751 research outputs found

    Emerging services for Internet of Things

    Get PDF

    Personalized fall detection monitoring system based on learning from the user movements

    Get PDF
    Personalized fall detection system is shown to provide added and more benefits compare to the current fall detection system. The personalized model can also be applied to anything where one class of data is hard to gather. The results show that adapting to the user needs, improve the overall accuracy of the system. Future work includes detection of the smartphone on the user so that the user can place the system anywhere on the body and make sure it detects. Even though the accuracy is not 100% the proof of concept of personalization can be used to achieve greater accuracy. The concept of personalization used in this paper can also be extended to other research in the medical field or where data is hard to come by for a particular class. More research into the feature extraction and feature selection module should be investigated. For the feature selection module, more research into selecting features based on one class data

    Real-time big data processing for anomaly detection : a survey

    Get PDF
    The advent of connected devices and omnipresence of Internet have paved way for intruders to attack networks, which leads to cyber-attack, financial loss, information theft in healthcare, and cyber war. Hence, network security analytics has become an important area of concern and has gained intensive attention among researchers, off late, specifically in the domain of anomaly detection in network, which is considered crucial for network security. However, preliminary investigations have revealed that the existing approaches to detect anomalies in network are not effective enough, particularly to detect them in real time. The reason for the inefficacy of current approaches is mainly due the amassment of massive volumes of data though the connected devices. Therefore, it is crucial to propose a framework that effectively handles real time big data processing and detect anomalies in networks. In this regard, this paper attempts to address the issue of detecting anomalies in real time. Respectively, this paper has surveyed the state-of-the-art real-time big data processing technologies related to anomaly detection and the vital characteristics of associated machine learning algorithms. This paper begins with the explanation of essential contexts and taxonomy of real-time big data processing, anomalous detection, and machine learning algorithms, followed by the review of big data processing technologies. Finally, the identified research challenges of real-time big data processing in anomaly detection are discussed. © 2018 Elsevier Lt

    Personalized fall detection monitoring system based on learning from the user movements

    Get PDF
    Personalized fall detection system is shown to provide added and more benefits compare to the current fall detection system. The personalized model can also be applied to anything where one class of data is hard to gather. The results show that adapting to the user needs, improve the overall accuracy of the system. Future work includes detection of the smartphone on the user so that the user can place the system anywhere on the body and make sure it detects. Even though the accuracy is not 100% the proof of concept of personalization can be used to achieve greater accuracy. The concept of personalization used in this paper can also be extended to other research in the medical field or where data is hard to come by for a particular class. More research into the feature extraction and feature selection module should be investigated. For the feature selection module, more research into selecting features based on one class data.http://jit.ndhu.edu.twam2022Electrical, Electronic and Computer Engineerin

    Wearable Sensors and Smart Devices to Monitor Rehabilitation Parameters and Sports Performance: An Overview

    Get PDF
    A quantitative evaluation of kinetic parameters, the joint’s range of motion, heart rate, and breathing rate, can be employed in sports performance tracking and rehabilitation monitoring following injuries or surgical operations. However, many of the current detection systems are expensive and designed for clinical use, requiring the presence of a physician and medical staff to assist users in the device’s positioning and measurements. The goal of wearable sensors is to overcome the limitations of current devices, enabling the acquisition of a user’s vital signs directly from the body in an accurate and non–invasive way. In sports activities, wearable sensors allow athletes to monitor performance and body movements objectively, going beyond the coach’s subjective evaluation limits. The main goal of this review paper is to provide a comprehensive overview of wearable technologies and sensing systems to detect and monitor the physiological parameters of patients during post–operative rehabilitation and athletes’ training, and to present evidence that supports the efïŹcacy of this technology for healthcare applications. First, a classiïŹcation of the human physiological parameters acquired from the human body by sensors attached to sensitive skin locations or worn as a part of garments is introduced, carrying important feedback on the user’s health status. Then, a detailed description of the electromechanical transduction mechanisms allows a comparison of the technologies used in wearable applications to monitor sports and rehabilitation activities. This paves the way for an analysis of wearable technologies, providing a comprehensive comparison of the current state of the art of available sensors and systems. Comparative and statistical analyses are provided to point out useful insights for deïŹning the best technologies and solutions for monitoring body movements. Lastly, the presented review is compared with similar ones reported in the literature to highlight its strengths and novelties

    Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders

    Get PDF
    The aging population and the increased prevalence of neurological diseases have raised the issue of gait and balance disorders as a major public concern worldwide. Indeed, gait and balance disorders are responsible for a high healthcare and economic burden on society, thus, requiring new solutions to prevent harmful consequences. Recently, wearable sensors have provided new challenges and opportunities to address this issue through innovative diagnostic and therapeutic strategies. Accordingly, the book “Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders” collects the most up-to-date information about the objective evaluation of gait and balance disorders, by means of wearable biosensors, in patients with various types of neurological diseases, including Parkinson’s disease, multiple sclerosis, stroke, traumatic brain injury, and cerebellar ataxia. By adopting wearable technologies, the sixteen original research articles and reviews included in this book offer an updated overview of the most recent approaches for the objective evaluation of gait and balance disorders

    Machine Learning Algorithms for Privacy-preserving Behavioral Data Analytics

    Get PDF
    PhD thesisBehavioral patterns observed in data generated by mobile and wearable devices are used by many applications, such as wellness monitoring or service personalization. However, sensitive information may be inferred from these data when they are shared with cloud-based services. In this thesis, we propose machine learning algorithms for data transformations to allow the inference of information required for specific tasks while preventing the inference of privacy-sensitive information. Specifically, we focus on protecting the user’s privacy when sharing motion-sensor data and web-browsing histories. Firstly, for human activity recognition using data of wearable sensors, we introduce two algorithms for training deep neural networks to transform motion-sensor data, focusing on two objectives: (i) to prevent the inference of privacy-sensitive activities (e.g. smoking or drinking), and (ii) to protect user’s sensitive attributes (e.g. gender) and prevent the re-identification of user. We show how to combine these two algorithms and propose a compound architecture that protects both sensitive activities and attributes. Alongside the algorithmic contributions, we published a motion-sensor dataset for human activity recognition. Secondly, to prevent the identification of users using their web-browsing behavior, we introduce an algorithm for privacy-preserving collaborative training of contextual bandit algorithms. The proposed method improves the accuracy of personalized recommendation agents that run locally on the user’s devices. We propose an encoding algorithm for the user’s web-browsing data that preserves the required information for the personalization of the future contents while ensuring differential privacy for the participants in collaborative training. In addition, for processing multivariate sensor data, we show how to make neural network architectures adaptive to dynamic sampling rate and sensor selection. This allows handling situations in human activity recognition where the dimensions of input data can be varied at inference time. Specifically, we introduce a customized pooling layer for neural networks and propose a customized training procedure to generalize over a large number of feasible data dimensions. Using the proposed architectural improvement, we show how to convert existing non-adaptive deep neural networks into an adaptive network while keeping the same classification accuracy. We conclude this thesis by discussing open questions and the potential future directions for continuing research in this area
    • 

    corecore