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Summary

The thesis describes a method for the rapid, incremental design and implementation 
of manufacturing systems utilising a combined object-oriented and structured Petri 
net formalism. The background to the problems facing manufacturing organisations 
wishing to implement computers into manufacturing systems is presented along with 
a discussion of how software engineering techniques can be applied to overcome 
them. Modularity and object-orientation are proposed as a way of enhancing the 
development of manufacturing systems. A review of current techniques for modelling 
manufacturing systems is presented which outlines the benefits and drawbacks of a 
number of methods. A three-level control architecture is developed which distributes 
complexity amongst the low levels of the system. The control structure is combined 
with a behavioural constraint object to ensure that maximum reuse can be gained 
from objects in the system. A formalism for integrating Petri nets into the UML is 
outlined, entitled Functionally Encapsulated Modules. These modules provide full 
object-oriented capabilities coupled with the functional modelling power of Petri nets. 
State space explosion is reduced as Petri nets are used only for modelling the 
functionality of objects. However, the modules also retain the abilities of simulation 
tool and mathematical proof of the original Petri net. The methodology and modelling 
tools are evaluated by applying them to a discrete event manufacturing system. 
Conclusions are then drawn on the various aspects of the work and details of further 
research possibilities are described.
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Chapter 1 - Background to the Research and Thesis Outline

Background to the Research and
Thesis Outline

This chapter analyses systems modelling in a manufacturing context 

and establishes the scope for cross fertilisation of this field from 

techniques successfully applied in the discipline of software 

engineering. To achieve this goal, the concept of a hardware/software 

object (HSO) is defined as an object which visualises a machine not as 

a hardware entity, but as the software that controls it. Utilising the HSO 

approach facilitates a more direct correlation between the design of a 

manufacturing system, containing a myriad of interrelating hardware 

and software, with that of traditional software development. This chapter 

outlines the motivation and scope of the work presented in this thesis. 

Initially, the work is contextualised before the aims and objects are 

clearly stated. A background to the problems facing twenty-first century 

manufacturing organisations is described that highlights the change in 

philosophy since the introduction of large scale mass production during 

the Second World War, along with its associated problems for system 

designers.
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Chapter 1 - Background to the Research and Thesis Outline

1.1 Introduction to the Work

This research work closes the loop on the object-oriented design 

methodology for the implementation of Computer Integrated 

Manufacturing (CIM). This is achieved by merging the Unified 

Modelling Language (UML) and Structured Petri nets (Stanton, 1999). A 

combined methodology and modelling tool has been created which 

enables manufacturing system designers to develop systems which 

utilise the full reuse capabilities of object-orientation combined with the 

powerful functional modelling of Petri nets. Providing true object- 

oriented capabilities to Petri net graphs is an original contribution of this 

work. A novel methodology has been developed which enables system 

designers to take a top-down approach to system development. The 

methodology facilitates a fully modular and incremental approach to the 

design, development and implementation of manufacturing systems. 

This work also expands upon the concept of a combined 

Hardware/Software Object (HSO) to reduce design complexity. HSOs 

have been conclusively defined and are inherent in the full development 

process described in this thesis. Utilising HSOs enables manufacturing 

systems, containing a range of hardware and software, to be visualised 

as purely software systems. The work also introduces the novel concept 

of behavioural objects which are designed to maximise reuse 

capabilities within manufacturing systems. The behavioural objects also 

ensure that manufacturing system designers can take advantage of a
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Chapter 1 - Background to the Research and Thesis Outline

library of fully designed and tested components to speed up future 

system design or redesign. A new three level control structure which 

distributes the complexity of the system from a control perspective has 

been designed that fully integrates with the design methodology 

proposed in this work. The control structure proposed in this work is 

designed to ensure that maximum reuse capabilities are achieved in the 

design of system controllers. Finally the unique modelling tool entitled 

Functionally Encapsulated Modules (FEM), created in this work, enable 

the generation of simulation models and provide a method of mapping 

to fully functional control code.
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1.2 Aim of the Research

The aim of this research is to close the loop on object-oriented 

modelling in a manufacturing context. This is achieved by utilising a 

novel methodology and modelling technique based upon the UML and 

structured Petri nets. The aim achieved in this work will provide 

manufacturing organisations with a solution to the three problems 

(goals) identified in this chapter:

1. Speed of design and development;

2. Costs to be kept to a minimum;

3. Quality through consistency.

This will be achieved by establishing an object-oriented methodology for 

the analysis and design of manufacturing systems which allows such 

systems to be rapidly designed and incrementally implemented. The 

methodology used needs to satisfy the dual aims of being intuitive for 

users to understand, but detailed enough to actually see the process 

through to implementation. The technique will also provide system 

designers with a simulation tool, which can subsequently generate 

optimised control code.
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1.3 Achieving the Objectives

The work reported here provides manufacturing system designers with 

a Computer Aided Software Engineering (CASE) methodology for the 

incremental implementation of Computer Integrated Manufacturing 

(CIM). A methodology is defined in this work, which contains a number 

of elements that work towards achieving this aim.

