation.Activity_Occurrence) 
  (RootCtx.withinContext ?occx DomainX) 
  (Foundation.legal ?occx) 
  (Foundation.arboreal ?occx) 
  (RootCtx.inst ?occy Foundation.Activity_Occurrence) 
  (RootCtx.withinContext ?occy DomainY) 
  (Foundation.legal ?occy) 
  (Foundation.arboreal ?occy))) 
      
(=> (instanceMappingRelation_075 ?occx ?occy) 
      (and (RootCtx.holdsArg instanceMappingRelation_075 1 ?occx) 
  (RootCtx.holdsArg instanceMappingRelation_075 2 ?occy))) 
 
:Rel instanceMappingRelation_077 
:Inst BinaryRel 
:Sig Property Property 
:name "instanceMappingRelation_077" 
:rem "There exists a correspondence between the instances ?fx and ?fy as a result of both 
being asserted instances of the foundation class Foundation.Feature declared in DomainX 
and DomainY respectively. ?fx and ?fy are both compound feature instances defined in 
DomainX and DomainY respectively." 
:limitationRem "It is not immediately possible to infer whether ?fx and ?fy involve counterbore 
and/or countersunk compound hole features." 
 
(<= (instanceMappingRelation_077 ?fx ?fy) 
      (and (RootCtx.inst ?fx Foundation.Feature) 
  (RootCtx.withinContext ?fx DomainX) 
  (Foundation.compound ?fx) 
  (RootCtx.inst ?fy Foundation.Feature) 
  (RootCtx.withinContext ?fy DomainY) 
  (Foundation.compound ?fy))) 
      
(=> (instanceMappingRelation_077 ?fx ?fy) 
      (and (RootCtx.holdsArg instanceMappingRelation_077 1 ?fx) 
  (RootCtx.holdsArg instanceMappingRelation_077 2 ?fy))) 
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E.2 Semantic Mapping Concepts Based on Known Cross-

Domain Correspondences (Design and Machining Hole 

Feature Ontology A) 

Context Declaration 

 
:Ctx domainMapping 
:Inst UserContext 
:supCtx TopUserCtx 
:name "Domain Mapping Context" 
:rem "This context is used to define relevant semantic mapping concepts based on known 
cross-domain correspondences between the Design Hole Feature Ontology A and Machining 
Hole Feature Ontology A." 
 
:Use domainMapping 
 
 

Reconciliation of Classes 

  
:Rel classMappingRelation_001 
:Inst BinaryRel 
:Sig Property Property 
:name "classMappingRelation_001" 
:rem "The class ?x in the DomainX context is a conceptually similar class to the class ?y in 
the DomainY context. The class ?x has been declared from a design function viewpoint 
whereas the class ?y has been declared from a machining viewpoint." 
:limitationRem "It is possible that there is a term and definiens mismatch between the classes 
?x and ?y. This would arise in the event that different terms and semantic structures have 
been chosen to refer to the classes ?x and ?y as a result of domain preferences." 
  
(=> (classMappingRelation_001 ?x ?y) 
      (and (RootCtx.holdsArg classMappingRelation_001 1 ?x) 
  (RootCtx.holdsArg classMappingRelation_001 2 ?y))) 
        
(<= (classMappingRelation_001 DomainX.Housing_Part_Family  
                                                      DomainY.Housing_Part_Family) 
      (and (RootCtx.Property DomainX.Housing_Part_Family) 
  (RootCtx.Property DomainY.Housing_Part_Family))) 
      
   
(<= (classMappingRelation_001 DomainX.Bolt_Hole DomainY.Counterbore_Hole) 
      (and (RootCtx.Property DomainX.Bolt_Hole) 
  (RootCtx.Property DomainY.Counterbore_Hole))) 
      
(<= (classMappingRelation_001 DomainX.Boss DomainY.Turned_Boss) 
      (and (RootCtx.Property DomainX.Boss) 
  (RootCtx.Property DomainY.Turned_Boss))) 
      
(<= (classMappingRelation_001 DomainX.External_Flange DomainY.Turned_Flange) 
      (and (RootCtx.Property DomainX.External_Flange) 
  (RootCtx.Property DomainY.Turned_Flange))) 
      
