
ITEM NO: 1937673
Abbey Bookbinding

Unit 3, Gabalfa Workshops
Clos Menter

Excelsior Ind. Estate
Card iff CFI43AY

Tel: +44 (0)59 2062 3290
Fax +44 (0)29 20625420

E info@abbeytxiokbinding.co.uk
www.abbeybookbinding.co.uk

FOR
REFERENCE ONLY

Functionally Encapsulated Modules:
A Computer Aided Software Engineering
Methodology for the Implementation of
Computer Integrated Manufacturing.

Thesis Submitted to the University of Wales for the Degree of

Doctor of Philosophy

By

Eric Llewellyn, BSc (Hons) AFHEA FBCS CITP
Department of Business and Computing

University of Wales Newport

May 2009

Declarations

Declarations

DECLARATION

This work has not previously been accepted in any substance for any degree and is not being currently
submitted in candidature for any degree.

Signed...............;:^... (candidate)

Date........!./.^/?^}......................................

STATEMENT 1

This thesis is the result of my own investigations, except where otherwise stated.
Other sources are acknowledged by footnotes giving explicit references. A bibliography is appended.

Signed ..7^T........yTr:.............T7................................... (candidate)

D« _L^_^2..._-_...........

STATEMENT 2

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library
loan, and for the title and summary to be made available to outside organisations.

Signed .fr^^..y....\r...:....^T:.......T.......................... (candidate)

Date

Acknowledgements

Acknowledgements

I would like to thank my supervisors Dr Martin Stanton and Dr Torbj0rn Dahl for their
guidance and support, Mary Evans and Angharad Jones for their friendship and
belief that I would finish. Special thanks to Tony Corner, Alan Hayes, Dr David Morris
and Dr Andrew Thomas for giving me the time to write up, and all my colleagues at
Newport for their moral support and encouragement. I would also like to thank my
wife Angela, Rachel and my children Daniel, Bethany, Angharad and Mair for losing
my time for all these years. Finally, I would like to dedicate this work to my Mother
who has struggled long and hard to raise us and I hope this pays back some of that
hardship.

List of Tables

Summary

The thesis describes a method for the rapid, incremental design and implementation
of manufacturing systems utilising a combined object-oriented and structured Petri
net formalism. The background to the problems facing manufacturing organisations
wishing to implement computers into manufacturing systems is presented along with
a discussion of how software engineering techniques can be applied to overcome
them. Modularity and object-orientation are proposed as a way of enhancing the
development of manufacturing systems. A review of current techniques for modelling
manufacturing systems is presented which outlines the benefits and drawbacks of a
number of methods. A three-level control architecture is developed which distributes
complexity amongst the low levels of the system. The control structure is combined
with a behavioural constraint object to ensure that maximum reuse can be gained
from objects in the system. A formalism for integrating Petri nets into the UML is
outlined, entitled Functionally Encapsulated Modules. These modules provide full
object-oriented capabilities coupled with the functional modelling power of Petri nets.
State space explosion is reduced as Petri nets are used only for modelling the
functionality of objects. However, the modules also retain the abilities of simulation
tool and mathematical proof of the original Petri net. The methodology and modelling
tools are evaluated by applying them to a discrete event manufacturing system.
Conclusions are then drawn on the various aspects of the work and details of further
research possibilities are described.

Table of Contents

Table of Contents

CHAPTER 1...1-1

BACKGROUND TO THE RESEARCH AND THESIS OUTLINE 1-1

1.1 Introduction to the Work... 1-2

1.2 Aim of the Research.. 1-4

1.3 Achieving the Objectives... 1-5

1.4 The Change in Manufacturing Philosophy... 1-8

1.5 Three Goals for Manufacturing Organisations................................... 1-10

1.5.1 Goal One-Speed.. 1-10

1.5.2 Goal Two-Cost...1-12

1.5.3 Goal Three - Quality through Consistency.................................1-13

1.6 Computer Integrated Manufacturing...1-15

1.6.1 Computerisation as a solution...1-16

1.6.2 Incremental Implementation to Minimise Disruption...................1-17

1.7 The Need for Integration...1-19

1.7.1 Software for Integration ..1-20

1.7.2 Hardware/Software Objects..1-21

1.8 Merging the Unified Modelling Language and Petri Net Graphs....... 1-23

1.9 Thesis Structure...1-24

1.10 Overview of the Work..1-27

1.11 Indication of Contributions... 1-29

1.11.1 The Application of the UMLto Manufacturing Systems............1-29

1.11.2 A Methodology for the Incremental Analysis of CIM Systems..1-30

IV

Table of Contents

1.11.3 Development of a Three Level Control Architecture optimised for

reuse capabilities.. 1-30

1.11.4 Merging the UML and Petri Nets...1-31

1.11.5 Simulation and Automated Code Generation1-32

7.72 Chapter Summary..1-33

References ... 7-36

CHAPTER 2...2-1

OBJECT ORIENTATION FOR MANUFACTURING SYSTEM DESIGN..........................2-1

2.7 Introduction..2-3

2.2 Computer Aided Software Engineering (CASE)2-6

2.2.1 The Goal of CASE ..2-8

2.3 Formal Methodologies...2-10

2.4 The Waterfall software development method2-11

2.4.1 The problems with the waterfall development method................2-12

2.4.2 The Benefits of CASE Tools...2-13

2.4.3 CASE categories ..2-15

2.4.4 Reverse Engineering Tools...2-15

2.4.5 Integrated Project Support Environment (IPSE) tools.................2-15

2.4.6 Project Management Tools...2-16

2.4.7 Verification, Validation and Testing (VV&T) Tools......................2-16

2.4.8 Why do CASE tools fail?...2-17

2.4.9 Why do software projects fail?..2-18

2.5 The Benefits of Object-Oriented Manufacturing Modelling 2- 7 9

2.5.1 Abstraction issues...2-21

2.5.2 Simulation and control ..2-21

2.5.3 Incremental Development...2-22

2.5.4 Customisation and maintenance...2-22

Table of Contents

2.5.5 Complexity and variety..2-23

2.6 Object Techniques for Modelling of Manufacturing Systems.............2-24

2.7 The Unified Modelling Language for Manufacturing Systems 2-26

2.8 Requirements for a CIM specific design methodology 2-30

2.9 The Key Benefits of Object-Orientation...2-33

2.9.1 Object Communication ...2-33

2.9.2 Concurrency and synchronisation...2-34

2. 10 Object-Orientation in the Systems Life-Cycle.................................. 2-35

2.10.1 Implementation ...2-35

2.10.2 Testing ..2-35

2.10.3 Maintenance ...2-36

2.10.4 Prototyping and software evolution...2-36

2.10.5 Software reuse..2-36

2.11 Meyer"s Five Criteria for Modularity...2-37

2.11.1 Modular decomposability ..2-37

2.11.2 Modularcomposability..2-38

2.11.3 ModularUnderstandability..2-38

2.11.4 Modular Continuity..2-38

2.11.5 Modular Protection..2-38

2. 12 Five Rules for Modularity...2-39

2.12.1 Direct Mapping..2-39

2.12.2 Few Interfaces ..2-39

2.12.3 Small lnterfaces..2-40

2.12.4 Explicit lnterfaces..2-40

2.12.5 Information Hiding...2-40

2.73 Software Reuse...2-41

2.14 Chapter Summary.. 2-43

VI

Table of Contents

References...2-47

CHAPTER 3...3-1

PETRI NETS FOR FUNCTIONAL MODELLING..3-1

3.1 Introduction...^^

3.2 Petri net graphs for modelling static systems......................................3-3

3.3 Marked Petri nets for modelling system behaviour and dynamics....... 3-4

3.4 Conflict...3-6

3.5 Modelling with Petri net graphs..3-7

3.5.1 Uninterpreted models..3-7

3.5.2 Sinks and Sources..3-7

3.5.3 Concurrency ...3-9

3.5.4 Asynchronicity...3-9

3.5.5 Non-Determinism..3-10

3.6 Petri Net Analysis.. 3-11

3.6.1 Marking...3-13

3.6.2 Reachability ..3-14

3.6.3 Boundedness and Safe nets...3-15

3.6.4 Conservativeness...3-15

3.6.5 Liveness..3-15

3.6.6 Properness...3-16

3.6.7 Decision Free..3-16

3.6.8 Timed transitions...3-16

3.6.9 Inhibitor arcs ...3-16

3.6.10 Weighted arcs...3-16

3.7 Petri Net Analysis Methods..3-18

3.7.1 Reduction or decomposition methods...3-18

3.7.2 Matrix equations ...3-18

vii

Table of Contents

3.7.3 Reachability tree method..3-19

3.8 Literature review of Petri net extensions.. 3-20

3.8.1 A Brief history of the development of Petri nets..........................3-20

3.8.2 Application to Manufacturing Systems..3-20

3.8.3 Petri Nets for Control ..3-22

3.8.4 Object-Oriented Petri nets ..3-22

3.9 Chapter Summary.. 3-28

References.... ... 3-30

CHAPTER 4...4-1

A THREE LEVEL CONTROL STRUCTURE WITH BEHAVIOURAL CONSTRAINTS 4-1

4.1 Introduction..4-2

4.2 Functionally Encapsulated Modules - Merging the UML and PNO......4-6

4.3 Applying Constraints... 4-8

4.4 A Three Level Control Architecture..4-9

4.4.1 Goal Control..4-9

4.4.2 Task Control ...4-10

4.4.3 ObjectControl...4-12

4.4.4 Behavioural Constraints..4-12

4.5 A Methodology for Implementation: Analysis and Design 4-14

4.5.1 Step 1: Identify System Boundaries and Interactions.................4-14

4.5.2 Step 2: Identify Sub-Systems, Boundaries and Interactions.......4-14

4.5.3 Step 3: Identify Modules and their lnteractions...........................4-15

4.5.4 Step 4: Identify Objects and their Functionality...........................4-15

4.6 A Methodology for Implementation: Development.............................4-16

4.6.1 Step 5: Develop Object Controllers...4-16

4.6.2 Step 6: Develop Task Controllers...4-16

4.6.3 Step 7: Develop Behavioural Constraints...................................4-16

viii

Table of Contents

4.6.4 Step 8: Develop the Goal Controller...4-17

4.7 A Methodology for Implementation: Testing......................................4-17

4.8 A Methodology for Implementation: Implementation 4- / 7

4.9 Functionally Encapsulated Modules..4-18

4.10 Controlling a Functionally Encapsulated Module............................. 4-24

4.11 Behavioural Constraints...4-27

4.12 Chapter Summary..4-29

References...4-31

CHAPTER 5...5-1

APPLICATION OF FUNCTIONALLY ENCAPSULATED MODULES TO A MANUFACTURING

SYSTEM ...5-1

5.1 Application...5-2

5.2 Definition of System Goal and Boundaries.. 5-4

5.3 Identify Sub-Systems...5-6

5.4 Task Controllers...5-8

5.5 Capturing the Static System for Reuse Purposes5-19

5.6 Modelling System Dynamics..5-28

5.7 Functionally Encapsulated Modules..5-34

5.8 Applying constraints to the object..5-43

5.9 Automated Code Generation...5-48

5.10 Simulation ...5-51

5.11 Chapter Summary..5-53

References... 5-57

CHAPTER 6...-...-...................................6-1

CONCLUSIONS, ANALYSIS OF FINDINGS AND FUTURE WORK..............................6-1

6.1 Introduction..6-2

IX

Table of Contents

6.2 Modularity for Manufacturing...6-3

6.2.1 Hardware/Software Objects..6-3

6.2.2 Removal of Islands of Automation ..6-3

6.2.3 Minimised Disruption from Upgrade or Redesigns6-4

6.2.4 Reusable Class Libraries..6-4

6.2.5 Enterprise Wide Consistent Modelling..6-4

6.2.6 Reduced Modelling Complexity ..6-4

6.3 Manufacturing System Design... 6-5

6.4 Object-Oriented Modelling for Manufacturing...................................... 6-8

6.5 Petri Nets for Manufacturing Modelling.. 6-9

6.5.1 Visualisation of System Events...6-9

6.5.2 Modelling System States and Behaviour......................................6-9

6.5.3 Simulation and Optimisation ...6-9

6.5.4 Mathematical Proof...6-9

6.5.5 Synchronicity and Concurrency..6-10

6.5.6 State Space Explosion..6-10

6.5.7 Lack of Object-Oriented Modelling Power6-11

6.6 Merging the UML and Structured Petri Nets...................................... 6-11

6.7 Contributions of this Research Work...6-13

6.7.1 The Application of the UML to Manufacturing Systems..............6-13

6.7.2 A Methodology for Incremental Implementation6-14

6.7.3 Development of a Three Level Control Architecture...................6-15

6.7.4 Merging the UML and Petri Nets...6-16

6.7.5 Simulation and Automated Code Generation6-17

6.8 Thesis Conclusions..6-18

6.9 Future Work...6-20

6.9.1 Development of a Graphical Modelling Tool...............................6-20

Table of Contents

6.9.2 Development of an Automated Coding Tool...............................6-21

6.9.3 Regenerative Coding for Autonomous Robots6-22

References...6-23

Appendix 1A 1

XI

List of Figures

List of Figures

FIGURE 3-1: A SIMPLE PETRI NET GRAPH ..3-3

FIGURE 3-2: (A) A MARKED PETRI NET (B) THE RESULT OF T1 FIRING......................3-4

FIGURE 3-3: A MARKED PETRI NET WITH CONFLICT ...3-6

FIGURE 3-4: MODELLING CONCURRENCY WITH PETRI NET GRAPHS3-8

FIGURE 3-5: PETRI NET GRAPH ..3-11

FIGURE 3-6: A PETRI NET GRAPH IN ITS p0 MARKING..3-14

FIGURE 4-1: A PNEUMATIC MANIPULATOR...^-^

FIGURE 4-2: THE TWO STATES OF A PNEUMATIC ACTUATOR4-19

FIGURE 4-3: A PNEUMATIC MANIPULATOR...4-20

FIGURE 4-4: THE FUNCTIONALITY OF AN ACTUATOR...4-21

FIGURE 4-5: A PNEUMATIC ACTUATOR SHOWING CONTROL & FEEDBACK PLACES ..4-21

FIGURE 4-6: THE COMPOSITION OF THE MANIPULATOR...4-23

FIGURE 4-7: PART OF THE CONTROL NET FOR THE MANIPULATOR.........................4-25

FIGURE 4-8: A CONSTRAINED OBJECT...4-28

FIGURE 5-1: A SCHEMATIC OF THE CIM SYSTEM...5-3

FIGURE 5-2: THE UNIVERSITY OF WALES, NEWPORT CIM SYSTEM5-3

FIGURE 5-3: A USE-CASE DIAGRAM DEPICTING THE CIM SYSTEM5-4

FIGURE 5-4: IDENTIFICATION OF SUB-SYSTEMS...5-7

FIGURE 5-5: SCHEMATIC OF THERMS..5-8

FIGURE 5-6: USE CASE SCENARIOS FOR THE RAW MATERIALS STATION5-13

FIGURE 5-7: THE RMS USE CASE EXTENDED TO SHOW EXCEPTION CONDITIONS...5-14

FIGURE 5-8: A USE-CASE DIAGRAM FOR THE PALLET MANIPULATOR......................5-16

FIGURE 5-9: A USE-CASE DIAGRAM FOR THE CYLINDER MANIPULATOR..................5-17

FIGURE 5-10: THE RMS AS AN AGGREGATION...5-19

XII

List of Figures

FIGURE 5-11'.THE FULL CLASS MAKE-UP OF THERMS...5-21

FIGURE 5-12: A MANIPULATOR SHOWING A COMPOSITION RELATIONSHIP..............5-22

FIGURE 5-13: THE ACTUATOR CLASS..5-24

FIGURE 5-14: A STATE DIAGRAM FOR THE ACTUATOR CLASS................................5-25

FIGURE 5-15: A PETRI NET DIAGRAM FOR THE ACTUATOR CLASS..........................5-25

FIGURE 5-16: THE PLC CLASS..5-26

FIGURE 5-17: A SEQUENCE DIAGRAM FOR CONTROL OF AN ACTUATOR 5-29

FIGURE 5-18: THE ACTUATOR CLASS SHOWING INHERITANCE...............................5-31

FIGURE 5-19: A FEM FOR THE ACTUATOR CLASS..5-34

FIGURE 5-20: A PETRI NET FOR CODE GENERATION...5-34

FIGURE 5-21: PART OF THE CONTROL STRUCTURE FOR A MANIPULATOR5-40

FIGURE 5-22: A CONSTRAINT APPLIED TO THE CONTROLLER5-45

FIGURE 5-23: AUTOMATED CODE GENERATION FROM PETRI NET MODELS5-49

FIGURE 5-24: A MERGED NET SHOWING CONTROLLER AND OBJECTS....................5-51

XIII

List of Tables

List of Tables

TABLE 2-1: THE PROBLEMS WITH THE WATERFALL DEVELOPMENT METHOD...........2-12

TABLE 2-2: CIM PROBLEMS THAT CAN BE OVERCOME WITH OO DESIGN2-32

TABLE 3-1: Two ALTERNATIVES FOR A PETRI NET GRAPH WITH CONFLICTS3-15

TABLE 4-1: THE MAPPING OF PLACES TO FUNCTIONS ...4-22

TABLE 4-2: THE SEQUENCE OF OPERATIONS FOR PICKING UP AN OBJECT4-24

TABLE 5-1: A USE-CASE SCENARIO FOR THERMS...5-18

TABLE 5-2: MARKINGS FOR THERMS MANIPULATOR TASK...................................5-42

TABLE 5-3: ALL POSSIBLE STATES OF THE CYLINDER MANIPULATOR5-44

XIV

Chapter 1 - Background to the Research and Thesis Outline

Background to the Research and
Thesis Outline

This chapter analyses systems modelling in a manufacturing context

and establishes the scope for cross fertilisation of this field from

techniques successfully applied in the discipline of software

engineering. To achieve this goal, the concept of a hardware/software

object (HSO) is defined as an object which visualises a machine not as

a hardware entity, but as the software that controls it. Utilising the HSO

approach facilitates a more direct correlation between the design of a

manufacturing system, containing a myriad of interrelating hardware

and software, with that of traditional software development. This chapter

outlines the motivation and scope of the work presented in this thesis.

Initially, the work is contextualised before the aims and objects are

clearly stated. A background to the problems facing twenty-first century

manufacturing organisations is described that highlights the change in

philosophy since the introduction of large scale mass production during

the Second World War, along with its associated problems for system

designers.

1-1

Chapter 1 - Background to the Research and Thesis Outline

1.1 Introduction to the Work

This research work closes the loop on the object-oriented design

methodology for the implementation of Computer Integrated

Manufacturing (CIM). This is achieved by merging the Unified

Modelling Language (UML) and Structured Petri nets (Stanton, 1999). A

combined methodology and modelling tool has been created which

enables manufacturing system designers to develop systems which

utilise the full reuse capabilities of object-orientation combined with the

powerful functional modelling of Petri nets. Providing true object-

oriented capabilities to Petri net graphs is an original contribution of this

work. A novel methodology has been developed which enables system

designers to take a top-down approach to system development. The

methodology facilitates a fully modular and incremental approach to the

design, development and implementation of manufacturing systems.

This work also expands upon the concept of a combined

Hardware/Software Object (HSO) to reduce design complexity. HSOs

have been conclusively defined and are inherent in the full development

process described in this thesis. Utilising HSOs enables manufacturing

systems, containing a range of hardware and software, to be visualised

as purely software systems. The work also introduces the novel concept

of behavioural objects which are designed to maximise reuse

capabilities within manufacturing systems. The behavioural objects also

ensure that manufacturing system designers can take advantage of a

1-2

Chapter 1 - Background to the Research and Thesis Outline

library of fully designed and tested components to speed up future

system design or redesign. A new three level control structure which

distributes the complexity of the system from a control perspective has

been designed that fully integrates with the design methodology

proposed in this work. The control structure proposed in this work is

designed to ensure that maximum reuse capabilities are achieved in the

design of system controllers. Finally the unique modelling tool entitled

Functionally Encapsulated Modules (FEM), created in this work, enable

the generation of simulation models and provide a method of mapping

to fully functional control code.

1-3

Chapter 1 - Background to the Research and Thesis Outline

1.2 Aim of the Research

The aim of this research is to close the loop on object-oriented

modelling in a manufacturing context. This is achieved by utilising a

novel methodology and modelling technique based upon the UML and

structured Petri nets. The aim achieved in this work will provide

manufacturing organisations with a solution to the three problems

(goals) identified in this chapter:

1. Speed of design and development;

2. Costs to be kept to a minimum;

3. Quality through consistency.

This will be achieved by establishing an object-oriented methodology for

the analysis and design of manufacturing systems which allows such

systems to be rapidly designed and incrementally implemented. The

methodology used needs to satisfy the dual aims of being intuitive for

users to understand, but detailed enough to actually see the process

through to implementation. The technique will also provide system

designers with a simulation tool, which can subsequently generate

optimised control code.

1-4

Chapter 1 - Background to the Research and Thesis Outline

1.3 Achieving the Objectives

The work reported here provides manufacturing system designers with

a Computer Aided Software Engineering (CASE) methodology for the

incremental implementation of Computer Integrated Manufacturing

(CIM). A methodology is defined in this work, which contains a number

of elements that work towards achieving this aim.

The proposed design method is based upon a novel approach called

Functionally Encapsulated Modules (FEM). FEM are a combination of

the Unified Modelling Language (UML), which has become the de facto

standard for modelling software systems in the sphere of software

engineering, and structured Petri nets as defined by Stanton (1999).

Initially the system is examined and discussions with users carried out

to define the boundaries of the system(s) under consideration. This

enables the construction of a suite of iteratively refined diagrams

representing the modular structure of the system. The primary models

define both the boundaries of the system under investigation and the

input and output processes that are utilised at sub module level within

the system. Further these models are used to ensure a coherent

interface between the individually designed sub-systems under

consideration and the larger system as a whole. Use-case diagrams

are used to provide a user-centric view of the system that enables

designers to capture the main processes of the system as visualised by

its stakeholders. Here a user can be described as a human who

1-5

Chapter 1 - Background to the Research and Thesis Outline

interacts with the system in some way, or a separate process which

requests some operation be carried out by another module in the

system. This highly modular approach to systems' design provides a

loosely coupled system (Pressman, 2004) that is receptive to the

incremental nature that this work emphasises as all-important to

modern manufacturing organisations. The end result of this stage is the

identification of a number of sub-systems or modules, within the system

under consideration. These can be analysed and automated

independently of each other to reduce the disruption to the system as a

whole, or can be considered concurrently by teams.

Having established the building blocks of each module, the classes in

object-oriented parlance, using the UML notation a model of the static

system can be produced. This model is then enhanced with structured

Petri nets which capture both the dynamic behaviour and state

representation of the system. The Petri nets can be used to simulate

system processes and the changes in state undergone by the various

HSOs in the system to ensure suitability for purpose, safety of operation

and allow optimisation of the processes.

One of the key features of object-oriented modelling languages is their

ability to provide template classes, which can be used to build a

collection of reusable components. These components provide a library

of pre-built objects that can be taken as needed and used to build

1-6

Chapter 1 - Background to the Research and Thesis Outline

modules or indeed complete systems. However, one problem with this

approach is the need to amend objects for different systems that in

many instances can mean a considerable amount of modification is

needed before a generic object can actually be used within a new

system. This work overcomes this problem by defining 'constraint

objects' which are used to provide an interface between the main

system control object (goal control) and the lower level module and sub-

module (task control) objects. This allows designers to make full use of

the features presented by modern object oriented languages, whilst

maintaining full reuse capabilities to a level unachievable in most

current systems.

The throwaway approach to developing system prototypes can mean

hundreds of wasted man hours as once a system is designed the

prototype, which has been used for simulation, is discarded and new

software is developed. In this work a novel approach is taken which

utilises the Petri net objects for the modelling and simulation of the

system, but which can then generate optimised and robust code for

controlling the final implementation. The tool can also be used for

further optimisation and debugging later in the life of the working

system, or indeed as a useful way of visualising and simulating the

finished system.

1-7

Chapter 1 - Background to the Research and Thesis Outline

1.4 The Change in Manufacturing Philosophy

During the '30 glorious years' between 1945 and 1975, as defined by

Waldner (1992), world economies have shifted from markets of

abundance to those dominated by supply. The manufacturing response

has been to move from large-scale mass-production to a highly

customised and generally small-scale production of products. The

origins of this shift can be traced back to the privations suffered during

World War Two. Immediately following the war public demand was for

mass produced, low cost items, however with the war a distant memory,

increasingly customers began to demand higher quality, lower cost and

highly customisable products. Typically the current lifespan of a product

can be measured in months rather than years. In many cases existing

products are enhanced rather than replaced, for example the Apple

iPod range is revamped approximately every twelve months. Though

the basic technological structure of the iPod, remains the same

revisions generally apply to aesthetics or modular components, such as

increased storage capacity. From the production perspective these can

be considered to be alternatives in components during the production

phase which can be accommodated from a system designer's viewpoint

as optional flows in the build process. It is clear that once the basic

functionality of a product is developed enhancements are added in the

form of modular additions.

1-8

Chapter 1 - Background to the Research and Thesis Outline

Any organisation wishing to survive in the global economy of the twenty-

first century must respond quickly to abrupt market variations as this

global manufacturing environment becomes highly dynamic and

increasingly competitive (Wong et al, 1999). In this context reliability

and flexibility become the important factors in production processes

(Waldner, 1992). Flexibility in this context can be interpreted as the

need to respond quickly to market fluctuations which requires designers

to produce system designs quickly and efficiently in order to meet new

demands, although, as previously highlighted, this can relate to product

enhancement equally as to new product development. Despite

customer requirements for low cost items in the shortest timescale

possible, there is still an expectation that products will maintain the

highest standard in terms of quality, cost and reliability (Prasad 1999,

Kara et al 1999, Minderhoud 1999). This has enforced changes in the

way designers and manufacturing engineers develop their systems

(Jiang et al, 2002).

Manufacturing organisations, in common with other businesses in the

twenty-first century, are driven by the economies of a global market. In

order to remain competitive it is established in this work that it is

imperative for them to meet three key goals - get their goods to the

market in a shorter time period, produce their products at a lower cost,

and achieve a higher quality than their competitors. These goals

provide the fundamental underpinnings of the manufacturing

1-9

Chapter 1 - Background to the Research and Thesis Outline

requirements for competitive advantage and this work aims to provide a

solution which addresses all of these needs.

1.5 Three Goals for Manufacturing Organisations

1.5.1 Goal One - Speed

Manufacturing system designers need a methodology which facilitates a

quick turnaround of a new system from design, or redesign, through to

implementation. However, due to the need for competitive advantage

and customer satisfaction a 'first time right' approach is also required.

Manufacturing organisations cannot afford to utilise long and

cumbersome techniques due to the fact that the market may have

quickly moved on, making the design obsolete before it gets beyond the

conceptual or design stages. Conversely any design methodology used

must ensure that the completed system achieves the user requirements

fully. Within the discipline of software engineering, CASE tools have had

a major impact on the speed with which an item can be conceptualised

and subsequently visualised in a model. However due to the complexity

involved in manufacturing systems - composed of a myriad of inter­

connected hardware, software and communication systems - their

upgrade or redesign can have a considerable impact on the time it will

take to move from this visualised design to final production.

Software engineers have made progress in this area by utilising a

modular approach to the design of software systems. By breaking a

1-10

Chapter 1 - Background to the Research and Thesis Outline

system down into a number of distinct modules it is possible to divide

the workload amongst a number of developers who can each dedicated

their entire efforts on a subset of the system. This can have a dramatic

impact on the speed at which systems are developed, though it does

require a high degree of consistency amongst developers to ensure that

all modules can integrate to form a final system. In a manufacturing

context concurrent development of this type would dramatically reduce

the time required to develop complete and working systems. Many

researchers have proposed an integrated design method using

concurrent engineering (Lu et al 1999, Chen and Jan 2000, Herder and

Weijnen 2000, Senin ef al 2000, Wu and O'Grady, 2000). However,

most literature deals mainly with issues related to assembly, cost

reduction and quality deployment (Dembeck and Gibson 1999, Ke

1999, Liu and Yang 1999, Swanstrom and Hawke 1999). A loosely

coupled system as proposed by Pressman (2004), and as discussed in

more detail in chapter 2, would facilitate an incremental upgrade of

parts of a system with minimal impact on other components. This

technique also eliminates the problems associated with the 'islands of

automation' identified by Hannam (1997) and discussed later in this

chapter.

The widely used concept of object-orientation and the development of

class libraries, quite common in software engineering, are also

applicable to manufacturing systems. By utilising readymade, pre-

1-11

Chapter 1 - Background to the Research and Thesis Outline

tested, high quality components that have previously been developed,

manufacturing system designers can considerably reduce the time and

cost needed to develop a system, especially if the components and

processes used are a variation of those currently in existence. Utilising

fully tested pre-made components will go a long way to addressing

issues with quality in the implementation stages by introducing a degree

of certainty that the component will do the job for which it was intended.

The use of hardware/software objects, where a system component is

thought of in terms of what it can do rather than how it works, lends

itself well to object-orientation.

1.5.2 Goal Two-Cost

As with any business it is important to maximise profits by reducing

development costs. Utilising reusable code libraries as outlined in goal

one, means that the effort of designers, developers and testers is

captured, allowing subsequent new designs or those using similar

components to take full advantage of work previously undertaken. This

can give a considerable reduction in design and development costs as

much of the system will not need to be re-engineered. To maximise the

benefit of code-reuse a method needs to be established which enables

the optimum use of generic components. Generally, the control

software for a system or the objects themselves will have to be

customised to ensure compatibility each type a new system is

1-12

Chapter 1 - Background to the Research and Thesis Outline

developed. This can be a time consuming venture which can mean

that, in some cases, it is quicker to develop new software.

This work has examined the control structure of a manufacturing system

and established an optimum way of designing controllers and objects

which maximises their reuse capabilities. One of the fundamentals of

modularity is a robustly designed public interface and manufacturing

facilities require a system that will facilitate the 'plug and play' type

approach enjoyed in the computing field. This will enable parts of a

system to be upgraded with a minimal impact on the rest of the system,

and will allow manufacturing organisations to upgrade with reduced

system down-time. Such a system would fully adhere to the criteria of

modularity proposed by Meyer (1997) which is discussed in more detail

in chapter 2.

1.5.3 Goal Three - Quality through Consistency

Quality does not simply refer to the product and its

development/manufacturing processes, but realistically it should apply

to all levels in an organisation. Utilising different design methodologies

at various levels of the organisation does nothing to aid communication

between stakeholders. Ideally, manufacturing organisations require a

methodology which captures enterprise level through to functional

detail, by utilising a design methodology that can be applied to all

aspects of the organisation in a uniform and standardised way. This

1-13

Chapter 1 - Background to the Research and Thesis Outline

ensures that communication between stakeholders at all levels of the

organisation becomes more intuitive thereby ensuring that the end

product or system closes matches user expectations. The Unified

Modelling Language (UML) provides software engineers with a method

for modelling the processes at all levels of an organisation in a

standardised manner, thereby facilitating a robust method of capturing

user requirements. The applicability of the UML as a consistent method

of modelling all aspects of a manufacturing organisation has been

evaluated and clearly established in this work. The standard UML

models have been adapted to incorporate a Petri net graph which

reduces the number of models required and yet ensures the system can

be abstracted in a manner that is understandable to all stakeholders.

The development of class libraries also means that high quality, fully

tested components are available off the shelf ensuring their robustness

in new systems. Further a modular approach, which satisfies the criteria

outlined by Meyer (1997), ensures that in the event of errors the impact

on the rest of the system is minimal, if at all, and it is possible to

diagnose and trace faults into very specific parts of the system, thereby

reducing the amount of time spent maintaining, repairing or upgrading

the system.

1-14

Chapter 1 - Background to the Research and Thesis Outline

1.6 Computer Integrated Manufacturing

Computer Integrated Manufacturing (CIM) has been proposed as one

solution to the manufacturing problems outlined above, where computer

systems have been implemented into the manufacturing environment to

increase speed and efficiency, however without detailed and thorough

planning this can lead to a whole new range of problems. For

sustainable increases in market share and profit margins, it is the

system development practices that require attention (Chin et a/, 2005).

Manufacturing organisations can rarely close down completely for an

upgrade as the disruption and potential market loss is too great. When

a new product is to be manufactured, the organisation must ensure that

the turnaround time is as quick as possible. CIM helps to achieve this

by implementing computers into the organisation, with the aim of

reducing turnaround times, increasing quality and minimising costs,

thereby moving some way to addressing the three goals previously

outlined. However, research shows (Hannam, 1997) that one of the

main problems with CIM are 'islands of automation 1 , which occur as a

result of the computerisation of individual departments or even cells

within an organisation. These computerised sections are generally

implemented with no ability to communicate with other units within the

facility. Two very important facts about CIM can be drawn from the

literature:

1-15

Chapter 1 - Background to the Research and Thesis Outline

1. Computerisation can help to achieve the three goals of

manufacturing organisations though it does have inherent

problems;

2. Disruption to the operation of the overall system needs to be

minimised whilst upgrades are in progress.

Each of the points identified above are evaluated in more detail below:

1.6.1 Computerisation as a solution

Computerisation is vital in manufacturing and CIM is an important

aspect of such systems. Plainly speaking, a computer can do things

more rapidly than a human and is less prone to mistakes, especially

when working in hazardous environments or long, unsociable hours.

The computer also provides tools to integrate the whole process from

product conception to marketing. For instance, it is possible to use a

computer aided design tool to produce a first draft of the idea, the

computer would then be used to aid in requirements gathering, to

simulate the production processes and ultimately as a controller for the

finished system. A computerised solution, however, is only as good as

the human operators and system designers and therefore it is

imperative that the design methodology used is thorough, robust, all

encompassing and intuitive enough to facilitate communication between

system designers and end users. Ideally the method used should

1-16

Chapter 1 - Background to the Research and Thesis Outline

facilitate the modelling of all levels of system within an organisation from

business processes to hardware and software itself.

1.6.2 Incremental Implementation to Minimise Disruption

As outlined previously there is a crucial need to reduce disruption within

manufacturing organisations when redesigns or upgrades are taking

place, and therefore a non-disruptive method of incremental

implementation is needed. The major benefit of incremental

implementation is that the organisation or facility can be broken down

into a series of discrete modules, which are upgraded in isolation from

each other. This means that the disruption to other units is minimal due

to the fact that the unit being 'conceptually upgraded' remains available

all the way through to the physical upgrade. The incremental approach

can be facilitated by using the object-oriented concept of 'encapsulation'

whereby a very clear interface to the unit is designed, with no concern

for the 'hidden' detail of how it actually functions. For example, if a

large and complex cell containing several items of machinery were

tasked with producing one machined component upon receipt of one

raw material, then the interface to this unit can be defined as one input

and one output. In order to effectively integrate with other units in the

system all that is required by the controller is knowledge of these inputs

and outputs. The incremental approach is suggested as a method of

speeding up the design through to implementation process

subsequently overcoming the problems identified. In addition its

1-17

Chapter 1 - Background to the Research and Thesis Outline

modular nature lends itself well to the design of class libraries, where a

series of pre-designed and pre-tested components can be used to build

cells and departments in a modular fashion. The well defined interfaces

outlined above enable manufacturing organisations to overcome the

problems associated with islands of automation. This work will describe

a method and formalism for developing such interfaces based on a

combination of well defined public interfaces, via the UML and through

message passing via Petri net control and feedback places (which are

discussed further in Chapter 3).