The proposed design method is based upon a novel approach called 

Functionally Encapsulated Modules (FEM). FEM are a combination of 

the Unified Modelling Language (UML), which has become the de facto 

standard for modelling software systems in the sphere of software 

engineering, and structured Petri nets as defined by Stanton (1999). 

Initially the system is examined and discussions with users carried out 

to define the boundaries of the system(s) under consideration. This 

enables the construction of a suite of iteratively refined diagrams 

representing the modular structure of the system. The primary models 

define both the boundaries of the system under investigation and the 

input and output processes that are utilised at sub module level within 

the system. Further these models are used to ensure a coherent 

interface between the individually designed sub-systems under 

consideration and the larger system as a whole. Use-case diagrams 

are used to provide a user-centric view of the system that enables 

designers to capture the main processes of the system as visualised by 

its stakeholders. Here a user can be described as a human who
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Chapter 1 - Background to the Research and Thesis Outline

interacts with the system in some way, or a separate process which 

requests some operation be carried out by another module in the 

system. This highly modular approach to systems' design provides a 

loosely coupled system (Pressman, 2004) that is receptive to the 

incremental nature that this work emphasises as all-important to 

modern manufacturing organisations. The end result of this stage is the 

identification of a number of sub-systems or modules, within the system 

under consideration. These can be analysed and automated 

independently of each other to reduce the disruption to the system as a 

whole, or can be considered concurrently by teams.

Having established the building blocks of each module, the classes in 

object-oriented parlance, using the UML notation a model of the static 

system can be produced. This model is then enhanced with structured 

Petri nets which capture both the dynamic behaviour and state 

representation of the system. The Petri nets can be used to simulate 

system processes and the changes in state undergone by the various 

HSOs in the system to ensure suitability for purpose, safety of operation 

and allow optimisation of the processes.

One of the key features of object-oriented modelling languages is their 

ability to provide template classes, which can be used to build a 

collection of reusable components. These components provide a library 

of pre-built objects that can be taken as needed and used to build
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modules or indeed complete systems. However, one problem with this 

approach is the need to amend objects for different systems that in 

many instances can mean a considerable amount of modification is 

needed before a generic object can actually be used within a new 

system. This work overcomes this problem by defining 'constraint 

objects' which are used to provide an interface between the main 

system control object (goal control) and the lower level module and sub- 

module (task control) objects. This allows designers to make full use of 

the features presented by modern object oriented languages, whilst 

maintaining full reuse capabilities to a level unachievable in most 

current systems.

The throwaway approach to developing system prototypes can mean 

hundreds of wasted man hours as once a system is designed the 

prototype, which has been used for simulation, is discarded and new 

software is developed. In this work a novel approach is taken which 

utilises the Petri net objects for the modelling and simulation of the 

system, but which can then generate optimised and robust code for 

controlling the final implementation. The tool can also be used for 

further optimisation and debugging later in the life of the working 

system, or indeed as a useful way of visualising and simulating the 

finished system.
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1.4 The Change in Manufacturing Philosophy

During the '30 glorious years' between 1945 and 1975, as defined by 

Waldner (1992), world economies have shifted from markets of 

abundance to those dominated by supply. The manufacturing response 

has been to move from large-scale mass-production to a highly 

customised and generally small-scale production of products. The 

origins of this shift can be traced back to the privations suffered during 

World War Two. Immediately following the war public demand was for 

mass produced, low cost items, however with the war a distant memory, 

increasingly customers began to demand higher quality, lower cost and 

highly customisable products. Typically the current lifespan of a product 

can be measured in months rather than years. In many cases existing 

products are enhanced rather than replaced, for example the Apple 

iPod range is revamped approximately every twelve months. Though 

the basic technological structure of the iPod, remains the same 

revisions generally apply to aesthetics or modular components, such as 

increased storage capacity. From the production perspective these can 

be considered to be alternatives in components during the production 

phase which can be accommodated from a system designer's viewpoint 

as optional flows in the build process. It is clear that once the basic 

functionality of a product is developed enhancements are added in the 

form of modular additions.
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Any organisation wishing to survive in the global economy of the twenty- 

first century must respond quickly to abrupt market variations as this 

global manufacturing environment becomes highly dynamic and 

increasingly competitive (Wong et al, 1999). In this context reliability 

and flexibility become the important factors in production processes 

(Waldner, 1992). Flexibility in this context can be interpreted as the 

need to respond quickly to market fluctuations which requires designers 

to produce system designs quickly and efficiently in order to meet new 

demands, although, as previously highlighted, this can relate to product 

enhancement equally as to new product development. Despite 

customer requirements for low cost items in the shortest timescale 

possible, there is still an expectation that products will maintain the 

highest standard in terms of quality, cost and reliability (Prasad 1999, 

Kara et al 1999, Minderhoud 1999). This has enforced changes in the 

way designers and manufacturing engineers develop their systems 

(Jiang et al, 2002).