(<= (classMappingRelation_001 DomainX.Locating_Pin_Hole DomainY.Reamed_Hole) 
      (and (RootCtx.Property DomainX.Locating_Pin_Hole) 
  (RootCtx.Property DomainY.Reamed_Hole))) 
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(<= (classMappingRelation_001 DomainX.Plain_Diameter_Hole DomainY.Drilled_Hole) 
      (and (RootCtx.Property DomainX.Plain_Diameter_Hole) 
  (RootCtx.Property DomainY.Drilled_Hole))) 
      
(<= (classMappingRelation_001 DomainX.Secondary_Hole DomainY.Counterbore) 
      (and (RootCtx.Property DomainX.Secondary_Hole) 
  (RootCtx.Property DomainY.Counterbore_Hole))) 
  
 
(<= (classMappingRelation_001 DomainX.Primary_Depth DomainY.Drilled_Hole_Depth) 
      (and (RootCtx.Property DomainX.Primary_Depth) 
  (RootCtx.Property DomainY.Drilled_Hole_Depth))) 
      
(<= (classMappingRelation_001 DomainX.Primary_Diameter  
                                                      DomainY.Drilled_Hole_Diameter) 
      (and (RootCtx.Property DomainX.Primary_Depth) 
  (RootCtx.Property DomainY.Drilled_Hole_Depth))) 
      
(<= (classMappingRelation_001 DomainX.Secondary_Depth  
                                                      DomainY.Counterbore_Depth) 
      (and (RootCtx.Property DomainX.Secondary_Depth) 
  (RootCtx.Property DomainY.Counterbore_Depth))) 
      
(<= (classMappingRelation_001 DomainX.Secondary_Diameter  
                                                      DomainY.Counterbore_Diameter) 
      (and (RootCtx.Property DomainX.Secondary_Diameter) 
  (RootCtx.Property DomainY.Counterbore_Diameter))) 
      
(<= (classMappingRelation_001 DomainX.Primary_Depth  
                                                      DomainY.Reamed_Hole_Depth) 
      (and (RootCtx.Property DomainX.Primary_Depth) 
  (RootCtx.Property DomainY.Reamed_Hole_Depth))) 
      
(<= (classMappingRelation_001 DomainX.Primary_Diameter  
                                                    DomainY.Reamed_Hole_Diameter) 
      (and (RootCtx.Property DomainX.Primary_Depth) 
  (RootCtx.Property DomainY.Reamed_Hole_Depth))) 
        
:Rel classMappingRelation_002 
:Inst BinaryRel 
:Sig Property Property 
:name "classMappingRelation_002" 
:rem "From a feature geometry standpoint, the dimensional parameters that define 
DomainX.Bolt_Hole instances differ from those of DomainY.Counterbore_Hole instances." 
   
(<= (classMappingRelation_002 DomainX.Bolt_Hole DomainY.Counterbore_Hole) 
      (and (RootCtx.Property DomainX.Bolt_Hole) 
  (RootCtx.Property DomainY.Counterbore_Hole))) 
 
(=> (classMappingRelation_002 ?x ?y) 
      (and (RootCtx.holdsArg classMappingRelation_002 1 ?x) 
  (RootCtx.holdsArg classMappingRelation_002 2 ?y))) 
        
:Rel classMappingRelation_003 
:Inst BinaryRel 
:Sig Property Property 
:name "classMappingRelation_003" 
:rem "When applied to a DomainX.Bolt_Hole, a DomainX.Primary_Depth is the subtraction of 
a DomainY.Counterbore_Depth from a DomainY.Drilled_Hole_Depth. In other words, a 
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Drilled_Hole_Depth is the addition of a DomainX.Secondary_Depth to a Primary_Depth for a 
DomainY.Counterbore_Hole." 
   
(<= (classMappingRelation_003 DomainX.Primary_Depth DomainY.Drilled_Hole_Depth) 
      (and (RootCtx.Property DomainX.Primary_Depth) 
  (RootCtx.Property DomainY.Drilled_Hole_Depth))) 
 
(=> (classMappingRelation_003 ?x ?y) 
      (and (RootCtx.holdsArg classMappingRelation_003 1 ?x) 
  (RootCtx.holdsArg classMappingRelation_003 2 ?y))) 
   
:Rel classMappingRelation_004 
:Inst BinaryRel 
:Sig Property Property 
:name "classMappingRelation_004" 
:rem "A DomainX.Boss in DomainX is a feature of compound property which consists of an 
aggregation of a Foundation.Cylinder and a Foundation.Round_Hole, whereas a 
DomainY.Turned_Boss in DomainY is not." 
   