1-18

Chapter 1 - Background to the Research and Thesis Outline

1.7 The Need for Integration

Waldner (1992) defines integration as the need to 'remove the

boundaries between the functions of a company which for justifiable

historic reasons were previously split up'. The larger an organisation,

the more its functions are distributed between a number of different

departments, each with its own goals and responsibilities. The difficulty

this situation presents is that often, each of the departments may

pursue its own agenda and pay little attention to the overall objectives,

which are to satisfy the customer in the shortest time, at the lowest cost

and to the highest quality. CIM was developed with the aim of

establishing a close relationship between various functional units by

capitalising on the most basic resource available to a business:

information (Waldner, 1992). However Waldner (1992) goes on to

highlight how the rush to computerise has meant that frequently

automation has been carried out purely for automation's sake leading to

the expensive automation of systems that are more efficient in their

manual form. Another problem, highlighted earlier, are 'islands of

automation' (Hannam, 1997) where individual components or

departments within a manufacturing organisation have been automated

with no thought to how they will communicate with other equipment,

cells or even departments. With the rapid change in technology and the

flexibility required to change production to meet market demands, this

problem has been exacerbated. The challenge therefore is to integrate

1-19

Chapter 1 - Background to the Research and Thesis Outline

all functions across a manufacturing organisation where each sub­

system or department must meet its own goals and carry out its specific

tasks, but this should be placed within the context of the larger aim of

the organisation as a whole and this problem is conclusively addressed

in this work by analysing modelling techniques than can span a whole

organisation.

1.7.1 Software for Integration

Software can be considered as the integrated manufacturing problem

due to the fact that whilst the technology exists the software and

modelling methods needed to use it in an integrated fashion does not.

This problem is addressed in this work by the use of HSOs. The

relatively small amount of integrated systems that do exist are large are

reported as being application specific, difficult to maintain, difficult to

change, difficult to port between hardware and expensive (Naylor and

Voltz, 1987). Software is the intelligent part of the system and it is

therefore vitally important to get this part right, however the hardware

cannot be ignored as without this the system does not function. To

address this problem this work has examined the concept of

hardware/software objects and established a clear method for their

integration into the methodology developed.

1-20

Chapter 1 - Background to the Research and Thesis Outline

1.7.2 Hardware/Software Objects

In order to achieve complete integration of manufacturing systems, it is

important to begin with the lowest level of a system. Here the hardware

and software of a device is "encapsulated" as a hardware/software

object (HSO). A device is thought of in terms of its functionality as a

unit and not separately as a piece of hardware and its control software.

Naylor and Voltz (1987) define such a component has having three

basic characteristics:

1. A well defined public interface;

2. An internal implementation that is inaccessible to the user; and

3. Both the visible part and the inaccessible implementation of

software components should be separately compilable from the

program components that use them.

A well-defined public interface allows the object to be reused in various

situations, other than those for which it may have initially been

designed. Coupled with the inaccessible internal implementation, all

that a user and the system's controller require is a knowledge of what

functions the object is capable of performing. No knowledge is needed

of how these actions are actually performed. This alleviates the need

for the system designer to have a detailed understanding of the specific

implementation of a component. Instead all they need is an

understanding of what its goal is. Conversely it allows the complexity of

1-21

Chapter 1 - Background to the Research and Thesis Outline

the software in overall control of the system to be uncomplicated by

allowing it to act as a sequencer of modules, each of which sequences

sub-modules as required with the complexity being dispersed through

the lower levels of the system. This gives the loosely coupled system

described by Pressman (2004) where changes to one object have

minimal impact on the rest of the system.

1-22

Chapter 1 - Background to the Research and Thesis Outline

1.8 Merging the Unified Modelling Language and Petri

Net Graphs

The competitiveness of manufacturing and the globalisation of markets

mean that any new product must arrive with the customer as quickly as

possible. This may mean the upgrade or redesign of a facility and its

processes, and one way to achieve this is through the incremental

approach described in section 1.7. The modular nature of

manufacturing systems lends itself well to an object-oriented

methodology. However, these tend to be long and drawn out

procedures due to the number of resultant diagrams and their

complexity. Petri nets are in common usage in manufacturing system

design, as attested by the quantity of published material available (see

Chapter 3). Several attempts have been made at integrating object-

oriented techniques with Petri net theory but these tend to fall short of

full object-orientation. The main difficulty to overcome with Petri net

graphs is 'state space explosion' which describes the complexity of

diagram needed to reproduce even a simple system making

communication between designers and users difficult. A novel

contribution presented in this thesis overcomes this problem by utilising

structured Petri nets to model only the functional detail of objects within

the system, whilst the remainder of the system can utilise the benefits of

the UML.

1-23

Chapter 1 - Background to the Research and Thesis Outline

1.9 Thesis Structure

Chapter 2 will discuss the rationale for utilising an incremental design

approach to overcome the problems identified in this chapter.

Modularity will be highlighted as a vital first step in achieving such an

incremental design technique and Meyer's criteria (Meyer, 1997) will be

illustrated as a benchmark which ensures the work fully meets the

criteria for modularity. A comprehensive review and analysis of object-

orientation and the UML to manufacturing organisations will be

undertaken along with a literature review outlining the various attempts

at providing manufacturing system modellers with an object-oriented

technique akin to that found in software engineering disciplines. The

concepts of loosely coupled well designed interfaces will be examined

as a method of achieving hardware/software objects which will

overcome the problems of islands of automation.

Chapter 3 evaluates Petri nets as an existing, widely used, method for

modelling manufacturing systems, and a brief description will be given

of the evolution of the Petri net model. A review of extensions to the

basic formalism will be demonstrated, along with an overview of the

advantages and disadvantages of each method. A comprehensive

literature review of Petri net theory will be presented, and in particular

an in-depth discussion will be given of attempts at providing an object-

oriented Petri net technique. The relative strengths and weaknesses of

1-24

Chapter 1 - Background to the Research and Thesis Outline

these attempts will be evaluated, including methods of overcoming the

state space explosion problem, and their use in simulation.

Chapter 4 will introduce Structured Petri nets and a novel modelling

technique will be presented which demonstrates how these can be

integrated with the UML to provide a complete manufacturing modelling

technique. This chapter will show how the resultant Functionally

Encapsulated Modules (FEM) take full advantage of current object-

oriented techniques and use the flexibility of structured Petri nets to

provide a versatile, mathematically provable modelling method. The

problems of creating a generic family of classes will be outlined and a

solution is presented in the form of three-level control architecture. The

three components of this constraint-based approach will be discussed

and goal, task and environmental constraints will be introduced.

Examples will be given to show the flexibility of this approach, and a

technique for re-creating traditional Petri nets will be described. The

mathematical provability of this approach will be briefly outlined before a

summary of the technique is given.

Chapter 5 will provide a case-study which demonstrates how the

methodology developed in this work applies to a modern manufacturing

system. The chapter will demonstrate how the resultant models can

initially be used for simulation and what if analysis before automatically

generating the control code for implementation. A demonstration will be

1-25

Chapter 1 - Background to the Research and Thesis Outline

given of how, using the approach developed in Chapters 1 - 4, a model

can be developed which can be used to simulate the system and/or to

physically provide working control code. The focus in this chapter will

be developing a technique whereby FEM and behavioural constraints

can be utilised to generate an optimised pseudo code module, which

can then be interpreted and compiled in whichever language is

necessary.

Finally chapter 6, presents a detailed analysis of how this thesis and the

original work described in this thesis provides a solution to the

manufacturing problems outlined in this chapter. An indication of future

work arising from the main body of the dissertation is also presented.

1-26

Chapter 1 - Background to the Research and Thesis Outline

1.10 Overview of the Work

This work describes a method for the rapid and incremental analysis,

design and implementation of manufacturing systems and their control

software. The method incorporates a modular approach to

manufacturing system's design by utilising a combined object-oriented

and Petri net method for the development of both hardware and

software elements.

Additionally, the methodology proposed allows for the construction of

highly generic reusable components utilising a constraint-based

approach that can aid in speeding up the design and development of

manufacturing systems. The technique allows system designers to

build partial or complete manufacturing systems from a library of pre­

defined reusable components. These components are pre-tested,

ensuring their reliability and quality, and can be readily adapted to the

needs of new systems, in many cases with minimal, if any, modification.

Further, the proposed technique permits the object-oriented model to be

used as a simulation tool which allows organisations to evaluate and

optimise new systems and processes before they are implemented,

ensuring full satisfaction of user requirements, complete system testing

and facilitating the evaluation of alternative design scenarios before

procurement of expensive equipment takes place.

1-27

Chapter 1 - Background to the Research and Thesis Outline

Finally, a generative approach is used to enable the model to

automatically generate the code, which controls the system once it has

been implemented. The control code is enhanced by the fact that the

system will have been fully tested via simulation before optimised code

is generated.

1-28

Chapter 1 - Background to the Research and Thesis Outline

1.11 Indication of Contributions

The main contributions arising from the work are outlined below and

each is discussed in further detail In Chapter 6:

1.11.1 The Application of the UML to Manufacturing Systems

A novel approach has been taken in applying the UML to manufacturing

systems analysis and design (Llewellyn et al, 2000). This offers many

benefits for manufacturing organisations including the provision of a

reusable system, and the opportunity to build a library of classes, which

makes subsequent designs or modifications to existing systems more

intuitive. The UML provides manufacturing organisations with the

benefits of object-orientation that have been successfully implemented

in the software engineering community for sometime. These benefits

include encapsulation, inheritance and the ability to use class

hierarchies. By focusing on the objects and their interactions via a

public interface, the dynamics of the system can be presented to

technical and non-technical users, allowing the designer to focus on

what the object/system is to do, without an in-depth knowledge of how it

does it. The UML also facilitates the unique ability to model all aspects

of a manufacturing organisation from business processes through to

shop floor machinery.

1-29

Chapter 1 - Background to the Research and Thesis Outline

1.11.2 Defining a Methodology for the Incremental Analysis of CIM

Systems

An incremental approach to the analysis of CIM systems enables

manufacturing organisations to computerise anything from individual

manufacturing workstations through to entire departments on a staged

basis. This reduces the need to close down entire facilities, and allows

upgrades to be carried out as and when required. Existing systems can

be modified to work alongside new systems. By using a design

approach that utilises use-case analysis it is possible to capture the

user requirements for a system more accurately and in a format which

enhances communication between system modellers and stakeholders.

The design stages of a use-case driven approach take into account the

needs of all levels of the workforce, ensuring all personnel are involved

in the process. The initial use-case scenarios used to capture the

system requirements can be reused at the testing stage to verify all

requirements are adequately met.

1.11.3 Development of a Three Level Control Architecture

optimised for reuse capabilities

The hybrid bottom-up and top-down approach of the incremental

methodology proposed enables the controllers required at all levels of

the system to be adequately modelled and ensures the functionality of

the system is maintained. The modular approach proposed also allows

system changes to be more easily accommodated. The object-oriented

1-30

Chapter 1 - Background to the Research and Thesis Outline

approach to the system design allows designers to capture the system

at its most generic, but also provides a method of capturing constraints

on the system such as obstacles to the dynamic capabilities of objects.

Three types of constraint have been developed - goal,

behavioural/environmental and task and these enable the system to

make maximum use of the benefits offered by object-orientation.

1.11.4 Merging the UML and Petri Nets

A technique for successfully combining the UML and Petri nets has

been developed called Functionally Encapsulated Modules (FEM)

(Llewellyn et al, 2001). The technique takes two existing UML diagrams

namely sequence and behaviour diagrams, and replaces them with a

single Petri net. This approach offers the design simplicity of the

original Petri net and combines them with the proven advantages of

object-oriented analysis and design. FEM reduce the number of

diagrams required to model both state and behaviour of systems and

individual objects and a comparison of the FEM versus traditional UML

approach is demonstrated in Chapter 4. If required the Petri net

elements of a FEM can be combined to form one large net that can be

verified using proven Petri net techniques. This approach provides a

modular, object-oriented technique for utilising Petri net models whilst

eliminating state space explosion. The FEM's develop a unique method

of capturing the attributes of both software and hardware which can be

intuitively implemented into any manufacturing system. The

1-31

Chapter 1 - Background to the Research and Thesis Outline

encapsulation of hardware and software with a distinct user interface

allows the designer, and the users of the system, to visualise the

objects that make up the system's model without worrying about the

inherent complexity.

1.11.5 Simulation and Automated Code Generation

The "token player" aspect of structured Petri nets will enable the models

resulting for the use of this approach to provide the basis of a simulation

tool. Further, the combined Petri net/UML approach lends itself well to

the automatic generation of control code and a methodology for this

technique will be presented. The code generation aspect of the models

relies on the simplicity of Petri net graphs where places are represented

as Boolean values whilst transitions represent decision statements.

The automated procedure will generate pseudo code, which can be

intuitively converted into any programming language.

^ INFORMATION O

1-32

Chapter 1 - Background to the Research and Thesis Outline

1.12 Chapter Summary

This chapter has provided on overview of this research thesis, and

presented the main contributions presented herein. The move from

large-scale mass production to the development of highly customised,

small scale production has been discussed and this work has identified

the main resultant problems faced by manufacturing organisations

wishing to compete in the global economy of the twenty-first century:

 Speed. With an increasing number of competitors, it is

imperative that organisations reduce the time it takes to move

from the conception of a new product, to the finished item being

available for the consumer.

 Cost. Customers are now demanding lower priced goods than

ever before and therefore it is important that goods are

manufactured in the most optimised fashion possible.

 Quality through Consistency. Though it may seem offset by the

above two points, consumers demand high quality products, and

offering anything less can have serious implications for the all

important customer loyalty factor.

It is clear that product life-spans are measured in much shorter time

periods than were previously the norm, however it is also apparent that

in many cases products undergo redevelopment or enhancement rather

than completely new development. This work aims to establish that

1-33

Chapter 1 - Background to the Research and Thesis Outline

these types of upgrades can be visualised and implemented as flows to

existing systems, considerably reducing redevelopment times and

costs. It is apparent that manufacturing organisations adopting an

incremental and modular approach to systems' development could

overcome the problems of speed, cost and quality through consistency

and would benefit greatly from the use of combined hardware/software

objects that would enable designers to concentrate on what the system

does rather than get bogged down in the detail of how it does it.

A well-defined public interface to such objects would ensure that the

islands of automation problem is completely addressed by breaking the

system down into a number of distinct modules which can be divided

amongst a team of developers. The use of public interfaces will also

reduce downtime considerably as for much of the process modules are

only conceptually upgraded. This solution will dramatically reduce

development times and be a vital step in addressing quality by

consistency.

Generic and highly reusable objects will enable system builders to

utilise previously designed high quality components that will rapidly

decrease development times whilst maintaining quality. Utilising such

pre-tested, high quality components would clearly address the need for

a "first time right" design.

1-34

Chapter 1 - Background to the Research and Thesis Outline

By utilising the UML for the design of such systems manufacturing

organisations can benefit from the ability of the technique to model all

elements of the company enhancing communication amongst

stakeholders and ensuring organisational consistency. The integration

of Petri nets into the UML reduces the number of models required and

solves the state space explosion problem. Such a technique provides a

ready-made simulation and testing tool and lends itself well to the

automatic generation of control code considerably reducing the time to

implementation.

This remainder of this work will analyse systems modelling in a

manufacturing context and will establish the optimum methods from the

discipline of software engineering to overcome the problems identified.

Whilst software engineering does not generally concern itself with

hardware, the use of hardware/software objects (HSO) as developed in

this work enables the system modeller to consider any manufacturing

design problem purely as software. This ensures that the techniques

developed in this work have full applicability in a manufacturing context

where systems are composed of a myriad of complex and inter-related

hardware and software elements.

1-35

Chapter 1 - Background to the Research and Thesis Outline

References

Chen, Y.M. and Jan, Y.D. 2000. Enabling allied concurrent engineering

through distributed engineering information management. Robotics

and Computer-Integrated Manufacturing. 16(1), pp.9-27.

Chin, Kwai-Sang, Lam, J., Chan, J.S.F., Poon, K.K. and Yang, Jianbo

2005. A CIMOSA presentation of an integrated product design

review framework. International Journal of Computer Integrated

Manufacturing. 84(4), pp.260- 278

Dembeck, W. and Gibson, D. 1999. Integrating the quality assurance

function into the new product development process. Annual Quality

Congress Transactions Proceedings of the 1999 ASQ's 53rd

Annual Quality Congress. 53(0), pp.238-243.

Hannam, Roger. 1997. Computer Integrated Manufacturing: from

concepts to realisation. Harlow: Addison-Wesley. 0201175460

Herder, P.M. and Weijnen, M.P.C. 2000. Concurrent engineering

approach to chemical process design. International Journal of

Production Economics. 64(1), pp.311-318.

Jiang, Z., Harrison, O.K., Cheng, K. 2002. An Integrated Concurrent

Engineering Approach to the Design and Manufacture of Complex

Systems. The International Journal of Advanced Manufacturing

Technology. 20(5), pp.319-325.

1-36

Chapter 1 - Background to the Research and Thesis Outline

Kara, S., Kayis, B. and Kaebernick, H. 1999. Modelling concurrent

engineering projects under uncertainty. Concurrent Engineering.

7(3), 269-274.

Llewellyn, E.W., Stanton, M.J., Roberts, G.N. 2000. Towards the

implementation of the Unified Modelling Language (UML) into a

Computer Integrated Manufacturing (CIM) environment. 14th

International Conference on Systems Engineering. 12th - 14th

September 2000. Coventry, UK, pp. 398 - 403.

Llewellyn, E.W., Stanton, M.J., Roberts, G.N. 2001. Discrete event

systems design based upon the UML and Petri net objects. 3rd

Workshop on European Scientific and Industrial Collaboration. 27th

-29th June 2001. Twente, The Netherlands, pp. 211-219

Liu, T.I. and Yang, X.M. 1999. Design for quality and reliability using

expert system and computer spreadsheet. Journal of the Franklin

Institute. 336(7), pp. 1063-1074.

Lu, S.C.Y., Shpitalni, M. and Gadh, R. 1999. Virtual and augmented

reality technologies for product realization. CIRP Annals -

Manufacturing Technology. 48(2), pp.471-495.

Meyer, Bertrand. 1997. Object-Oriented software construction. 2nd

edn. London: Prentice-Hall. 0136291554.

1-37

Chapter 1 - Background to the Research and Thesis Outline

Naylor, A. W. and Volz, R. A. 1987. Design of integrated manufacturing

control software. IEEE Transactions on Systems, Man, and

Cybernetics. 17(6), pp. 881-897.

Prasad, B. 1999. A model for optimizing performance based on

reliability, lifecycle costs and other measurements. Journal of

Production Planning and Control. 10(3), pp. 286-300.

Pressman, Roger S. 2004. Software engineering: A practitioner's

approach. 6th edn. London: McGraw. 0071238409

Senin, N., Groppetti, R. and Wallace, D.R. 2000. Concurrent assembly

planning with generic algorithms. Robotics and Computer-

Integrated Manufacturing. 16(1), pp. 65-72.

Stanton, M. J. 1999 .Doctoral Thesis: Structured Petri Nets for the

Design and Implementation of Manufacturing Control Software with

Fault Monitoring Capabilities. University of Wales College,

Newport.

Swanstrom, P.M. and Hawke, T. 1999. Design for manufacturing and

assembly (DFMA): a case study in cost reduction for composite

wingtip structures. International SAMPE Technical Conference

Proceedings of the 1999 31st International SAMPE Technical

Conference. 23rd - 27th May 1999. Long Beach, California, pp.

101-113.

1-38

Chapter 1 - Background to the Research and Thesis Outline

Waldner, Jean-Baptiste. 1992. CIM: Principles of Computer Integrated

Manufacturing. London: Wiley. 047193450X

WU, T. and O'GRADY, P. 1999. Concurrent engineering approach to

design for assembly. Concurrent Engineering Research and

Applications. 7(3), pp. 231-243.

1-39

Chapter 2 - Object Orientation for Manufacturing System Design

Object Orientation for Manufacturing
___________ SYstem IDesig n

As noted in the title and first chapter this original work aims to establish a

Computer Aided Software Engineering (CASE) methodology for the

implementation of Computer Integrated Manufacturing (CIM). This will be

achieved by developing a methodology based on the discipline of software

engineering which is customised to meet the needs of manufacturing

system designers. To fulfil the stated aim, this chapter establishes the

elements of software engineering generally, and CASE specifically, which

can provide benefits to the analysis, design and implementation of

manufacturing systems. Current research literature surrounding the

discipline of object-orientation is evaluated and its development is charted

from the early methods through to the Unified Modelling Language (UML),

which is the current de facto standard. The chapter analyses object-

orientation as a method of achieving the requirement for manufacturing

organisations to achieve a modular and incremental approach as outlined

earlier in the first chapter. The benefits of an object-oriented analysis and

design approach for the development of complex manufacturing systems

are established and it will be proven that modularity in manufacturing can

be achieved via modular decomposition utilising object-orientation. The

chapter highlights how such an approach leads to the conceptual

2-1

Chapter 2 - Object Orientation for Manufacturing System Design

integration of manufacturing systems thereby overcoming the problems

associated with islands of automation. The need for an integrated

approach to the analysis and design of manufacturing systems is

discussed and the benefits of using an object-oriented methodology to

achieve this are given.

2-2

Chapter 2 - Object Orientation for Manufacturing System Design

2.1 Introduction

This work approaches manufacturing systems engineering as a software

problem. This can be achieved by encapsulating hardware and software

into a unified object-oriented framework. Software systems are not without

their own problems, Smith et al (1999) estimate that for every six software

systems that are completed two are cancelled and that the average

software development project overshoots its budget and schedule by fifty

percent. To challenge to overcome for software designers is to increase

productivity and enhance quality. Holloway and Bidgood (1991) define

these as:

1. Quality in practice means agreeing that each deliverable conforms

to requirements and ensures that the end product will meet the

customer's stated business objectives.

2. Productivity is the consistent application of an appropriate

methodology, with its associated methods, techniques and

deliverables so as to lessen the risk of wasting resources.

The development of control software for manufacturing systems faces the

same challenges. From the literature it can be seen that:

 It is imperative to accurately capture user requirements and

subsequently to ensure that the finished product fully meets those

requirements;

2-3

Chapter 2 - Object Orientation for Manufacturing System Design

 It is vital to ensure that a methodology is utilised that minimises

resource wastage.

The established methods of software development have been labour

intensive, error prone, slow and extremely costly. Much skill is needed to

marry the business knowledge of users with the computer experience of

analysts and programmers. As a result the developed systems have not

always fully satisfied the needs of stakeholders. This is often due to a

failure of the system design methodology, especially the user

requirements gathering stage. Alternatively it can occur as a result of the

lack of understanding of the methodology on behalf of the staff. What is

needed is a methodology which is intuitive to understand for all users and

which accurately captures requirements. The methodology also needs to

ensure that the user requirements are refined precisely into the completed

system.

Using traditional methods each program is individually designed, coded,

tested and documented with the result that programs can only be

maintained - debugged or updated - if their design and construction has

been adequately documented by the original designer(s). Their logic is so

interwoven that it can be impossible to unravel. In fact, it may be faster to

throw a program away and start again, than to try and change it. This

leads us to two main software related problems (Finkelstein, 1989):

2-4

Chapter 2 - Object Orientation for Manufacturing System Design

1. Maintenance problems - Making a simple change in a program

may lead to other changes. Furthermore, these changes may

introduce errors that require even further change, so leading to yet

more change and errors. Maintenance problems can be thought of

as having a cascading effect;

2. Communication problems - The problem is, largely, due to a lack

of effective communication. IT analysts, database administrators

and programmers use computer jargon that is foreign to most users

and management. Similarly, the day-to-day terminology of

business matters may be unintelligible to many analysts and IT

staff. This communication problem is compounded by the long

lead-time before the developed systems are delivered to the users.

These problems must be addressed in the design methodology used. A

loosely coupled system as discussed in this chapter will overcome these

problems by decoupling modules so that changes have minimal impact.

Communication problems can be resolved by having a graphical modelling

tool which is intuitive for users at all levels. Such a tool needs to be able

to break down the barriers between stakeholders of a technical and those

of a non-technical background. However, the tool also needs to be

capable, by iterations, of capturing all levels of system detail through to

implementation.

2-5

Chapter 2 - Object Orientation for Manufacturing System Design

2.2 Computer Aided Software Engineering (CASE)

Before a conclusive definition of Computer Aided Software Engineering

(CASE) can be established it is crucial to understand the discipline of

Software Engineering. Stevens (1991) states that it is "the process of

inventing, improving and selecting among alternative solutions and then

describing computer programs that meet users' requirements within the

constraints of the environment and based on the chosen alternative."

Once again the importance of user requirements is stressed and it is clear

that the design methodology is the key to achieving this.

The term CASE relates generally to the automation of this software

development process. Many CASE products are now available which aid

in automating systems development and improving the productivity of

analysts and programmers, sometimes by as much as two or three times.

As stated earlier fifty percent of software projects go over time and budget

so it is clear that a two or threefold improvement in productivity is a highly

desirable feature. Historically, the most significant productivity increases

in manufacturing or building processes have come about when powerful

tools augment human skills. One man and a bulldozer can probably shift

more earth in a day than fifty men working with hand tools. Automated tool

support for software engineers should therefore lead to improvements in

software productivity. CASE is now generally accepted as the name for

2-6

Chapter 2 - Object Orientation for Manufacturing System Design

this automated support for the software engineering process (Finkelstein,

1989).

However, Sommerville (2006) noted that the first generations of CASE

products have not led to the high level of productivity improvements which

were predicted by their vendors. There are various reasons for this:

 Problems of managing complexity in the product and in its

development process;

 Current CASE products represent 'islands of automation' where

various process activities are supported to a greater or lesser

extent;

 Adopters of CASE technology sometimes underestimated the

training and process adaptation costs which are essential for the

effective introduction of CASE. They often skimped on these costs

with the consequence that the CASE technology was under-utilised.

Three different levels of CASE technology can be identified (Finkelstein,

1989):

1. Production-process support technology. This includes support

for process activities such as specification, design, implementation

and testing;

2. Process management technology. This includes tools to support

process modelling and process management;

2-7

Chapter 2 - Object Orientation for Manufacturing System Design

3. Meta-CASE technology. Meta-CASE tools are used to create

production-process management support tools.

2.2.1 The Goal of CASE

To understand the goal of CASE it is vital to understand the objective of

traditional design methodologies which are to produce consistent, high

quality, implementable system specifications (Holloway & Bidgood, 1991).

Sodhi (1991) states that the principal properties of a good software

engineering system are that "the final product has achieved the software

engineering objectives that meet the requirements and satisfy the

customer." A good software product also has the following properties:

• Functionality - it works as the user requires;

• Performance - it achieves its tasks in the timescale required;

• Economy - it is as cost effective as possible;

• Robustness - it is useful for the maximum possible time;

• Methodology - it is based on a transparent and useful design

	methodology;

• Documentation - it has useful documentation;

• User Interface - it is user friendly;

• External Interfaces - it has well defined external interfaces.

Fisher (1991) describes how CASE tools can substantially reduce or

eliminate many of the design and development problems inherent in

medium to large software products. He proposes that the ultimate goal of

2-8

Chapter 2 - Object Orientation for Manufacturing System Design

CASE technology is to separate design process from the actual code

generation. If this is true then surely CASE tools are exclusive to the

analysis and design stages of software/system development. However, it

seems more appropriate that the goal of CASE is to enable the user to

concentrate on the business aspects of the problem and reduce the

technical complexity. Further CASE tools can be thought of as a

complimentary element to the skill of the developer. CASE tools should

enable projects to produce consistent, high quality, implementable

systems. It can be seen, therefore, that the goal of CASE is to integrate

with, and aid, the traditional software development process. To be

effective CASE tools must, fit into and work with existing software and

hardware.

2-9

Chapter 2 - Object Orientation for Manufacturing System Design

2.3 Formal Methodologies

Software development requires a complex set of activities to be carried out

some in sequence, others in parallel. Structured methodologies have

evolved to provide assistance and direction to those involved in this

process. A structured approach supplies a framework for action within

which managers can manage and all participants can work constructively

on specific activities which generate predetermined products (Holloway &

Bidgood, 1991). As discussed earlier, in order to understand CASE, it is

important to understand traditional structured methodologies. Several

structured methodologies have been developed which provide a design

framework as a set of formalisms and practices which have become the

basis for software development. Although not perfect and largely relying

on the thoroughness of the individual practitioner, these methodologies

have allowed software developers to build more complex systems.

Usually, these methodologies encourage the decomposition of large

software systems into sets of smaller modules. The interfaces between

these modules are well-designed by the software architect, allowing

individual programmers to independently construct and test their

respective assigned modules. Then during the final stages of software

development process, all of the modules are integrated to form the final

program (Fisher, 1991).

2-10

Chapter 2 - Object Orientation for Manufacturing System Design

2.4 The Waterfall software development method

The Waterfall model was first introduced by W. Royce in 1970. It is the

traditional model followed by most software developers and upon which

most methodologies are based. The software evolution proceeds in an

orderly sequence of transition from one phase to the next in linear order.

It can be roughly subdivided into the following stages:

1. Requirement Analysis. Establish the user's requirements for the

system. Produce models which aid in capturing user requirements

that can aid in communication between stakeholders, designers

and developers;

2. Design Specification. Compose a system blueprint, showing what

to build and how to build it. Design specifications include module

decompositions, data structure definitions, file format definitions,

and important algorithm descriptions.

3. Implementation. Code, test and debug each module designed in

the design specification;

4. Unit Test and Integration. A unit test is performed on each

module built during the implementation phase; the modules are

then integrated into a single program structure. The program as a

whole is then tested to make sure the modules fit together and

perform as designed;

5. Maintenance. Fix any bugs or problems found by users of the

released version.

2-11

Chapter 2 - Object Orientation for Manufacturing System Design

2.4.1 The problems with the waterfall development method

There are several problems inherent with the waterfall model as shown in

Table 2-1 below (taken from Fisher, 1991):

Phase Failure Symptom

Requirements Analysis No written requirements;

Incompletely specified requirements;

No user interface mock-up;

No end-user involvement.

Design Specification Lack of or insufficient design documents;

Poorly specified data structures and file formats;

Infrequent or no design reviews.

Implementation Lack of or insufficient coding standards;

Infrequent or no code reviews;

Poor in-line code documentation.

Unit Test & Integration Insufficient module testing;

Lack of proper or complete test suite;

Lack of an independent quality assurance group.

Maintenance Too many bug reports.

Table 2-1: The problems with the waterfall development method

2-12

Chapter 2 - Object Orientation for Manufacturing System Design

To summarise these points it can be seen that:

 At the requirements analysis stage it is crucial to establish the user

requirements fully. The finished product will fail if the requirements

are not fully compliant with user requirements;

 The design specification needs to be constantly and consistency

cross referenced with the user requirements to ensure they are fully

met;

 Code needs to be well documented and adopt the relevant coding

conventions to ensure subsequent maintenance, modification or

upgrades are possible;

 Modules need to be tested individually and subsequently as part of

the system;

 If all the stages above are completed the system will not suffer from

extensive bugs at the maintenance stage.

2.4.2 The Benefits of CASE Tools

CASE tools need to be employed at the outset of the design and

development process. In doing so the project should yield lower overall

costs and better results in the implementation and maintenance phases.

Design and development times will almost always be reduced by using

CASE tools. But perhaps their most satisfying benefit comes in the form

of insurance, or peace of mind, that the job is being done properly, on

schedule and to the end-user's specification. CASE tools should aid in

2-13

Chapter 2 - Object Orientation for Manufacturing System Design

establishing user requirements well before the implementation begins.

However, much of the actual value depends on how well it is integrated

into the organisation. To summarise the main benefits to be gained using

CASE tools are (Fisher, 1991):

• A more complete Requirements Specification;

• More accurate design specifications;

• Up to date design specifications;

• Reduced development time;

• Highly extensible/maintainable code;

• Simplify. A major goal of CASE technology is to decompose

requirements and designs into manageable components. Their

function is to simplify, explain and reduce;

• Reduce costs by yielding higher quality specifications and designs;

• Produce quantitive and verifiable designs as each requirement in

the software implementation must be verifiable and traceable back

to the requirements document;

• Support Change;

• Show, not say. Good CASE tools present specification and design

information visually.

2-14

Chapter 2 - Object Orientation for Manufacturing System Design

2.4.3 CASE categories

CASE tools fall into several distinct categories (Fisher, 1991):

Upper CASE tools which are graphical tools for defining system

requirements;

Lower CASE tools such as tools for developing prototypes;

Integrated CASE tools which are a combination of the above.

2.4.4 Reverse Engineering Tools

Reverse engineering is the exact opposite of engineering. It aims to go

back from code and files to the original system design and thence to the

system requirement. Reverse engineering tools must extract details of the

essential business functions and data from ageing, but critical

applications. This allows an organisation to salvage the investment of

money and time, programming and database design skills, and user

knowledge that built the original system. In essence, reverse engineering

is a bottom-up process that has to assess the value and quality of existing

systems by means of portfolio analysis.

2.4.5 Integrated Project Support Environment (IPSE) tools

IPSE products originally derived from software project management

needs, and were based around software specification and project control

methods. Typically, IPSEs provide the sort of project and configuration

management facilities that most current CASE tools lack.

2-15

Chapter 2 - Object Orientation for Manufacturing System Design

2.4.6 Project Management Tools

The degree to which CASE tools are available to support individual project

management functions varies considerably. Tasks such as estimating and

scheduling are well supported but others, such as risk management or the

handling of actual contract conditions have little or no CASE help.

2.4.7 Verification, Validation and Testing (VV&T) Tools

Verification, validation and testing cover the processes associated with

ensuring that a product is delivered correctly in the manner required, and

that it meets its defined requirements.

Verification compares the output of each phase of the systems

development life cycle with the requirements derived from the previous

phase. The objective is to ensure that the deliverables produced by a

phase fulfil all the requirements for that phase.

Validation checks that the original phase specifications were meaningful

and appropriate, both in terms of the ultimate user requirements and in

terms of the development methodology employed. In later stages of

system development, this may be achieved by executing a working

prototype and observing its behaviour. Testing is the process used to

validate and verify.

2-16

Chapter 2 - Object Orientation for Manufacturing System Design

2.4.8 Why do CASE tools fail?

Holloway and Bidgood (1991) have identified eleven main causes for the

failure of CASE tools within an organisation:

• No methodology or standards in place

• Ignoring the importance of management

• Too much emphasis of CASE as the 'silver bullet' solution

• Confusion about what the CASE tool does

• Misuse of the tool

• Perception of CASE as a risk

• Unwillingness to change current methods

• Uncertainty, lack of consensus about what problem the CASE tool

	is trying to solve

• Poor integration of tools

• Inadequate functionality

• Poor documentation and training

2-17

Chapter 2 - Object Orientation for Manufacturing System Design

2.4.9 Why do software projects fail?

Three main themes underlie software project failure (Fisher, 1991):

• Lack of complete requirements definition. If you lack a firm idea of

what you are building, it is very difficult to build it right! Although

plain common sense, this is often the most overlooked part of

software development - identifying the system's requirements;

• No development methodology. Once you know exactly what you

are going to build, you need to select and design techniques and

establish implementation procedures. Following a formal

methodology - a set of design techniques, development

procedures, coding standards, checkpoints and work rules - helps

ensure software design completeness and implementation quality;

• Improper design partitioning. An incomplete requirements

specification leads to the development of the wrong software, but

an improper design leads to low quality implementation. Design

should be partitioned into manageable components and modules

with formal pathways for importing and exporting data. Poorly

partitioned designs lead to nightmarish code!