Manufacturing organisations, in common with other businesses in the 

twenty-first century, are driven by the economies of a global market. In 

order to remain competitive it is established in this work that it is 

imperative for them to meet three key goals - get their goods to the 

market in a shorter time period, produce their products at a lower cost, 

and achieve a higher quality than their competitors. These goals 

provide the fundamental underpinnings of the manufacturing
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requirements for competitive advantage and this work aims to provide a 

solution which addresses all of these needs.

1.5 Three Goals for Manufacturing Organisations

1.5.1 Goal One - Speed

Manufacturing system designers need a methodology which facilitates a 

quick turnaround of a new system from design, or redesign, through to 

implementation. However, due to the need for competitive advantage 

and customer satisfaction a 'first time right' approach is also required. 

Manufacturing organisations cannot afford to utilise long and 

cumbersome techniques due to the fact that the market may have 

quickly moved on, making the design obsolete before it gets beyond the 

conceptual or design stages. Conversely any design methodology used 

must ensure that the completed system achieves the user requirements 

fully. Within the discipline of software engineering, CASE tools have had 

a major impact on the speed with which an item can be conceptualised 

and subsequently visualised in a model. However due to the complexity 

involved in manufacturing systems - composed of a myriad of inter­ 

connected hardware, software and communication systems - their 

upgrade or redesign can have a considerable impact on the time it will 

take to move from this visualised design to final production.

Software engineers have made progress in this area by utilising a 

modular approach to the design of software systems. By breaking a
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system down into a number of distinct modules it is possible to divide 

the workload amongst a number of developers who can each dedicated 

their entire efforts on a subset of the system. This can have a dramatic 

impact on the speed at which systems are developed, though it does 

require a high degree of consistency amongst developers to ensure that 

all modules can integrate to form a final system. In a manufacturing 

context concurrent development of this type would dramatically reduce 

the time required to develop complete and working systems. Many 

researchers have proposed an integrated design method using 

concurrent engineering (Lu et al 1999, Chen and Jan 2000, Herder and 

Weijnen 2000, Senin ef al 2000, Wu and O'Grady, 2000). However, 

most literature deals mainly with issues related to assembly, cost 

reduction and quality deployment (Dembeck and Gibson 1999, Ke 

1999, Liu and Yang 1999, Swanstrom and Hawke 1999). A loosely 

coupled system as proposed by Pressman (2004), and as discussed in 

more detail in chapter 2, would facilitate an incremental upgrade of 

parts of a system with minimal impact on other components. This 

technique also eliminates the problems associated with the 'islands of 

automation' identified by Hannam (1997) and discussed later in this 

chapter.

The widely used concept of object-orientation and the development of 

class libraries, quite common in software engineering, are also 

applicable to manufacturing systems. By utilising readymade, pre-

1-11



Chapter 1 - Background to the Research and Thesis Outline

tested, high quality components that have previously been developed, 

manufacturing system designers can considerably reduce the time and 

cost needed to develop a system, especially if the components and 

processes used are a variation of those currently in existence. Utilising 

fully tested pre-made components will go a long way to addressing 

issues with quality in the implementation stages by introducing a degree 

of certainty that the component will do the job for which it was intended. 

The use of hardware/software objects, where a system component is 

thought of in terms of what it can do rather than how it works, lends 

itself well to object-orientation.

1.5.2 Goal Two-Cost

As with any business it is important to maximise profits by reducing 

development costs. Utilising reusable code libraries as outlined in goal 

one, means that the effort of designers, developers and testers is 

captured, allowing subsequent new designs or those using similar 

components to take full advantage of work previously undertaken. This 

can give a considerable reduction in design and development costs as 

much of the system will not need to be re-engineered. To maximise the 

benefit of code-reuse a method needs to be established which enables 

the optimum use of generic components. Generally, the control 

software for a system or the objects themselves will have to be 

customised to ensure compatibility each type a new system is
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developed. This can be a time consuming venture which can mean 

that, in some cases, it is quicker to develop new software.

This work has examined the control structure of a manufacturing system 

and established an optimum way of designing controllers and objects 

which maximises their reuse capabilities. One of the fundamentals of 

modularity is a robustly designed public interface and manufacturing 

facilities require a system that will facilitate the 'plug and play' type 

approach enjoyed in the computing field. This will enable parts of a 

system to be upgraded with a minimal impact on the rest of the system, 

and will allow manufacturing organisations to upgrade with reduced 

system down-time. Such a system would fully adhere to the criteria of 

modularity proposed by Meyer (1997) which is discussed in more detail 

in chapter 2.