(<= (classMappingRelation_004 DomainX.Boss DomainY.Turned_Boss) 
      (and (RootCtx.Property DomainX.Boss) 
  (RootCtx.Property DomainY.Turned_Boss))) 
 
(=> (classMappingRelation_004 ?x ?y) 
      (and (RootCtx.holdsArg classMappingRelation_004 1 ?x) 
  (RootCtx.holdsArg classMappingRelation_004 2 ?y))) 
       
      

Reconciliation of Functions 

  
:Rel pointerRelation_001 
:Inst UnaryRel 
:Sig UnaryFun 
:name "pointerRelation_001" 
 
(<= (pointerRelation_001 ?funx) 
      (and (RootCtx.inst ?funx RootCtx.UnaryFun) 
  (RootCtx.withinContext ?funx DomainX) 
  (RootCtx.argProp ?funx 1 RootCtx.RealNumber) 
  (RootCtx.returnProp ?funx Foundation.Length_Measure))) 
  
:Rel pointerRelation_002 
:Inst UnaryRel 
:Sig UnaryFun 
:name "pointerRelation_002" 
 
(<= (pointerRelation_002 ?funy) 
      (and (RootCtx.inst ?funy RootCtx.UnaryFun) 
  (RootCtx.withinContext ?funy DomainY) 
  (RootCtx.argProp ?funy 1 RootCtx.RealNumber) 
  (RootCtx.returnProp ?funy Foundation.Length_Measure))) 
       
:Rel functionMappingRelation_001 
:Inst BinaryRel 
:Sig Property Property 
:name "functionMappingRelation_001" 
:rem "The function ?funx in the DomainX context is equivalent to the function ?funy in the 
DomainY context. There are no semantic mismatches between them." 
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(<= (functionMappingRelation_001 ?funx ?funy) 
      (and (pointerRelation_001 ?funx) 
  (pointerRelation_002 ?funy))) 
        
(=> (functionMappingRelation_001 ?funx ?funy) 
      (and (RootCtx.holdsArg functionMappingRelation_001 1 ?funx) 
  (RootCtx.holdsArg functionMappingRelation_001 2 ?funy))) 
      
  

Reconciliation of Instances 

 
:Rel pointerRelation_003 
:Inst TernaryRel 
:Sig Property Property Property 
:name "pointerRelation_003" 
 
(<= (pointerRelation_003 ?x ?sax ?realx) 
      (and (RootCtx.inst ?x Foundation.Feature) 
  (RootCtx.withinContext ?x DomainX) 
  (RootCtx.inst ?sax Foundation.Shape_Aspect) 
  (Foundation.holds_shape ?x ?sax) 
  (RootCtx.inst ?lengthx Foundation.Length_Measure) 
  (= ?lengthx (Foundation.mm ?realx)) 
  (Foundation.measures ?sax (Foundation.mm ?realx)))) 
     
:Rel pointerRelation_004 
:Inst TernaryRel 
:Sig Property Property Property 
:name "pointerRelation_002" 
  
(<= (pointerRelation_004 ?y ?say ?realy) 
      (and (RootCtx.inst ?y Foundation.Feature) 
  (RootCtx.withinContext ?y DomainY) 
  (RootCtx.inst ?say Foundation.Shape_Aspect) 
  (Foundation.holds_shape ?y ?say) 
  (RootCtx.inst ?lengthy Foundation.Length_Measure) 
  (= ?lengthy (Foundation.mm ?realy)) 
  (Foundation.measures ?say (Foundation.mm ?realy)))) 
  
:Rel instanceMappingRelation_001 
:Inst BinaryRel 
:Sig Property Property 
:name "instanceMappingRelation_001" 
:rem "The Foundation.Round_Hole instance ?x in the DomainX context is an equivalent 
individual to the Foundation.Round_Hole instance ?y in the DomainY context, in terms of the 
nominal dimensional parameters that each instance carries. The instance ?x has been 
declared from a design function viewpoint whereas the instance ?y has been declared from a 
machining viewpoint." 
:limitationRem "Dimensional tolerances and orientations carried by the instances ?x and ?y 
have not been considered in the reasoning. Furthermore, is possible that there is a term and 
definiens mismatch between the instances ?x and ?y. This would arise in the event that 
different terms and semantic structures have been chosen to refer to the instances ?x and ?y 
as a result of domain preferences." 
  