2-18

Chapter 2 - Object Orientation for Manufacturing System Design

2.5 The Benefits of Object-Oriented Manufacturing

Modelling

Before it is possible to discuss modelling in detail, it is firstly important to

establish what is meant by the term modelling. From a computing

perspective, a model is described by Booch et al (2005) as "a

simplification of reality". Booch et al (2005) also state that "we build

models so that we can better understand the system we are developing".

When discussing complex systems they go on to state that "we build

models of complex systems because we cannot comprehend such a

system in its entirety". In engineering terminology a model is a "device

that simply duplicates the behaviour of the system itself (Cassandros &

Lafortune, 1999). Whilst these meanings seem to have their basis in the

same idea, there is a distinct difference between modelling in object-

oriented terms and modelling in manufacturing engineering terms. In the

latter, a model is a mathematical representation of a system whilst in the

former it is a series of diagrams and their associated documentation.

So it can be seen that a model is a way of simplifying (abstracting) the

necessary detail from a system in order to represent it in a diagrammatic

or mathematical form. Generally, the resultant models are used to confirm

user requirements, and aid in the communication of ideas between users

and developers. Models enable developers to provide robust and yet

2-19

Chapter 2 - Object Orientation for Manufacturing System Design

flexible solutions which are able to meet current user requirements and

expand as their needs grow or change.

A full discussion of object-oriented techniques is available in (Booch,

1994, Pressman, 2004 and Sommerville, 2006). Here the focus is on the

manufacturing application of object-oriented design. In a manufacturing

environment machinery can intuitively be thought of as objects such as

mills, lathes and so on (Adiga, 1993). The state variables of these objects

will change at discrete points in time in response to events such as the

completion of a machining operation. There is therefore a natural one-to-

one correspondence between the physical items in the factory and the

instances of software objects that represent them (Glassey and Adiga,

1989). Systems' design provides a formidable challenge which consumes

large amounts of capital and human resources. The frequency of change

in such a dynamic environment means that the design process needs to

be highly flexible (Wong et al, 1999). This can be accomplished using

object-oriented techniques where the design concentrates on reusability,

reconfigurability and scalability.

Manufacturing systems are quite complex and varied in nature. It is

impractical to imagine that a single solution or software package will

address all the needs of all manufacturing firms. Therefore, a practical

approach to designing software for managing a CIM system is to build

generic solutions to the greatest possible extent, and then to customise

2-20

Chapter 2 - Object Orientation for Manufacturing System Design

them to suit the needs of each firm. Thus, generic software object class

libraries, customisable through sub classing, provide a good starting point

in the design of practical software.

2.5.1 Abstraction issues

Manufacturing people think of their systems in terms of parts, conveyers,

lathes or drilling machines etc. In other words they think in terms of

'objects'. An OO approach allows designers and programmers to

construct software counterparts of manufacturing entities easily with little

conceptual mismatch.

2.5.2 Simulation and control

Discrete event simulation has emerged as a powerful and popular tool for

the analysis and design of manufacturing systems in the 1980s. Both

simulation and control systems require a model of the real world. Ideally,

one would like to be able to share for simulation purposes the state model

developed for control purposes (or vice-versa), including both the structure

and the data. Also, since simulation is quite popular as a tool used to

validate control strategies, control modules implementing these strategies

have to be developed. Again, sharing these modules between the

simulation and the control tool can improve productivity and also the

consistency of the application. OO techniques give a unique opportunity

to develop a system that can be used initially as a simulation tool and,

later as a production or control software. (Adiga, 1993)

2-21

Chapter 2 - Object Orientation for Manufacturing System Design

2.5.3 Incremental Development

The technologies, finance or experience required to build an install CIM

systems may not be present in all companies. This has led many people

to believe that the most appropriate way to implement advanced

manufacturing technology is in an incremental manner. Prototyping

reduces the risk involved in implementing large products.

2.5.4 Customisation and maintenance

Pan, Tenenbaum and Glicksman (1989) identify two major shortcomings

of current CIM systems: they are difficult to customise and maintain; and

they have very limited problem solving and decision making capabilities.

The first shortcoming can be addressed easily in an OO system.

Individual objects can be customised through the sub classing enabled by

the inheritance feature of OO (Adiga, 1993). For example if the

application requires a representation of a lathe machine that is different

from the one in the library supplied, a subclass Lathe can be created that

inherits all the functionality of Lathe with additional methods to enhance its

functionality. Similarly, an undesirable feature can be overridden through

a re-implementation in the new subclass.

2.5.5 Complexity and variety

"Manufacturing systems are quite complex and varied in nature. It is

impractical to imagine that a single solution or software package will

address all the needs of all manufacturing firms. A practical approach to

2-22

Chapter 2 - Object Orientation for Manufacturing System Design

designing software for managing CIM systems is to build generic solutions

to the greatest possible extent, and then to customise them to the needs

of each firm. Thus, generic software object class libraries, customisable

through sub classing, provide a good starting point in the design of

practical software." (Adiga, 1993)

2-23

Chapter 2 - Object Orientation for Manufacturing System Design

2.6 Object Techniques for Modelling of Manufacturing

Systems

One of the major aims of modelling a manufacturing system is to provide a

view, or series of views, which can be interpreted by personnel at all levels

of the system. At the shop floor level this may be the modelling of simple

components, or groupings of components, which may perform a simple

task. At the managerial level it may be necessary to examine the system

from a higher level of abstraction, which ignores the detail that concerns

lower levels.

A modular approach to manufacturing system design, therefore means a

system can be viewed as a series of modules that can rapidly be

combined to form a completely new manufacturing system. This offers

many benefits to manufacturing system designers, most notably the

utilisation of a series of well-designed reusable components can speed up

the design process, ensure quality is kept at a maximum and can reduce

the time it takes to design such systems.

Initial attempts at object-oriented modelling of manufacturing systems

used entity relationship approaches to model systems such as that

proposed by (Adiga and Gadre, 1990). However, the entity-relationship

approach, while well suited to the modelling of static systems, has no

facility for capturing the dynamic nature of such systems.

2-24

Chapter 2 - Object Orientation for Manufacturing System Design

This problem persisted in other techniques such as the Object Oriented

Modelling Process suggested by (Mize et al, 1992). Here the emphasis

was placed upon the benefits of reuse, which are discussed later in this

chapter. The software techniques in vogue at the time such as object

modelling technique (OMT) and Object Oriented Analysis and Design

(OOA/OOD) proposed by Goad and Yourdon (1990) all tend to have a

software specific focus and do not lend themselves well to manufacturing

systems without considerable modification. Such modification can lead to

confusing and non-standardised designs which can actually slow down the

development process and cause confusion amongst personnel involved

with the system.

To improve the dynamic capabilities of object-oriented models many

techniques have attempted to integrate state charts into OO modules

However these improvised techniques do not allow the representation of

some core aspects of object-orientation such as dynamic binding and

polymorphism. (Wu, 2005).

2-25

Chapter 2 - Object Orientation for Manufacturing System Design

2.7 The Unified Modelling Language for Manufacturing

Systems

By their very nature manufacturing systems are extremely complex, with a

wide range of interconnected objects and a myriad of messages passing

between them. Designing manufacturing systems is further complicated

by the individuality of each different system. It follows therefore, that

manufacturing systems' needs cannot be met by 'off the shelf packages.

One solution is design generic solutions and then to customise them to the

requirements of the company or application. The resultant generic object

class libraries are customisable to the needs of the organisation through

object-oriented techniques.

This abstraction of complex manufacturing systems into a series of objects

is more intuitive than for many other systems as previously discussed. It

is widely accepted that manufacturing systems need to be flexible,

customisable and maintainable and this is effectively addressed in an

object-oriented system where individual objects can be customised and

updated using the key features of the technique (Adiga, 1993).

The Unified Modelling Language (UML) provides many elements which

can aid manufacturing organisations including libraries of reusable classes

and objects that can provide the 'building blocks' for new systems;

inheritance which can simplify the development of new systems; and

encapsulation through which a loosely coupled, modular approach can

2-26

Chapter 2 - Object Orientation for Manufacturing System Design

reduce or even eliminate disruption to the rest of the system through

incremental changes. The conceptual design of the system provides a

further benefit to manufacturing managers in that it can allow for 'what-if

analysis' to be carried out on a proposed system to establish viability,

improve quality, or enhance production processes.

Ericksson et al (2000), describe the UML as an amalgamation of Grady

Booch's, James Rumbaugh's and Ivar Jacobson's works standardised by

the OMG (Object Management Group) in 1997. Later work by Ericksson et

al (2004) extends the description of the UML to be a "free non proprietary

language open to all but managed by the Object Management Group

(OMG)". The purpose of the UML is to model systems in an object-

oriented manner, bring together conceptual and executable artefacts and

providing a language for human and machine. Erickson et al (2004) also

go on to identify that the UML is an extensible language which can be

modified to suit individuals or organisations.

Holt (2004), describes the UML as a general purpose modelling language

originally developed for software development but which is also suitable

for modelling other systems. The literature identifies thirteen UML

diagrams classifying them into those that model what system is and those

that show how a system behaves.

Bennett et al (2001), define the UML as a visual formal specification

language used in the development of software systems and described the

2-27

Chapter 2 - Object Orientation for Manufacturing System Design

language as having three rules which are: abstract syntax, well formed-

ness and semantics which are expressed as diagrams. The work

continues by explaining that the UML is not a programming language. Holt

(2004) goes further by highlighting that the UML is not the answer to all

modelling problems and that it is not a formal method.

From its definition, this work of Bennett et al (2004) suggests that UML is

only for software which is contrary to other sources (such as Holt, 2004)

which identify it as a systems modelling language. This is extended by

Ericksson et al (2000) who describe how the UML has rules (syntax),

meaning (semantics) but does not contain pragmatics (i.e. how to use it).

This further reinforces the idea that the UML gives the system modeller

the framework in which to develop but that it is not prescriptive and can be

adapted.

The UML is a standardised modelling language consisting of a set of

diagrams which have been developed to assist system developers

accomplish the following: specification, visualisation, architectural design,

construction, simulation, testing and documentation. The literature

explains that the UML can model systems from different point of view

utilising what the authors identified as twelve diagrams, categorised into

static (structural), behavioural and interaction.

The UML has graphical elements which combined to form the models

using some defined rules so serve the purpose of representing multiple

2-28

Chapter 2 - Object Orientation for Manufacturing System Design

views of a system without showing how a system can be implemented.

This author describes eight UML diagrams but further expresses that a

system modeller does not have to use all of them in a given modelling

problem, rather the modeller need to use only those that are required.

Maksimchuk et al (2005), describe the UML as being a standard visual

modelling language for business process, work flow, sequence queries,

application, database, and many more. Maksimchuk et al (2005) reiterate

that the UML is a product of James Rumbaugh's Object Modelling

Technique (OMT), Ivar Jacobson's Object Oriented Software Engineering

Method and Gray Booch's Booch method, but adds that contributions were

also made by many industry experts. He also goes on to praise how it has

introduced commonality amongst professionals and goes further than

other authors by stating that the UML can be used to model anything.

2-29

Chapter 2 - Object Orientation for Manufacturing System Design

2.8 Requirements for a CIM specific design methodology

The following table outlines some of the issues from CIM implementation

identified by Adiga (1993) along with their solutions in an OO design

environment.

Problem Solution

Staff involvement and co­

operation
In order to achieve an accurate description of

a system it is necessary for the analyst to
obtain both bottom up and top down

descriptions. The top down descriptions
allow the analyst to perceive the system/sub­
system under investigation in its wider
context. The bottom down descriptions
provide the necessary detail for an accurate

model of the system/sub-system to be
created.

Staff Training As it is possible to model each subsystem
and its external interfaces independently

without regard to the detail of those
interfaces, it is possible to incrementally
implement changes. This means that staff
training can also be implemented on an

incremental basis.

Corporate Culture Not

Right for CIM

Whilst the rigidity and inflexibility of many

companies causes CIM to fail, the same
rigidity can aid in the modelling of a system

2-30

Chapter 2 - Object Orientation for Manufacturing System Design

by providing a fixed system to model.

Human Resistance to
change

The large involvement of users at all levels in
the modelling of the system can lead to a
feeling of "inclusion" on behalf of the staff. In
general staff are more likely to wish to see a
project, in which they have played a part,
succeed.

Failure to encapsulate all
departments

When modelling the detail of subsystems it is
apparent which systems are immediately
interactive with the current one. This means
that it is unlikely that a system will be
overlooked. In addition it may not be prudent
or necessary to include all departments /
systems in the new model. The idea of
incremental implementation allows the
selected implementation of changes.
Therefore the system can either completely
overlook departments or systems, or can
allow for their inclusion at a later stage.

Attempting to implement
using unsuitable
methodologies and
guidelines

The proposed guidelines and methodologies
aim to overcome any failings with the more
traditional areas of analysis and design in
manufacturing.

Inability to implement
conceptual design

The addition of an interface definition
language (IDL) to the model will allow for
automatic code generation of the control code
for the component.

Failure to streamline The need to understand and model the

2-31

Chapter 2 - Object Orientation for Manufacturing System Design

processes workings of even the most basic component

in the system under review should lead to an

optimised approach to the actions and

operations of the system.

Inadequate planning and

design
The integrated method proposed comprises a

detailed set of diagrams which encompass all

necessary planning and design aspects.

Inadequate analysis of

user needs
The proposed method is very much user

driven.

Time The methodology allows for the whole system

to be re-designed on a modular basis which

allows for components to be upgraded as and

when time permits.

Cost As above.

Table 2-2: CIM implementation problems that can be overcome with OO design

2-32

Chapter 2 - Object Orientation for Manufacturing System Design

2.9 The Key Benefits of Object-Orientation

The OO paradigm represents a different way of looking at the program

modules. It defines program modules as a package of data and

procedures named an 'object1 : i.e. an abstraction of private data and

operations that are naturally associated together. This abstraction facility

enables real-life factories and their complex interacting components to be

represented as objects such as a machine or a part quite close to reality.

Data is stored in locations, i.e. instance variables, which cannot be directly

accessed by other objects. Procedures are commonly known as

'methods'. Each procedure (or method) defines the behaviour expected of

the object. One such behaviour is to change (or return) the data stored in

its instance variables. Objects interact by sending one another messages.

Typically, receipt of a message activates a corresponding method in the

receiving object.

Sending a message to an object is similar to asking it to perform an

operation on itself and return the result to some place or the requesting

object.

2.9.1 Object Communication

Inter-object communication - the simplest model of communication

between objects involves two objects where the sender of a message

needs to know the identity of the receiving object, but not vice-versa.

2-33

Chapter 2 - Object Orientation for Manufacturing System Design

However, the information flow may be bi-directional, i.e. the receiving

object may return information of interest to the sender. This return may be

in the form of a value or result sent automatically by the receiving object.

Alternatively, the receiving object may send a reply message.

2.9.2 Concurrency and synchronisation

Concurrent systems consist of independent activities (or processes) that

must communicate and synchronise in order to achieve some common

goal. Two different methods are used in handling concurrency and

synchronisation issues in OO approaches. In the first one, an object

management system controls and synchronises access to objects. Thus

individual objects be regarded as 'passive 1 objects. In the other approach,

the objects are 'active1 . With active objects, there is no need for an explicit

synchronisation mechanism as the objects themselves decide when they

are ready to receive a message. An active object is one that has an

independent thread of control, i.e. it has control over the execution of

computation required. It can monitor events that occur during an event

and take action autonomously. This allows for asynchronous behaviour at

the program level.

2-34

Chapter 2 - Object Orientation for Manufacturing System Design

2.10 Object-Orientation in the Systems Life-Cycle

The property of encapsulation makes it possible to have software objects

that directly correspond to the physical entities in a manufacturing system

such as machines, operators, lots etc. Therefore, the entities that the

users and software engineers discuss, when defining the requirements as

part of the project, are the same entities designers build objects from and

programmers work with during implementation of the requirements. This

helps to make a smooth transition from requirements to design and

implementation.

2.10.1 Implementation

Since program development follows the abstraction process, it allows

software objects to be developed in parallel after the interfaces are

defined. This is possible because the implementation details of one object

are independent of other objects.

2.10.2 Testing

Since an OO application contains clearly defined and separately

identifiable modules, these can be tested one at a time. Separate testing

of individual objects before they are put into one system helps to localise

errors.

2-35

Chapter 2 - Object Orientation for Manufacturing System Design

2.10.3 Maintenance

Encapsulation restricts any undesired side effect from changing the

contents of any object's data. Since all the data and procedures related to

an object are located in one place, changes to be made are confined to

one location. Apart from preventing any accidental corruption of the data,

this feature helps in both the maintainability and the extendibility of

software.

Use of explicit communication through messages and polymorphism

allows the use of entirely new classes of objects in an existing application,

as long as they follow the same message protocol as the application.

2.10.4 Prototyping and Software Evolution

The flexibility offered by an OO approach presents some special

advantages for prototyping. Since one object can be treated like any other

as long as the two have the same message protocol, we can build large

complex systems from smaller interchangeable ones. But unlike the

conventional approaches the initial prototype need not be thrown away; it

can be 'grown 1 into the full production system.

2.10.5 Software Reuse

The basic OO concepts and implementation techniques support the

development of software objects that can be reused in more than one

application.

2-36

Chapter 2 - Object Orientation for Manufacturing System Design

2.11 Meyer's Five Criteria for Modularity

Meyer's (1997) criteria are used in this work to evaluate the extent to

which the method develop satisfies the requirements of modularity. Meyer

(1997) states that "A software construction method is modular if it helps

the designers produce software systems made of autonomous elements

connected by a coherent, simple structure." A modular design should

satisfy the following five fundamental requirements:

1. Decomposability

2. Composability

3. Understandability

4. Continuity

5. Protection

2.11.1 Modular Decomposability

A software construction method satisfies modular decomposability if it

helps in the task of decomposing a software problem into a small number

of less complex sub-problems, connected by a simple structure, and

independent enough to allow further work to proceed separately on each

of them. Once a system is decomposed into subsystems it should be

possible to distribute work on these subsystems among different people or

groups.

2-37

Chapter 2 - Object Orientation for Manufacturing System Design

2.11.2 Modular Composability

A method satisfies Modular Composability if it favours the production of

software elements which may then be freely combined with each other to

produce new systems, possibly in an environment quite different from the

one in which they were initially developed

2.11.3 Modular Understandability

A method favours Modular Understandability if it helps produce software in

which a human reader can understand each module without having to

know the others, or, at worst by having to examine only a few of the

others. A method can hardly be modular if a user is unable to understand

its elements separately.

2.11.4 Modular Continuity

A method satisfies Modular Continuity if, in the software architectures that

it yields, a small change in a problem specification will trigger a change of

just one module, or a small number of modules.

2.11.5 Modular Protection

A method satisfied Modular Protection if it yields architectures in which the

effect of an abnormal condition occurring at run time in a module will

remain confined to that module, or at worst will only propagate to a few

neighbouring modules.

2-38

Chapter 2 - Object Orientation for Manufacturing System Design

2.12 Five Rules for Modularity

From the preceding criteria, five rules follow which must be observed to

ensure modularity:

1. Direct mapping

2. Few Interfaces

3. Small interfaces (weak coupling)

4. Explicit interfaces

5. Information hiding

2.12.1 Direct Mapping

Any software system attempts to address the needs of some problem

domain. If you have a good model for describing that domain, you will find

it desirable to keep a clear correspondence (mapping) between the

structure of the solution, as provided by the software, and the structure of

the problem, as described by the model. Hence the first rule: The

modular structure devised in the process of building a software system

should remain compatible with any modular structure devised in the

process of modelling the problem domain.

2.12.2 Few Interfaces

Every module should communicate with as few others as possible.

2-39

Chapter 2 - Object Orientation for Manufacturing System Design

2.12.3 Small Interfaces

If two modules communicate, they should exchange as little information as

possible.

2.12.4 Explicit Interfaces

Whenever two modules A and B communicate, this must be obvious from

the text of A or B or both. If a module is decomposed into several sub-

modules or needs to be composed with other modules, any outside

connection should be clearly visible. It should be easy to find out what

elements a potential change may effect.

2.12.5 Information Hiding

The designer of every module must select a subset of the module's

properties as the official information about the module, to be made

available to authors of client modules. That is that the rest of the world

through some official description or public properties knows every module.

2-40

Chapter 2 - Object Orientation for Manufacturing System Design

2.13 Software Reuse

Software development with reuse is an approach to development which

tries to maximise the reuse of existing software components. An obvious

advantage of this approach is that overall development costs should be

reduced. Fewer software components need to be specified, designed,

implemented and validated. However, cost reduction is only one potential

advantage of reuse. Systematic reuse in the development process offers

further advantages (Sommerville, 2006):

• System reliability is increased. Reused components, which have

been exercised in working systems, should be more reliable than

new components. These components have been tested in

operational systems and have therefore been exposed to realistic

operating conditions;

• Overall process risk is reduced. If a component exists, there is

less uncertainty in the costs of reusing that component than in the

costs of development. This is an important factor for project

management as it reduces the uncertainties in project cost

estimation. This is particularly true when relatively large

components such as sub-systems are reused;

2-41

Chapter 2 - Object Orientation for Manufacturing System Design

Effective use can be made of specialists. Instead of application

specialists doing the same work on different projects, these

specialists can develop reusable components which encapsulate

their knowledge;

Organisational standards can be embodied in reusable

components. Some standards, such as user interface standards,

can be implemented in a set of standard components. For

example, reusable components may be developed to implement

menus in a user interface. All applications present the same menu

formats to users. The use of standard user interfaces improves

reliability, as users are less likely to make mistakes when presented

with familiar interfaces;

Software development time can be reduced. Bringing a system

to market as early as possible is often more important than overall

development costs. Reusing components speeds up system

production because both development and validation time should

be reduced.

2-42

Chapter 2 - Object Orientation for Manufacturing System Design

2.14 Chapter Summary

The methodology proposed in this work will utilise Hardware/Software

Objects to enable manufacturing system designers to apply the concepts

of software engineering.

The chapter has established that software systems are not perfect, indeed

two out of eight software projects fail and fifty percent are over time and

budget. However, the reasons for these failures have been established as

primarily due to the lack of understanding at the user-requirements stage

of the design methodology.

It is clear that the importance of selecting the most appropriate design

methodology is paramount in any successful system implementation.

From the literature it has been established that a successful design

methodology should:

• Accurately capture user requirements in a manner which can be

understood by all stakeholders. Each stage in the design process

must constantly and consistently cross reference user requirements

to ensure they are fully met;

• The final system will fail if it does not adequately meet user

requirements;

2-43

Chapter 2 - Object Orientation for Manufacturing System Design

• Support iterative refinement of user requirements into low level

technical detail for implementation. This can be achieved by a

hybrid top-down/bottom-up approach;

• The methodology must endeavour to minimise resource wastage.

Utilising off the shelf, pre-tested components from a library of

objects can achieve this goal;

• The development technique must support loose coupling of objects

and should allow for modular decomposition;

• Code needs to be well documented and adopt the relevant coding

conventions to ensure subsequent maintenance, modification or

upgrades are possible;

• Modules need to be tested individually and subsequently as part of

the system.

The chapter also highlights some important benefits to manufacturing

organisations for adopting an object-oriented design methodology:

• Manufacturing personnel already think of their systems in terms of

objects and therefore an OO approach should prove to be intuitive;

• Simulation techniques are useful for validating control strategies

and for generating software;

• Incremental development approaches reduce costs;

• OO systems utilising class libraries offer customisation

opportunities and aid in system maintenance;

2-44

Chapter 2 - Object Orientation for Manufacturing System Design

• Object class libraries that can be reused in other systems aid in

breaking down the complexity of manufacturing system design.

These important points and benchmarks drawn from the literature will be

used in this work to validate the original methodology devised in this work

against the requirements of manufacturing organisations.

Many system modellers face the inimitable problem of having to cope with

the recurrent need to become experts in a range of disciplines other than

their own. For example, a computer system's analyst may need to

analyse and design a software system for a petrochemical company, or an

information system specialist may need to develop a new system for a

supermarket chain. This implies the need for rapid personal knowledge

expansion, however in reality the system modeller relies on an intuitive

and highly detailed progression of models which enable them to overcome

the barriers and bridge the gap between those with a dedicated knowledge

of the system under consideration and those with the specialist skills

needed to develop the new system. In short, system modellers need

models which facilitate communication between the stakeholders at all

levels within the system and those undertaking the development. These

models need to be intuitive enough for all parties to understand and yet

contain enough expressive power to enable the analysis and design of the

system under consideration, in iteratively more complex levels of detail.

System modelling tends to fall into two main camps, the slow and

2-45

Chapter 2 - Object Orientation for Manufacturing System Design

methodical, but high quality methods such as SSADM, SDLC etc. and the

fast, low cost and low quality methods, such as RAD, Code and fix etc.

Some main points can be drawn in this chapter:

• Reduced costs inherent in an incremental implementation.

Customising the solution over time means reduces costs by

starting with the essential features and functionality and

customising based on priority;

• Staged building. Building in stages allows the project to be

broken into smaller, more manageable pieces giving staff the

time to adapt to the new system and facilitating team

development;

• Rapid Value. Implement small steps which have the most

dramatic impact rather than redesign the whole system in one

go;

• Stakeholder Involvement. Include staff at all levels in the

development process as they have much to contribute and early

and repeated involvement will ensure they take ownership;

• Results-based decisions. Make decisions for future

enhancements based on actual results of previous phases;

• Milestone measurements. Goals and measurement criteria are

should be defined prior to each new phase of implementation.

2-46

Chapter 2 - Object Orientation for Manufacturing System Design

References

Adiga, S., & Gardre, M. 1989. Object-Oriented Modeling of Flexible

Manufacturing Systems. Journal of Intelligent and Robotic Systems.

3(1), pp. 147-165.

Adiga, S. 1993. Object-oriented software for manufacturing systems.

London: Chapman Hall. 0412397501.

Bennett, S., Skelton, J. and Lunn, Ken. 2004. Schaum's Outline of UML

2nd edn. London: McGraw-Hill. 0077107411.

Booch, Grady. 1994. Object-oriented analysis and design: with

applications. 2nd edn. Benjamin/Cummings: Menlo Park, Ca.

0805353402.

Booch, G., Rumbaugh, J. &Jacobson, I. 2005. The Unified Modeling

Language User Guide. 2nd edn. USA: Addison Wesley Longman.

0321267974

Cassandras, C.G. and Lafortune, S., 2007. Introduction to Discrete Event

Systems. 2nd edn. London: Springer. 0387333320

Coad, P. and Yourdon, E., 1990. Object-Oriented Analysis. 2nd edn.

Michigan: Prentice Hall. 0387333320

Eriksson, Hans-Erik and Penker, Magnus. 2000. Business Modelling with

UML. London: Wiley Computer Publishing. 0471295515

2-47

Chapter 2 - Object Orientation for Manufacturing System Design

Eriksson, Hans-Erik, Penker, Magnus, Lyon, Brian and Fado, David. 2004.

UML 2 Toolkit. London: Wiley Publishing. 0471463612

Finkelstein, C. 1989. An Introduction to Information Engineering.

Wokingham, UK: Addison-Wesley. 0-201-41654-9.

Fisher, A. 1991. CASE Using Software Development Tools. 2nd end.

Chichester, UK: John Wiley & Sons. 0-471-53042-5.

Glassey, C.R. & Adiga, Sadashiv. 1989. Conceptual Design of a Software

Object Library for Simulation of Semiconductor Manufacturing

Systems. Journal of Object Oriented Programming. 11(1) pp. 39-42.

Holloway, S., & Bidgood, T. 1991. Case Handbook for Information

Managers. Aldershot, UK: Avebury Technical Academic Publishing

Group. 1-85628-189-2.

Holsing, N. F., & Yen, D. C. 1997. Integrating Computer-Aided Software

Engineering and Object-Oriented Systems: A Preliminary Analysis.

International Journal of Information Management. 17(2), pp. 95-113.

Holt, John .2004. UML for Systems Engineering: Watching the Wheels.

2nd edn. Institute of Electrical Engineering, London. 0863413544

Maksimchuk, Robert A., Naiburg, Eric J. and Brown, Alan. 2005. UML for

Mere Mortals. London: Pearson Education. 0321246241.

2-48

Chapter 2 - Object Orientation for Manufacturing System Design

Meyer, Bertrand. 1997. Object-oriented Software Construction. 2nd edn.

London: Prentice-Hall. 0136291554.

Mize, J. H., Bhuskute, H. C., Pratt, D. B. and Kamath, M. 1992. Modeling

of Integrated Manufacturing Systems Using an Object Oriented

Approach. HE Transactions. 24(3), pp. 14-26.

Pressman, Roger S. 2004. Software Engineering a practitioner's

approach. 6th Ed. London: McGraw-Hill. 0071238409.

Sodhi, J. 1991. Software Engineering Methods, Management and CASE

tools. USA: TAB Professional and Reference Books. 0-8306-3442-8.

Sommerville, I. 2006. Software Engineering. 8th end. London, UK:

Addison-Wesley. 03211313798.

Stevens, W. 1991. Software Design Concepts and Methods. London, UK:

Prentice-Hall. 0-13-820242-7.

Wong, S. T. W., Mak, K. L. and Lau, H. Y. K. 1999. An Object-Oriented

Model for the Specification of Manufacturing Systems. Computing &

Industrial Engineering, 36(1). pp. 655-671.

2-49

Chapter 3 -Petri Nets for Functional Modelling

'etri Nets for Functional Modelling

The aim of this chapter is to analyse, describe and evaluate Petri net

graphs along with the various techniques for extending their modelling

capabilities. This will enable the identification of the optimum model for

this work which offers the best combination of analysis and modelling

power along with visual simplicity. The Petri net model thus identified

will then be used as the basis of the combined Petri net/object-oriented

modelling technique presented in Chapter 4. The chapter begins by

outlining the fundamental concepts underlying Petri net theory and

demonstrates their applicability to the modelling of asynchronous

concurrent systems. The various attempts at extending the analysis

and modelling power of Petri nets are presented in a comprehensive

literature review before the chapter concludes with a summary of the

strengths and weaknesses of each technique and a justification of the

chosen technique. This chapter offers a minor contribution to

knowledge by presenting a comprehensive and up-to-date literature

review of the research activity into Petri net theory.

3-1

Chapter 3 -Petri Nets for Functional Modelling

3.1 Introduction

A Petri net can be described as an abstract, formal model of information

flow within a system, particularly those that exhibit asynchronous and

concurrent behaviour (Peterson, 1981). Research into this field is

primarily concerned with the search for simple, yet powerful, methods

for describing and analysing the flow and control of information in such

systems. In addition to being suitable for the description of the dynamic

changes within a system, Petri nets can also describe the state of

individual components within that system at any period of time, though

time is generally not explicitly modelled with Petri nets. This concept of

modelling state changes with dynamic events can be thought of as

allowing a description, via models, of the behaviour of the system. As

systems increase in their complexity the problem of multiple parallel or

concurrent activities needs to be considered and these can be

effectively addressed in a Petri net based model as will be

demonstrated in the remainder of this chapter.

3-2

Chapter 3 -Petri Nets for Functional Modelling

3.2 Petri net graphs for modelling static systems

A Petri net graph allows the static properties of a system to be modelled

by using two types of nodes: places (represented by circles) and

transitions (represented by solid bars). The connection between nodes

is made by directed arcs, such that a directed arc can link a place to a

transition or vice-versa. If a node is directed from node /' to node j, then

/ is an input to j, and j is an output of /'. Figure 3-1 shows a simple Petri

net graph where P-, is an input to t2 , and t2 is the output of PI.

Figure 3-1: A simple Petri net graph

3-3

Chapter 3 -Petri Nets for Functional Modelling

3.3 Marked Petri nets for modelling system behaviour

and dynamics

In addition to the static properties represented by the graph, a Petri net

has dynamic properties that result from its execution. This execution is

controlled by the movement of tokens within the Petri net, thereby

modelling the changes of state in the system. Tokens are represented

by black dots which reside in the places of the net. A Petri net which

has tokens is described as a marked Petri net (Peterson, 1977).

The execution of a transition is called firing and is facilitated by its input

places being marked with tokens. If all the input places to a transition

are marked, the transition is said to be enabled. In Figure 3-2 (a),

transition t2 is enabled as its only input (P^ is marked.

Figure 3-2: (a) A marked Petri net (b) The result of t1 firing

3-4

Chapter 3 -Petri Nets for Functional Modelling

Upon firing an enabled transition moves the tokens from its input places

and deposits them in its output places as shown in Figure 3-2 (b). The

distribution of the tokens in a marked Petri net defines the state of the

net and is called its marking.

3-5

Chapter 3 -Petri Nets for Functional Modelling

3.4 Conflict

A conflict occurs whenever the firing of one transition disables another.

Figure 3-3 from (Peterson, 1977), demonstrates a conflict. Transitions

ts and t5 are enabled, therefore either one can fire, the choice as to

which should fire first is arbitrary. However, if transition t3 fires then

transition t5 will no longer be enabled conversely if transition t5 fires then

transition ts will be disabled.

Figure 3-3: A Marked Petri net with conflict

3-6

Chapter 3 -Petri Nets for Functional Modelling

3.5 Modelling with Petri net graphs

3.5.1 Uninterpreted models

A Petri net is considered to be an uninterpreted model however, in order

to make the Petri net graph more intuitive it is sometimes useful to label

the nodes with system specific information. The labels have no effect

upon the execution of the net and their purpose is simply to make the

models more visually intuitive to the reader.

3.5.2 Sinks and Sources

An example is given, in Figure 3-4 of a system whose purpose is to

provide raw material from an external source to a likewise external sink.

Raw materials enter the system from the source and enter a storage

unit. When the raw material and the arm are both ready, the material is

moved from storage and placed onto the waiting conveyer belt by the

arm. Once the conveyer is loaded it is moved along whereupon the

material arrives at its source and the arm once again becomes ready.

A transition can be defined as a source if it has an output place but no

input. The sink transition is the reverse in that it has an input place but

no output. The concepts of sink and source transitions are intuitive and

therefore no further detail will be described here, however, the concept

of a transition being, fired from or firing, an external entity is important to

note as it provides the basis of the modular concept presented in this

thesis.

3-7

Chapter 3 -Petri Nets for Functional Modelling

Put material
on conveyer

Move conveyer j
along

Figure 3-4: Modelling concurrency with Petri net graphs

3-8

Chapter 3 -Petri Nets for Functional Modelling

3.5.3 Concurrency

Figure 3-4 also demonstrates the concurrency inherent in the system

which is composed of two main independent entities, the raw material

and the robot arm. If required, it would be possible to model the events

which relate solely to the one or the other. Raw materials may enter or

leave the system independent of the action of the robot arm, there is no

need to synchronise these two entities. However, in order to begin the

process of loading the conveyer belt with raw material, both entities

need to be available and this can also be modelled. Thus a Petri net is

ideal for modelling systems of distributed control with multiple

processes occurring concurrently.

3.5.4 Asynchronicity

The basic Petri net graph contains no inherent measure of time which

reflects the philosophy that the only important property of time, from a

logical point of view, is in defining a partial ordering of the occurrence of

events. In real life situations, events will take a variable amount of time

and this is reflected in Petri net models by not depending upon a notion

of time to control the sequence of events. Instead a Petri net structure

contains all the information necessary to define the possible sequences

of events of a modelled system (Peterson, 1977).

3-9

Chapter 3 -Petri Nets for Functional Modelling

3.5.5 Non-Determinism

A Petri net, in common with the systems modelled by them, can be

viewed as a series of discrete events. Any particular order of

occurrence modelled is generally one of many possible allowed by the

basic structure. This leads to non-determinism in the execution of a

Petri net, whereby if at any time more than one enabled transition may

fire, the choice as to which to fire is made in a nondeterministic

(randomly or by un-modelled forces) manner (Peterson, 1977). It is

important to model all event sequences which are possible in real life

with no regard to those that whilst possible, are not available in the real

system under consideration. This is to ensure that account is taken in

the modelling process of forbidden states, that is states that the system

should never achieve. Knowledge of these forbidden states is crucial to

the novel concept of behavioural constraints which have been

developed in this thesis.