1.5.3 Goal Three - Quality through Consistency

Quality does not simply refer to the product and its 

development/manufacturing processes, but realistically it should apply 

to all levels in an organisation. Utilising different design methodologies 

at various levels of the organisation does nothing to aid communication 

between stakeholders. Ideally, manufacturing organisations require a 

methodology which captures enterprise level through to functional 

detail, by utilising a design methodology that can be applied to all 

aspects of the organisation in a uniform and standardised way. This
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ensures that communication between stakeholders at all levels of the 

organisation becomes more intuitive thereby ensuring that the end 

product or system closes matches user expectations. The Unified 

Modelling Language (UML) provides software engineers with a method 

for modelling the processes at all levels of an organisation in a 

standardised manner, thereby facilitating a robust method of capturing 

user requirements. The applicability of the UML as a consistent method 

of modelling all aspects of a manufacturing organisation has been 

evaluated and clearly established in this work. The standard UML 

models have been adapted to incorporate a Petri net graph which 

reduces the number of models required and yet ensures the system can 

be abstracted in a manner that is understandable to all stakeholders.

The development of class libraries also means that high quality, fully 

tested components are available off the shelf ensuring their robustness 

in new systems. Further a modular approach, which satisfies the criteria 

outlined by Meyer (1997), ensures that in the event of errors the impact 

on the rest of the system is minimal, if at all, and it is possible to 

diagnose and trace faults into very specific parts of the system, thereby 

reducing the amount of time spent maintaining, repairing or upgrading 

the system.
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1.6 Computer Integrated Manufacturing

Computer Integrated Manufacturing (CIM) has been proposed as one 

solution to the manufacturing problems outlined above, where computer 

systems have been implemented into the manufacturing environment to 

increase speed and efficiency, however without detailed and thorough 

planning this can lead to a whole new range of problems. For 

sustainable increases in market share and profit margins, it is the 

system development practices that require attention (Chin et a/, 2005). 

Manufacturing organisations can rarely close down completely for an 

upgrade as the disruption and potential market loss is too great. When 

a new product is to be manufactured, the organisation must ensure that 

the turnaround time is as quick as possible. CIM helps to achieve this 

by implementing computers into the organisation, with the aim of 

reducing turnaround times, increasing quality and minimising costs, 

thereby moving some way to addressing the three goals previously 

outlined. However, research shows (Hannam, 1997) that one of the 

main problems with CIM are 'islands of automation 1 , which occur as a 

result of the computerisation of individual departments or even cells 

within an organisation. These computerised sections are generally 

implemented with no ability to communicate with other units within the 

facility. Two very important facts about CIM can be drawn from the 

literature:
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1. Computerisation can help to achieve the three goals of 

manufacturing organisations though it does have inherent 

problems;

2. Disruption to the operation of the overall system needs to be 

minimised whilst upgrades are in progress.

Each of the points identified above are evaluated in more detail below:

1.6.1 Computerisation as a solution

Computerisation is vital in manufacturing and CIM is an important 

aspect of such systems. Plainly speaking, a computer can do things 

more rapidly than a human and is less prone to mistakes, especially 

when working in hazardous environments or long, unsociable hours. 

The computer also provides tools to integrate the whole process from 

product conception to marketing. For instance, it is possible to use a 

computer aided design tool to produce a first draft of the idea, the 

computer would then be used to aid in requirements gathering, to 

simulate the production processes and ultimately as a controller for the 

finished system. A computerised solution, however, is only as good as 

the human operators and system designers and therefore it is 

imperative that the design methodology used is thorough, robust, all 

encompassing and intuitive enough to facilitate communication between 

system designers and end users. Ideally the method used should
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facilitate the modelling of all levels of system within an organisation from 

business processes to hardware and software itself.

1.6.2 Incremental Implementation to Minimise Disruption

As outlined previously there is a crucial need to reduce disruption within 

manufacturing organisations when redesigns or upgrades are taking 

place, and therefore a non-disruptive method of incremental 

implementation is needed. The major benefit of incremental 

implementation is that the organisation or facility can be broken down 

into a series of discrete modules, which are upgraded in isolation from 

each other. This means that the disruption to other units is minimal due 

to the fact that the unit being 'conceptually upgraded' remains available 

all the way through to the physical upgrade. The incremental approach 

can be facilitated by using the object-oriented concept of 'encapsulation' 

whereby a very clear interface to the unit is designed, with no concern 

for the 'hidden' detail of how it actually functions. For example, if a 

large and complex cell containing several items of machinery were 

tasked with producing one machined component upon receipt of one 

raw material, then the interface to this unit can be defined as one input 

and one output. In order to effectively integrate with other units in the 

system all that is required by the controller is knowledge of these inputs 

and outputs. The incremental approach is suggested as a method of 

speeding up the design through to implementation process 

subsequently overcoming the problems identified. In addition its
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modular nature lends itself well to the design of class libraries, where a 

series of pre-designed and pre-tested components can be used to build 

cells and departments in a modular fashion. The well defined interfaces 

outlined above enable manufacturing organisations to overcome the 

problems associated with islands of automation. This work will describe 

a method and formalism for developing such interfaces based on a 

combination of well defined public interfaces, via the UML and through 

message passing via Petri net control and feedback places (which are 

discussed further in Chapter 3).
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1.7 The Need for Integration

