1,689 research outputs found

    Modeling and Analyzing Cyber-Physical Systems Using Hybrid Predicate Transition Nets

    Get PDF
    Cyber-Physical Systems (CPSs) are software controlled physical devices that are being used everywhere from utility features in household devices to safety-critical features in cars, trains, aircraft, robots, smart healthcare devices. CPSs have complex hybrid behaviors combining discrete states and continuous states capturing physical laws. Developing reliable CPSs are extremely difficult. Formal modeling methods are especially useful for abstracting and understanding complex systems and detecting and preventing early system design problems. To ensure the dependability of formal models, various analysis techniques, including simulation and reachability analysis, have been proposed in recent decades. This thesis aims to provide a unified formal modeling and analysis methodology for studying CPSs. Firstly, this thesis contributes to the modeling and analysis of discrete, continuous, and hybrid systems. This work enhances modeling of discrete systems using predicate transition nets (PrTNs) by fully realizing the underlying specification through incorporating the first-order logic with set theory, improving the type system, and providing incremental model composition. This work enhances the technique of analyzing discrete systems using PrTN by improving the simulation algorithm and its efficient implementation. This work also improves the analysis of discrete systems using SPIN by providing a more accurate and complete translation method. Secondly, this work contributes to the modeling and analysis of hybrid systems by proposing an extension of PrTNs, hybrid predicate transition nets (HPrTNs). The proposed method incorporates a novel concept of token evolution, which nicely addresses the continuous state evolution and the conflicts present in other related works. This work presents a powerful simulation capability that can handle linear, non-linear dynamics, transcendental functions through differential equations. This work also provides a complementary technique for reachability analysis through the translation of HPrTN models for analysis using SpaceEx

    Desynchronization: Synthesis of asynchronous circuits from synchronous specifications

    Get PDF
    Asynchronous implementation techniques, which measure logic delays at run time and activate registers accordingly, are inherently more robust than their synchronous counterparts, which estimate worst-case delays at design time, and constrain the clock cycle accordingly. De-synchronization is a new paradigm to automate the design of asynchronous circuits from synchronous specifications, thus permitting widespread adoption of asynchronicity, without requiring special design skills or tools. In this paper, we first of all study different protocols for de-synchronization and formally prove their correctness, using techniques originally developed for distributed deployment of synchronous language specifications. We also provide a taxonomy of existing protocols for asynchronous latch controllers, covering in particular the four-phase handshake protocols devised in the literature for micro-pipelines. We then propose a new controller which exhibits provably maximal concurrency, and analyze the performance of desynchronized circuits with respect to the original synchronous optimized implementation. We finally prove the feasibility and effectiveness of our approach, by showing its application to a set of real designs, including a complete implementation of the DLX microprocessor architectur

    Synthesis of asynchronous controllers using integer linear programming

    Get PDF
    A novel strategy for the logic synthesis of asynchronous control circuits is presented. It is based on the structural theory of Petri nets and integer linear programming. Techniques that are capable of checking implementability conditions, such as complete state coding, and deriving a gate netlist to implement the specified behavior are presented. These techniques can handle Petri net specifications consisting of several thousands of transitions and provide a significant speed-up compared with techniques that have previously been proposed.Peer ReviewedPostprint (published version

    An evolutionary approach to the use of Petri net based models: from parallel controllers to HW/SW co-design

    Get PDF
    "A workshop within the 19th International Conference on Applications and Theory of Petri Nets - ICATPN’1998"The main purpose of this article is to present how Petri Nets (PNs) have been used for hardware design at our research laboratory. We describe the use of PN models to specify synchronous parallel controllers and how PN speci cations can be extended to include the behavioural description of the data path, by using object-oriented concepts. Some hierarchical mechanisms which deal with the speci cation of complex digital systems are highlighted. It is described a design flow that includes, among others, the automatic generation of VHDL code to synthesize the control unit of the system. The use of PNs as part of a multiple-view model within an object-oriented methodology for hardware/software codesign is debated. The EDgAR-2 platform is considered as the recon gurable target architecture for implementing the systems and its main characteristics are shown

    New Software Tool for Modelling and Control of Discrete-Event and Hybrid Systems Using Petri Nets

    Get PDF
    The main aim of the proposed paper is to design a new software tool for modelling and control of discrete-event and hybrid systems using Arduino and similar microcontrollers. To accomplish these tasks a new tool called PN2ARDUINO based on Petri nets is proposed which is able to communicate with the microcontroller. Communication with the microcontroller is based on the modified Firmata protocol hence the control algorithm can be implemented on all microcontrollers that support this type of protocol. The developed software tool has been successfully verified in control of laboratory systems. It can also be used for education and research purposes as it offers a graphical environment for designing control algorithms for hybrid and mainly discrete-event systems. The proposed tool can improve education and practice in the field of cyber-physical systems (Industry 4.0)

    Self-tuning run-time reconfigurable PID controller

    Get PDF
    Digital PID control algorithm is one of the most commonly used algorithms in the control systems area. This algorithm is very well known, it is simple, easily implementable in the computer control systems and most of all its operation is very predictable. Thus PID control has got well known impact on the control system behavior. However, in its simple form the controller have no reconfiguration support. In a case of the controlled system substantial changes (or the whole control environment, in the wider aspect, for example if the disturbances characteristics would change) it is not possible to make the PID controller robust enough. In this paper a new structure of digital PID controller is proposed, where the policy-based computing is used to equip the controller with the ability to adjust it's behavior according to the environmental changes. Application to the electro-oil evaporator which is a part of distillation installation is used to show the new controller structure in operation

    Linking data and BPMN processes to achieve executable models

    Get PDF
    We describe a formally well founded approach to link data and processes conceptually, based on adopting UML class diagrams to represent data, and BPMN to represent the process. The UML class diagram together with a set of additional process variables, called Artifact, form the information model of the process. All activities of the BPMN process refer to such an information model by means of OCL operation contracts. We show that the resulting semantics while abstract is fully executable. We also provide an implementation of the executor.Peer ReviewedPostprint (author's final draft

    Risk and Reliability Analysis of Flexible Construction Robotized Systems

    Get PDF

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial
    corecore