The firing of a transition is considered to take zero time, i.e. to be

instantaneous and since time is a continuous variable, the probability of

any two or more events happening simultaneously is zero, therefore in

reality two transitions are unlikely to fire simultaneously (Peterson,

1977).

3-10

Chapter 3 -Petri Nets for Functional Modelling

3.6 Petri Net Analysis

Petri nets are composed of places P and transitions, T. Places are

connected to transitions via their input, / and outputs, O. An input and

output for a place is always a transition whilst conversely the input and

output for a transition is always a place. A set of inputs is defined for

each transition l(tj), accordingly the set of outputs is also defined for

each transition O(tj). A Petri net (C) is formally defined as a four tuple

where C=(P, T, /, O).

Figure 3-5: Petri net graph

3-11

Chapter 3 -Petri Nets for Functional Modelling

The Petri net graph in Figure 3-5 can be structurally defined as:

P = {Pi, P2, PS, P4, PS}

T={ti,t2,t3,t4}

The inputs are defined as:

Kti) = {Pi}

/(fc) = (P2, P4>

I(t3) = {P3}

I(t4) = {P5}

The outputs are defined as:

O(ti) = {p2, p5}

0(t2) = {p3}

0(t3) = {p4}

0(t4) = {pi}

A number of features enable a Petri net graph to be analysed and each

of these is briefly reviewed below. For a more detailed analysis readers

are referred to the work of Peterson (1977).

3-12

Chapter 3 -Petri Nets for Functional Modelling

3.6.1 Marking

Markings are used to show the distribution of tokens in a Petri net graph

and are represented by /L/. Markings are visualised utilising binary

representations which aid in establishing the current state of places in

the system. Referring to Figure 3-3 it can be seen that the system

marking can be represented as: p = {0,0,1,0,0,0,0} which represents of

the six available places only P3 is enabled (marked) whilst the other five

places are disabled. A marked Petri net would modify the structure

defined in section 3.6 to: M = (P, T, I, O, /L/).

The stage of marking of a Petri net graph is shown by jU0 ••• A/n with /J0

representing the initial marking. For Figure 3-5 the marking tree would

read as follows:

/y0 = {1,0,0,1,0}

^ = {0,1,0,1,1}

A/2 = {1,0,1,0,0}

//3 = {0,1,0,1,1}

The system would now continually loop through its actions.

3-13

Chapter 3 -Petri Nets for Functional Modelling

Understanding the state of an object is useful for aspect to the

modelling of behavioural constraints and is discussed in more detail in

Chapter 4.

3.6.2 Reachability

Figure 3-6: A Petri net graph in its \i0 marking

3-14

Chapter 3 -Petri Nets for Functional Modelling

The marking for Figure 3-6 demonstrates how the reachability tree can

branch depending upon which transition fires in a Petri net with

conflicts. At its fJi marking the graph provides two alternatives a) to fire

ts or b) to fire k as depicted in Table 3-1.

Po

Vi

V3

Marking

{1,0,0,0,1,0,1}

{0,1,1,0,1,0,1}

Alternative A

(fire ts)

{1,0,0,0,1,1,0}

Return to pi

Alternative B

(fire tg)

{1,0,0,1,0,0,1}

Return to /Ji

Table 3-1: Two alternatives for a Petri net graph with conflicts

3.6.3 Boundedness and Safe nets

A Petri net in which any place can only have one token is called a safe

net (Srihari et al, 1990). Boundedness refers to the maximum number

of tokens that a place can hold. In the context of a bounded-ness a

safe net is considered a 1-bounded net (Peterson, 1977).

3.6.4 Conservativeness

Conservative Petri nets are useful for modelling situations where tokens

represent resources. In a conservative net tokens are neither created

3-15

Chapter 3 -Petri Nets for Functional Modelling

nor destroyed. This means that the number of inputs to a transaction is

equal to the number of outputs (Peterson, 1977).

3.6.5 Liveness

A transition can have three possible firing states. It is live if it can be

fired in all reachable markings; it is potentially fireable if at least one

marking enables it; and it is dead if no markings can enable it. A Petri

net is live if "all transitions in the net are enabled by a single cycle of

token movement" (Srihari et a/, 1990).

3.6.6 Properness

A Petri net is said to be proper if the initial marking is reachable from all

the markings in the reachability set (Cecil et a/, 1992).

3.6.7 Decision Free

A Petri net is decision free if there is a single input arc and a single

output arc from each place.

3.6.8 Timed transitions

A timed transition is represented by a rectangular box.

3.6.9 Inhibitor arcs

An inhibitor arc will not fire if the place to which it is linked contains a

token.

3-16

Chapter 3 -Petri Nets for Functional Modelling

3.6.10 Weighted arcs

A transition associated with a weighted arc will only fire if the number of

tokens in the place associated with the arc is equal to or greater than

the weighted value. Upon firing, the weighted number of tokens is

removed from each associated input place. When weighted arcs are

used to link output places and transitions, tokens corresponding to the

weighted value are added to the respective output places (Cecil et a/,

1992).

3.6.11 Deadlock

Deadlock occurs when a net reaches a marking from which no transition

can fire (Agerwala, 1979).

3-17

Chapter 3 -Petri Nets for Functional Modelling

3.7 Petri Net Analysis Methods

Petri nets can be analysed in numerous ways but generally their

analysis falls into three specific categories:

3.7.1 Reduction or decomposition methods

To aid in the analysis of large scale, complex systems, techniques are

employed to reduce this complexity and size while preserving the

properties of the system that are required for analysis. Murata (1989)

indicates that "reduction techniques are powerful but only applicable to

special subclasses of Petri nets." This would imply that they are

particularly useful for decomposing more abstract nets, or removing the

non-essential properties for specific criteria investigation, but are

generally not applicable to all types of net or the entire net.

3.7.2 Matrix equations

Matrix equations employ mathematical equations or algebraic

expressions to study the dynamic behaviour of the net. Murata (1989)

states that "matrix equations govern the behaviour of concurrent

systems modelled by Petri nets". However, he recognises the

limitations of these techniques and maintains that "the solvability of

these equations is limited due to the inherent non-deterministic nature

of Petri net modules". The text also points out that, as with reduction

3-18

Chapter 3 -Petri Nets for Functional Modelling

techniques, these methods are not employable with all types of net and

are more useful on smaller subclasses of net.

3.7.3 Reachability tree method

The reachability tree method begins from the initial marking of the net

and for each firing of a transition produces a tree diagram of all possible

markings within the net.

This type of analysis is useful for a number of reasons. Firstly, it will

allow identification of unreachable places within the net which, in turn,

identifies errors in the model. Other errors in the model will also be

identified through the identification of transitions where the pre-requisite

conditions for enabling them can never occur. Secondly, the analysis

can aid in the removal of conflict and confusion in the net as the basic

tree can only be generated based upon the assumption that the net is

pure and free from conflict.

Usefully, in an ordinary net, where the arc weightings are all one, this

tree structure could possibly be use as a model for a decision structure

when the net is used to module software. Each branch may represent

an outcome of a decision loop and the resultant marking used to

represent Boolean statements executed on the condition of the branch.

3-19

Chapter 3 -Petri Nets for Functional Modelling

3.8 Literature review of Petri net extensions

3.8.1 A Brief history of the development of Petri nets

Petri nets were developed by Dr Carl Adam Petri (Petri, 1962) as a

method for the design and programming of information processing

machines. Petri's work was subsequently adopted by the

Massachusetts Institute of technology (Peterson, 1977) where it

became known as Petri net theory. Stochastic Petri nets are nets in

which random firing delays associated with transitions. They are a

mathematical model for description of phenomena with a probabilistic

nature that usually is time related (Marsan, 1989).Much work has been

undertaken to use Petri nets for the design and implementation of a

number of types of systems such as Flexible Manufacturing Systems

(Chaillet et a/, 1993)).

3.8.2 Application to Manufacturing Systems

Peterson (1981) describes Petri nets as "a tool for the study of

systems". Cecil et al (1992) note that the "ever increasing application of

Petri nets in the modelling of manufacturing systems testifies to their

research potential and modelling capabilities".

The earliest application of Petri nets was as part of the project MAC a

Masters thesis (Hack, 1972) which dealt with the analysis of production

systems. A survey paper (Silva and Valette, 1990) cites a number of

papers in French from 1978 and 1979. Industrial process control is

3-20

Chapter 3 -Petri Nets for Functional Modelling

cited as one of the applications of Petri nets in (Johnsonbaugh and

Murata, 1982) where much of the effort was in developing hardware

implementations of Petri nets.

The mid 1980's saw the publication of more French papers dealing with

Petri net controllers for flexible manufacturing systems (Silva and

Velilla, 1982) and (Valette etal, 1985).

Many of the approaches described attempted to incorporate a modular

approach in order to reduce the size and complexity of models for large

systems.

The application of Petri nets to manufacturing systems is a very rich

domain. States and events are represented explicitly. Petri nets

represent an important aid for integrating the whole system. From

scheduling to real time control Petri net theory offers solutions for

design, performance evaluation and implementation.

More work needed to produce efficient and distributed code for control

purposes (Silva, 1983). The modelling of large concurrent

manufacturing systems requires some form of modularisation to break

down the complexity (Reisig, 1986)

The amount of applications to manufacturing systems can be attributed

to the fact that they can analyse behavioural properties, can be used for

3-21

Chapter 3 -Petri Nets for Functional Modelling

performance evaluation, simulation and be used to develop controllers

(Zurawksi and Zhou (1994).

The late 1980's saw the introduction of Controlled Petri nets in (Krogh,

1987) and (Holloway and Krogh, 1990), which were applied to the

supervisory control of discrete event dynamic systems.

In (Zurawski and Zhou, 1994) a tutorial is presented with an introduction

to industrial applications of Petri nets and an up to date bibliography. In

the late 1990's there is a large concentration on more high level Petri

net models which incorporate other techniques such as fuzzy logic

(Hanna et al, 1994) or object oriented methods.

3.8.3 Petri Nets for Control

Controlled Petri nets developed by Krogh (1987) allow state transitions

to be influenced by external control inputs. They help to reduce

computational complexity in a system (Holloway and Krogh, 1990) but

are based more on the mathematical rather than the visual aspects of

net theory.

Chaillet et al (1993) merged Petri nets with a database to control and

monitor Flexible manufacturing systems however it provides no OO

capabilities and is constricted by having a single control net and which

controls individual modules. The work was extended by Villarroel and

Muro-Medrano (1994) with their Knowledge Representation Oriented

3-22

Chapter 3 -Petri Nets for Functional Modelling

Nets which expand the idea proposed by Chaillet to include a

coordinator between the main and module level controllers.

Automation Petri nets (Uzam et al 2000) extended the basic Petri net

structure to accommodate sensor signals that help to avoid forbidden

state problems by utilising inhibitor arcs.

Manufacturing control can be either centralised or decentralised.

According to (Silva and Valette, 1990), centralised control requires a co­

ordinator (or manager) and a set of tasks. The co-ordinator plays the

'token game' on the net model. The tasks are attached to fired

transitions.

Performance analysis tasks such as measuring throughput or

scheduling exercises are performed using timed Petri nets (Murata,

1989), or stochastic Petri nets, (Marsan, 1989).

Complex simulation of flexible manufacturing systems is performed by

higher level nets such as coloured Petri nets (Jenson, 1997) and

attempts at Object-Oriented Petri nets (Adamou et al, 1998).

3.8.4 Object-Oriented Petri nets

Petri Net theory has been a major research topic for some time and

several attempts have been made to integrate Petri nets and object-

oriented (Delatour and Paludetto, 1998), (Venkatesh and Zhou, 1998).

3-23

Chapter 3 -Petri Nets for Functional Modelling

Other researchers have extended the basic Petri net formalism to

incorporate object-oriented concepts such as the Hierarchical Object

Oriented Design (HOOD). Hierarchical Object Oriented Design (HOOD)

was designed as a software development process for the European

Space Agency. Petri nets were added later to provide a formal

verification method. (Giovanni, 1991). HOOD generally utilises the

principles of Object Orientation and adds Petri nets for functional

modelling but does not enjoyed the standardisation of the UML. HOOD

is also designed with a focus on ADA applications. However, it does

have a form of communication mechanism between modules using the

concept of a buffer (Giovanni, 1991).

However, these approaches have led to extremely complex models

where the link between Petri nets and object-oriented systems design is

at best tentative. In addition the techniques do not fully capture all the

benefits of a true object-oriented approach.

A language for Object-Oriented Petri nets (LOOPN) is an attempt to

modularise Petri nets (Lakos, 1991). LOOPN are an extension of

coloured Petri nets which support modularisation, flexible token

visibility, simulated notion of time and some OO features (Lakos, 1991).

The main problem with LOOPN is that it is concerned with mapping of

code rather than actually visualising a system.

3-24

Chapter 3 -Petri Nets for Functional Modelling

Net Oriented Analysis and Design (NOAD) = OOA/OOD + Net theory.

(Honiden and Uchihira, 1992). Attempted to integrate object-orientation

with Petri nets by using the OOA/OOD approach. However, the

technique is based heavily on data flow diagrams and does not provide

a complete object-oriented model.

Cooperative Objects use an object control structure which defines the

inner control structure of each object and is modelled with a Petri net.

(Bastide, 1993). As with LOOPN this technique is based around

programme code rather than the visual depiction of systems.

Object-oriented Petri nets (OPN) adds some modularity to Petri net

graphs but it is not a true OO technique as it does not support classes

or inheritance (Wang, 1996). This hierarchical approach allows

individual places to represent entire sub-nets.

Hsiung et al (1997) developed MOBnet: Multiple Token Object Oriented

Bi directional Net. This uses multiple tokens to represent data and

introduces OO places and bidirectional arcs. Whilst it is a good

technique which introduces classes and inheritance it suffers greatly

from the complexity of the models.

Cooperative Objects (COO) developed by (Sibertin-Blanc, 1997) is

based on C++ and is not a visual modelling but a language mapping

process.

3-25

Chapter 3 -Petri Nets for Functional Modelling

Object Petri Net Language uses high level Petri nets where tokens

represent data and transitions contain time intervals and functions. It

has no OO standards and is mainly designed for embedded systems

(Esser, 1997).

The HOOD approach was expanded by Chen and Lu (1997) to

incorporate Petri nets in their Petri-net and entity-relationship diagram

based object-oriented design method (PEBOOD). PEBOOD integrates

IDEFO, entity relationship diagrams and Petri nets into a suite of

models. Whilst it provides some OO capabilities it lacks the

standardisation of UML (Chen and Lu, 1997)

Azzopardi and Holding (1997) attempted to use OMT for modelling the

static system and Petri net for the dynamics. However the resultant

models are not integrated with each other and the technique leads to a

number of unconnected modules

G-CPN (Serey et al, 1997) uses modules for grouping Petri nets but has

real OO capabilities. The G-CPN method proposes no method of

communication between modules.

Elementary Object Nets Uses tokens as objects (Valk, 1998) but this is

only a useful technique where the tokens represent resources that

move around the system.,

3-26

Chapter 3 -Petri Nets for Functional Modelling

Object-oriented Predicate/Transition nets (OOPr/T nets) (Philippi, 1998)

uses Petri nets to diagrammatically represent programming code.

State based object PN (SBOPN) model only states in an object not

functionality. These use source and sinks for communication (Newman

efa/,1998)

(Baldassari and Bruno, 1988) first proposed the idea of reducing the

complexity of Petri net models by integrating them within an object-

oriented framework where each object is an autonomous net

exchanging messages w'a tokens.

Extended Object Oriented Petri-nets (EOPNs) were developed by Liu et

al (2004) for coping with the complexity of wafer fabrication systems.

The models use a hierarchical structure to model systems using work

areas for resources, machines and functions. However, the technique

requires the separation of these entities and results in a model that is

not a direct representation of the system and which can be confusing for

stakeholders.

The disadvantages of high level Petri nets as identified by Villani (2004)

are that they are not useful for representing data and there is no notion

of a hierarchy. High level Petri nets (Villani, 2004) attempted to

overcome these problems but are not fully supportive of object oriented

techniques.

3-27

Chapter 3 -Petri Nets for Functional Modelling

Stanton etal (1996), discussed Petri Nets in relation to the specification

and design of control code. The work shows how control code can be

specified and designed for a manufacturing system using hierarchical

Petri Nets. Structured Petri nets (Stanton, 1999), allows a direct linkage

with system inputs and outputs to be modelled.

The main problem to be overcome with Petri net graphs representing

even quite simple systems is 'state space explosion'. This describes

the complexity caused by the number of graphical elements required to

represent even a relatively simple system.

3-28

Chapter 3 -Petri Nets for Functional Modelling

3.9 Chapter Summary

This chapter has demonstrated how a Petri net can describe a

manufacturing system graphically allowing system users and designers

to gain a better understanding of the complex interactions within the

system.

The basic structure of a Petri net graph allows system modellers to

identify and visually describe the events present in a system (via

transitions) and its behaviour (w'a places).

The use of tokens in a marked net allow the representation of the

sequence of transition firing and subsequent changes in behaviour as

the system moves through the sequence of events required to achieve

its goal.

Using a token player it is possible to simulate a system hypothesis and

the Petri net graph's simplicity means that it is intuitive to modify the net

to carry out 'what if analysis on the proposed system.

The analysis of Petri net graphs (via reachability marking) provides

manufacturing system's analysts with a method of mathematically

proving designs.

The inhibitor arc allows for the implementation of safety features within

the design along with the mathematical proof this is especially important

for safety or missing critical systems. The models allow for the

3-29

Chapter 3 -Petri Nets for Functional Modelling

specification of systems which display properties of synchronicity and

concurrency and these properties are highly relevant for manufacturing

systems.

The use of source and sinks enables a modular approach to system

design to be adopted and this is further enhanced by the ability to

iteratively refine Petri net graphs at different levels of abstraction. The

myriad of proposed extensions to the original Petri net formalism allow

for a range of scenarios to be modelled and this has been demonstrated

by the diversity of systems which have been successfully modelled.

There are drawbacks to the technique, and these have been highlighted

in this chapter. The main problem to overcome is the resultant state

space explosion resulting from the sheer number of places, transitions

and arcs required to model even a relatively simple system.

Whilst some attempts have been made to modularise the nets, full

object-orientation has yet to be achieved and this is addressed in this

thesis by integrating Petri net graphs into UML diagrams, as discussed

in chapter 4.

3-30

Chapter 3 -Petri Nets for Functional Modelling

References

Adamou, M., Zerhouni, S. N. and Bourjault, A., 1998, Hierarchical

modelling and control of flexible assembly systems using object-

oriented Petri nets. International Journal of Computer Integrated

Manufacturing, 11, pp. 18-33.

Agerwala, T. 1979. Putting Petri Nets to Work. IEEE Computer Society:

Computer. 12(12), pp. 85-94.

Azzopardi, D. and Holding, D. J. 1997. Petri nets and MOT for Modelling

and Analysis of DEDS. Control Engineering Practice. 5(10), pp.

1407-1415.

Baldassari, M. and Bruno, G. 1988. An Environment for Object-Oriented

Conceptual Programming Based on PROT Nets. Lecture Notes in

Computer Science. 340, pp. 1-19.

Buldizzi Fabio, Gilla Allessandro and Seatzu Carla. 2001. Modelling

and Simulation of Manufacturing System Using First Order Petri

Net. International Journal of Production Research. 39(2), pp. 255-

282.

Cecil, J. A., Srihari, K. and Emerson, C. R. 1992. A Review of Petri net

Applications in Manufacturing. The International Journal of

Advanced Manufacturing Technology. 7(3) pp. 168-177.

3-31

Chapter 3 -Petri Nets for Functional Modelling

Chen, K. and Lu, S. 1997. A Petri-net and entity-relationship diagram

based object-oriented design method for manufacturing systems

control. International Journal of Computer Integrated

Manufacturing. 10(1-4), pp. 17-28.

Chaillet, A., Courvoisier, M., Combacau, M. and deBonneval, A. 1993.

Merging Petri Nets and Database Models for Control and

Monitoring Requirements in FMS. The International Journal of

Systems, Man and Cybernetics. 1, pp. 42-47.

Delatour, J. and Paludetto, M. 1998. UML/PNO: A way to Merge UML

and Petri Net Objects for the Analysis of Real Time Systems. 1998.

European Conference on Object-Oriented Programming. Lecture

Notes in Computer Science. 1543, pp 511 -514.

Esser, R. 1997. An Object-Oriented Petri Net Language for Embedded

Systems Design. Proceedings of the 8th International Workshop on

Software Technology and Engineering Practice, pp. 216-223. 0-

8186-7840-2

Giovanni, Raffaele. 1991. Hood Nets. Lecture Notes in Computer

Science. 524, pp. 140-160.

Hack, M. 1972. Masters thesis: Analysis of production schemata by Petri

nets. Massachusetts Institute of Technology.

3-32

Chapter 3 -Petri Nets for Functional Modelling

Hanna, M., 1994, "Determination of product quality from an FMS cell using

Fuzzy Petri nets." In Proc. IEEE International Conference on

Systems, Man and Cybernetics, San Antonio, TX, USA, pp. 2002-

2007.

Holloway, L. E. and Krogh, B. H., 1990, "Synthesis of feedback control

logic for a class of controlled Petri nets". IEEE Transactions on

Automatic Control, 35, pp. 514-523.

Honiden, S., and Uchihira, N. 1992. Net Oriented Analysis and Design.

IEICE Trans. Fundamentals. E75-A(10), pp. 1317-1324.

Hsiung, P., Lee, T., Chen, S. 1997. MOBnet: An Extended Petri Net

Model for the Concurrent Object-Oriented System-Level Synthesis

of Multiprocessor. IECE Trans. Info. & Syst. E80-D(2). pp. 232-

242.

Jensen, K., 1997, Coloured Petri-Nets: Basic Concepts, Analysis Methods

and Practical Use, Vol. 1, London: Springer-Verlag. 0387582762

Johnsonbaugh, R. and Murata, T. 1982. Petri nets and marked graphs -

Mathematical models of concurrent computation. In the Math

Association of America, The American Math Monthly, 89(8), pp.

552-566.

3-33

Chapter 3 -Petri Nets for Functional Modelling

Krogh, B. H., 1987, "Controlled Petri nets and maximally permissive

feedback logic." In Proc. 25th Annual Allerton Conference,

University of Illinois, USA, pp. 317-326.

Kichang Lee, Hanil Jeong, Chankwon Park and Jinwoo Park. 2004.

Construction and Performance Analysis of A Petri Net Model Based

Functional Model in Computer Integrated Manufacturing (CIM)

System. International Journal of Advanced Manufacturing

Technology. 23(1-2), pp. 139-147.

Llewellyn, E.W., Stanton, M.J., Roberts, G.N. 2000. Towards the

implementation of the Unified Modelling Language (UML) into a

Computer Integrated Manufacturing (CIM) environment. Fourteenth

International Conference on Systems Engineering. 12th - 14th

September 2000. Coventry, UK. pp 398 - 403.

Llewellyn, E.W., Stanton, M.J., Roberts, G.N. 2001. Discrete event

systems design based upon the UML and Petri net objects. 3rd

Workshop on European Scientific and Industrial Collaboration. 27th

- 29th June 2001. Twente, The Netherlands, pp. 211 -219

Llewellyn, E.W., Stanton, M.J., Roberts, G.N. 2003. A combined

object-oriented and structured Petri net approach for discrete event

systems' design. 4th Workshop on European Scientific and

Industrial Collaboration. 28th - 30th May 2003. Miskolc, Hungary,

pp. 398-403.

3-34

Chapter 3 -Petri Nets for Functional Modelling

Liu, Huiran, Fung, Richard Y. K. and Jiang, Zhibin Dr. 2005. Modelling

of semiconductor wafer fabrication systems by extended object-

oriented Petri nets. International Journal of Production Research.

43(3), pp. 471 - 495.

Marsan, M. A. 1990. Stochastic Petri nets: An elementary introduction.

Lecture Notes in Computer Science. 424, pp. 1-29.

Murata, T. 1989. Petri nets: Properties, analysis and applications.

Proceedings of the IEEE. 77(4), pp. 541-581.

Newman, A., Shatz, S. M. and Xie, X. 1998. An Approach to Object

System Modelling by State-Based Object Petri Nets. Journal of

Circuits, Systems and Computers. 8(1), pp. 1-20.

Peterson, J. L. 1977. Petri nets. Computing Surveys. 9, pp. 223-252.

Peterson, James. L. 1981. Petri net theory and the modelling of systems.

London: Prentice-Hall. 0136619835.

Petri, C. A., 1966, Communication with automata, English translation of

'Kommunikation mit Automated, Griffiss Air Force Base Technical

Report RADC-TR-65-377 1(1).

Philippi, Stephen. Modularization of Petri nets using Object-Oriented

Concepts. IEEE Journal of Systems, Man and Cybernetics. 1(1),

pp. 84-89.

3-35

Chapter 3 -Petri Nets for Functional Modelling

Ribeiro, A., Costa, E. and Lima Eduardo. 2008. Flexible Manufacturing

Systems Modelling Using High Level Petri Nets. ABCM

Symposium Series in Mechatronics. 3, pp. 405-413.

Saldhana, John Anil, Shatz, Sol M. and Hu, Zhaoxia. 2001,

Formalisation of Object Behavior and Interactions from UML

Models, International Journal of Software Engineering and

Knowledge Engineering. 11(6), pp. 643-673.

Serey, D., Fernandes, J. P., Perkuisich, A. and Figueiredo, J. 1997. G-

Nets: A Petri net based approach for logical and timing analysis of

complex software systems. Journal of Systems and Software.

39(1), pp. 39-59.

Sibertin-Blanc, C. 1997. Concurrency in Cooperative Objects.

Proceedings of the IEEE, 77, pp. 35-44.

Silva, M. and Velilla, S., 1982, Programmable logic controllers and Petri

nets: A comparative study. In Proc. IFAC Conference on Software

for Computer Control, Madrid, Spain, pp. 83-88.

Silva, M. and Valette, R. 1990. Petri nets and flexible manufacturing."

Lecture Notes in Computer Science. 424, pp. 374-417.

Srihari, K., Emerson, C. R. and Cecil, J.A. 1990, Modelling Manufacturing

with Petri Nets. The Journal of Computer Integrated Manufacturing.

6(3), pp.15-21.

3-36

Chapter 3 -Petri Nets for Functional Modelling

Stanton, M.J., Arnold, W.F. and Buck, A.A. 1996. Modelling and Control

of Manufacturing Systems Using Petri Net. In proceedings of the

1$h IFAC World Congress, San Francisco, USA, vol J, pp. 324-329.

Stanton, M. J. 1999 .Doctoral Thesis: Structured Petri Nets for the

Design and Implementation of Manufacturing Control Software with

Fault Monitoring Capabilities. University of Wales College,

Newport.

Uzam, M., Jones, A. H., Yucel, I. 2000. Using a Petri net Based

Approach for the Real Time Supervisory Control of an Experimental

Manufacturing System. The International Journal of Advanced

Manufacturing Technology. 16. pp. 498-515.

Valette, R., Courvoisier, M., Demmou, H., Bigou, J. M. and Desclaux, C.,

1985, "Putting Petri nets to work for controlling flexible

manufacturing systems." In Proc. International Symposium on

Circuits and Systems, Kyoto, Japan, pp. 929-932.

Valk, R. 1998. Petri Nets as Token Objects. Lecture Notes in Computer

Science. 1420, pp. 1-25.

Venkatesh, K. and Zhou, M. 1998. Object Oriented Design of FMS

Control Software Based on Object Modeling Technique Diagrams

and Petri Nets. International Journal of Manufacturing Systems.

17(2), pp. 118-136.

3-37

Chapter 3 -Petri Nets for Functional Modelling

Villarroel, J. L., and Muro-Medrano, P. R. 1994. Using Petri net Models at

the Coordination Level for Manufacturing Systems Control.

Robotics & Computer Integrated Manufacturing. 11(4), pp. 41-50.

Wang, L. 1996, Object Oriented Petri nets for Modelling and Analysis of

Automated Manufacturing Systems. Computer Integrated

Manufacturing Systems. 26(2), pp. 111-125.

Wu, T. and O'grady, P. 1999. Concurrent engineering approach to

design for assembly. Concurrent Engineering Research and

Applications. 7(3), 231-243.

Wu, Z. M. 2005. Modelling and simulation of an intelligent flexible

manufacturing system via high-level object Petri nets (HLOPN).

International Journal of Production Research. 43(7), pp. 443 -1463.

Zimmermann, Armin, Freiheit, Jorn and Huck, Alexander. 2001. A Petri

Net Based Design Engine for Manufacturing. International Journal

of Production Research. 39(2), pp. 225-253.

3-38

Chapter4-A Three Level Control Structure with Behavioural Constraints

three Lever Control Structure with
Behavioural Constraints

This chapter discusses the Functionally Encapsulated Modules (FEMs),

developed in this work, in further detail and introduces a novel

methodology for their use within manufacturing systems. The chapter

outlines a technique for combining the Unified Modelling Language (UML)

and Structured Petri Nets (Stanton et al, 1999) for the modelling of

manufacturing systems. The method presented identifies three levels of

control in each system and this chapter describes how these control levels

are decomposed down to a functional model that can intuitively be

implemented. A top down design methodology is presented which

maximises the loose coupling, and therefore the reuse capabilities of the

system as each level is clearly modularised. The novel concept of

behavioural objects is discussed as a mechanism for further ensuring the

maximum reuse capability of each object in the system is achieved. A

case study is presented based on a manufacturing system developed at

the University of Wales, Newport and the chapter demonstrates how the

full methodology created during this research work is applied to a working

system. Finally an original technique for the automated generation of

control code is presented.

4-1

Chapter 4- A Three Level Control Structure with Behavioural Constraints

4.1 Introduction

Manufacturing systems are complex and varied in nature and therefore

their software needs cannot readily be met by general purpose 'off the

shelf packages. The approach generally adopted by software engineering

practitioners is to design generic solutions, which can be customised to

the specific requirements of the system. The resultant generic object class

libraries are customisable through object-oriented (OO) techniques, and

provide a good starting point for the design of practical control software.

The abstraction of complex manufacturing systems into a series of objects

is more intuitive because manufacturing end users already consider their

systems in terms of objects, i.e. parts, conveyors, lathes, drilling machines

etc. (Adiga, 1993). The Unified Modelling Language (UML) has become

the de facto standard for object-oriented analysis and design and its

application to manufacturing systems has already been demonstrated by

the author (Llewellyn et al, 2000, 2001, 2003). Object-oriented modelling

as a method of designing manufacturing systems has already been

proposed in (Adiga and Gadre, 1990), (Adiga, 1993). The idea has further

been expanded to take account of the increasing use of robots (Lin ef al,

1994). Much of the early work in this area was based around the object-

oriented methods described by (Coad and Yourdon, 1991), (Yourdon,

1994). Booch, Jacobson and Rumbaugh amalgamated the early ideas

(Booch et al, 1999) into the Unified Modelling Language (UML) which has

4-2

Chapter 4-A Three Level Control Structure with Behavioural Constraints

become the ate facto standard for object-oriented modelling and which has

been used as the object-oriented modelling technique for this work.

In the discipline of manufacturing, Petri nets are widely used to model

discrete event systems (DES) and Discrete Event Dynamic Systems

(DEDS). Petri nets provide a model which is mathematically provable and,

using a token player, one that also functions as a simulation tool. A

number of works have also considered their ability to map against various

types of control code.

The challenge facing manufacturing organisations wishing to remain

competitive in a global economy is to reduce the time from product

conception to market whilst retaining high quality, low cost goods. This

situation is complicated by the variety and complexity of manufacturing

systems and its software, which cannot readily be met by general purpose

'off the shelf packages.

The rapid growth in the development of powerful, low cost computers has

seen many attempts to integrate computers into manufacturing

organisations under the umbrella term of Computer Integrated

Manufacturing (CIM). However, a fundamental flaw of the ad hoc

integration of computer technology into manufacturing organisations is the

resultant 'islands of automation' (Hannam, 1997). These islands arise as

4-3

Chapter 4-A Three Level Control Structure with Behavioural Constraints

the result of implementing computers into parts of an organisation with no

thought as to how these individual parts may be linked together at some

future point in time. Despite this problem, computerisation offers many

benefits to manufacturing organisations. A computer can do things quicker

than a human and is less prone to mistakes, especially when working in

hazardous environments or long, unsociable hours. The computer also

provides tools to integrate the whole process from concept to market. For

instance, it is possible to use a computer aided design tool to produce a

first draft of the idea, the computer would then be used to aid in

requirements gathering, to simulate the production processes and

ultimately as a controller for the finished system. One solution to the

islands of automation problem, posed by Pressman (2004), is 'loose

coupling'. A loosely coupled system fully encapsulates the minute detail of

an object behind a well-defined, publicly accessible interface. For

example, a manufacturing cell embodying a loosely coupled design

approach that utilises a pneumatic manipulator could intuitively facilitate

the replacement of the manipulator with a robot arm. Such a change

would cause minimal disruption to the remainder of the software

controlling the system, despite the distinct differences in how the two

components actually operate. This work has developed a novel approach

to combining the UML and Petri nets to capture the benefits of both

techniques and to overcome their shortcomings in a manufacturing

environment.

4-4

Chapter4-A Three Level Control Structure with Behavioural Constraints

Manufacturing systems are made up of a wide range of inter-related

hardware and software with the associated communications infrastructure

to link them together. Whilst the hardware itself is complex, it is the

software which provides the intelligence to enable a machine to perform its

operations. This work utilises the concept of a hardware/software object

(HSO) to visualise and model machinery within the system and its

associated control software.

4-5

Chapter4-A Three Level Control Structure with Behavioural Constraints

4.2 Functionally Encapsulated Modules - Merging the

UML and Petri nets.

The UML uses sequence and state charts for modelling the message flow

and states of the system respectively. This results in two separate

models, neither of which is mathematically provable. It is proposed that

Petri net graphs can be used to capture both the message passing and

states of a system in one graph. Merging the UML and the structured

Petri net modules, developed in Stanton (Stanton, 1999), produces

graphical models which take full advantage of current object-oriented

software engineering techniques and which aid in the reduction of the

state space explosion problem inherent in Petri nets. The models are also

mathematically provable (Delatour and Paludetto, 1998) and allow the

modelling of concurrent and non-deterministic systems (Zapf and Heinzl,

2000). However, one of the main drawbacks of Petri net graphs is their

inherent complexity, even on relatively simple systems. In the UML,

operations are used to access and alter the internal state of the object.

The proposed technique uses Petri nets to model these operations and

their resultant behaviour changes. By modelling only the limited range of

states and operations within a single object the complexity of the graphs is

reduced considerably. As well as capturing the static, dynamic and

behavioural attributes of the system, the resultant models help in the

identification of user requirements, are understandable to a wider range of

4-6

Chapter4-A Three Level Control Structure with Behavioural Constraints

users, are extendable and reusable, and provide enough low level detail

for the automatic generation of control code (Stanton, 1999). Structured

Petri nets enable control and feedback places to be added to a basic Petri

net structure and the encapsulation of these places into the object's

interface enables a full Petri net diagram to be created if required.

Breaking Petri nets down into smaller manageable sections during

development enables system designers to develop modular systems akin

to those developed by software engineers.