Waldner (1992) defines integration as the need to 'remove the 

boundaries between the functions of a company which for justifiable 

historic reasons were previously split up'. The larger an organisation, 

the more its functions are distributed between a number of different 

departments, each with its own goals and responsibilities. The difficulty 

this situation presents is that often, each of the departments may 

pursue its own agenda and pay little attention to the overall objectives, 

which are to satisfy the customer in the shortest time, at the lowest cost 

and to the highest quality. CIM was developed with the aim of 

establishing a close relationship between various functional units by 

capitalising on the most basic resource available to a business: 

information (Waldner, 1992). However Waldner (1992) goes on to 

highlight how the rush to computerise has meant that frequently 

automation has been carried out purely for automation's sake leading to 

the expensive automation of systems that are more efficient in their 

manual form. Another problem, highlighted earlier, are 'islands of 

automation' (Hannam, 1997) where individual components or 

departments within a manufacturing organisation have been automated 

with no thought to how they will communicate with other equipment, 

cells or even departments. With the rapid change in technology and the 

flexibility required to change production to meet market demands, this 

problem has been exacerbated. The challenge therefore is to integrate
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all functions across a manufacturing organisation where each sub­ 

system or department must meet its own goals and carry out its specific 

tasks, but this should be placed within the context of the larger aim of 

the organisation as a whole and this problem is conclusively addressed 

in this work by analysing modelling techniques than can span a whole 

organisation.

1.7.1 Software for Integration

Software can be considered as the integrated manufacturing problem 

due to the fact that whilst the technology exists the software and 

modelling methods needed to use it in an integrated fashion does not. 

This problem is addressed in this work by the use of HSOs. The 

relatively small amount of integrated systems that do exist are large are 

reported as being application specific, difficult to maintain, difficult to 

change, difficult to port between hardware and expensive (Naylor and 

Voltz, 1987). Software is the intelligent part of the system and it is 

therefore vitally important to get this part right, however the hardware 

cannot be ignored as without this the system does not function. To 

address this problem this work has examined the concept of 

hardware/software objects and established a clear method for their 

integration into the methodology developed.
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1.7.2 Hardware/Software Objects

In order to achieve complete integration of manufacturing systems, it is 

important to begin with the lowest level of a system. Here the hardware 

and software of a device is "encapsulated" as a hardware/software 

object (HSO). A device is thought of in terms of its functionality as a 

unit and not separately as a piece of hardware and its control software. 

Naylor and Voltz (1987) define such a component has having three 

basic characteristics:

1. A well defined public interface;

2. An internal implementation that is inaccessible to the user; and

3. Both the visible part and the inaccessible implementation of 

software components should be separately compilable from the 

program components that use them.

A well-defined public interface allows the object to be reused in various 

situations, other than those for which it may have initially been 

designed. Coupled with the inaccessible internal implementation, all 

that a user and the system's controller require is a knowledge of what 

functions the object is capable of performing. No knowledge is needed 

of how these actions are actually performed. This alleviates the need 

for the system designer to have a detailed understanding of the specific 

implementation of a component. Instead all they need is an 

understanding of what its goal is. Conversely it allows the complexity of
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the software in overall control of the system to be uncomplicated by 

allowing it to act as a sequencer of modules, each of which sequences 

sub-modules as required with the complexity being dispersed through 

the lower levels of the system. This gives the loosely coupled system 

described by Pressman (2004) where changes to one object have 

minimal impact on the rest of the system.
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1.8 Merging the Unified Modelling Language and Petri 

Net Graphs

The competitiveness of manufacturing and the globalisation of markets 

mean that any new product must arrive with the customer as quickly as 

possible. This may mean the upgrade or redesign of a facility and its 

processes, and one way to achieve this is through the incremental 

approach described in section 1.7. The modular nature of 

manufacturing systems lends itself well to an object-oriented 

methodology. However, these tend to be long and drawn out 

procedures due to the number of resultant diagrams and their 

complexity. Petri nets are in common usage in manufacturing system 

design, as attested by the quantity of published material available (see 

Chapter 3). Several attempts have been made at integrating object- 

oriented techniques with Petri net theory but these tend to fall short of 

full object-orientation. The main difficulty to overcome with Petri net 

graphs is 'state space explosion' which describes the complexity of 

diagram needed to reproduce even a simple system making 

communication between designers and users difficult. A novel 

contribution presented in this thesis overcomes this problem by utilising 

structured Petri nets to model only the functional detail of objects within 

the system, whilst the remainder of the system can utilise the benefits of 

the UML.
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1.9 Thesis Structure

Chapter 2 will discuss the rationale for utilising an incremental design 

approach to overcome the problems identified in this chapter. 