(<= (instanceMappingRelation_001 ?x ?y) 
      (and (pointerRelation_003 ?x ?sax1 ?realx1) 
  (pointerRelation_004 ?y ?say1 ?realy1) 
  (pointerRelation_003 ?x ?sax2 ?realx2) 
  (pointerRelation_004 ?y ?say2 ?realy2) 
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  (RootCtx.inst ?x Foundation.Round_Hole) 
  (RootCtx.inst ?y Foundation.Round_Hole) 
  (RootCtx.inst ?sax1 Foundation.Circular_Closed_Profile) 
  (RootCtx.inst ?say1 Foundation.Circular_Closed_Profile) 
  (RootCtx.inst ?sax2 Foundation.Linear_Path) 
  (RootCtx.inst ?say2 Foundation.Linear_Path) 
  (eqNum ?realx1 ?realy1) 
  (eqNum ?realx2 ?realy2))) 
  
(=> (instanceMappingRelation_001 ?x ?y) 
      (and (RootCtx.holdsArg instanceMappingRelation_001 1 ?x) 
  (RootCtx.holdsArg instanceMappingRelation_001 2 ?y))) 
   
:Rel instanceMappingRelation_002 
:Inst BinaryRel 
:Sig Property Property 
:name "instanceMappingRelation_002" 
:rem "The Foundation.Cylinder instance ?x in the DomainX context is an equivalent individual 
to the Foundation.Cylinder instance ?y in the DomainY context, in terms of the nominal 
dimensional parameters that each instance carries.The instance ?x has been declared from a 
design function viewpoint whereas the instance ?y has been declared from a machining 
viewpoint." 
:limitationRem "Dimensional tolerances and orientations carried by the instances ?x and ?y 
have not been considered in the reasoning. Furthermore, is possible that there is a term and 
definiens mismatch between the instances ?x and ?y. This would arise in the event that 
different terms and semantic structures have been chosen to refer to the instances ?x and ?y 
as a result of domain preferences." 
  
(<= (instanceMappingRelation_002 ?x ?y) 
      (and (pointerRelation_003 ?x ?sax1 ?realx1) 
  (pointerRelation_004 ?y ?say1 ?realy1) 
  (pointerRelation_003 ?x ?sax2 ?realx2) 
  (pointerRelation_004 ?y ?say2 ?realy2) 
  (RootCtx.inst ?x Foundation.Cylinder) 
  (RootCtx.inst ?y Foundation.Cylinder) 
  (RootCtx.inst ?sax1 Foundation.Circular_Closed_Profile) 
  (RootCtx.inst ?say1 Foundation.Circular_Closed_Profile) 
  (RootCtx.inst ?sax2 Foundation.Linear_Path) 
  (RootCtx.inst ?say2 Foundation.Linear_Path) 
  (eqNum ?realx1 ?realy1) 
  (eqNum ?realx2 ?realy2))) 
  
(=> (instanceMappingRelation_002 ?x ?y) 
      (and (RootCtx.holdsArg instanceMappingRelation_002 1 ?x) 
  (RootCtx.holdsArg instanceMappingRelation_002 2 ?y))) 
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F Interoperability Evaluation Layer 

F.1 Sitemap for the Interoperability Evaluation Assistant 

Figure F-1 illustrates the sitemap for the Interoperability Evaluation Assistant. 

The Interoperability Evaluation Assistant is a Web-based UI which enables 

the user to retrieve the appropriate queries during the interoperable 

knowledge discovery process at the fourth level of the SMIF. 