4-7

Chapter4-A Three Level Control Structure with Behavioural Constraints

4.3 Applying Constraints

Once the classes have been designed and their operations and attributes

established and modelled, the resultant object is highly generic and can be

applied to a range of applications. However, in order to utilise the object,

strict control must be placed over the actions it is allowed to perform. For

example, a manipulator may be able to move left and right, up and down,

back and forth and the gripper may open and close. When applied to a

specific system the manipulator may not be able to move right due to an

impeding obstacle and therefore the controller must always raise the

object, move it right and lower it, in order for it to achieve the required

action of moving right. If this constraint is built into the object then it

becomes system specific and loses some of its genericity. This chapter

proposes a method of applying a constraint object to the class in order to

meet the system requirements whilst not affecting the genericity of the

class itself.

The UML uses the Object Constraint Language (Warmer and Kleppe,

1999) in order to apply constraints to the model. However, these are little

more than comments with no direct code conversion possible. The

forbidden state problem is an is an area widely researched in Petri net

theory and the work of Holloway and Krogh (1990) in applying constraints

to controlled marked graphs has been adapted to fit the Petri net/UML

approached presented in this thesis.

4-8

Chapter 4-A Three Level Control Structure with Behavioural Constraints

4.4 A Three Level Control Architecture

This work suggests that a three level architecture be utilised when

considering the design of manufacturing systems as outlined below:

4.4.1 Goal Control

In a typical manufacturing system it is possible to identify three levels of

control. The first, commonly known as supervisory control is 'goal

oriented'. This primary level of control is concerned with aiding the system

in the achievement of its main goal(s). Typically this will involve a single

controller co-ordinating several sub-modules. It is possible that the sub-

modules each have their own goal-oriented controllers. At this level the

controller is concerned with achieving the specific goal of the system or

sub-system. Three questions need to be answered in order to define a

goal controller:

• What does the system do (goal)?

• What does it need to do it (inputs)?

• What does it do with its output (if any) (outputs)?

In order to model the levels of control in the system it is important to

identify the overall goal. This can be described as the main purpose or

function of the complete system under consideration. The system's goal

does not take into consideration anything which is not directly within the

scope of the system being considered. Anything which provides to the

4-9

Chapter 4-A Three Level Control Structure with Behavioural Constraints

target system is considered as an input, whilst anything which takes from

the system is considered as an output. At this stage the functional

behaviour of the system is not considered. Simply stated the first stage

considers what the system does rather than how it does it. The goal

controller of a system can be thought of as a sequencer, its role is to

initiate the modules or objects under its control to fulfil their tasks in the

required sequence in order to achieve the system goal. The goal

controller in a system will generally be highly system specific and subject

to major changes if at some later point in time the goal of the system

changes. Therefore it is important to reduce the complexity within this level

of control to a minimum whilst ensuring it maintains loose coupling with

modules or objects it controls. In effect it can be thought that the goal

controller takes responsibility for the aim of the system.

Definition: A goal controller is control software which co-ordinates task

controllers in order to achieve the goal of the system.

4.4.2 Task Control

Once the goal control of the system is identified the individual tasks

required to complete the goal are identified. The task control level is

designed to operate the sub-systems under the guidance of the goal

controller. The task controllers will activate upon receipt of a signal from

4-10

Chapter4-A Three Level Control Structure with Behavioural Constraints

the goal controller, carry out their task and then [usually] report to the goal

controller that the task is achieved. When developing task controllers it is

imperative that their invocation commands are embedded within a public

interface and that they communicate only with the goal controller via this

interface. Direct communication with other sub-systems would violate the

concept of loose coupling and in the event of the internal software or

hardware of a sub-system changing, would possibly require knock-on

changes to other sub-systems.

An example of a task or sub-system level controller is a programmable

logical controller (PLC) that is responsible for coordinating a series of

pneumatic actuators that together form a manipulator. Or, the task level

controller could be required to co-ordinate a number of manipulators to

achieve some specified task.

At this level of control there is no concern for any goal, the object is simply

to allow the object(s), i.e. in this case the manipulator, to perform some

task(s). The task controllers are initiated and co-ordinated by the goal

controller. Generally there will be a task controller for each module with a

specific tasks or objective which takes care of an element in the sequence

of steps needed for the system to reach its goal. Once again the modules

are examined individually in order to establish their inputs and outputs

within the rest of the system, however they differ from goal controllers in

4-11

Chapter 4-A Three Level Control Structure with Behavioural Constraints

that they are within the scope of the system. Generally a task controller

will need to co-ordinate with the goal controller above it, and the

controllers beneath it. The interface between the top level should be

made via uncomplicated public interfaces and will generally be limited to

receiving initiate commands and sending feedback signals.

Definition: A task controller is the software which controls a sub-system. It

receives a single command from the goal controller and then carries out a

complete task which aids in achieving the goal of the system.

4.4.3 Object Control

The final level of control in a system is the object controllers themselves.

Carrying on with the example given in the task level control section, an

object level controller may be responsible for the functions of a single

actuator. This level of control is highly specific to the object and

communications, via a public interface, only with the task level controller.

Definition: An object controller is the software which enables a single

object to perform its function

4-12

Chapter4-A Three Level Control Structure with Behavioural Constraints

4.4.4 Behavioural Constraints

In order to maximise the usefulness of an object in an object-oriented

system, it is important to design objects that are as generic as possible.

This applies not only to the objects themselves but also to the links

between them. Ideally in a system the objects should be as distinct as

possible from one another, and this idea should follow through to the

linkages between sub-modules. This loose coupling between objects and

modules means that changes to elements of a system have little, if any,

impact upon the rest of the system. However, in practice this is difficult to

implement as any solution will be designed for a specific system and will

have to accommodate the peculiarities and constraints of that system.

System specific design will take place at the expense of the genericity of

the objects and the overall design. The addition of a constraint object, as

discussed later in this chapter (section 4.11), allows the designer to keep

the system specifics separate from the generic objects.

4-13

Chapter 4-A Three Level Control Structure with Behavioural Constraints

4.5 A Methodology for Implementation: Analysis and

Design

The initial stage in the methodology is the analysis and design stage. At

this stage it is necessary to model the existing or proposed system at all

levels of detail. The first stages aid in identifying the boundaries of the

system under consideration including its interactions with other systems.

The system is then broken down into a number of modules which are each

analysed and modelled individually. Each module is then broken down

into its component objects before the system is finally redeveloped.

4.5.1 Step 1: Identify System Boundaries and Interactions

The first step is to identify the boundary of the whole system and describe

any interactions it has with other systems or external entities. At this stage

the inputs and outputs of the system are identified and its overall goal is

determined. Use cases (models and scenarios) are used to describe the

top-level of the system and should be intuitive for all stakeholders to

understand.

4.5.2 Step 2: Identify Sub-Systems, Boundaries and Interactions

Having established the system and its goal the sub-systems that make up

the whole are identified. This is achieved by identifying the distinct tasks

that must be achieved in order to meet the goal. This stage also

establishes the boundary of each sub system and its inputs from and

outputs to the rest of the system, where appropriate. The inputs and

4-14

Chapter4-A Three Level Control Structure with Behavioural Constraints

outputs of sub-systems will ultimately become the control and feedback

signals passed between the system's goal and task controllers. Use

cases models and scenarios are once again utilised to capture the

workings at this level. Class diagrams are also utilised to ensure that the

make-up of conceptual groupings of components is identified.

4.5.3 Step 3: Identify Modules and their Interactions

Each sub-system is analysed individually to establish the modules that

form that part of the system. Each module is modelled with use cases to

establish its task and how it co-operates with other modules within the

sub-system. Class diagrams are used to capture the composition of each

module.

4.5.4 Step 4: Identify Objects and their Functionality

The final step in the analysis and design stage is to identify and model the

objects that make up each module. This is achieved using Functionally

Encapsulated Modules (FEMs). At this stage all functionality of the object

is captured and modelled. The modelling allows the system designer to

capture all possible operations that the object can perform, irrespective of

the current system. Class diagrams are also utilised to capture the

inheritance that may exist between system objects.

4-15

Chapter 4- A Three Level Control Structure with Behavioural Constraints

4.6 A Methodology for Implementation: Development

The second stage in the methodology is concerned with the development

of the control software at each level, i.e. - object, task, behavioural and

goal.

4.6.1 Step 5: Develop Object Controllers

The Object Controllers are developed to ensure that each object is

capable of performing all possible tasks which it is able to undertake. This

ensures that the object is fully reusable and can form part of a class library

of pre-built and tested components for use in other systems.

4.6.2 Step 6: Develop Task Controllers

The task controller ensures that a sub system is able to work together to

form a specific tasks within the system. In many cases the grouping of

such objects to perform a task provides a logical module which can also

be reused in other systems. For example the controller for a group of

actuator objects which forms a pneumatic manipulator can be reused as a

complete unit.

4.6.3 Step 7: Develop Behavioural Constraints

In order for modules to be reused in similar systems, behavioural

constraints are developed to ensure that the module meets the needs of

the particular system under consideration without having to remove any of

4-16

Chapter4-A Three Level Control Structure with Behavioural Constraints

the generic nature of the control code. The behavioural constraints act as

an intermediary between task and object level controllers.

4.6.4 Step 8: Develop the Goal Controller

The goal controller acts as a sequencer which co-ordinates all the sub­

systems under its control in order to meet the goal of the system. This

level of control is inevitably system specific and should be designed to be

as intuitive and non complex as possible. The goal controller is

established specifically for the current system and will generally not be

useable in other scenarios.

4.7 A Methodology for Implementation: Testing

At this stage simulations are run on the system to ensure it fully complies

with user requirements and possibly to evaluate alternative design

implementations. The models should be reconfigured to ensure the

system works to optimum capacity. Simulation can be undertaken at

object, task and goal level control. Each object can be tested to ensure it

is capable of achieving its full potential. Task controllers can be tested to

ensure they fully meet their given task. Goal controllers can be tested to

ensure the whole system achieves its goal.

4.8 A Methodology for Implementation: Implementation

The final stage is to implement the system by automatically generating

code from the FEMs designed at earlier stages. This work presents a

4-17

Chapter 4-A Three Level Control Structure with Behavioural Constraints

method of generating pseudo-code which can be translated into any

language(s) required by the hardware controllers.

4.9 Functionally Encapsulated Modules

Functionally Encapsulated Modules (FEM) are a method of obtaining full

object-orientation by using the powerful static modelling capabilities of the

UML with the dynamic capabilities of a Petri net graph.

To demonstrate how FEM work a pneumatic manipulator will be used as

an example. The actuator is a composition of four actuators and four

sensors. The sensors are an inherent part of the actuator and enable the

current state of that part to be ascertained. Figure 4-1 shows the graphic

representation of class Manipulator using the UML's notation.

Manipulator

l±

Sensor Actuator

Figure 4-1: A pneumatic manipulator

4-18

Chapter 4-A Three Level Control Structure with Behavioural Constraints

An actuator can be in one of two states, that is it can be actuated or de-

actuated. Its inherent sensor is aware of these two states (see Figure

4-2).

/
(
l\

Sensor closed
denoting that

the actuator is
de-actuated

Xi

\
Sensor open
denoting that

the actuator is
actuated

Figure 4-2: The two states of a pneumatic actuator

4-19

Chapter 4-A Three Level Control Structure with Behavioural Constraints

The actuators that make up the pneumatic manipulator each have their

own characteristics when assembled into the unit. One is responsible for

moving left or right; one moves up and down; one moves forward and

backwards and finally one is used as a gripper which can be opened and

closed (see Figure 4-3).

MFTBI^^^HM

Figure 4-3: A Pneumatic Manipulator

The Manipulator class can undertake eight operations - move forward,

backwards, up, down, left, right, open and close [gripper]. Each actuator

can only understand two commands - actuate and de-actuate.

A bottom-up approach is taken to model the capabilities of the actuator

functions using a Petri net graph as shown in Figure 4-4.

4-20

Chapter 4-A Three Level Control Structure with Behavioural Constraints

I

I

Actuated

Figure 4-4: The functionality of an actuator

However in addition to the physical states of the actuator it is necessary to

model its interaction with the sensors to model those states and the

control signals to initialise them.

))P5 P8

Figure 4-5: A pneumatic actuator showing control and feedback places

Figure 4-5 shows the control (p7 , PS) and feedback places (p5 , Pe). The

dotted line represents the interface to the object. Only p5 to p8 are

4-21

Chapter 4-A Three Level Control Structure with Behavioural Constraints

accessible from outside of the object to ensure the properties of

encapsulation. The places correspond to the actions show in Table 4-1

Place

Pi

P2

P3

P4

P5

Pe

P7

Ps

Function

Actuator is deactuated

Actuator is actuating

Actuator is actuated

Actuator is deactuating

Sensor is closed showing the actuator is

Sensor is open showing that the actuator

deactuated

is deactuated

Command to begin actuating

Command to being deactuating

Table 4-1: The mapping of places to functions

The Manipulator is made up of four actuator objects as shown in Figure

4-6, each with their own attributes and operations. No consideration

needs to be given as to how these operations are performed as they will

be accessed via their public interface only. The state attribute is private

and can only be accessed through the getState operation.

4-22

Chapter 4-A Three Level Control Structure with Behavioural Constraints

Direction

State

Actuate()
DeactuateQ
getStateQ

Horizontal

State

Actuate()
Deactuate()
getState()

Vertical

State

ActuateQ
Deactuate()
getState()

Gripper

State

ActuateQ
Deactuate()
getState()

Figure 4-6: The composition of the manipulator

4-23

Chapter 4-A Three Level Control Structure with Behavioural Constraints

4.10 Controlling a Functionally Encapsulated Module

The FEM is controlled via its Petri net representation from a control object.

The control object itself is also represented with a structured Petri net. As

an example the manipulator may wish to pick up a component and place it

on a loading area. The sequence of actions is shown in Table 4-2.

Action

move up

move forward

open the gripper

move down

close the gripper

move up

move right

move down

open the gripper

move up

move left

move back

close the gripper

Function Call

Vertical. actuate

Horizontal. actuate

Gripper.actuate

Vertical. deactuate

Gripper.deactuate

Vertical. actuate

Direction. actuate

Vertical.deactuate

Gripper.actuate

Vertical. actuate

Direction. deactuate

Horizontal.deactuate

Gripper.deactuate

Result

Moves the arm up

Moves the arm forward

Opens the gripper

Moves the arm down

Close the gripper (picking up

the component)

Moves the arm up

Moves the arm right

Moves the arm down

Opens the gripper (releasing

the component)

Moves the arm up

Moves the arm left

Moves the arm back

Close the gripper

4-24

Chapter 4-A Three Level Control Structure with Behavioural Constraints

Table 4-2: The sequence of operations for picking up an object

For safety purposes it is vital that the system is in a safe state. It is

important, therefore to establish a safe state for the object being

controlled.

Incoming signal
from the goal

controller

Command to the
vertical actuator

to move up

Command to the
horizontal actuator
to move forward

Sensor feedback
showing arm has

moved up

Figure 4-7: Part of the control net for the manipulator

Figure 4-7 shows part of the control net for the manipulator example. An

incoming signal from the goal controller would request that the manipulator

carry out its task. This is the invocation for the sub-system to carry out a

complete cycle thereby performing its task. The sequence of events is

represented by the grey circles and shows the first three steps being

4-25

Chapter 4-A Three Level Control Structure with Behavioural Constraints

carried out. Control places emanate from each stage to the relevant

object. Feedback from the object is used to ensure that the one stage is

completed before moving onto the next. It would be possible, based on

user requirements to allow several actions to occur simultaneously,

possibly then waiting for a number of feedback signals to occur before the

system proceeds. For example the arm could move up and forward and

open the gripper simultaneously before waiting for feedback to ensure it is

in the correct state before lowering to pick up the object.

4-26

Chapter 4- A Three Level Control Structure with Behavioural Constraints

4.11 Behavioural Constraints

The actuator class has been designed to be as generic as possible, as

indeed is the resultant manipulator. It can be seen that this object can be

reused in any application. To ensure the object remains as general

purpose as possible the environment specific constraints are built into a

separate object which acts as an intermediary between the controller,

which is goal specific and the manipulator object itself. In the system

under consideration, the only constraint for the raw materials manipulator

is that the gripper cannot be opened when the arm is raised. Imagining

the cylinders to be quite heavy, doing so could amount in considerable

damage to the other objects in the system and possibly the cylinder itself.

Figure 4-8 shows a constrained object being used. The controller object

sends a message to the manipulator via its constraint. The constraint

validates the request based on the current state of the object it is

constraining, and depending upon the outcome either sends the message

on to the object for implementation or returns an error message to the

controller.

The constraint here is the intermediary between the controller and

manipulator object, in other cases the constraint could be constraining a

combination of objects where it is ensuring there are no conflicts between

objects operating in the same environment.

4-27

Chapter4-A Three Level Control Structure with Behavioural Constraints

Controller
Message Request

Feedback
Constraint

Message Request

Feedback Object

Figure 4-8: A constrained object

The actuator class has been designed to be as generic as possible, as

indeed is the resultant manipulator, which can still utilise its full six

degrees of freedom, meaning that they can be reused in any application.

To ensure the object remains as general purpose as possible the

environment specific constraints are built into a separate object that acts

as an intermediary between the controller, which is goal specific, and the

manipulator object itself, which is task specific.

4-28

Chapter 4-A Three Level Control Structure with Behavioural Constraints

4.12 Chapter Summary

This chapter has presented a novel methodology for a combined object-

oriented and Petri net approach to the development of manufacturing

systems. The technique designed in this work, entitled Functionally

Encapsulated Modules, utilises Petri net graphs to model the functions of

each object. This allows system designers to capture both the state and

dynamics of an object in a single visual representation. It also allows for

each module to be simulated for testing purposes. Using structured Petri

nets which allow for modelling of control and feedback signals

considerably reduces the complexity of the resultant Petri net graphs.

This goes some way to reducing the state space explosion problem

inherent in large complex systems.

The technique outlined in this chapter addresses many of the methodology

issues highlighted in chapter 2:

• User requirements are iteratively captured using a series of use

case diagrams and scenarios. A top down, abstracted view of the

system from the perspective of its goals is initially taken. This view

is then refined to establish more and more detail about the system.

The use case models are intuitive for all stakeholders and ensure

clear communication between technical and non-technical

personnel. The use cases can be cross referenced at each stage of

4-29

Chapter 4-A Three Level Control Structure with Behavioural Constraints

the design process to ensure that the system adheres to the user

requirements;

• Once the system has been modularised a bottom up approach is

taken to capture the capabilities of each system object. Viewing the

objects as independent entities ensures their full functionality is

captured. Object controllers are developed for individual objects or

groups of objects which are inter-dependant. This facilitates the

building of a library of generic and reusable classes which can be

utilised in other systems or later in redesign processes;

• Communication between objects is only undertaken via public

interfaces in the objects. This is facilitated by control and feedback

places in the Petri net structure. At implementation stages the

control and feedback places are coded as public operations. This

feature ensures that systems are loosely coupled. Loose coupling

in this case will ensure that changes to objects in the system have a

minimal impact on other objects. Objects can be used based on

what they do rather than how they do it;

• Objects and modules can be individually tested using the token

player facilities of Petri net graphs. Upon system integration the

entire system can be simulated using the same method;

• The well defined interfaces presented by FEMs enable system

designers to incrementally upgrade parts or all of a system.

4-30

Chapter 4-A Three Level Control Structure with Behavioural Constraints

References

Adiga, S. 1993. Object-oriented Software for Manufacturing Systems.

London, UK: Chapman & Hall. 0412397501.

Adiga, S. &Gadre, M. 1990. Object-Oriented Software Modeling of a

Flexible Manufacturing System. Journal of Intelligent and Robotic

Systems, 3, pp. 147-165.

Bittner, K. 2003. Use Case Modelling. Boston, USA: Addison Wesley.

0201709139.

Booch, G., Rumbaugh, J. & Jacobson, I. 1999. The Unified Modeling

Language User Guide. USA: Addison Wesley Longman. 0321267974.

Chen, K. & Lu, S. 1997. A Petri-net and entity-relationship diagram based

object-oriented design method for manufacturing systems control.

International Journal of Computer Integrated Manufacturing. 10(1-4),

pp. 17-28.

Coad, P. and Yourdon, E., 1990. Object-Oriented Analysis. 2nd edn.

Michigan: Prentice Hall. 0387333320

Delatour, J. &Paludetto, M. 1998. UML/PNO: A Way to Merge UML and

Petri Net Objects for the Analysis of Real-Time Systems. Lecture

Notes in Computer Science, 15 (43), pp. 511-514.

4-31

Chapter 4-A Three Level Control Structure with Behavioural Constraints

Di Giovanni, R. 1991. Hood Nets. Lecture Notes in Computer Science.

524, pp. 140-160.

Hannam, Roger. 1997. Computer Integrated Manufacturing: from

concepts to realisation. Harlow: Addison-Wesley. 0201175460.

Lin, L., Wakabayashi, M. & Adiga, S. 1994. Object-oriented modelling and

implementation of control software for a robotic flexible manufacturing

cell. Robotics & Computer-Integrated Manufacturing, 11(1), pp. 1-12.

Llewellyn, E.W., Stanton, M.J., Roberts, G.N. 2000. Towards the

implementation of the Unified Modelling Language (UML) into a

Computer Integrated Manufacturing (CIM) environment. Fourteenth

International Conference on Systems Engineering. 12th - 14th

September 2000. Coventry, UK, pp 398 - 403.

Llewellyn, E.W., Stanton, M.J., Roberts, G.N. 2001. Discrete event

systems design based upon the UML and Petri net objects. 3rd

Workshop on European Scientific and Industrial Collaboration. 27th -

29th June 2001. Twente, The Netherlands, pp. 211-219

Llewellyn, E.W., Stanton, M.J., Roberts, G.N. 2003. A combined object-

oriented and structured Petri net approach for discrete event systems'

design. 4th Workshop on European Scientific and Industrial

Collaboration. 28th - 30th May 2003. Miskolc, Hungary, pp. 398-403.

4-32

Chapter 4-A Three Level Control Structure with Behavioural Constraints

Meyer, Bertrand. 1997. Object-oriented Software Construction. 2nd edn.

London: Prentice-Hall. 0136291554.

Narisawa, F., Naya, H. &Yokoyama, T. 1998. A Code Generator with

Application-Oriented Size Optimization for Object-Oriented Embedded

Control Software. Lecture Notes in Computer Science, 15(43), pp.

511-514.

Pressman, Roger S. 2004. Software Engineering a practitioner's

approach. 6th Ed. London: McGraw-Hill. 0071238409.

Stanton, M. J. 1999 .Doctoral Thesis: Structured Petri Nets for the Design

and Implementation of Manufacturing Control Software with Fault

Monitoring Capabilities. University of Wales College, Newport.

Venkatesh, K. & Zhou, M. 1998. Object-oriented design of FMS control

software based on object modeling technique diagrams and Petri

nets. Journal of Manufacturing Systems, 17(2), pp. 118-136.

Warmer, J. & Kleppe, A. 1999. The Object Constraint Language.

Reading, USA: Addison-Wesley. 0201379406.

Wu, B. 1995. Object-oriented systems analysis and definition of

manufacturing operations. International Journal of Production

Resources, 33(4), pp. 955-974.

4-33

Chapter 4-A Three Level Control Structure with Behavioural Constraints

Yourdon, E. 1994. Object-Oriented Systems Design. New Jersey, USA:

Prentice-Hall. 0136363253.

Zapf, M. & Heinzl, A. 2000. Approaches to integrate Petri nets and object-

oriented concepts. Translated from WIRTSCHAFTS 'INFORMATIK .

42(1), pp. 36-48.

4-34

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

Application of Functionally
Encapsulated Modules to a

Manufacturing System

This chapter demonstrates a unique technique, called Functionally

Encapsulated Modules (FEMs). FEMs form one of the contributions of this

research work by combining the Unified Modelling Language (UML) and

Structured Petri nets (Stanton, 1999) for modelling manufacturing

systems. The chapter highlights how the three level control architecture,

described in Chapter 4, is applied to a manufacturing system where the

resultant models provide full control of the system. A further contribution,

entitled behavioural objects, is applied as a mechanism for ensuring the

maximum reuse capability of each object in the system is achieved. The

benefits of the loosely coupled and highly reusable systems produced by

this original methodology are clearly demonstrated. The chapter presents

a case study based on a manufacturing system developed at the

University of Wales, Newport and the chapter demonstrates how the full

methodology created during this research work is applied to a working

system. Finally an original technique for the automated generation of

pseudo-control code is presented.

5-1

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

5.1 Application

The technique described in this paper is demonstrated by applying it to the

University of Wales, Newport's Computer Integrated Manufacturing (CIM)

system. Initially user centric views of the system are modelled (Bittner,

2003) using use case scenarios and their resultant diagrams. Next the

classes in the system are identified and their attributes and operations

captured. The attributes (or states) and operations are modelled using

Petri net graphs, where one graph is used to model all operations for a

particular class. Output places (Stanton, 1999) are used to represent

message passing between objects. Finally the system constraints are

identified and placed in a constraint class for each object.

The system (shown in Figure 5-1 and Figure 5-2) has been designed as

an example of a modern CIM system and it incorporates a number of

"modules" that interact in order to produce two end products. The end

products are a milled block and a lathed cylinder which can be manually

combined to produce a paper-weight. The raw materials used by the

system are a Perspex block and a metal cylinder. The block and cylinder

originate from the Raw Materials Station (RMS) and are placed into trays

on a conveyor belt for transportation around the system. The system

performs two main functions - the block is milled and the cylinder lathed

so that the two items can be fitted together. Finally the finished product is

stored in the Automated Storage and Retrieval System (ASRS).

5-2

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

Robotic
Arm

Conveyor
Belt x-

I

Lathe

Pallets

Raw Materials
Station (RMS)

JJ. ASRS

Figure 5-1: A Schematic of the CIM System (adapted from Stanton, 1999)

MKHATRON1CS
D£VHJOPM£NT CENTRl

B to _-

Figure 5-2: The University of Wales, Newport CIM System

5-3

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

5.2 Definition of System Goal and Boundaries

The first stage in the methodology is to identify the goal of the system and

define its boundaries. In order to complete this stage the system must be

analysed at its highest level of abstraction.

The system begins its process when an employee initiates a start

sequence. In operation the system processes two raw materials, a cylinder

and a block which are lathed and milled respectively before being placed

in an ASRS. At some later stage an employee will remove the completed

components for manual assembly. A use-case diagram for the overall

goal of the system is shown in Figure 5-3:

Employee

Employee

Figure 5-3: A use-case diagram depicting the CIM system

5-4

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

The associated scenario would be:

1. An Employee starts the system by pressing the start button;

2. The components are produced;

3. The components are stored;

4. An Employee withdraws the components from the ASRS.

The only external interactions are the employee who initialises the system

and who, at some later stage, retrieves the completed components. The

use-case diagram establishes that the system has two main functions, i.e.

the production of components and their subsequent storage. Whilst

withdrawing and assembling the components is vital to the organisation it

is a manual task performed by an employee and needs no further thought

in this design process.

5-5

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

5.3 Identify Sub-Systems

The sub-systems can most easily be identified by analysing the

processing that is undertaken in order to achieve the goal of the system. It

has already been established that the system needs to produce two

components, carry out some tasks upon them and then store them for

later retrieval. Further analysis of the system indicates that the system is

comprised of:

• A raw materials station (RMS), which achieves the task of providing

raw materials;

• A Mill and Lathe, which produce the components in combination

with an associated robot arm (the combined unit is defined as the

Machining Unit (MU));

• A conveyer belt for transporting raw materials and components

around the system;

• The Automated Storage and Retrieval System (ASRS) for storage

of the machined components.

Identification of tasks is useful for establishing the modular composition of

the system. The tasks identified are:

• Provide raw materials (RMS);

• Produce components (MU);

5-6

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

• Transport items (Conveyer belt);

• Store components (ASRS).

The resultant sub-systems that have been identified are shown in Figure

5-4 below:

The Computer Integrated Manufacturing System

V

Raw Materials
Station (RMS)

Machining
Unit (MU) Conveyor Belt

Automated
Storage and

Retrieval
System

)
Figure 5-4: Identification of Sub-Systems

5-7

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

5.4 Task Controllers

To demonstrate the process of analysing a task controller within this

methodology, the RMS will be examined in more detail. Figure 5-5 shows

a schematic for the RMS which consists of two manipulators and two

storage units. The storage units contain blocks and cylinders respectively.

One of the manipulators is used to load cylinders onto a pallet waiting in

the loading area, whilst the other serves the dual purpose of placing

pallets onto the loading area, and populating pallets with blocks. The

whole station is controlled by a programmable logic controller (PLC) which

interacts with a series of valves and pneumatic actuators.

wagon \ ouuu

Figure 5-5: Schematic of the RMS (adapted from Stanton, 1999)

5-8

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

The RMS undertakes two main tasks and use case scenarios can

describe these as:

Scenario 1: Provide a Block

1. A pallet is retrieved from the pallet storage area by the pallet

manipulator and placed onto the loading area;

2. A block is retrieved from the block storage area by the pallet

manipulator and placed onto the pallet;

3. The loaded pallet is placed onto the conveyor belt by the pallet

manipulator.

Scenario 2: Provide a Cylinder

1. A pallet is retrieved from the pallet storage area by the pallet

manipulator and placed onto the loading area;

2. A cylinder is retrieved from the cylinder storage area by the cylinder

manipulator and placed onto the pallet;

3. The loaded pallet is placed onto the conveyor belt by the pallet

manipulator.

The use case-scenario is interesting as it demonstrates that step 1 and 3

of both scenarios is identical providing an opportunity to reuse code. As

the system requires both components to undertake a complete production

cycle the two scenarios can be thought of as a single task which is to

provide raw materials.

5-9

Chapter 5-Application of Functionally Encapsulated Modules to a Manufacturing System

The resultant use case diagram is shown in Figure 5-6. The use case

diagram combines both scenarios i.e. putting a Block onto the conveyer

and putting a Cylinder onto conveyer. These scenarios are combined as

the use-case scenario clearly indicates that they are highly similar. Use

case modelling has already shown one of its benefits as it becomes

apparent from the diagram that a raw material cannot be placed onto the

conveyor without first requesting a pallet. This may not have initially been

evident from any textual description. For control purposes two commands

can be established - getBlock and getCylinder and these represents the

tasks for which the RMS is responsible. A further command - getPallet is

also utilised but as this does not fulfil a task (for goal purposes) it can be

called from within the other functions. Using a function in this way helps

reduce the complexity of the task level controller. Without identifying the

overlap in this sub-system the task level controller would have needed four

operations to be invoked in sequence - getPallet, getBlock, getPallet,

getCylinder. This has a significant impact on the amount and efficiency of

the control code required. It is important to note that communication from

the rest of the system can only be conducted via the RMS controller

through its public interface containing the two specified public functions -

getBlock and getCylinder.

When attempting to establish how to decompose a system, the need for

reuse should be borne in mind. For example, the system described

5-10

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

contains a RMS which is responsible for supplying the raw materials to

processes later in the system. It can be considered in three ways

depending upon the design approach:

1) Provide: A block, a cylinder and a pallet - These are the

actual raw materials that are contained in the RMS and one

description of the system could be: Put Pallet, Put Block and

Put Cylinder. These cases would need to be called by the

main system controller and would have to be distinctly

sequenced by that control mechanism.

2) Provide: A block and cylinder - The RMS cannot provide

either a block or cylinder unless a pallet is supplied first, and

therefore it is possible to describe a Put Block and Put

Cylinder method with each implicitly relying on, including in

use case parlance, the Put Pallet operation. The former two

methods are again called from, and sequenced by the main

system controller, however a small degree of control has been

taken out of this level and placed within the scope of the RMS

itself.

3) Provide: Raw materials for a complete unit - In terms of the

system's goal, the fact that a block and cylinder are needed is

5-11

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

incidental, whilst the pallet is irrelevant. These details, whilst

crucial to the operation of the system, do not form part of the

goal, which is to supply a complete unit. This goal level

control is specific to the system and it is therefore usually

difficult to encompass any form of reusability at this level.

Therefore the goal controller i.e. that controlling the overall

flow of the system needs to be as streamlined as possible. In

terms of this work, streamlined would mean containing the

least functionality possible, or at its simplest, the least number

of functions. By adopting, the "provide raw materials for a

complete set approach" the designer has reduced the number

of functions in the goal controller from three to one and

encapsulated more of the detail into the RMS itself, which

would now be responsible for providing a pallet, then block, a

pallet and then cylinder. The RMS would include all the

functions for this action and would be responsible for

sequencing the order of events at goal level.

The order in which the block or cylinder tasks are accomplished and

whether the system should be able to provide individual raw materials is

established by discussion with the end users of the system. In this case-

study the order of raw materials processing is irrelevant as long as both

components are provided. However, the goal controller needs to be

5-12

Chapter 5-Application of Functionally Encapsulated Modules to a Manufacturing System

'aware' of what is being loaded onto the conveyor in order to decide

whether to invoke the mill or the lathe in later stages of the process. If this

were not the case a single, provide raw materials, command would have

sufficed.

RMS Controller

Raw Materials Station

RMS Controller

Figure 5-6: Use case scenarios for the raw materials station

The use-case modelling technique provides an intuitive method of

capturing user requirements. It is important to initially model the system in

its 'optimum' state, i.e. fully working as intended by the end-user as this is

ultimately what the system designer is attempting to achieve. However,

subsequent iterations can capture more detail about the system, including

building in fault tolerance. Figure 5-7 shows the use-case diagram

5-13

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

extended to allow for possible exception conditions such as running out of

raw materials.

RMS Controller RMS Controller

Put Cylinder onto
Conveyor

Blocks Empty) (Pallets Empty) Cylinders Empty

Figure 5-7: The RMS use case extended to show exception conditions

The use case diagram in Figure 5-7 identifies the communication between

the RMS task controller and the components within the module. By

encapsulating (also known as information hiding) this information so that

external entities can only communicate with the RMS through its public

interface, this technique achieves the concept of loose coupling

(Sommerville, 2006), (Meyer. 1997), (Pressman, 2004). The internal

operations of the module are hidden from the user. In order to operate

this module, external entities only need to know about its interface, which

describes the operations it performs. The internal details of how it

5-14

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

provides a cylinder or block, or gets a pallet, are unimportant when calling

these operations. Therefore, modifications made to the internals of an

object should have a minimal, if any, effect on other objects in the system,

as long as its interface remains unchanged.

The models describe so far demonstrate the concept of a

hardware/software object, where no distinction is drawn between the

software and hardware in the module. Instead the module is thought of in

terms of the operations it performs and the interface to those operations.

The storage units are fairly intuitive devices and simply provide raw

materials on demand. Each storage unit contains an actuator which is

used to release the component into an area for retrieval by the

manipulators. The two manipulators within the system however are

required to do a range of tasks. The Pallet Manipulator (PM) is

responsible for retrieving pallets from the conveyor belt and placing them

on the loading bay and retrieving blocks from the block storage unit (BSD)

and placing them on pallets. It is also responsible for placing loaded

pallets, containing either a block or a cylinder onto the conveyor belt. This

whole series of operations would generally take place as a result of a

single command from the RMS controller requesting that a block be

placed onto the conveyer (Figure 5-8).

5-15

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

RMS Controller

Pallet Manipulator

Put pallet on
loading area

Get palletfrom
conveyor belt

Figure 5-8: A use-case diagram for the pallet manipulator

The Cylinder Manipulator (CM) has a single function and that is to retrieve

cylinders from the Cylinder Storage Unit (CSU) and place them onto a

pallet waiting in the loading area. However, it is reliant on the PM first

providing a pallet from the conveyor onto the loading area.

The use-case diagram for the CM (Figure 5-9) clearly shows that to

complete a request by the RMS controller to provide a cylinder, it must rely

upon the PM and so these two objects are tightly coupled. Such tight

coupling is acceptable in this case as these two objects are being

conceptually integrated to form a module.