Modularity will be highlighted as a vital first step in achieving such an 

incremental design technique and Meyer's criteria (Meyer, 1997) will be 

illustrated as a benchmark which ensures the work fully meets the 

criteria for modularity. A comprehensive review and analysis of object- 

orientation and the UML to manufacturing organisations will be 

undertaken along with a literature review outlining the various attempts 

at providing manufacturing system modellers with an object-oriented 

technique akin to that found in software engineering disciplines. The 

concepts of loosely coupled well designed interfaces will be examined 

as a method of achieving hardware/software objects which will 

overcome the problems of islands of automation.

Chapter 3 evaluates Petri nets as an existing, widely used, method for 

modelling manufacturing systems, and a brief description will be given 

of the evolution of the Petri net model. A review of extensions to the 

basic formalism will be demonstrated, along with an overview of the 

advantages and disadvantages of each method. A comprehensive 

literature review of Petri net theory will be presented, and in particular 

an in-depth discussion will be given of attempts at providing an object- 

oriented Petri net technique. The relative strengths and weaknesses of
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these attempts will be evaluated, including methods of overcoming the 

state space explosion problem, and their use in simulation.

Chapter 4 will introduce Structured Petri nets and a novel modelling 

technique will be presented which demonstrates how these can be 

integrated with the UML to provide a complete manufacturing modelling 

technique. This chapter will show how the resultant Functionally 

Encapsulated Modules (FEM) take full advantage of current object- 

oriented techniques and use the flexibility of structured Petri nets to 

provide a versatile, mathematically provable modelling method. The 

problems of creating a generic family of classes will be outlined and a 

solution is presented in the form of three-level control architecture. The 

three components of this constraint-based approach will be discussed 

and goal, task and environmental constraints will be introduced. 

Examples will be given to show the flexibility of this approach, and a 

technique for re-creating traditional Petri nets will be described. The 

mathematical provability of this approach will be briefly outlined before a 

summary of the technique is given.

Chapter 5 will provide a case-study which demonstrates how the 

methodology developed in this work applies to a modern manufacturing 

system. The chapter will demonstrate how the resultant models can 

initially be used for simulation and what if analysis before automatically 

generating the control code for implementation. A demonstration will be
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given of how, using the approach developed in Chapters 1 - 4, a model 

can be developed which can be used to simulate the system and/or to 

physically provide working control code. The focus in this chapter will 

be developing a technique whereby FEM and behavioural constraints 

can be utilised to generate an optimised pseudo code module, which 

can then be interpreted and compiled in whichever language is 

necessary.

Finally chapter 6, presents a detailed analysis of how this thesis and the 

original work described in this thesis provides a solution to the 

manufacturing problems outlined in this chapter. An indication of future 

work arising from the main body of the dissertation is also presented.
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1.10 Overview of the Work

This work describes a method for the rapid and incremental analysis, 

design and implementation of manufacturing systems and their control 

software. The method incorporates a modular approach to 

manufacturing system's design by utilising a combined object-oriented 

and Petri net method for the development of both hardware and 

software elements.

Additionally, the methodology proposed allows for the construction of 

highly generic reusable components utilising a constraint-based 

approach that can aid in speeding up the design and development of 

manufacturing systems. The technique allows system designers to 

build partial or complete manufacturing systems from a library of pre­ 

defined reusable components. These components are pre-tested, 

ensuring their reliability and quality, and can be readily adapted to the 

needs of new systems, in many cases with minimal, if any, modification.

Further, the proposed technique permits the object-oriented model to be 

used as a simulation tool which allows organisations to evaluate and 

optimise new systems and processes before they are implemented, 

ensuring full satisfaction of user requirements, complete system testing 

and facilitating the evaluation of alternative design scenarios before 

procurement of expensive equipment takes place.
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Finally, a generative approach is used to enable the model to 

automatically generate the code, which controls the system once it has 

been implemented. The control code is enhanced by the fact that the 

system will have been fully tested via simulation before optimised code 

is generated.

1-28



Chapter 1 - Background to the Research and Thesis Outline

1.11 Indication of Contributions

The main contributions arising from the work are outlined below and 

each is discussed in further detail In Chapter 6:

1.11.1 The Application of the UML to Manufacturing Systems

A novel approach has been taken in applying the UML to manufacturing 

systems analysis and design (Llewellyn et al, 2000). This offers many 

benefits for manufacturing organisations including the provision of a 

reusable system, and the opportunity to build a library of classes, which 

makes subsequent designs or modifications to existing systems more 

intuitive. The UML provides manufacturing organisations with the 

benefits of object-orientation that have been successfully implemented 

in the software engineering community for sometime. These benefits 

include encapsulation, inheritance and the ability to use class 

hierarchies. By focusing on the objects and their interactions via a 

public interface, the dynamics of the system can be presented to 

technical and non-technical users, allowing the designer to focus on 

what the object/system is to do, without an in-depth knowledge of how it 

does it. The UML also facilitates the unique ability to model all aspects 

of a manufacturing organisation from business processes through to 

shop floor machinery.
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1.11.2 Defining a Methodology for the Incremental Analysis of CIM 

Systems

An incremental approach to the analysis of CIM systems enables 

manufacturing organisations to computerise anything from individual 

manufacturing workstations through to entire departments on a staged 

basis. This reduces the need to close down entire facilities, and allows 

upgrades to be carried out as and when required. Existing systems can 

be modified to work alongside new systems. By using a design 

approach that utilises use-case analysis it is possible to capture the 

user requirements for a system more accurately and in a format which 

enhances communication between system modellers and stakeholders. 