 

Interoperability 
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Home
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Based on Foundation 

Semantics – Instance Level

Semantic Mapping Concepts 

Based on Foundation 

Semantics – Class Level

Semantic Mapping Concepts 
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Semantics – Function Level

Semantic Mapping Concepts 

Based on an External Domain 
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Semantic Mapping Concepts 

Based on Known Cross Domain 

Correspondences – Instance Level

Semantic Mapping Concepts 

Based on Known Cross Domain 

Correspondences – Class Level

Semantic Mapping Concepts 

Based on Known Cross Domain 

Correspondences – Function Level

 

Figure F-49 Sitemap for the Interoperability Evaluation Assistant 
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F.2 Java-Based Modules 

The Interoperability Evaluation Assistant employs Java-based modules to 

input the names of domain arguments and retrieve queries to evaluate all 

cross-domain correspondences in a single transaction. These modules are 

written in JavaScript and embedded in the HTML code of the relevant page on 

the Web-based interface. Figure F-2 depicts the main panel of the 

Interoperability Evaluation Assistant and a sample JavaScript code for one of 

the Java-based modules appearing on the Homepage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<div style="position: absolute; width: 250px; height: 114px; z-index: 11; left: 498px; top: 655px" id="layer62"> 
<html> 
<head> 
<title>Retrieve Semantic Mapping Concepts 1</title> 
<script LANGUAGE="JavaScript" type="text/javascript"> 
function display1() { 
  DispWin = window.open('','NewWin', 'toolbar=no,status=no,width=300,height=150') 
  message = "(and (RootCtx.BinaryRel ?rel) (RootCtx.withinContext ?rel foundationMapping) (RootCtx.holdsArg 
?rel 1 DomainX." + document.form1.domainx1.value; 
  message += ") (RootCtx.holdsArg ?rel 2 DomainY." + document.form1.domainy1.value; 
  message += "))"; 
  DispWin.document.write(message); 
} 
</script> 
</head> 
<body> 
<form name="form1"> 
<p align="center"><font face="Tahoma">DomainX Arg:&nbsp; </font> 
<input TYPE="TEXT" SIZE="15" NAME="domainx1"><p align="center"> 
</p> 
<p align="center"><font face="Tahoma">DomainY Arg:</font>&nbsp;  
<input TYPE="TEXT" SIZE="15" NAME="domainy1"> 
</p> 
<p align="center"> 
<input TYPE="BUTTON" VALUE="Submit" onClick="display1();" style="float: centre"></p> 
</form> 
</body> 
</html> 
 <p>&nbsp;</div> 

Figure F-2 Sample JavaScript Code for a Java-Based Module on the Homepage 
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Figure F-3 illustrates the page for building queries in order to evaluate cross-

domain correspondences based on the ISO Tolerance Band Model as an 

external domain. A sample JavaScript code applicable to one of the Java-

based modules present on this page is also listed. 

 

 

 

 

 

 

<div style="position: absolute; width: 382px; height: 114px; z-index: 11; left: 260px; top: 302px" id="layer62"> 
<html> 
<head> 
<title>Retrieve Semantic Mapping Concepts 1</title> 
<script LANGUAGE="JavaScript" type="text/javascript"> 
function display1() { 
  DispWin = window.open('','NewWin', 'toolbar=no,status=no,width=320,height=200') 
  message = "(and (RootCtx.UnaryRel ?rel1) (RootCtx.UnaryRel ?rel2) (RootCtx.withinContext ?rel1 
isoToleranceBand) (RootCtx.withinContext ?rel2 isoToleranceBand) (RootCtx.holdsArg ?rel1 1 DomainX." + 
document.form1.domainx1.value; 
  message += ") (RootCtx.holdsArg ?rel2 1 DomainY." + document.form1.domainy1.value; 
  message += "))"; 
  DispWin.document.write(message); 
} 
</script> 
</head> 
<body> 
<form name="form1"> 
<p align="center"><font face="Tahoma">Round Hole Instance in DomainX:&nbsp; </font> 
<input TYPE="TEXT" SIZE="15" NAME="domainx1"><p align="center"> 
</p> 
<p align="center"><font face="Tahoma">Round Hole Instance in DomainY:</font>&nbsp;  
<input TYPE="TEXT" SIZE="15" NAME="domainy1"> 
</p> 
<p align="center"> 
<input TYPE="BUTTON" VALUE="Submit" onClick="display1();" style="float: centre"></p> 
</form> 
</body> 
</html> 
 <p>&nbsp;</div> 

Figure F-3 Sample JavaScript Code for a Java-Based Module on the ISO Tolerance 
Band Model Page 