5-16

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

RMS Controller

Pallet Manipulator

Cylinder Manipulator

Put cylinder onto
conveyor

Get palletfrom
conveyor belt

Put cylinder on
loading area

Figure 5-9: A use-case diagram for the cylinder manipulator

The system goal requires that both a block and a cylinder are provided in

order to produce a complete unit and therefore the system must present

both items for a successful execution cycle.

A typical use-case scenario for the execution cycle would proceed as

show in Table 5-1.

5-17

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

Stage

1

2

3

4

5

6

7

8

Process One (Block) Process Two (Cylinder)

A pallet is retrieved from storage and placed onto the loading area.

A block is retrieved from storage

and loaded onto a pallet before

being placed on a conveyer belt.

This process is carried out by a

pneumatic manipulator

A cylinder is retrieved from
storage and loaded onto a pallet
before being placed on a
conveyer belt. This process is
carried out by a pneumatic
manipulator

The loaded pallet is moved to a machining unit by the conveyer belt

A robot arm removes the block

and positions it in the cradle of

the mill

A threaded circle is cut into the

block by the mill

A robot arm removes the
cylinder and positions it in the
cradle of the lathe

The cylinder has a thread cut
into it by the lathe

The robot arm places the completed component back into its pallet

on the conveyer belt

The loaded pallet is moved to an automated storage and retrieval

unit (ASRU).

A robot arm loads the pallet and its cargo into the ASRU

Table 5-1: A use-case scenario for the RMS

5-18

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

5.5 Capturing the Static System for Reuse Purposes

From an abstracted viewpoint, it can be seen that the RMS is made up of

a number of storage units and manipulators. Figure 5-10 shows such an

aggregation (or generalisation) relationship using the UML's class diagram

convention. An aggregation relationship is denoted by an unfilled triangle

and each end of the relationship is qualified. As this is a generic and

multi-purpose description, which is not system specific, a one to many (*)

qualifier is shown. This denotes one RMS as being an aggregation of a

number of, or many (*) StorageUnit classes and Manipulator classes. In

the actual case-study the relationship would be one to two for both the

RMS to StorageUnit and RMS to Manipulator.

5-19

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

RMS

StorageUnit Manipulator

Figure 5-10: The RMS as an aggregation

Examining the RMS system in more detail it can be seen that whilst the

RMS is the top level grouping for two other classes, i.e. the StorageUnit

and Manipulator classes, each of these in turn is composed of its own sub­

classes. The StorageUnit class is composed of StorageBay, Sensor and

Actuator classes. The Manipulator Class is composed of Sensor and

Actuator Classes. This relationship denoted in Figure 5-11 differs from

that shown earlier in Figure 5-10, as this is a different type of inheritance

relationship known as a composition. The relationship in Figure 5-11

denotes the actual case study rather than a generalised version. A

composition relationship is a stronger form of relationship than an

aggregation. A RMS is generally composed of a number of StorageUnit

5-20

Chapter 5-Application of Functionally Encapsulated Modules to a Manufacturing System

classes and Manipulator classes, but could possibly be made up of just

StorageUnits with no Manipulators. A Manipulator, however, can only

exist with its child classes intact. An aggregation can be thought of as an

optional or loosely coupled form of inheritance, whilst a composition is a

compulsory or tightly coupled relationship.

2

StorageUnit
2

Manipulator

1 -1
StorageBay

4 1
Sensor

1
4

Actuator

Figure 5-11: The full class make-up of the RMS

The class diagram in Figure 5-11 aids in the identification of sub-modules

and this highly abstracted model is subsequently refined to flesh out the

details of each individual class, as described below.

A Manipulator is actually composed of a number of actuators and sensors

(4 in this case), which are classes in their own right. Figure 5-12 shows

this composition with each end of the relationship being qualified, i.e. for

one manipulator there is a composition of four actuators (for the Newport

5-21

Chapter 5-Application of Functionally Encapsulated Modules to a Manufacturing System

system at least). It is also possible to qualify these roles with ranges, such

as 0..4 meaning a possible range of 0 to 4 children to a parent class; with

no fixed limitation (*) meaning an infinite number of children to a parent

class including none; or 1..* meaning at least one, but no upper limit.

Manipulator

J_f.

Sensor Actuator

Figure 5-12: A pneumatic manipulator showing a composition relationship

From an object-oriented point of view, it can be seen that the system

described consists of a series of classes. Booch et al (1999) define a class

as "a description of a set of objects that share the same attributes,

operations, relationships and semantics." An object then, is a unique

instance of a class.

5-22

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

Two other important properties of a class are:

• Operations - which are used to read or manipulate the data of an

object and;

• Attributes - the structure of the objects: their components and the

information or data contained therein

The 'building block1 of this section of the system is the pneumatic actuator,

which can be either actuated or de-actuated. These operations take place

when a Programmable Logic Controller (PLC) opens a valve, which

pumps air into the actuator, thus actuating it. When the PLC closes the

valve, the air is removed and the actuator de-actuates. This description

provides a basic overview of the system, which is all that is required in

order to model it. From this description it is possible to identify the

following classes: - PLC, Valve and Actuator. These classes can now be

examined in further detail.

The actuator can be in either one of two final states - actuated or de-

actuated. It can also be midway between these states, i.e. it can be in the

process of actuating or de-actuating. Therefore, the actuator requires two

operations, one to carry out the action of actuating and the other to carry

out the action of de-actuating. In addition, if the system is to provide

feedback it must allow external entities, such as a controller, to interrogate

5-23

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

the actuator to determine its current state. This can be achieved via

feedback from sensors. It is therefore possible to establish that an

actuator has a state attribute and an operation that provides that state to

external entities. The possible range of values that the actuator can take

are: actuating, de-actuating or busy. An important concept for attributes is

that of visibility. Visibility applies to attributes and operations and specifies

the extent to which other classes can use a given class' attributes or

operations. Three levels of visibility can be described. At the public level,

usability extends to other classes (represented by a "+" symbol). At the

protected level, usability is open only to the classes that inherit from the

original class (represented by a "#" symbol). At the private level, only the

original class can use the attribute or operation (represented by a "-"

symbol). The actuate and de-actuate operations are called by the Valve

class and therefore are public, as is the getState operation. Generally,

classes are shown with the first letter of each word in uppercase.

Attributes and operations usually start with a lower case letter. Figure 5-13

shows a class diagram for a class of type Actuator.

Attributes
Actuator

-state
+getState()
+actuate()
+deActuate()

Class name

Operations

Figure 5-13: The Actuator Class

5-24

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

In addition, a state diagram shows all the possible states an actuator can

have. This helps to identify all the possible values the state attribute can

take. This is shown in Figure 5-14, where it can be ascertained that in

order to arrive at the desired states of actuated or de-actuated, the

actuator must pass through a 'working 1 phase where it is either actuating

or de-actuating.

Deactuated ^—————— Deactuating

Deactuated J———————>{ Actuating J———————>[Actuated

Figure 5-14: A state diagram for the actuator class

The more explicit Actuating and Deactuating states have been used rather

than busy, as it is important for the system sequence controller to be

aware of these states, so that it does not try to invoke the operations of a

busy object.

5-25

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

Figure 5-15: A Petri net diagram for the actuator class

Figure 5-15 gives the equivalent Petri net model for the state diagram

shown in Figure 5-14. It can be seen that the resultant diagrams are

similar. The only notable difference being the addition of transition places

in the Petri net graph. Transition places are an important aspect of the

code generation discussed in section 5.9.

The textual description shows that the valve can be either open or closed,

and again there must be the intermediate steps of opening or closing. For

feedback purposes it will be necessary to establish the current state of the

valve. The class and state diagrams for the valve are similar to those for

the actuator. From the description it becomes apparent that the PLC class

controls the operation of opening and closing the valve, therefore it is

logical to assume that the open and close methods are public, as is the

valve's state attribute.

5-26

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

In this instance, the PLC class (shown in Figure 5-16) needs only to start

or stop the predetermined sequence of events of the objects under its

control. These operations (start and stop) are public.

PLC

+start()
+stop()

Figure 5-16: The PLC class

It would be reasonable to assume that in other circumstances the

controller could be another object in the system. This is known as an

external entity, which may well be an integral part of the larger system.

Decomposition into subsystems allows the external entity or actor to be

represented with a stick figure, indicating that while it is understood to be

an important object, which needs representation, its complexity need not

be modelled at this stage. It is sufficient to know that it performs the action

of starting and stopping the PLC. The ability to generalise in this way

enables the system designer to plan for various types of implementation.

For example, the PLC could be controlled by a human, another PLC or a

computer. The diagram would not need to change in any of these

circumstances. The functional details of how the PLC works are

encapsulated within the Class. In order to interface an instance of class

PLC with a controller, all the required information can be accessed via the

5-27

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

public operations and attributes. These represent the interface between

the Class and the outside world.

5.6 Modelling System Dynamics

The method calls between objects can be more clearly seen on a

sequence diagram, which also shows the order in which the operations

are invoked (Figure 5-17). The diagram gives a pictorial representation of

the two possible final states of a pneumatic actuator and the procedure for

arriving in those states i.e. the actuator being actuated, and the actuator

being de-actuated. This model shows the functional detail of the dynamics

of the actuator. Once this information has been captured it is possible to

write all the functional code and ignore the complexity involved in the

actions of the actuator. This 'code and forget' approach means it is no

longer necessary to consider the PLC or the valve, instead the system

designer can concentrate on the detail of what the actuator is intended to

do, as part of the greater system. However, as the functionality of the

system increases in complexity, or the system becomes larger, these

diagrams become complex and unwieldy.

5-28

Chapter 5-Application of Functionally Encapsulated Modules to a Manufacturing System

open()

actuate()

gets ate()

closet)

state()

deactuate()

getState()

state()

actuate()

deactuate()

Figure 5-17: A sequence diagram for control of an actuator

5-29

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

In the four-actuator model described, each of the actuators can carry out

the same basic function, i.e. they can actuate or de-actuate. However, the

same operation call has differing effects on the action being performed by

its recipient object. For example, actuating an actuator can raise it, move it

left, or open it. This sharing of an operation is called polymorphism, which

may be described as the situation where an operation has the same name

in different classes and each class 'knows' how that operation is supposed

to take place.

An instance of class Manipulator may comprise of four pneumatic

actuators as shown in Figure 5-12. It can be clearly seen in this diagram

that the four separate actuators whilst all having the same basic

characteristics, are slightly different. This raises another important object-

oriented concept, that of inheritance. As Yourdon (1994) defines it

"[inheritance] allows an object to incorporate all or part of the definition of

another object as part of its own definition." The Class Actuator used to

make up the Manipulator above is actually decomposed into three

subclasses or child classes - a LinearActuator, RotaryActuator and Gripper

(Figure 5-18).

5-30

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

Actuator
+state
+actuate()
+deactuate()
+getState()

Rotary Actuator

#position()
#direction()

Gripper LinearActuator

#direction()

Figure 5-18: The actuator class showing inheritance

Each subclass inherits all the attributes and operations of the Actuator

class and each add their own unique attributes. For example, the

LinearActuator Class adds the position attribute which enables the

actuator to have a horizontal or vertical position. The RotaryActuator has a

direction which enables it to find out the direction of travel when the

actuate operation is carried out. The Gripper will open when actuated and

close when de-actuated. This demonstrates the principle of

polymorphism, each of the Actuators has an actuate operation, but each

reacts differently when called. These new attributes are visible only to the

creating class and are therefore protected.

Focusing on the CM, it can be observed that the object is an instance of

class manipulator, and that this class itself is a composition of four

instances of class actuator. The actuator class has two simple methods

5-31

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

that allow it to actuate or deactuate. However, these actions carry out a

different operation depending on the receiving object. For instance, an

actuator in the system under consideration may take one of four types. It

contains a rotary actuator, which is able to actuate right or deactuate left.

It contains a horizontal actuator which is able to extend or retract, and a

vertical actuator which is able to move up or down upon receiving its

actuate or deactuate command. Finally it contains a gripper which when

actuated opens and on deactuation closes. This demonstrates the object-

oriented concept of polymorphism whereby each of the classes responds

differently to the same command based upon its hidden internal

mechanisms. The manipulator class itself responds to commands such as

move left, move right, up, down, open and close. These commands or

operations form the interface to the manipulator class, with the individual

actuators, and indeed their pneumatic valves and the PLC controller being

encapsulated from the user.

Figure 5-18 demonstrates how the fundamentals of a hardware/software

object are designed. From a software perspective the different variants of

actuator all have exactly the same functionality. The class diagram

enables the system designer to represent the hardware differences of

each such as direction and position. This information is valuable in terms

of sourcing and utilising the correct hardware but, as can be seen, has no

impact on the software as each type of actuator will respond in the correct

5-32

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

way due to its physical makeup. For example an actuate signal to a rotary

actuator will make it rotate whereas an actuate signal to an vertical

actuator will make it extend. As long as the correct hardware is used the

software will enable it to function correctly within the system.

5-33

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

5.7 Functionally Encapsulated Modules

As demonstrated in this chapter the UML uses a series of models to

describe the varying levels inherent in a system, until enough detail is

established to translate the design into code. The models enable the

system designer to establish modularity within the system and identifies,

using inheritance, elements that are capable of being shared amongst

components. This aspect of the design is crucial for enabling the system

to be decomposed into modules for team development and for the

reduction in code duplication. It is also fundamental to the principles of

reuse which are a cornerstone of the techniques presented in this work.

In a system thus modelled with objects, operations (functions and

procedures) are used to access and alter the internal state of an object

and to invoke its behaviour. In the UML sequence diagrams are used to

capture the interaction between objects whilst state diagrams are used to

capture state changes. Neither diagram provides the functional level

detail necessary to module the detailed operations of an object, or indeed,

a system. In addition, the UML diagrams do not offer any form of

mathematical provability which can be vital in safety critical systems.

This work uses Petri nets to model the operations of objects and their

resultant behaviour changes (states). By modelling only the limited range

5-34

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

of states and operations within a single object the complexity of the graphs

is reduced considerably. The resultant diagrams, entitled Functionally

Encapsulated Modules (FEMs), provide true object-oriented capabilities

and combined with the modelling technique presented in this work are:

• Mathematically provable utilising Petri net analysis techniques as

outlined in (Delatourand Paludetto, 1998);

• Provide full object-oriented capabilities;

• Allow the capture of user requirements in a form that is easy to

communicate between users and system designers;

• Enable a system to be rapidly deployed using pre-tested

components;

• Provide a simulation tool and;

• Facilitate the automatic generation of control code.

Having captured the class diagrams and any inheritance present in the

system using standard UML notation, it is possible to model the dynamic

capabilities of the class with Petri net graphs. These are the operations

that need to be invoked in order to make the class carry out its functions.

In addition, the operations provide a method of altering the state or

behaviour of the object.

5-35

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

In a discrete event system (DES) such as the CIM system being

considered, the state of the system at any moment in time can be

captured by obtaining the states of all objects in that system. A Petri net

graph allows these states to be represented visually or, if required,

mathematically.

The actuator class can be modelled using the Functionally Encapsulated

Module (FEM) shown in Figure 5-19. In the diagram smaller circles

represent control places and feedback. The former are signals from the

controller that invoke the method of the object. In this instance these can

be either actuate or deactuate. The feedback is being sent to the

controller object, with double circles representing input from external

feedback sources. The dashed line represents the external (public)

interface to the object.

FEM Class:: Actuator

state

actuateQ
deactuate()

The object's actuate
operation is invoked

The object's deactuate
operation is invoked

Pulic interface

Private implementation

Figure 5-19: A functionally encapsulated module for the actuator class

5-36

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

The FEM uses standard UML class notation but adds a Petri net

representation of the operations within the object. The Petri net graph in

Figure 5-19 contains all the detail required to code the Actuator object.

Figure 5-19 contains labels to clarify the objective of the FEM Class::

Actuator. To generate the code from the model a formally labelled Petri

net graph is shown in Figure 5-20.

o

Figure 5-20: A Petri net for code generation

The private implementation contains the low level code for each operation

as follows:

Public Sub objectNameAciuate (P3 = true)

object, name. State = "actuating"

If P3 = true and P4 = true THEN

P6 = true

P3 = false

5-37

Chapter 5-Application of Functionally Encapsulated Modules to a Manufacturing System

P4 = false

End IF

If P5 = true and P6 = true THEN

P8 = true

P5 = false

P6 = false

object, name. State = "actuated"

End IF

End sub

Public Sub o/j/ecfA/ame.Deactuate (P7 = true)

object, name. State = "deactuating"

If P7 = true and P8 = true THEN

P2 = true

P7 = false

P8 = false

End IF

If P2 = true and P1 = true THEN

P4 = true

P1 = false

P2 = false

object.name.Stete - "deactuated"

End IF

End sub

5-38

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

The actuator (hardware and software) is now reduced to its functionality

(behaviour) represented by its public operations. The functionality is

encapsulated away in the private implementation and can only be

accessed via its public interface. Any system wishing to reuse the

actuator object only needs to be aware of its public interface.

The next stage in developing the functionality is to define an FEM for the

Manipulator's controller. The Manipulator is a physical object which relies

on a composition of four actuators. As the individual code for each

actuator has already been defined all that is needed at this stage is to

define the control sequence for it to be able to operate flexibly. The

manipulators can move up/down, left/right, extend/retract and can

open/close a gripper. Each of these four actions is the individual

responsibility of an actuator so it is possible to take the code from the FEM

created above and utilise its functionality within this component.

5-39

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

Move Up Move Down

Command to the
vertical actuator to Feedback showing

actuate actuator is actuated
(up)

Command to the
vertical actuator to Feedback showing

deactuate actuator is
deactuated (down)

5-21: Part of the control structure for a Manipulator

Figure 5-21 shows the private implementation section of an FEM Class for

the Manipulator. As the manipulator controls four separate actuators it

would have the structure in Figure 5-21 replicated a further four times one

each for up/down (shown), left/right, extend/retract and open/close. Each

net would be identical to the one shown above other than the labels and

which object it interacts with. The manipulator describe above is "aware"

of the state of its child components through the information gained from

feedback places.

5-40

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

From the case study it can be established that there are two manipulators

within the RMS. One is responsible for providing a blocks and pallets, the

other takes care of placing cylinders onto the loading area (upon a pre-

placed pallet).

The manipulator control has been genetically designed to provide

maximum reuse capabilities, however, in the system under consideration

the cylinder manipulator has a very specific task within the RMS. Its task is

to retrieve a cylinder and place it upon a waiting pallet in the loading area

which requires a precise set of movements. The steps the controller must

take to achieve its goal, outlined below and shown in Table 5-2:

• Move up;

• Extend;

• Move down;

• Close;

• Move up;

• Move right;

• Move down;

• Open;

• Move up;

• Retract;

• Move left;

• Move down.

5-41

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

Up/Down Right/Left Extend/Retract Close/Open
1/0 1/0 1/0 1/0

0
1
1
0
0
1
1
0
0
0
1
1
1
0

0
0
0
0
0
0
1
1
1
1
1
1
0
0

0
0
1
1
1
1
1
1
1
1
1
0
0
0

0
0
0
0
1
1
1
1
1
0
0
0
0
0

Table 5-2: Markings for the RMS Manipulator carrying out its task

5-42

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

5.8 Applying constraints to the object

The actuator class has been designed to be as generic as possible, as

indeed is the resultant manipulator. It can be seen that this actuator object

can be reused in any application. To ensure the object remains as

general purpose as possible the environment specific constraints are built

into a separate object which acts as an intermediary between the

controller, which is task specific and the manipulator object itself. In the

system under consideration, the only constraint for the cylinder

manipulator is that the gripper cannot be opened when the arm is raised.

Imagining the cylinders to be quite heavy, doing so could amount in

considerable damage to the other objects in the system and possibly the

cylinder itself.

Constraint objects act as intermediaries between the controller and the

object. Messages passing from one to the other are routed via the

constraint object. To develop a constraint it is first necessary to model all

the states that can be achieved in the object under consideration. This will

be applied to the cylinder manipulator which is required to retrieve

cylinders from the storage unit and place them onto the loading bay.

5-43

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

The Manipulator is composed of four actuators - direction (A1), horizontal

(A2), vertical (A3) and the gripper (A4). As these are discrete event

objects their states can be represented with binary as shown in Table 5-3.

A1

0

0

0

0

0

0

0

0

1

1

1
1

1

1

1
1

A2

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

A3

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

A4

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Table 5-3: All possible states of the cylinder manipulator

5-44

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

Actuator A3 controls the arms upwards movement and when it is enabled

(1) it is in the raised position. Actuator A4 controls the gripper and when it

is enabled (1) it is open. Therefore it can be seen that any series of states

which gives a * * 1 1 result is a forbidden state. By analysing Table 5-3 it

can be seen that this state arises four times (shaded areas).

It is intuitive to identify forbidden states in this way and control nets are

cross checked against the forbidden state list to ensure no such states are

embedded into the system.

I

A

5-22: A constraint applied to the controller

Figure 5-22 shows how a system specific behavioural constraint is applied

to the controller which ensures that it only performs the actions required

for this system. The constraint can be easily detached from the object as

5-45

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

it is bound at run-time ensuring the controller contains the maximum,

generic reuse capabilities.

In the system utilised for this case study the overall control of the system is

reduced to its simplest with the controller acting as a sequencer to co­

ordinate the actions of sub-units. Functional level control is devolved to

the lowest system level possible to ensure the maximum reuse capabilities

are obtained.

In Figure 5-22 it can be seen that if the requirement for the manipulator to

move down first and up last became necessary, the controller software

would need to reconfigure to accommodate this change but the object

itself remains unchanged. This is crucial to ensure the loose coupling of

the objects in the systems and to retain full reuse capabilities. In the case

study presented, if the requirement for the mill to operate before the lathe

became important the system controller would need slight readjustment

but the underlying sub-systems and the objects themselves would function

without change.

In Figure 5-22 the controller for the pneumatic manipulator is shown but

due to the use of public interfaces which simply control the movements of

the component replacing the pneumatic manipulator with a robot arm

would have no impact on the system provided the public interface of both

5-46

Chapter 5-Application of Functionally Encapsulated Modules to a Manufacturing System

objects was designed to accept the same commands and give the same

feedback.

5-47

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

5.9 Automated Code Generation

The process used to automatically generate code is based on a

Boolean/decision structure that relies, in this implementation, on the net

being safe, i.e. a place can never contain more than a single token.

From the coding perspective a place is represented in the application as a

Boolean value, with 'true' representing a marked place and 'false'

representing an unmarked place. At the initialisation stage all places are

declared as Boolean type variables with their corresponding values set to

the initial marking of the net.

A transition in the diagram is represented by an IF statement in the code.

The IF statement's conditions are based upon the corresponding input

places for the transition it represents. The IF statement, and therefore the

transition, is enabled when all its input places (Boolean values) become

true. The IF statement then performs the result of setting its input places

to false and its output places to true. The code is controlled via a software

application which is responsible for the generation and co-ordination of

hardware linked directly to the software.

5-48

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

Figure 5-23: Automated code generation from Petri net models

5-49

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

Using the rules outlined above the Petri net listed in Figure 5-23 the

following pseudo-code would be generated:

'Transaction ti

IF pi = TRUE and p2 = TRUE then

PS = TRUE

Pi = FALSE

p2 = FALSE

'Transaction t2

ELSE IF p3 = TRUE then

p3 = FALSE

p4 = TRUE

p5 = TRUE

END IF

5-50

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

5.10 Simulation

The operation of individual actuators in Figure 5-20 can be simulated

using a Petri net token player. This can be useful to establish that they

are functioning correctly, and to ensure they work in the most optimised

fashion. Once the system designer is certain that a unit functions to its full

capability it can be placed into a class library for reuse in other projects.

The controller shown in Figure 5-21 can also be simulated to ensure all of

its operations function correctly, including its interactions with the pre­

tested actuators.

The control net
Move Up

o

Feedback places i
object map directly

back to the controller
Controller commands

to actuate and
deactuate map directly

to the object under
control

The net for a vertical actuator

5-24: A merged net showing how the controller and objects interact

5-51

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

To facilitate full simulation using token players the associated control and

feedback places in the controller can be mapped directly onto their

equivalents in the object as shown in Figure 5-22. The diagram also

illustrates how controllers interact with their child objects.

Figure 5-22 also demonstrates how the controller is able to perform any of

its available actions and is in no way constrained. This ensures that the

manipulator object, which is a collection of one controller and four

actuators has the capability of being used in any system. Further the

actuators can also, individually be used in any system with no

modifications required.

Simulation in this work is undertaken using Petri net token players. The

token player allows the Petri net (and therefore the model of the system)

to be stepped through by allowing a visual representation of a marking

tree. Simulation in this way enables system modellers to validate and

verify the operation of individual objects, sub-systems and complete

systems. By merging the contol and feedback places and integrating the

behavioural constraints a complete Petri net can be de described which

represents the whole system. Simulation in this work facilitates what if

analysis on all aspects of the system to ensure safety and enables

designers to optimise system operation.

5-52

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

5.11 Chapter Summary

It is widely accepted that manufacturing systems need to be flexible,

customisable and maintainable. This is effectively addressed in the

proposed modelling technique where individual objects can be customised

and updated using the key features of UML, such as inheritance,

polymorphism and encapsulation while the functional requirements of the

object is expressed by Petri net models.

By integrating the two types of models, the design of manufacturing

systems is greatly enhanced. Manufacturing systems will be able to take

advantage of the concepts of object-oriented programming that have been

widely available in software engineering for some time. Future upgrades

to the resultant system will be more intuitive as manufacturing design

adopts the 'plug and play1 philosophy of other computer systems. The

technique provides a model that can be used initially as a simulation tool

and later as the basis for the automated generation of the control software.

Once the initial design has been carried out many objects can be reused

in future systems with no requirement for additional modelling.

In a climate governed by costs and rapidity it is important to reduce the

time from conception to market as stated previously, however, this rapidity

cannot have any impact on product quality. Modern programming is

5-53

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

typified by a code and fix approach, however this technique falls down

when the software will need to function in complex and rapidly changing

circumstances such as those found in manufacturing organisations. The

UML has gone some way to addressing many of the issues to overcome in

manufacturing system design by providing a user-centric view of the

system using use-case analysis and design. This facilitates effective

communication between system modellers, software designers,

management and all levels of staff involved in the operation of the system.

The object-oriented paradigm focuses very firmly upon design for reuse

which is an important property for manufacturing systems where the

market demands high quality products, at a low cost, with shortening

product lives and ever increasing demands for customisation. Whilst

manufacturing systems lend themselves to such an approach, the long

and iterative process demanded by successful design for reuse and the

time overhead spent translating models into code is at odds with the rapid

approach required in global manufacturing organisations. It can be seen,

therefore, that such approaches are long overdue for an automated code

generation phase.

The techniques presented in this paper achieve these aims by combining

the best features of object-orientation and structured Petri nets with

models that are iteratively refined until the detail required for automatic

5-54

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

code generation are established. The modelling and development stage

are integrated meaning all time spent in the initial stages is utilised all the

way through to the final system.

FEMs reduce the state space explosion by removing the requirement for a

complete Petri net model in order to drive the system. The modules are

invoked by feedback and control places so there is an increase in

message passing within the system but a complete removal of state space

explosion. Each object can be tested and simulated in isolation. Modules

that take advantage of a collection of objects can be tested to ensure they

work together as expected. Once each object works as it should the

module level controller can be tested to ensure it works correctly.

Behavioural constraints can be added to control system specific factors.

The overall system control can them be tested to ensure it functions

correctly by invoking the systems under its command.

The case study outlined in this chapter has demonstrated how the

technique developed in this work utilised the UML to decompose the

system into a number of sub units which are then further sub-divided until

the operational units are identified. In the case study the system is broken

down into the Raw Materials Station, the Mille/Lathe and the Automatic

Storage and Retrieval Unit. The case study focuses on the RMS which

has been broken down into a number of pneumatic manipulators and

5-55

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

storage units. Each manipulator has then been broken down into its

lowest level functional unti which is the actuator. Once the functional

detail of the actuators was captured, modelled, coded and tested, they

have been composed into a logical unti to form a manipulator which in turn

forms part of the larger Raw Materials Station. As the objects within the

system are considered individually from a functional perspective, the

resultant models are understandable to stakeholders at all levels of the

system, due to their small size and limited scope.

5-56

Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

References

Bittner, K. 2003. Use Case Modelling. Boston, USA: Addison Wesley.

0201709139.

Booch, G., Rumbaugh, J. &Jacobson, I. 2005. The Unified Modeling

Language User Guide. 2nd edn. USA: Addison Wesley Longman.

0321267974

Delatour, J. &Paludetto, M. 1998. UML/PNO: A Way to Merge UML and

Petri Net Objects for the Analysis of Real-Time Systems. Lecture

Notes in Computer Science, 15(43), pp. 511-514.

Meyer, Bertrand. 1997. Object-oriented Software Construction. 2nd edn.

London: Prentice-Hall. 0136291554.

Pressman, Roger S. 2004. Software Engineering a practitioner's

approach. 6th Ed. London: McGraw-Hill. 0071238409.

Sommerville, I. 2006. Software Engineering. 8th end. London, UK:

Addison-Wesley. 03211313798.

Stanton, M. J. 1999 .Doctoral Thesis: Structured Petri Nets for the Design

and Implementation of Manufacturing Control Software with Fault

Monitoring Capabilities. University of Wales College, Newport.

Yourdon, E. 1994. Object-Oriented Systems Design. New Jersey, USA:

Prentice-Hall. 0136363253

5-57

Chapter 6 -Conclusions, Analysis of Findings and Future Work

Conclusions, Analysis of Findings
__ and Future Work

In this concluding chapter this work will be evaluated and it will be

demonstrated that this thesis provides several contributions to the field

of manufacturing system design. Functionally Encapsulated Models

implemented within a three level control architecture are evaluated

against the findings of this research. The Behavioural Constraint

method outlined in this work is shown to reduce design times by

enabling all system designs to make use of a library of off-the shelf

components. It is proposed that the techniques outlined in this work go

some way towards overcoming the problems involved with an integrated

approach to CIM implementations. This chapter proves how the novel

modelling technique developed in this work addresses all of Meyer's

criteria for modularity. The benefits of object-orientation for

manufacturing systems modelling are reinforced and the findings of this

work are conclusively evaluated Finally, some discussion is given for

areas of future research within this field.

6-1

Chapter 6 -Conclusions, Analysis of Findings and Future Work

6.1 Introduction

Manufacturing has changed dramatically since the mass production era

of the Second World War. As demand for high, quality, low cost and

customisable products increased in the post war years Computer

Integrated Manufacturing (CIM) was introduced. The integration of

computers into manufacturing helps organisations to centralise their

data and control. Computers are able to interact with all levels of the

manufacturing design process. They key factors for organisations

wishing to compete in a twenty first century global economy are

established in this work as:

• Speed. Organisations need to get their products onto the market

as quickly as possible. This requires design or redesign of

manufacturing systems in the shortest possible timescale;

• Cost. Production costs need to be reduced to the minimum

possible, whilst maintaining quality;

• Quality through Consistency. Consistency throughout the

organisation can improve the quality of its processes and greatly

aid in communication between end users and system designers.

It has been established that the ability for manufacturing organisations

to be able to quickly refocus their systems is vital. Indeed this is almost

as important as being able to design totally new systems.

6-2

Chapter 6 -Conclusions, Analysis of Findings and Future Work

6.2 Modularity for Manufacturing

Modularity is identified in this work as an important concept which can

help manufacturing system designers achieve flexible systems that can

be easily reconfigured. Modularity is also an important factor in the

speed of design and development of systems as it enables distributed

team development. The main benefits of modularity identified in this

work are outlined below:

6.2.1 Hardware/Software Objects

The concept of a hardware/software object enables system designers

from manufacturing to utilise technologies available in software

engineering. This concept is a vital component in this work as it

enables development of complex systems containing hardware and

software to be thought of as exclusively software problems.

6.2.2 Removal of Islands of Automation

Islands of automation, which have plagued CIM implementations,

generally arise where sub-systems are redeveloped with no thought to

how they will interact with the rest of the system. Modularising the

system, and defining public interfaces to the objects within them,

ensures that the 'islands of automation' problem is completely

addressed. As long as interfaces are defined by what the module does

rather than how it does it all sub-systems are able to inter communicate.

6-3

Chapter 6 -Conclusions, Analysis of Findings and Future Work

6.2.3 Minimised Disruption from Upgrade or Redesigns

The use of public interfaces will also reduce downtime considerably as

for much of the process modules are only conceptually upgraded. This

solution will dramatically reduce development times and be a vital step

in addressing the issues of system development speed.

6.2.4 Reusable Class Libraries

Generic and highly reusable objects will enable system builders to

utilise previously designed high quality components that will rapidly

decrease development times whilst maintaining quality. Utilising such

pre-tested, high quality components would clearly address the need for

a "first time right" design.

6.2.5 Enterprise Wide Consistent Modelling

By utilising the UML for the design of such systems manufacturing

organisations can benefit from the ability of the technique to model all

elements of the company enhancing communication amongst

stakeholders and ensuring organisational consistency.

6.2.6 Reduced Modelling Complexity

The integration of Petri nets into the UML reduces the number of

models required and solves the state space explosion problem. Such a

technique provides a ready-made simulation and testing tool and lends

itself well to the automatic generation of control code considerably

reducing the time to implementation.

6-4

Chapter 6-Conclusions, Analysis of Findings and Future Work

6.3 Manufacturing System Design

Many system modellers face the inimitable problem of having to cope

with the recurrent need to become experts in a range of disciplines

other than their own. For example, a computer system's analyst may

need to analyse and design a software system for a petrochemical

company, or an information system specialist may need to develop a

new system for a supermarket chain.

This implies the need for rapid personal knowledge expansion, however

in reality the system modeller relies on an intuitive and highly detailed

progression of models which enable them to overcome the barriers and

bridge the gap between those with a dedicated knowledge of the

system under consideration and those with the specialist skills needed

to develop the new system.

In short, system modellers need models which facilitate communication

between the stakeholders at all levels within the system and those

undertaking the development. These models need to be intuitive

enough for all parties to understand and yet contain enough expressive

power to enable the analysis and design of the system under

consideration, in iteratively more complex levels of detail.

Despite considerable research into software engineering two out of

eight software projects fail and fifty percent are over time and budget.

This work has gone some way to establishing the reasons for system

6-5

Chapter 6 -Conclusions, Analysis of Findings and Future Work

failure and has noted that many are due to poor design methodologies.

In some cases the methodology fails because the users do not

understand it.

It is clear that the importance of selecting the most appropriate design

methodology is paramount in any successful system implementation.

From the literature it has been established that a successful design

methodology should:

• Accurately capture user requirements in a manner which can be

understood by all stakeholders. Each stage in the design process

must constantly and consistently cross reference user requirements

to ensure they are fully met;

• Support iterative refinement of user requirements into low level

technical detail for implementation. This can be achieved by a

hybrid top-down/bottom-up approach;

• Endeavour to minimise resource wastage. Utilising off the shelf,

pre-tested components from a library of objects can achieve this

goal;

• Support loose coupling of objects and should allow for modular

decomposition;

• Ensure that code is well documented and adopt the relevant coding

conventions to ensure subsequent maintenance, modification or

upgrades are possible;

6-6

Chapter 6 -Conclusions, Analysis of Findings and Future Work

• Permit modules to be tested individually and subsequently as part

of the system.

Other important points drawn from the literature are that:

• Incrementally implementing a system over time spreads costs.