The design stages of a use-case driven approach take into account the 

needs of all levels of the workforce, ensuring all personnel are involved 

in the process. The initial use-case scenarios used to capture the 

system requirements can be reused at the testing stage to verify all 

requirements are adequately met.

1.11.3 Development of a Three Level Control Architecture 

optimised for reuse capabilities

The hybrid bottom-up and top-down approach of the incremental 

methodology proposed enables the controllers required at all levels of 

the system to be adequately modelled and ensures the functionality of 

the system is maintained. The modular approach proposed also allows 

system changes to be more easily accommodated. The object-oriented
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approach to the system design allows designers to capture the system 

at its most generic, but also provides a method of capturing constraints 

on the system such as obstacles to the dynamic capabilities of objects. 

Three types of constraint have been developed - goal, 

behavioural/environmental and task and these enable the system to 

make maximum use of the benefits offered by object-orientation.

1.11.4 Merging the UML and Petri Nets

A technique for successfully combining the UML and Petri nets has 

been developed called Functionally Encapsulated Modules (FEM) 

(Llewellyn et al, 2001). The technique takes two existing UML diagrams 

namely sequence and behaviour diagrams, and replaces them with a 

single Petri net. This approach offers the design simplicity of the 

original Petri net and combines them with the proven advantages of 

object-oriented analysis and design. FEM reduce the number of 

diagrams required to model both state and behaviour of systems and 

individual objects and a comparison of the FEM versus traditional UML 

approach is demonstrated in Chapter 4. If required the Petri net 

elements of a FEM can be combined to form one large net that can be 

verified using proven Petri net techniques. This approach provides a 

modular, object-oriented technique for utilising Petri net models whilst 

eliminating state space explosion. The FEM's develop a unique method 

of capturing the attributes of both software and hardware which can be 

intuitively implemented into any manufacturing system. The
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encapsulation of hardware and software with a distinct user interface 

allows the designer, and the users of the system, to visualise the 

objects that make up the system's model without worrying about the 

inherent complexity.

1.11.5 Simulation and Automated Code Generation

The "token player" aspect of structured Petri nets will enable the models 

resulting for the use of this approach to provide the basis of a simulation 

tool. Further, the combined Petri net/UML approach lends itself well to 

the automatic generation of control code and a methodology for this 

technique will be presented. The code generation aspect of the models 

relies on the simplicity of Petri net graphs where places are represented 

as Boolean values whilst transitions represent decision statements. 

The automated procedure will generate pseudo code, which can be 

intuitively converted into any programming language.

^ INFORMATION O
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1.12 Chapter Summary

This chapter has provided on overview of this research thesis, and 

presented the main contributions presented herein. The move from 

large-scale mass production to the development of highly customised, 

small scale production has been discussed and this work has identified 

the main resultant problems faced by manufacturing organisations 

wishing to compete in the global economy of the twenty-first century:

  Speed. With an increasing number of competitors, it is 

imperative that organisations reduce the time it takes to move 

from the conception of a new product, to the finished item being 

available for the consumer.

  Cost. Customers are now demanding lower priced goods than 

ever before and therefore it is important that goods are 

manufactured in the most optimised fashion possible.

  Quality through Consistency. Though it may seem offset by the 

above two points, consumers demand high quality products, and 

offering anything less can have serious implications for the all 

important customer loyalty factor.

It is clear that product life-spans are measured in much shorter time 

periods than were previously the norm, however it is also apparent that 

in many cases products undergo redevelopment or enhancement rather 

than completely new development. This work aims to establish that
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these types of upgrades can be visualised and implemented as flows to 

existing systems, considerably reducing redevelopment times and 

costs. It is apparent that manufacturing organisations adopting an 

incremental and modular approach to systems' development could 

overcome the problems of speed, cost and quality through consistency 

and would benefit greatly from the use of combined hardware/software 

objects that would enable designers to concentrate on what the system 

does rather than get bogged down in the detail of how it does it.

A well-defined public interface to such objects would ensure that the 

islands of automation problem is completely addressed by breaking the 

system down into a number of distinct modules which can be divided 

amongst a team of developers. The use of public interfaces will also 

reduce downtime considerably as for much of the process modules are 

only conceptually upgraded. This solution will dramatically reduce 

development times and be a vital step in addressing quality by 

consistency.