Implementation should be based on priority;

• Building in modular stages allows the project to be broken into

smaller, more manageable pieces giving staff the time to adapt to

the new system and facilitating team development;

• Implementation in small steps will have the most dramatic impact

rather than redesign the whole system in one go;

• Including staff at all levels in the development will ensure they

take ownership;

• It is important to make decisions for future enhancements based

on actual results of previous phases;

• Goals and measurement criteria should be defined prior to each

new phase of implementation.

6-7

Chapter 6 -Conclusions, Analysis of Findings and Future Work

6.4 Object-Oriented Modelling for Manufacturing

This work highlights some important benefits to manufacturing

organisations for adopting an object-oriented design methodology:

• Manufacturing personnel already think of their systems in terms of

objects and therefore an OO approach should prove to be intuitive;

• Simulation techniques are useful for validating control strategies

and for generating software;

• Incremental development approaches reduce costs;

• OO systems utilising class libraries offer customisation

opportunities and aid in system maintenance;

• Object class libraries that can be reused in other systems aid in

breaking down the complexity of manufacturing system design

6-8

Chapter 6 -Conclusions, Analysis of Findings and Future Work

6.5 Petri Nets for Manufacturing Modelling

This work has demonstrated how a Petri net can describe a

manufacturing system graphically allowing system users and designers

to gain a better understanding of the complex interactions within the

system.

6.5.1 Visualisation of System Events

The basic structure of a Petri net graph allows system modellers to

identify and visually describe the events present in a system.

6.5.2 Modelling System States and Behaviour

The use of tokens in a marked net a/low the representation of the

sequence of transition firing and subsequent changes in behaviour as

the system moves through the sequence of events required to achieve

its goal.

6.5.3 Simulation and Optimisation

Using a token player it is possible to simulate a system hypothesis and

the Petri net graph's simplicity means that it is intuitive to modify the net

to carry out 'what if analysis on the proposed system.

6.5.4 Mathematical Proof

The analysis of Petri net graphs provides manufacturing system's

analysts with a method of mathematically proving designs.

6-9

Chapter 6-Conclusions, Analysis of Findings and Future Work

6.5.5 Synchronicity and Concurrency

The models allow for the specification of systems which display

properties of synchronicity and concurrency and these properties are

highly relevant for manufacturing systems.

6.5.6 State Space Explosion

State space explosion can be a major drawback to the use of Petri nets

exclusively for modelling manufacturing systems. Complex systems

produce complex Petri nets which remove the ability of users to

visualise the system.

6.5.7 Lack of Object-Oriented Modelling Power

Whilst some attempts have been made to modularise Petri nets, full

object-orientation has yet to be achieved.

6-10

Chapter 6-Conclusions, Analysis of Findings and Future Work

6.6 Merging the UML and Structured Petri Nets

This work presented a novel methodology for a combined object-

oriented and Petri net approach to the development of manufacturing

systems. This is one of the main contributions of this work.

A novel technique, entitled Functionally Encapsulated Modules, utilises

Petri net graphs to model the functions of each object. This allows

system designers to capture both the state and dynamics of an object in

a single visual representation. It also allows for each module to be

simulated for testing purposes.

Using structured Petri nets which allow for modelling of control and

feedback signals considerably reduces the complexity of the resultant

Petri net graphs. This goes some way to reducing the state space

explosion problem inherent in large complex systems.

The technique developed addresses many of the methodology issues

highlighted with manufacturing system design:

• User requirements are iteratively captured using a series of use

case diagrams and scenarios. A top down, abstracted view of the

system from the perspective of its goals is initially taken. This view

is then refined to establish more and more detail about the system.

The use case models are intuitive for all stakeholders and ensure

clear communication between technical and non-technical

6-11

Chapter 6 -Conclusions, Analysis of Findings and Future Work

personnel. The use cases can be cross referenced at each stage of

the design process to ensure that the system adheres to the user

requirements;

• Once the system has been modularised a bottom up approach is

taken to capture the capabilities of each system object. Viewing the

objects as independent entities ensures their full functionality is

captured. Object controllers are developed for individual objects or

groups of objects which are inter-dependant. This facilitates the

building of a library of generic and reusable classes which can be

utilised in other systems or later in redesign processes;

• Communication between objects is only undertaken via public

interfaces in the objects. This is facilitated by control and feedback

places in the Petri net structure. At implementation stages the

control and feedback places are coded as public operations. This

feature ensures that systems are loosely coupled. Loose coupling

in this case will ensure that changes to objects in the system have a

minimal impact on other objects. Objects can be used based on

what they do rather than how they do it;

• Objects and modules can be individually tested using the token

player facilities of Petri net graphs. Upon system integration the

entire system can be simulated using the same method;

• The well defined interfaces presented by FEMs enable system

designers to incrementally upgrade parts or all of a system.

6-12

Chapter 6 -Conclusions, Analysis of Findings and Future Work

6.7 Contributions of this Research Work

The original contributions of this work are evaluated below. It is

demonstrated how the original methodology and modelling tool

developed in this thesis satisfy Meyers five criteria for modularity

(1997).

6.7.1 The Application of the UML to Manufacturing Systems

The Unified Modelling Language has successfully been applied to a

complete manufacturing system. (Llewellyn et al, 2000). This has

proven benefits for manufacturing organisations including the provision

of a reusable system, and the opportunity to build a library of classes,

which makes subsequent designs or modifications to existing systems

more intuitive.

Using the technique presented in this theses it can be seen that the

UML provides manufacturing organisations with the full benefits of

object-orientation including encapsulation, inheritance and the ability to

use class hierarchies.

By focusing on the objects and their interactions via a public interface,

the dynamics of the system can be presented to technical and non­

technical users, allowing the designer to focus on what the

object/system is to do, without an in-depth knowledge of how it does it.

This satisfies Meyer's criteria for modular understandability.

6-13

Chapter 6 -Conclusions, Analysis of Findings and Future Work

The UML also facilitates the unique ability to model all aspects of a

manufacturing organisation from business processes through to shop

floor machinery.

6.7.2 A Methodology for Incremental Implementation

An incremental approach to the analysis of CIM systems enables

manufacturing organisations to computerise anything from individual

manufacturing workstations through to entire departments on a staged

basis.

Manufacturing organisations adopting this approach will see a reduction

in the development times for new systems and for redesigns.

Use-case analysis ensures user requirements are accurately captured

and in a format which enhances communication between system

modellers and stakeholders. This satisfies Meyer's criteria for modular

understandability.

The design stages of a use-case driven approach take into account the

needs of all levels of the workforce, ensuring all personnel are involved

in the process.

The initial use-case scenarios used to capture the system requirements

can be reused at the testing stage to verify all requirements are

adequately met.

6-14

Chapter 6 -Conclusions, Analysis of Findings and Future Work

6.7.3 Development of a Three Level Control Architecture

The hybrid bottom-up and top-down approach of the incremental

methodology proposed enables the controllers required at all levels of

the system to be adequately modelled and ensures the functionality of

the system is maintained.

The methodology developed in this work distributes the complexity of

system control across the sub-systems. This ensures that most of the

objects and modules within the system can be reused with little or no

changes. This achieves Meyer's criteria for modular composability.

The object-oriented approach to the system design allows designers to

capture the system at its most generic, but also provides a method of

capturing the dynamics of the system.

Utilising token players each object and module can be tested

independently before they are integrated into the complete system. The

final system can also be simulated for optimisation testing.

Behavioural constraints ensure that all objects in the system can be

instantly stored in a reusable class library that will enhance the speed

and quality of subsequent system designs.

The constraint objects also server the purpose of capturing error

conditions. This goes some way towards achieving Meyer's criteria for

modular protection.

6-15

Chapter 6 -Conclusions, Analysis of Findings and Future Work

6.7.4 Merging the UML and Petri Nets

A technique for successfully combining the UML and Petri nets has

been developed called Functionally Encapsulated Modules (FEM)

(Llewellyn et al, 2001).

The technique is superior to other attempts to merge these two powerful

modelling tools in that it supports the full range of object-oriented

capabilities.

The FEMs also enable UML designers to utilise the functional modelling

power of Petri nets.

State space explosion is reduced by modelling only parts of the system,

i.e. the operations of objects. However, utilising control and feedback

places ensures the system meets the criteria of modular composability.

FEMs reduce the number of diagrams required to model both state and

behaviour of systems.

The FEMs develop a unique method of capturing the attributes of both

software and hardware which can be intuitively implemented into any

manufacturing system.

The encapsulation of hardware and software with a distinct user

interface allows the designer, and the users of the system, to visualise

the objects that make up the system's model without worrying about the

6-16

Chapter 6 -Conclusions, Analysis of Findings and Future Work

inherent complexity. Public interfaces also satisfy Meyer's criteria for

modular continuity.

6.7.5 Simulation and Automated Code Generation

Each object and module can be tested independently by comparing

their use case scenarios against the simulation tool provided by the

Petri net models.

The whole system can be tested against the goal of the system against

the token player aspect of Petri nets.

The system can be reconfigured intuitively by adjusting the Petri net

graphs to test out control optimisation scenarios. As the code is based

directly on the graphical notation the code will reconfigure.

A method for mapping Petri net diagrams to pseudo-code is presented

in this thesis. It is an intuitive method which corresponds well with

discrete event systems.

6-17

Chapter 6 -Conclusions, Analysis of Findings and Future Work

6.8 Thesis Conclusions

It is widely accepted that manufacturing systems need to be flexible,

customisable and maintainable. This is effectively addressed in the

object-oriented system outlined in this these where individual objects

can be customised and updated using the key features of UML, such as

inheritance, polymorphism and encapsulation.

By integrating the two types of models, the design of manufacturing

systems is greatly enhanced. Manufacturing systems will be able to

take advantage of the concepts of object-oriented programming that

have been widely available in software engineering for some time.

Future upgrades to the resultant system will be more intuitive as

manufacturing design adopts the 'plug and play' philosophy of other

computer systems. The technique provides a model that can be used

initially as a simulation tool and later as the basis for the automated

generation of the control software.

Once the initial design has been carried out many objects can be

reused in future systems with no requirement for additional modelling.

In a climate governed by costs and rapidity it is important to reduce the

time from conception to market as stated previously, however, this

rapidity cannot have any impact on product quality. The UML has gone

some way to addressing many of the issues to overcome in

6-18

Chapter 6 -Conclusions, Analysis of Findings and Future Work

manufacturing system design by providing a user-centric view of the

system using use-case analysis and design. This facilitates effective

communication between system modellers, software designers,

management and all levels of staff involved in the operation of the

system.

The object-oriented paradigm focuses very firmly upon design for reuse

which is an important property for manufacturing systems where the

market demands high quality products, at a low cost, with shortening

product lives and ever increasing demands for customisation. Whilst

manufacturing systems lend themselves to such an approach, the long

and iterative process demanded by successful design for reuse and the

time overhead spent translating models into code is at odds with the

rapid approach required in global manufacturing organisations. It can be

seen, therefore, that such approaches are long overdue for an

automated code generation phase.

The techniques presented in this thesis achieve these aims by

combining the best features of object-orientation and structured Petri

nets with models that are iteratively refined until the detail required for

automatic code generation are established. The modelling and

development stage are integrated meaning all time spent in the initial

stages is utilised all the way through to the final system.

6-19

Chapter 6 -Conclusions, Analysis of Findings and Future Work

6.9 Future Work

As with all research work there is still much to be done before the tools

proposed in this work can be applied to manufacturing systems.

6.9.1 Development of a Graphical Modelling Tool

Though many prototypes and simulations have been conducted by the

author, there is a need for the development of the graphical modelling

tool.

Many token player tools have been analysed during the progress of this

work but due to the complexity of modelling even small systems with

Petri net graphs they either are limited to a restricted number of places

or become difficult to interpret.

Utilising the FEM approach outlined in this work the software would

focus on individual objects and their operations. This would

considerably reduce the complexity of the diagrams and make the

screen layout more intuitive.

The tool should encompass the methodology proposed in this work and

should enable a system designer to document all stages of the design

process.

6-20

Chapter 6 -Conclusions, Analysis of Findings and Future Work

6.9.2 Expansion of the Modelling Power of the Petri net Graphs

This work has focussed on the use of Structured Petri nets due to their

ability to model control and feedback places. Petri net theory is being

continuously developed and a number of interesting possibilities for

modelling time factors are being researched.

The scope of this work could be expanded to explore the potential of

this technique for modelling systems with a time dimension such as real

time systems.

6.9.3 Development of an Automated Coding Tool

This work has presented a method of mapping Petri net diagrams to

pseudo-code. Whilst the resultant code can be interpreted into a range

of programming languages it would be useful to have a tool which could

generate the code directly.

Such a tool could generate pseudo-code, as in this work, which could

then be output into a range of programming languages based on add-on

modules.

The code generation work in this thesis takes no account of code

optimisation. Much work is being undertaken into the area of Aspect

Oriented and Generative Programming. This is certainly and area in

which this work could expand.

6-21

Chapter 6 -Conclusions, Analysis of Findings and Future Work

6.9.4 Regenerative Coding for Autonomous Robots

The Petri net diagrams in this thesis can be directly mapped to the code

required to control the system. Changes to the diagram result in

corresponding changes to the code.

Research needs to be conducted into the feasibility of expanding this

idea to autonomous robots where the code can regenerate in response

to factors such as environmental considerations.

6-22

Chapter 6 -Conclusions, Analysis of Findings and Future Work

References

Llewellyn, E.W., Stanton, M.J., Roberts, G.N. 2000. Towards the

implementation of the Unified Modelling Language (UML) into a

Computer Integrated Manufacturing (CIM) environment. Fourteenth

International Conference on Systems Engineering. 12th - 14th

September 2000. Coventry, UK, pp 398 - 403.

Llewellyn, E.W., Stanton, M.J., Roberts, G.N. 2001. Discrete event

systems design based upon the UML and Petri net objects. 3rd

Workshop on European Scientific and Industrial Collaboration. 27th

-29th June 2001. Twente, The Netherlands, pp. 211-219

Llewellyn, E.W., Stanton, M.J., Roberts, G.N. 2003. A combined

object-oriented and structured Petri net approach for discrete event

systems' design. 4th Workshop on European Scientific and

Industrial Collaboration. 28th - 30th May 2003. Miskolc, Hungary,

pp. 398-403.

Meyer, Bertrand. 1997. Object-Oriented software construction. 2nd

edn. London: Prentice-Hall. 0136291554.

6-23

Appendix 1 - Papers

Appendix 1

Papers
Appendix 1 contains copies of all published papers taken from this research.

They are summarised as follows:

LLEWELLYN, E., STANTON, M.J. and ROBERTS, G.N. 2000. Towards the

implementation of the unified modelling language (UML) into a computer

integrated manufacturing (CIM) Environment. International Conference on

Systems Engineering 2000 (ICSE2000). Coventry. Vol. 2, pp 398-403.

LLEWELLYN, E., STANTON, M.J. and ROBERTS, G.N. 2001. Discrete

Event Systems Design Based upon the UML and Petri Net objects. 3rd

Workshop on European Scientific and Industrial Collaboration (WESIC

2001) Enschede, The Netherlands, pp 211-219. ISBN 90 365 16102.

LLEWELLYN, E., STANTON, M.J. and ROBERTS, G.N. 2002. Nine-step

approach to designing successful visual programming applications.

Computing and Control Engineering. (13)2 pp 82-86. ISSN Number

0956-3385.

LLEWELLYN, E.W., STANTON, M.J., ROBERTS, G.N. 2003. A combined

object-oriented and structured Petri net approach for discrete event

systems' design. 4th Workshop on European Scientific and Industrial

Collaboration. 28th - 30th May 2003. Miskolc, Hungary. ISBN 963 661

5705.

A1-1

Appendix 1 - Papers

TOWARDS THE IMPLEMENTATION OF THE UNIFIED
MODELLING LANGUAGE (UML) INTO A COMPUTER

INTEGRATED MANUFACTURING (CIM) ENVIRONMENT

Llewellyn, E.W. 1 , Stanton, M.J.2 and Roberts, G.N. 1

Mechatronics Research Centre1
Department of Engineering?

University of Wales College, Newport
Allt-yr-yn Campus. PO Box 180, Newport, NP20 5XR. U.K.

Tel: ++44 (0) 1633 432487 Fax: ++44 (0) 1633 432442 E-mail: eric.llewellyn@newport.ac.uk

Keywords: Unified Modelling Language (UML), Computer
Integrated Manufacturing (CIM), Object-Oriented software,
Computer Aided Software Engineering (CASE).

Abstract
A methodology based on the use of the Unified Modelling
Language (UML) for the modelling and design of control
software for a Computer Integrated Manufacturing (CIM)
environment is presented. This is demonstrated by modelling
a pneumatically controlled manipulator comprising of four
separate actuators, which forms part of a pneumatic station -
an integral component in the University of Wales College,
Newport's (UWCN's) CIM system. The major causes of CIM
implementation problems along with their possible UML
solutions are identified and it is shown that the resultant
models allow the designer to capture the static, dynamic and
behavioural attributes of the system. This provides
organisations with a unique opportunity to develop a system
that, if required, can be used initially as a simulation tool and
later as the basis for the development of control software.

1 The problems facing manufacturing
organisations in the 21 st Century

The latter part of the last century saw a paradigm shift from
mass production to customisation. Waldner [1] describes how
lie markets in which manufacturing organisations compete
have become increasingly complex and diverse with highly
customisable, small-scale products replacing mass
Production. To compete in the global markets of the 21 st
Century, industry needs to produce new products to
customer's requirements with the shortest possible lead and
Wvery times, to the highest possible quality, and at the
lowest possible price [2]. During the 1970s manufacturing
focus shifted from productivity to flexibility and quality. To
tompete with these changes the Japanese attempted to
("Mease flexibility by reducing the administrative procedures
"ivolved in management and control. These ideas also
"vealed that over-automation of processes could have
""desirable consequences. Often it was found that functions

performed by very complex automated systems could equally
well be achieved by elementary manual procedures or by
simple mechanical devices. The notion of system and process
simplicity had been lost. Computerisation became an
automatic response in companies, with no attempt being made
to find a less complex alternative to a proposed procedure
[1,1]. This in turn has led to so called 'islands of automation'
where isolated cells of computer controlled machines are
unable to link together [3]. Many factors have exacerbated
this problem, such as the undocumented internal departmental
solutions to problems, the ad-hoc acquisition of hardware and
software and the lack of standardisation among vendors.
Communication among these 'islands' is often made via media
such as disks, CD-ROMs or hard copy [4] taking valuable
time and effort and adding to the overall inefficiency of the
system.

2 Computer Integrated Manufacturing
(CIM) as a solution

Computer Integrated Manufacturing (CIM) aims to address
the problems created by linking these 'islands' into a single
system. Hannam [3] neatly defines CIM as "the integration of
business, engineering, manufacturing and management
information that spans company functions from marketing to
product distribution." Clearly CIM is a way for companies to
compete in the present global context. It is important to note
however, that CIM is a goal, which cannot be purchased off
the shelf, since its application will be unique to each company
[5]. CIM itself has brought a whole host of new problems.
Design of control software for CIM systems by traditional
methods is typically characterised by high installation costs
and long lead times. The resultant software is often difficult
and costly to maintain, making the system limited in
functionality and almost impossible to expand [6]. The
software for CIM systems needs to reflect the flexible nature
of the systems themselves. It should be easy to design,
maintain and upgrade. The code should be modular so as to
be reusable, and general to ensure the interface remains
unchanged [7]. These techniques are already in use in
software engineering and have been enhanced via the use of
Computer Aided Software Engineering (CASE) tools.

A1-2

Appendix 1 • Papers

3 Why use the UML in a manufacturing
context?

Manufacturing systems can be complex and varied in nature
due to the wide range of interconnected objects and the
myriad of messages passing between them. It follows
therefore that manufacturing software needs cannot be met by
general purpose 'off the shelf packages. One approach is to
design generic solutions, and then to customise them to the
requirements of each company. The resultant generic object
class libraries are customisable through object-oriented
techniques, and provide a good starting point for the design of
practical control software. This abstraction of complex
manufacturing systems into a series of objects is more
intuitive because manufacturing end users already consider
their systems in terms of objects, i.e. parts, conveyers, lathes,
or drilling machines etc. It is widely accepted that CIM
systems need to be flexible, customisable and maintainable
[g]. This is effectively addressed in an object-oriented system
where individual objects can be customised and updated using
the key features of the UML, such as inheritance,
polymorphism and encapsulation. Further, a common object
model for the design of CIM systems provides a method of
incremental implementation where the building of custom
applications from a common repository of software objects
helps to achieve conceptual integration. The conceptual
design allows for 'what-if analysis to be carried out on any
proposed system before implementation saving the company
time, money and effort. Gunasekaran and Thevarahjah [9]
identify three key stages in the successful implementation of
CIM i.e. simplification, integration and computerisation. The
UML aids in all three areas as will be demonstrated.

In order to capture all aspects of the system under
investigation, it is important for the designer to capture three
aspects of it i.e. its static state, its dynamic state and its
behaviour. The static state of a system describes the objects
that it is comprised of, and how they relate to each other. The
dynamic state describes how these components interact to
make the system serve its purpose. Finally the behaviour of a
system describes the states a component may be in at each
stage of its operation. The term behaviour has been
deliberately used to demonstrate the fact that it may be
necessary to model undesirable states. For example, a crane
should never be allowed to open its gripper when in the air, if
it is carrying a two ton weight!

4 A simple pneumatic actuator system
based system

As a practical example the Pneumatic Station, part of the
University of Wales College Newport's CIM system will be
"sed. The 'building block' of this section of the system is the
pneumatic actuator. A pneumatic actuator can be either
actuated or de-actuated. These operations take place when a
Programmable Logic Controller (PLC) opens a valve, which
Pumps air into the actuator, thus actuating it. When the PLC
doses the valve, the air is removed and the actuator de-
actuates. This description provides a basic overview of the
system, which is all that is required in order to begin the
feign of the system.

5 Class identification

From an object-oriented point of view, the system described
consists of a series of classes. Booch et al [10,10] define a
class as "a description of a set of objects that share the same
attributes, operations, relationships and semantics." An object
then, is a "unique instance of a class" [11]. Two other
important properties of a class are:

• Operations:- which are "used to read or manipulate the
data of an object" [12] and;

• Attributes:- "the structure of the objects: their components
and the information or data contained therein" [13]

From the brief description given it is possible to identify the
following classes: - PLC, Valve and Actuator. These classes
can now be examined in further detail.

5.1 The Actuator Class

The actuator can be in either one of two final states - actuated
or de-actuated. It can also be midway between these states,
i.e. it can be in the process of actuating or de-actuating.
Therefore the actuator requires two operations, one to carry
out the action of actuating and one to carry out the action of
de-actuating. In addition, if the system is to provide feedback
it must allow external entities, such as a controller, to
interrogate the actuator to determine its current state. It is
therefore possible to establish that an actuator has a state
attribute and an operation that provides that state to external
entities. An important concept for attributes is that of
visibility. Visibility applies to attributes and operations, and
specifies the extent to which other classes can use a given
class's attributes or operations. Schmuller [14] identifies
three levels of visibility. At the public level, usability extends
to other classes (represented by a "+" symbol). At the
protected level, usability is open only to the classes that
inherit from the original class (represented by a "#" symbol).
At the private level, only the original class can use the
attribute or operation (represented by a "-" symbol). The
actuate and de-actuate operations are called by the Valve
class and therefore are public, as is the getState operation.
Generally, classes are shown with the first letter of each word
in uppercase. Attributes and operations usually start with a
lower case letter. Figure 1 shows a class diagram for a class
of type Actuator.

Class Name

Attributes

Operations

Actuator

+state

+getState
+actuate

+deactuate

Figure 1: The Actuator class

A1-3

Appendix 1 - Papers

In addition a state diagram shows all the possible states an
actuator can have. This helps to identify all the possible
values the state attribute can take.

deactuated actuating

deactuating actuated

Figure 2: The Actuator state diagram

From figure 2 it can be ascertained that in order to arrive at
the desired states of actuated or de-actuated, the actuator must
pass through a 'working' phase where it is either actuating or
de-actuating. It is important for the system sequence
controller to be aware of these states, so that it does not try to
invoke the operations of a busy object.

5.2 The Valve Class

From the description it can be seen that the valve can be
either open or closed, and again there must be the
intermediate steps of opening or closing. For feedback
purposes it will be necessary to establish the current state of
the valve. The class and state diagrams for the valve are
similar to those for the actuator. From the description it
becomes apparent that the operation of opening and closing
the valve is controlled by the PLC class, therefore it is logical
to assume that the open and close methods are public, as is
the valve's state attribute.

5.3 The PLC Class

PLC's act as controllers in our system by instructing other
objects to perform their operations. The PLC class works
with a predetermined sequence of object method calls such as
those shown in the following pseudo-code fragment:

BEGIN
'Wait until the Valve is not busy

DO
InstanceOfValve.GetState

LOOP UNTIL(InstanceOfValve.GetState)=
"Closed"

'Open the Valve
InstanceOfValve.Open

END

h this instance the PLC class needs only to start or stop its
Predetermined sequence of events. In the example system
described it is imagined that a human operator controls these
operations, probably via some form of stop and start buttons,
tod therefore these operations (start and stop) are public. It

A1-4

would be reasonable to assume that in other circumstances the
controller could be another object in the system. This is
known as an external entity, which may well be an integral
part of the larger system. Decomposition into subsystems
allows the external entity or actor to be represented with the
stick figure shown in figure 4. This indicates that while it is
understood as an important object, which needs
representation, its complexity need not be modelled at this
stage. It is suffice to know that it performs the action of
starting and stopping the PLC. The ability to generalise in
this way enables the system designer to plan for various types
of implementation. For example, the PLC could be controlled
by a human, another PLC or a computer. The diagram would
not need to change in any of these circumstances. The
functional details of how the PLC works are encapsulated
within the Class. In order to interface an instance of class
PLC with a controller all the required information can be
accessed via the public operations and attributes. These
represent the interface between the Class and the outside
world.

PLC

+start
+stop

Figure 3: The PLC class

6 The associations between classes

The brief description of the system provides enough detail for
a diagram outlining the various associations between the
classes. Each of these associations represents a method call
to another object. By analysing these associations it is
possible to establish how objects in the subsystem interact
with each other. It is also possible to establish how the
subsystem itself interacts with objects outside of its domain.
In order to make the diagram clearer, items such as the
attributes and operations of each class are not displayed. As
previously stated the external entity in this system could in
fact represent a human or another object. The external entity
in this instance represents an interface to another object in
another part of the larger system being considered.

External
Entity

Figure 4: The Interaction between classes

Appendix 1 - Papers

7 The dynamic capabilities of a
pneumatic actuator

The method calls between objects can be more clearly seen on
a sequence diagram, which also shows the order in which the
operations are invoked (figure 5). The diagram gives a
pictorial representation of the two possible final states of a
pneumatic actuator, and the procedure for arriving in those
states, i.e. the actuator being actuated, and the actuator being
de-actuated. This model shows the functional detail of the
dynamics of the actuator. Once this information has been
captured it is possible to write all the functional code and
forget about the complexity involved in the actions of our
actuator. This 'code and forget' approach means it is no
longer necessary to consider the PLC or the valve, instead the
system designer can concentrate on the detail of what the
actuator is intended to do, as part of the greater system.
However, as the functionality of the system increases in
complexity, or the system becomes larger, these diagrams
become long, complicated and unwieldy.

artd:R£ CMixterl:

Y
1:open()

T

T

rV
SgetaaeO

T
i

JL

uI

Figure 5: The sequence of available operations for a
pneumatic actuator

lie following text presents the idea of Functional
'encapsulation Modules (FEMs). The whole dynamic
rocess, represented by figure 5, can also be represented by
sing a single pair of FEMs as depicted in figure 6. It can
learly be seen that this provides a convenient way of
escribing these operations.

Figure 6: A FEM for the Actuator's two operations

These FEMs can now be encapsulated into whichever
software language is used to control the system. It is
envisaged that the FEMs could be implemented in an
application that with its 'drag and drop' interface would allow
system designers to manipulate the operations of the actuator
with no thought to the technical detail. The important
concept is that by manipulating easy to understand graphical
symbols, the user is also manipulating the associated code.
At the same time as they are remodelling the system, they are
regenerating the code to control it. The idea of flexibility and
quality can be taken to their extremes. A system can be
redesigned, optimised, upgraded or maintained and be back
on line with new code in a fraction of the time taken with
traditional software design methods.

8 Expanding the idea to a manipulator

The idea of using the UML and FEMs will now be expanded
to show its use on a manipulator subsystem of the UWCN
CIM system.

Figure 7: A Manipulator comprising of a series of pneumatic
actuators

Schmuller [14] indicates that "sometimes a class consists of a
number of component classes. This is a special type of
relationship called an aggregation. The components and the
class they constitute are in a whole-part relationship." A
manipulator shares such an aggregation with a set of
actuators, where the manipulator is the whole and the
actuators are the parts. In the four-actuator model shown in

A1-5

Appendix 1 - Papers

figure 7, each of the actuators can carry out the same basic
(unction, i.e. they can actuate or de-actuate. However, the
same operation call has differing effects on the action being
performed by its recipient object. For example actuating an
actuator can raise it, move it left, or open it. This sharing of
an operation is called polymorphism. Schmuller [14]
describes polymorphism as the situation where "an operation
has the same name in different classes" and "each class
loiows' how that operation is supposed to take place." Figure
8 describes the aggregation relationship between a
manipulator and its actuators. It can be seen that any
particular one instance of the class Manipulator contains at
least one and up to n actuators. A Manipulator is an
aggregation of 1 to n Actuators. The UML denotes the many
end of a relationship with the "*" symbol. The use of 1 in the
relationship, i.e. l..n, denotes the fact that the relationship
must have at least 1 and, in this case, up to many actuators to
each 1 manipulator.

Manipulator

Actuator

Figure 8: A Manipulator as an aggregation of Actuators

8.1 A practical example

An instance of class Manipulator may comprise of four
pneumatic actuators as shown in figure 9. It can be clearly
seen in this diagram that the four separate actuators whilst all
having the same basic characteristics, are slightly different.
This raises another important object-oriented concept, that of
inheritance. As Yourdon [15] defines it "[inheritance] allows
an object to incorporate all or part of the definition of another
object as part of its own definition."

A4

Al A3

Figure 9: A Manipulator

The Class Actuator used to make up the Manipulator above is
actually decomposed into three subclasses or child classes - a
LinearActuator, RotaryActuator and Gripper (figure 10).

Linear
Actuator

#position
^direction

Rotary
Actuator

#direction

Gripper

Figure 10: Three subclasses inheriting from their parent class

Each subclass inherits all the attributes and operations of
the Actuator class and each add their own unique ones. For
example the LinearActuator Class adds the position attribute
which enables the actuator to have a horizontal or vertical
position. The RotaryActuator has a direction which enables
it to find out the direction of travel when the actuate operation
is carried out. The Gripper will open when actuated and close
when de-actuated. This demonstrates the principle of
polymorphism, each of the Actuators has an actuate
operation, but each reacts differently when called. These new
attributes are visible only to the creating class and are
therefore protected.

In the UWCN CIM system, the manipulator needs to pick
up a metal cylinder from a tray and place it on a waiting
palette. From its start position over the tray, the manipulator
needs to follow this sequence of events:

Open the gripper; Move down; Close the gripper
(with a tube held); Move up; Move right; Move
down; Open the gripper (dropping the tube);
Move up; Close the gripper; Move left

^ fr A3
^f^\ actuah

Figure 11: A FEM showing the operations required to move a
cylinder between two points

A1-6

Appendix 1 - Papers

The diagram in figure 11 represents this sequence of
events, when mapped into actuator movements, as a FEM. It
is worth noting again that if the FEM were to be implemented
in a software application, the required control code would
also be generated in the target language.

9 Conclusions

Presented in this paper are the building blocks for designing
and maintaining manufacturing systems based on the UML.
The method presented allows for a complex system to be
broken down into subsystems and modelled in detail. This
not only simplifies the task of modelling large, complex
systems, but also allows for the building of a library of
classes. These classes can then be used for developing new
systems or for upgrading and maintaining existing systems.

The idea of FEMs proposes a method of modelling the
overall control of related subsystems by controlling the
sequence of events that needs to take place in order for that
system to perform some task. It is envisioned that a software
application developed around the concept of FEMs will
enable relatively inexperienced users to design and alter
manufacturing systems. The structure of the UML diagrams
lend themselves well to the simplification of developing
optimised control code in a high level language and provide
the possibility of the automation of this task.

10 Future work

An investigation into the application of the UML into real
time systems will be carried out, with particular attention to
the reduction of redundant code normally produced by object-
oriented techniques [16]. The idea of integrating structured
Petri nets [17] into the UML diagrams offers many benefits
including a formal validation method [18] and a method of
modelling concurrent and non-deterministic systems [19].
The generation of control code from the model will be
implemented and tested on the Pneumatic Station, at the
University of Wales College, Newport.

11 Reference list

[l]Waldner, J. (1992) Cim. Chichester, Uk: John Wiley &
Sons Ltd.

[2] Davies, B.J. (1997) Cim Software And Interfaces.
Computers In Industry 33, 91-99.

[3] Hannam, R. (1997) Computer Integrated Manufacturing
From Concepts To Realisation. Essex, Uk: Addison Wesley
Longman.

[4] Jardim-Goncalves, R., Silva, H., Vital, P, Sousa, A.,
Seiger-Garcao, A. And Pamies-Teixeira, J. Implementation
Of Computer Integrated Manufacturing Systems Using Sip:
Cim Case Studies Using A Step Approach. International
Journal Of Computer Integrated Manufacturing 10, 172-180.
(1997)

[5] Hassard, J. And Forrester, P. Strategic And Organizational
Adaptation In Cim Systems Development. International
Journal Of Computer Integrated Manufacturing 10, 181-189.
(1997)

[6] Aguirre, O., Weston, R., Martin, F. And Ajuria, J.L.
Mcsarch: An Architecture For The Development Of
Manufacturing Control Systems. International Journal Of
Production Economics 62, 45-59. (1999)

[7] Maione, G. And Piscitelli, G. Object-Oriented Design Of
The Control Software For A Flexible Manufacturing System.
International Journal Of Computer Integrated Manufacturing
12,1-14. (1999)

[8] Adiga, S. (1993) Object-Oriented Software
Manufacturing Systems. London, Uk: Chapman & Hall.

For

[9] Gunasekaran, A. And Thevarajah, K. Implications Of
Computer Integrated Manufacturing In Small And Medium
Enterprises. International Journal Of Advanced
Manufacturing Technology 15, 251-260. (1999)

[10] Booch, G, Rumbaugh, J. And Jacobson, I. (1999) The
Unified Modeling Language User Guide. Usa: Addison
Wesley Longman.

[ll]Eriksson, H. And Penker, M. (1998) Uml Toolkit. New
York, Usa: John Wiley & Sons.

[12] Martin, J. (1993) Principles Of Object Oriented Analysis
And Design. New Jersey, Usa: Prentice-Hall.

[13] Oestereich, B. (1999) Developing Software With Uml.
Harlow, Uk: Addison Wesley Longman.

[14] Schmuller, J. (1999) Teach Yourself Uml In 24 Hours.
Usa: Sams Publishing. 0-672-31636-6.

[15] Yourdon, E. (1994) Object-Oriented Systems Design.
New Jersey, Usa: Prentice-Hall.

[16] Narisawa, F., Naya, H. And Yokoyama, T. A Code
Generator With Application-Oriented Size Optimization For
Object-Oriented Embedded Control Software. Lecture Notes
In Computer Science 15, 511-514. (1998)

[17] Stanton, M.J. Structured Petri Nets For The Design And
Implementation Of Manufacturing Control Software With
Fault Monitoring Capabilities. University Of Wales College,
Newport. (1999)

[18] Delatour, J. And Paludetto, M. Uml/Pno: A Way To
Merge Uml And Petri Net Objects For The Analysis Of Real-
Time Systems. Lecture Notes In Computer Science 15,511-
514. (1998)

[19] Zapf, M. And Heinzl, A. (1998) Techniques For
Integrating Petri Nets And Object-Oriented Concepts.
Anonymous

A1-7

Appendix 1 - Papers

DISCRETE EVENT SYSTEMS DESIGN BASED
UPON THE UML AND PETRI NET OBJECTS

Eric Llewellyn1, Martin Stanton* and Geoff Robertst

f University of Wales College, Newport. Mechatronics Research Centre
Allt-yr-yn Campus. PO Box 180, Newport NP20 5XR, South Wales, United Kingdom.

email: eric.Llewellyn(ajnewport.ac.uk and geoff.roberts(a),newport.ac.uk

* University of Wales College, Newport. Department of Engineering
Allt-yr-yn Campus. PO Box 180, Newport NP20 5XR, South Wales, United Kingdom.

email: martin.Stanton@newport.ac.uk

Abstract

A method for the design of discrete event systems is presented which
combines the Unified Modelling Language (UML) and Petri Net Objects
(PNO). The genericity of the model is enhanced by the addition of
constraint objects that allow reusable, general-purpose classes to be
developed, which can be easily tailored to specific systems. By merging
the UML and PNO the resultant models allow for accurate requirements
analysis and provide object-oriented designs which are reusable and
mathematically provable.

1 Introduction

Manufacturing systems are complex and varied in nature and therefore their software
needs cannot readily be met by general purpose 'off the shelf packages. The approach
generally adopted by software engineering practitioners is to design generic solutions,
which can be customised to the specific requirements of the system. The resultant
generic object class libraries are customisable through object-oriented (OO) techniques,
and provide a good starting point for the design of practical control software. The
abstraction of complex manufacturing systems into a series of objects is more intuitive
because manufacturing end users already consider their systems in terms of objects, i.e.
parts, conveyors, lathes, drilling machines etc. (Adiga, 1993). The Unified Modelling
Language (UML) has become the de facto standard for OO analysis and design and its
application to manufacturing systems has already been demonstrated (Llewellyn et al,
2000). Petri nets are widely used to model discrete event systems (DBS) and provide a
model which is mathematically provable and using a token player, also functions as a
simulation tool.

2 Merging the UML and PNO
The UML uses sequence and state charts for modelling the message flow and states of
the system respectively. This results in two separate models, neither of which are

A1-8

Appendix 1 - Papers

mathematically provable. It is proposed that Petri net graphs can be used to capture both
the message passing and states of a system in one graph. Merging the UML and
structured Petri net modules, as proposed in Stanton (Stanton, 1999), produces graphical
models which take full advantage of current OO software engineering techniques. The
models are also mathematically provable (Delatour and Paludetto, 1998) and allow the
modelling of concurrent and non-deterministic systems (Zapf and Heinzl, 2000). One of
the main drawbacks of Petri net graphs is their inherent complexity, even on relatively
simple systems. In the UML, operations are used to access and alter the internal state of
the object. The proposed technique uses Petri nets to model these operations and their
resultant behaviour changes. By modelling only the limited range of states and
operations within a single object the complexity of the graphs is reduced considerably.
As well as capturing the static, dynamic and behavioural attributes of the system, the
resultant models help in the identification of user requirements, are understandable to a
wider range of users, are extendable and reusable, and provide enough low level detail
for the automatic generation of control code {STANTON 1999 #97}.

3 Applying Constraints

Once the classes have been designed and their operations and attributes established and
modelled, the resultant object is highly generic and can be applied to a range of
applications. However, in order to utilise the object, strict control must be placed over
the actions it is allowed to perform. For example, a manipulator may be able to move
left and right, up and down, back and forth and the gripper may open and close. When
applied to a specific system the manipulator may not be able to move right due to an
impeding obstacle and therefore the controller must always raise the object, move it right
and lower it, in order for it to achieve the required action of moving right. If this
constraint is built into the object then it becomes system specific and loses some of its
genericity. This paper proposes a method of applying a constraint object to the class in
order to meet the system requirements whilst not affecting the genericity of the class
itself.

4 Related Work

4.1 Object Oriented Design
(Adiga and Gadre, 1990)), (Adiga, 1993) proposed OO modelling as a method of
designing manufacturing systems and expanded the idea to take account of the
increasing use of robots (Lin et al, 1994). Much of the early work was based around the
methods proposed by (Coad and Yourdon, 1991), (Yourdon, 1994). Booch, Jacobson
and Rumbaugh amalgamated the early ideas (Booch et al, 1999), (Jacobson et al, 1999)
into the UML, and current work by the authors (Llewellyn et al, 2000) has applied the
UML to a manufacturing system.

4.2 Object Oriented Petri Nets
Petri Net theory has been a major research topic for some time and several attempts have
been made to integrate PNO and OO techniques (Delatour and Paludetto, 1998),
(Venkatesh and Zhou, 1998). Other researchers have extended PNO to incorporate OO
concepts such as the Hierarchical Object Oriented Design (HOOD). The HOOD
approach (Wu, 1995), (Di Giovanni, 1991) first proposed by the European Space

A1-9

Appendix 1 - Papers

t K and LU' 1997> to incOTPorate Petri nets in
entlty-relat'°nship diagram based OO design method (PEBOOD).

TS" ve led to extremely complex models wh*re the lh*
dont n *"?, °° Systems desi§n is at b^t tentative. In addition the techniques
do not folly capture all the benefits of a true OO approach.

4.3 Constraints

The UML uses the Object Constraint Language (Warmer and Kleppe, 1999) in order to

apply constraints to the model. However, these are little more than comments with no

direct code conversion possible. The forbidden state problem is an is an area widely
researched in Petri net theory and the work of Holloway and Krogh (HOLLOWAY and

fift? P'J ?i!LfP ymg constraints to controlled marked graphs has been adapted to
fit the Petri net/UML approached presented in this paper.

5 Application

The technique described in this paper is demonstrated by applying it to the raw materials

station (RMS), part of the University of Wales College, Newport's computer integrated

manufacturing (CIM) system. Initially the system views are captured from a user's

perspective using use case scenarios. Next the classes in the system are identified and

their attributes and operations captured. The attributes (or states) and operations are

modelled using Petri net graphs, where one graph is used to model all operations for a

particular class. Output places (Stanton, 1999) are used to represent message passing
between objects. Finally the system constraints are identified and placed in a constraint
class for each object.

5.1 An overview of the CIM system

The system shown in figure 1 is designed as an example of a CIM system. It is

composed of a number of modules that interact in order to produce end products. The
raw materials used by the system are a perspex block and a metal cylinder. The block

and cylinder originate from the raw materials station and are placed into trays on a
conveyor belf

Robot Lathe Mill

Conveyor
Buffers

Figure 1 The CIM system

A1-10

Appendix 1 - Papers

The block is milled and the cylinder lathed so that the two items fit together. Finally the
finished product is stored in the automated storage and retrieval system (ASRS). The
focus of this paper is on the RMS.

5.2 Use Case Scenarios
The RMS can be shown as a use case diagram, figure 2, and it can be seen that it
interacts with the conveyor belt in order to perform its operations. These operations are -
get a pallet from the conveyor belt (getPallet), put a pallet and block on the conveyor
belt (putBlock) and put a pallet and cylinder on the conveyor belt (putCylinder).

putBlock^

conveyer belt

conveyer belt ^ _ ,. ,^-—»______^-^^ putCylinder

conveyer belt
Figure 2 Use case scenarios for the raw materials station

The use case diagram in figure 2 identifies the communication between the module
under consideration and the outside world and gives the basic information needed to
operate the module. This can be described as the interface between this module and any
component that needs to interact with it. This concept of encapsulation, also known as
information hiding, is an important OO technique and helps achieve the idea of loose
coupling (SOMMERVILLE, 1995), (Meyer, 1997), (PRESSMAN, 2000). The internal
operations of the module are hidden from the user. In order to operate this module
external users need only know about its interface, which describes the operations it
performs. The internal details of how it provides a cylinder or block, or gets a pallet, are
unimportant when calling these operations. Therefore, modifications made to the
internals of an object should have a minimal, if any, effect on other objects in the
system, as long as its interface remains unchanged. Expanding this idea gives the
concept of a hardware/software object, where no distinction is drawn between the
software and hardware in the module. Instead the module is thought of in terms of the
operations it performs and the interface to those operations.

The RMS itself (figure 3) consists of a series of interacting objects. It contains two
manipulators and two storage units. The latter contain blocks and cylinders respectively
with one manipulator used to load cylinders onto a pallet waiting in the loading area,
whilst the other serves the dual purpose of placing pallets onto the loading area, and
populating pallets with blocks.

The whole station is controlled by programmable logic controllers (PLC's) via a series of
pneumatic actuators. A description of the using the UML to create an aggregation of
these actuators to form a manipulator is described in (Llewellyn et al, 2000).

A1-11

Appendix 1 - Papers

0000

Figure 3 Layout of the raw materials station

The RMS can also be modelled with a use case diagram, to give an understanding of the
behaviour of the module's interactions. The resultant diagrams are not shown for space
considerations but give the following operations:

Object

Cylinder Manipulator

Pallet Manipulator

Action

Get cylinder from cylinder storage

Put cylinder on loading area

Get pallet from conveyor

Put pallet on loading area

Get block from block storage

Put block on loading area

Table 1 The operations of the raw materials station

These actions help in the design of the operations for each of the objects in the RMS, and
further identify the interface of each object which can be used later to design the module
controller. Using use case analysis is an iterative process where each module is
decomposed into its component sub-modules and these in rum are modelled. Ultimately
all levels of the system are modularised and enough detail is obtained to design each
object fully using a bottom-up approach. Ultimately the top levels of the system are
combinations of lower level objects.

A1-12

Appendix 1 - Papers

5.3 Class diagrams

Focusing on the cylinder storage manipulator, it can be observed that the object is an
instance of class manipulator, and that this class itself is a composition of four instances
of class actuator. The actuator class has two simple methods that allow it to actuate or
deactute. However, these actions carry out a different operation depending on the
receiving object. For instance, an actuator in the system under consideration may take
one of four types. It contains a rotary actuator, which is able to actuate right or deactuate
left. It contains a horizontal actuator which is able to extend or retract, and a vertical
actuator which is able to move up or down upon receiving its actuate or deactuate
command. Finally it contains a gripper which when actuated opens and on deactuation
closes. This demonstrates the OO concept of polymorphism whereby each of the classes
responds differently to the same command based upon its hidden internal mechanisms.
The manipulator class itself responds to commands such as move left, move right, up,
down, open and close. These commands or operations form the interface to the
manipulator class, with the individual actuators, and indeed their pneumatic valves and
the PLC controller being encapsulated from the user.

5.4 Modelling the behavioural capabilities of an object using Petri
net graphs

Having captured the class diagrams and any inheritance present in the system, it is
possible to model the dynamic capabilities of the class. These are the operations that
need to be invoked in order to make the class carry out its functions. In addition, the
operations provide a method of altering the state or behaviour of the object. In a discrete
event system (DBS) such as the CIM system being considered, the state of the system at
any moment in time can be captured by obtaining the states of all objects in that system.
A Petri net graph allows these states to be represented visually or, if required,
mathematically. The corresponding UML diagrams for capturing the dynamic and state
aspects of a system are interaction and state diagrams. However, not only does this
require the modelling of two separate diagrams, but neither are mathematically provable.
The actuator class can be modelled using the following class/Petri net diagram:

ACTUATOR

state {actuated, deactuated, busy}

actuateO

deactuate()

Figure 4 The complete actuator object

A1-13

Appendix 1 - Papers

In the diagram smaller circles represent control places and feedback. The former are
signals from the controller that invoke the method of the object. In this instance these
can be either actuate or deactuate. The feedback is being sent to the controller object,
with double circles representing input from external feedback sources. The dashed line
represents the external (public) interface to the object.

5.5 Applying constraints to the object
The actuator class has been designed to be as generic as possible, as indeed is the
resultant manipulator. It can be seen that this object can be reused in any application.
To ensure the object remains as general purpose as possible the environment specific
constraints are built into a separate object which acts as an intermediary between the
controller, which is goal specific and the manipulator object itself. In the system under
consideration, the only constraint for the raw materials manipulator is that the gripper
cannot be opened when the arm is raised. Imagining the cylinders to be quite heavy,
doing so could amount in considerable damage to the other objects in the system and
possibly the cylinder itself.

Figure 5 shows a constrained object being used. The controller object sends a message
to the manipulator via its constraint. The constraint validates the request based on the
current state of the object it is constraining, and depending upon the outcome either
sends the message on to the object for actioning or returns an error message to the
controller.

Controller Message Request

Feedback
Constraint Message Request

Feedback Object

Figure 5 A constrained object

The constraint here is the intermediary between the controller and manipulator object, in
other cases the constraint could be constraining a combination of objects where it is
ensuring there are no conflicts between objects operating in the same environment.

A1-14

Appendix 1 - Papers

6 Conclusions

It is widely accepted that manufacturing systems need to be flexible, customisable and
maintainable. This is effectively addressed in the proposed OO system where individual
objects can be customised and updated using the key features of UML, such as
inheritance, polymorphism and encapsulation. By integrating the two types of models,
the design of manufacturing systems is greatly enhanced. Manufacturing systems will
be able to take advantage of the concepts of OO programming that have been widely
available in software engineering for some time. Future upgrades to the resultant system
will be more intuitive as manufacturing design adopts the 'plug and play' philosophy of
other computer systems. The technique provides a model that can be used initially as a
simulation tool and later as the basis for the automated generation of the control
software. Once the initial design has been carried out many objects can be reused in
future systems with no requirement for additional modelling.

7 Future Work

Whilst the idea of hardware software components (Kopetz, 1999), and Petri net modules
(Stanton, 1999) has already been proposed, the communication between these modules
needs translation into real systems. Petri net diagrams have been successfully converted
into ladder logic (Stanton, 1999), however, as modern systems increasingly take
advantage of more up to date programming languages, this idea needs to be extended to
translate from Petri nets to their syntax. Thought also needs to be given to the
elimination of the redundant code inherent in automated code generation from OO
models (Narisawa et al, 1998). This paper proposes the concept of a constraint object
based around the UML and Petri net graphs. Future work will expand this idea to cover
a larger system that incorporates multiple objects and constraints.

Reference List

Adiga, S. (1993). Object-oriented Software for Manufacturing Systems. London, UK:
Chapman & Hall.

Adiga, S. &Gadre, M. (1990). Object-Oriented Software Modeling of a Flexible
Manufacturing System. Journal of Intelligent and Robotic Systems, 3, pp. 147-
165.

Booch, G., Rumbaugh, J. &Jacobson, I. (1999). The Unified Modeling Language User
Guide. USA: Addison Wesley Longman..

Chen, K. &Lu, S. (1997). A Petri-net and entity-relationship diagram based object-
oriented design method for manufacturing systems control. International Journal
of Computer Integrated Manufacturing, Vol. 10 (No. 1-4), pp. pp. 17-28.

Coad, P. &Yourdon, E. (1991). Object-Oriented Analysis. 2nd end. New Jersey, USA:
Yourdon Press.

Delatour, J. &Paludetto, M. (1998). UML/PNO: A Way to Merge UML and Petri Net
Objects for the Analysis of Real-Time Systems. Lecture Notes in Computer
Science, 15 (43), pp. 511-514.

Di Giovanni, R. 1991. Hood Nets. Lecture Notes in Computer Science, (524), pp. 140-
160.

Holloway, L. E. &Krogh, B. H. (1990). Synthesis of Feedback Control Logic for a Class
of Controlled Petri Nets. IEEE Transactions on Automatic Control, 35 (5), pp.
514-523.

A1-15

Appendix 1 - Papers

Jacobson, I., Booch, G. &Rumbaugh, J. (1999). The Unified Software Development
Process. USA: Addison Wesley Longman.

Kopetz, H. (1999). Do Current Technology Trends Enforce a Paradigm Shift in the
Industrial Automation Market? 7lh IEEE International Conference on Emerging
Technology and Factory Automation, pp. 1557-1565, Barcelona, Spain.

Lin, L., Wakabayashi, M. &Adiga, S. (1994). Object-oriented modelling and
implementation of control software for a robotic flexible manufacturing cell.
Robotics & Computer-Integrated Manufacturing, 11 (1), pp. 1-12.

Llewellyn, E. W., Stanton, M. J. &Roberts, G. N. (2000). Towards the implementation of
the Unified Modelling Language (UML) into a Computer Integrated
Manufacturing (CIM) environment. Fourteenth International Conference on
Systems Engineering, pp. 398-403, Coventry, UK.

Meyer, B. (1997). Object-Oriented Software Construction. 2nd end. New Jersey, USA:
Prentice Hall.

Narisawa, F., Naya, H. &Yokoyama, T. (1998). A Code Generator with Application-
Oriented Size Optimization for Object-Oriented Embedded Control Software.
Lecture Notes in Computer Science, 15 (43), pp. 511-514.

Pressman, R. S. (2000). Software Engineering A Practitioners Approach. 5th edn.
London, UK: McGraw Hill.

Sommerville, I. (1995). Software Engineering. 5th end. London, UK: Addison-Wesley.
Venkatesh, K. &Zhou, M. (1998). Object-oriented design of FMS control software based

on object modeling technique diagrams and Petri nets. Journal of Manufacturing
Systems, 17 (2), pp. 118-136.

Warmer, J. &Kleppe, A. (1999). The Object Constraint Language. Reading, USA:
Addison-Wesley.

Wu, B. (1995). Object-oriented systems analysis and definition of manufacturing
operations. InternationalJournal of Production Resources, 33 (4), pp. 955-974.

Yourdon, E. (1994). Object-Oriented Systems Design. New Jersey, USA: Prentice-Hall.
Zapf, M. &Heinzl, A. (2000). Approaches to integrate Petri nets and object-oriented

concepts. WIRTSCHAFTSINFORMATIK, 42 (1), pp. 36-48.

A1-16

Appendix 1 - Papers

A NINE STEP APPROACH TO DESIGNING
SUCCESSFUL VISUAL PROGRAMMING
APPLICATIONS

Eric Llewellyn, Martin Stanton and Geoff Roberts

Mechatronics Research Centre, University of Wales College, Newport
Allt-yr-yn Campus, PO Box 180, NP20 5XR, United Kingdom

Abstract: The following paper presents a nine-step method for overcoming the

limitations of traditional models when designing visual applications.

Microsoft Visual Basic is used to demonstrate the technique which can be

applied to most visual programming languages. The method described takes

account of factors such as an interface driven approach, the psychology of

programmer commitment, the need to develop readable code, and provides a

method of modularly designing detailed test documents. The method has

proved to be suitable for existing visual basic developers and those wishing to

move from procedural into visual programming.

Introduction

Visual programming is increasingly being adopted for software development and

languages such as Visual Basic are becoming the tools of choice for applications

development. This is inevitably due to their flexibility and ease of use, though their

use is more usual within the software development rather than software-engineering

domain. Command and control and real time systems will more likely run under

languages such as C. For many applications there is an increasing need for traditional

programmers to embrace this new technology and design quick, customised

applications. It is inappropriate to approach the design of such systems using

conventional design methodologies such as the waterfall model [2] {Sommerville

1995 #78}as these methods tend to be structured to procedural software development.

Even experienced visual programmers tend to take an exploratory approach to rapid

applications development (RAD) and this exploratory nature often leads to poorly

designed programs with inefficient code. With exploratory programming, debugging

is an ongoing affair as errors often result from the confusion caused by this approach.

A1-17

Appendix 1 - Papers

Programmers often take a cursory glance at the requirements and immediately begin

developing their applications with no real picture of the overall project. This means

that problems are solved as they are encountered which very often leads to the

creation of other problems further along the development process. The code is

reworked from front to back with problems being fixed along the way, and this

method is iteratively carried out until the application works satisfactorily. This can

lead to frustration and dissatisfaction on the part of the programmer. In many

instances the initial good intentions of the programmer to apply interesting techniques

and routines to the code is destroyed by the final rush to get the application working.

For all forms of programming the foundations of the application are code

commenting, indenting, and naming of variables and objects. If these foundations are

not correctly laid out from the outset of the project several problems can arise.

Amending procedure names etc. can cause errors in the application. The programmer

may have lost the inclination to do any more than is absolutely necessary towards the

end of the project life cycle. In visual programming, often too much time at the

outset is spent designing the interface, which is often important coding time wasted.

The following nine-step plan is suggested as a method of overcoming many of the

problems identified:

Step 1 - Plan the application

Step 2 - Design a working interface

Step 3 - Assign meaningful names

Step 4 - Identify events and describe the required behaviour for each event

Step 5 - Code the easy statements

Step 6 - Formulate complex code

Step 7 - Implement the complex code

Step 8 - Test and debug the application

Step 9 - Enhance the GUI

A1-18

Appendix 1 - Papers

Motivation

Programmer motivation during a software development project can be likened to a

musician playing a guitar. For example, the musician strikes chord C. The note

follows a path as shown in Figure 1 below:

Amplitude

Time (Normalised to note duration)

Figure 1: The rise and decay of a guitar chord

The note rises quickly to its peak and then slowly begins to fade as time progresses.

The same is true for programmer motivation. It is possible to use the same graph

with a different label on the y-axis to represent this.

Motivation

Time (Normalised to project duration)

Figure 2: The rise and fall of programmer motivation

A1-19

Appendix 1 - Papers

The programmer's motivation is at its highest level at the inception of the project,

shown as a shaded area in Figure 2, as the project progresses and the tasks become

tedious and repetitive, the motivation of the programmer fades, although there is often

a slight upturn as the project reaches completion.

If this concept is taken a stage further it can be seen in Figure 3 that this cycle is

actually composed of smaller, similar cycles for each task in the development of the

project. Each cycle will have higher or lower motivation depending on how the

individual programmer likes that particular task.

Motivation

Time (Normalised over the duration of the task)

Figure 3: Programmer motivation over the duration of a project

To return to the guitarist analogy, the chord previously struck is about to lapse and yet

the musician wishes to extend the note. He/she does not want to strike the note again,

as this would alter the musical score. Instead the guitarist has a range of techniques

such as adjusting the tremolo arm or vibrating their arm which can extend the note.

Likewise if the programmer begins to tire of a task, he or she does not want to begin

the task again. Instead a method is needed which takes the task in another direction.

This change of direction is hopefully enough to re-motivate the programmer to

A1-20

Appendix 1 - Papers

complete the current task and begin the new one. The methodology presented in this

paper aims to counteract this 'waning of programmer' interest by placing the more

interesting elements of development at key stages within the process. The suggested

steps will aid in the generation of efficient and robust code.

Step 1 - Plan the application

Action: Understand what is required and plan the program

It seems obvious but it is important to understand the whole application problem

before embarking upon any development task. In many cases a developer may skirt

through the detail of a problem and begin programming in an almost top down

approach. Imagine the situation where a programmer is given a lengthy brief about a

change handling system that is required by a client in an amusement arcade. Having

quickly glanced over the specification the program begins coding in the 'code and fix'

fashion and arrives at a fully functional application. The system can accept any

sterling paper denomination and can duly give a various combination of change as

required by the user. The developer is pleased with his/her effort and subsequently

demonstrates the application to the client. However, the client quickly draws the

programmer's attention to some of the small print in the specification, the system

must be able to deal with different currencies as it is to be implemented throughout

their international gaming business. Whilst the code can be modified to

accommodate this it may require a considerable amount of time to do so. Time which

could have been spent on other tasks had the problem been thought through in detail.

At this step any available documentation should be read and understood. Interviews

should be held with the client to establish anything not stated and to clear up any

queries. Despite the ad-hoc nature of event driven programming, there will be some

basic path which the application follows and this can be drawn as in the generic step

A1-21

Appendix 1 - Papers

diagram shown in Figure 4 which shows the basic route through the application. The

dotted lines represent possible conditions or repetitions in the program

Initialise

Stepl

Step2

StepS

Unload

Figure 4: The generalised path of event driven software development

As applications such as Visual Basic are inherently interface oriented it should be

possible to identify the type of controls, i.e. buttons, check boxes and so on, and

possibly events related to these controls, i.e. mouseOver, click etc.

Step 2 - Design a Working Interface

Action: Develop a working interface in order to begin implementing the plan

Visual languages are by their very nature, and as the name suggests, based around

interfaces. The effective design of such graphical user interfaces (GUI) plays a strong

role in the usability of the finished product. Therefore much thought should be

placed on effective design. There are many articles available which discuss the

design of GUI's and how computers and humans interact ([3], [1]), however, this is

beyond the scope of this paper. GUI design can be an interesting and satisfying part

of the project life-cycle and many developers enjoy this aspect of the project,

however, at the initial phase of the design cycle there is the danger of spending too

much time on the GUI design, especially in a time constrained project where this

could be at the cost of the functionality of the program.

A1-22

Appendix 1 - Papers

A rough or functional interface should be developed for all forms required by the

application and these should be populated with the various controls required. The

planning step should have suggested some of the controls and a reasonable idea of the

form hierarchy which can be developed at this step. This step can be carried out,

where necessary, with the direct involvement of the client. It is not important here to

adjust fonts, screen colours and the aesthetics of the forms.

Having considered the application in its entirety at stepl, even the novice visual

programmer will find it easy to ascertain the control types to use drawing on their

experience with other Window's applications.

Step 3 - Assign meaningful names

Action: Assign meaningful names to all objects and variables in the system

To demonstrate the benefit of correct naming compare the code snippets shown

below:

Public sub commandl_click()
a=(b/2)*c
labell.caption=str(a)

End Sub

Public sub calcArea_click()
strArea=(sngBase/2)*sngHeight
IblArea.caption=str(sngArea)

End Sub

Whilst it can be seen that the leftmost example is halving a variable and multiplying

by another, assigning the value to a third variable, it becomes apparent from the

rightmost code that it is the area which is being calculated. By simply giving code,

objects and events sensible names code becomes easier to decipher for anyone

examining the work at a later step or indeed for the developer. Adding the sng to the

variable names gives the reader and indication they are type single. Microsoft

provides a valuable list of naming conventions, the most common of which are shown

in the Table 1 below:

A1-23

Appendix 1 - Papers

Data type
Boolean
Byte
Collection object
Currency
Date (Time)
Double
Error
Integer
Long
Object
Single
String
User-defined type
Variant

Prefix
bin
byt
col
cur
dtm
dbl
err
int
Ing
obj
sng
str
udt
vnt

Example
blnFound
bytRasterData
colWidgets
curRevenue
dtmStart
dblTolerance
errOrderNum
intQuantity
IngDistance
objCurrent
sngAverage
strFName
udtEmployee
vntCheckSum

Table 1: Common variable names based on the Microsoft standard

This process can be carried out in parallel with step 2, it is important that all objects

and variables have sensible, meaningful names at the end of this step.

Step 4 - Identify events and add comments

Action: Identify all events in the application and describe the required
behaviour for each event as appropriate___________

Having designed a working interface for the application and with the plan from step

1, the developer at this step will have some concept of the program's overall flow.

Tying the two together the events which trigger these paths become apparent i.e.,

buttons, mouse events etc are the user inputs which can cause actions. Likewise some

actions, such as timers, that are under the control of the program itself can also invoke

events.

These events should be commented with sensible statements, which can later provide

guidelines for implementing in the language syntax. Where the code is simple such

as "end" application the comments may be simple. Where the code is complex, the

A1-24

Appendix 1 - Papers

comments can be broken down further to provide more guidance when coding. For

example, an end button may invoke a message box warning containing the option to

exit (Yes) or continue (No). This could be commented as follows:

Public Sub cmdEnd_Click()

'User has clicked the end button

'Display message box

'End application if user clicks yes

End Sub

The first comment is a general statement as to the purpose of the subsequent code,

whilst the next statements break down the task for coding. At the end of this step the

comments will describe 'pseudocode' statements detailing the function of each event.

Step 5 - Code the easy statements

Action: Write the code for the easier parts of the application

Sections of code may be quite simple to implement, such as 'End' and 'Clear' buttons.

However, there are different degrees to which this is completed effectively. For

example, an end button can contain no more than an 'End' statement at which, by

accident or choice, the user is abruptly taken from the application. A more suitable

end statement displays a warning offering the user a further choice. These

refinements are generally simple to implement and add much to the user friendliness

of applications. At the early stage of the development when the programmer is still

motivated and keen to complete the application, these should be coded. Towards the

end of the life cycle the programmer motivation and/or time may preclude these

statements being effectively coded.

A1-25

Appendix 1 - Papers

Write all essential code so that the application has basic functionality. Where the

application has multiple forms this can include opening and closing the relevant

screens and probably includes a working end button.

Step 6 - Formulate complex code

Action: Outline any complex code or calculations outside of the Integrated
____Development Environment (IDE)

Almost inevitably the application will be required to perform some calculations or

complex data handling. The comments from step 3 will have aided in the

identification of the necessary steps required, which should now be outside of the

IDE. Accompanying the calculations should be, where applicable, test data which

reinforces the formula. By working outside of the programming environment the

developer is able to pursue the most effective method of solving a problem and does

not try to impose 'language terminology' on the solution. At this step he/she is free

from the constraints of the programming language. It is suggested that once an

effective solution to a problem has been found, the problem is to establish the best

method of implementing this in the chosen language and not the other way around.

The resulting test data also becomes useful in step 9 of the design.

Step 7 - Implement the complex code

Action: Code the complexities of the application

Once the complex code has been described and manually tested, a viable solution

needs to be found to carry out the required tasks. Using the commentary provided

from step 4 and the plan developed in step 1, this task should be more intuitive. It is

however the most crucial step of development as the main functionality of the

application is within this step. The main requirement of the application and the

A1-26

Appendix 1 - Papers

purpose for its design will be coded during this step. It is also the point at which the

programmer's motivation is usually beginning to degrade as he/she tires of the

project.

Step 8 - Test and debug the application

Action: Design a test requirements document and test the application

The first priority at this step is to design a test requirements document (TRD) which

is used to test the performance of the application. The document should identify each

event and the associated action(s) and ensure they perform correctly. For many

programmers TRD design is one of the least interesting and tedious parts of the

development process and is generally disliked. However, the approach suggested

here lends itself well to TRD design. At step 4 all events were identified and

commented such as that shown in Figure 5. These events and comments map neatly

into the TRD as shown below:

Event Action Check

End button clicked Warning displayed

User clicks no program continues

User clicks yes program ends

>/
V
V

Figure 5: An event/action test document

Taking this a stage further the TRD should also concern itself with accuracy as well

as functionality. For example, an application may be required which allows the user

to enter two numbers, which are added together and displayed upon pressing a button.

The test for the button may be as shown in Figure 6:

A1-27

Appendix 1 - Papers

Event Action Check

Button clicked Result is calculated and displayed V

Figure 6: A test documents showing a calculation event

Therefore, if the numbers 10 and 20 are entered and 30 is displayed it would be

correct to check off this test as being complete. However, if the same numbers are

entered and the number 40 is displayed is the test satisfied? In this case yes, a result

was calculated and displayed. There was no stipulation that the result had to be

correctly calculated. It is suggested that to overcome this inadequacy the wording of

the test is carefully prepared and that all calculations are validated using test data.

Conveniently step 8 will provide tests and answers which can now be used with the

application and compared to ensure the program functions correctly. The probability

is that the testing of the application will highlight any bugs in the system or

inadequacies with the operation of the program. At this step these can be amended.

Step 9 - Enhance the Graphical User Interface (GUI)

Action: Enhance the GUI

By step 9 the application is well coded and commented, fully functional and

thoroughly tested and the programmer is possibly eagerly awaiting the signing off of

the project. After spending a large amount of time dealing with the intricacies of the

code, the programmer is now free to spend as much or as little time as necessary in

the pursuit of enhancing the interface.

A1-28

Appendix 1 - Papers

Conclusions

This article has presented a nine-step plan to a successful visual software

development. The technique will eliminate many of the problems inherent in the

development of these types of applications. One of the important aspects of the

method is that it takes into account the initial enthusiasm when a new project is

undertaken and the wane in interest as the project progresses. Whilst much work has

been carried out in the field of user psychology, this paper approaches the design

from the perspective of programmer psychology. It identifies the aspects of projects

that are generally poorly implemented such as 'easy code' and TRDs and offsets the

unwillingness to do this by placing them in the enthusiastic period of development.

The more interesting aspect of RAD programming, i.e. GUI design is placed at the

end of the project when it provides a resurgence of interest before the project is

finally completed. Programmers moving into the visual programming field from

more procedural languages now have a structured framework in which to develop

efficient and robust applications. Whilst the method outlined in this paper has been

applied to Microsoft's Visual Basic, the technique can readily be applied any visual

application such as Borland's Delphi or C builder. The method presented is equally

applicable for students and industrialists and provides a driving force that addresses

the fundamentals of visual software development.

Further Reading

[1] Schneiderman, B., Designing the user interface : strategies for effective
human-computer interaction. 3 rd edn. 1998. Addison-Wesley. London.

[2] Sommerville, I., Software Engineering. 6th edn. 2001. Addison-Wesley.
London.

[3] Wood, L. E., User interface design : bridging the gap from user requirements
to design. 1998. CRC. Boston.

A1-29

Appendix 1 - Papers

A COMBINED OBJECT-ORIENTED AND STRUCTURED PETRI
NET APPROACH FOR DISCRETE EVENT SYSTEM'S DESIGN

Eric Llewellyn1, Dr Martin Stanton* and Professor Geoff Roberts*

f University of Wales College, Newport. School of Computing and Engineering
Allt-yr-yn Campus. PO Box 180, Newport NP20 5XR, South Wales, United Kingdom.

email: eric.llewellvn@.newport.ac.uk and geoff.roberts(5),newport.ac.uk

* Manchester Metropolitan University, Department of Computing and Mathematics
John Dalton Building, Chester Street, Manchester, Ml 5GD, England, United Kingdom.

email: m.stanton@mmu.ac.uk

Abstract

This paper proposes a method of designing discrete event systems utilising a
combined object-oriented and Petri net approach. The approach allows manufacturing
system designers to develop truly generic, and therefore reusable systems and
components that can aid in the speed up of system design and implementation. It also
provides a user-centric view of the system that can facilitate effective communication
between system designers and end users.

Initially use-cases are iteratively developed until the resultant diagrams fully capture
user requirements along with a suitable level of detail in order to implement the design.
Subsequently the use-case scenarios provide a series of 'test cases' that enable the end
system to be fully tested against the original design requirements. A series of class
diagrams are then produced using the standardised notation provided by the Unified
Modelling Language (UML). The resultant class diagrams provide a generic and
abstracted view of the system and enable the system designer to identify all levels of
modularity within the system under consideration. Careful identification of the
'interface' to each module in the system presents two major benefits to manufacturing
system design: firstly it allows a large project to be concurrently developed by a team
thereby reducing the time to implementation; secondly it enables manufacturing
organisations to incrementally implement new systems by department or even cell level.
A well-defined interface and encapsulated module mean that it is possible to combine
new and existing technologies without leaving 'islands of automation'.

The approach outlined in this paper draws no distinction between hardware and
software, and instead views the system as a series of events and resultant state changes
that are modelled using structured Petri nets. Structured Petri nets allow a model to
more closely resemble the system under consideration by extending the basic Petri net
graph to include input and output places that can be used to model direct control of a
system and allow for the capture of feedback. In common with the basic Petri net
model the structured Petri net graphs can be used to simulate a system, enabling the
system modeller to carry out 'what if analysis on any proposed design or change. The
structured Petri net approach also allows for the generation of control code, which again
reduces the all-important time to implementation.

A1-30