Generic and highly reusable objects will enable system builders to 

utilise previously designed high quality components that will rapidly 

decrease development times whilst maintaining quality. Utilising such 

pre-tested, high quality components would clearly address the need for 

a "first time right" design.
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By utilising the UML for the design of such systems manufacturing 

organisations can benefit from the ability of the technique to model all 

elements of the company enhancing communication amongst 

stakeholders and ensuring organisational consistency. The integration 

of Petri nets into the UML reduces the number of models required and 

solves the state space explosion problem. Such a technique provides a 

ready-made simulation and testing tool and lends itself well to the 

automatic generation of control code considerably reducing the time to 

implementation.

This remainder of this work will analyse systems modelling in a 

manufacturing context and will establish the optimum methods from the 

discipline of software engineering to overcome the problems identified. 

Whilst software engineering does not generally concern itself with 

hardware, the use of hardware/software objects (HSO) as developed in 

this work enables the system modeller to consider any manufacturing 

design problem purely as software. This ensures that the techniques 

developed in this work have full applicability in a manufacturing context 

where systems are composed of a myriad of complex and inter-related 

hardware and software elements.
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Chapter 2 - Object Orientation for Manufacturing System Design

Object Orientation for Manufacturing 
___________ SYstem IDesig n

As noted in the title and first chapter this original work aims to establish a 

Computer Aided Software Engineering (CASE) methodology for the 

implementation of Computer Integrated Manufacturing (CIM). This will be 

achieved by developing a methodology based on the discipline of software 

engineering which is customised to meet the needs of manufacturing 

system designers. To fulfil the stated aim, this chapter establishes the 

elements of software engineering generally, and CASE specifically, which 

can provide benefits to the analysis, design and implementation of 

manufacturing systems. Current research literature surrounding the 

discipline of object-orientation is evaluated and its development is charted 

from the early methods through to the Unified Modelling Language (UML), 

which is the current de facto standard. The chapter analyses object- 

orientation as a method of achieving the requirement for manufacturing 

organisations to achieve a modular and incremental approach as outlined 

earlier in the first chapter. The benefits of an object-oriented analysis and 

design approach for the development of complex manufacturing systems 

are established and it will be proven that modularity in manufacturing can 

be achieved via modular decomposition utilising object-orientation. The 

chapter highlights how such an approach leads to the conceptual
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integration of manufacturing systems thereby overcoming the problems 

associated with islands of automation. The need for an integrated 

approach to the analysis and design of manufacturing systems is 

discussed and the benefits of using an object-oriented methodology to 

achieve this are given.
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2.1 Introduction

This work approaches manufacturing systems engineering as a software 

problem. This can be achieved by encapsulating hardware and software 

into a unified object-oriented framework. Software systems are not without 

their own problems, Smith et al (1999) estimate that for every six software 

systems that are completed two are cancelled and that the average 

software development project overshoots its budget and schedule by fifty 

percent. To challenge to overcome for software designers is to increase 

productivity and enhance quality. Holloway and Bidgood (1991) define 

these as:

1. Quality in practice means agreeing that each deliverable conforms 

to requirements and ensures that the end product will meet the 

customer's stated business objectives.

2. Productivity is the consistent application of an appropriate 

methodology, with its associated methods, techniques and 

deliverables so as to lessen the risk of wasting resources.

The development of control software for manufacturing systems faces the 

same challenges. From the literature it can be seen that:

  It is imperative to accurately capture user requirements and 

subsequently to ensure that the finished product fully meets those 

requirements;
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  It is vital to ensure that a methodology is utilised that minimises 

resource wastage.

The established methods of software development have been labour 

intensive, error prone, slow and extremely costly. Much skill is needed to 

marry the business knowledge of users with the computer experience of 

analysts and programmers. As a result the developed systems have not 

always fully satisfied the needs of stakeholders. This is often due to a 

failure of the system design methodology, especially the user 

requirements gathering stage. Alternatively it can occur as a result of the 

lack of understanding of the methodology on behalf of the staff. What is 

needed is a methodology which is intuitive to understand for all users and 

which accurately captures requirements. The methodology also needs to 

ensure that the user requirements are refined precisely into the completed 

system.

Using traditional methods each program is individually designed, coded, 

tested and documented with the result that programs can only be 

maintained - debugged or updated - if their design and construction has 

been adequately documented by the original designer(s). Their logic is so 

interwoven that it can be impossible to unravel. In fact, it may be faster to 

throw a program away and start again, than to try and change it. This 

leads us to two main software related problems (Finkelstein, 1989):
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1. Maintenance problems - Making a simple change in a program 

may lead to other changes. Furthermore, these changes may 

introduce errors that require even further change, so leading to yet 

more change and errors. Maintenance problems can be thought of 

as having a cascading effect;

2. Communication problems - The problem is, largely, due to a lack 

of effective communication. IT analysts, database administrators 

and programmers use computer jargon that is foreign to most users 

and management. Similarly, the day-to-day terminology of 

business matters may be unintelligible to many analysts and IT 

staff. This communication problem is compounded by the long 

lead-time before the developed systems are delivered to the users.

These problems must be addressed in the design methodology used. A 

loosely coupled system as discussed in this chapter will overcome these 

problems by decoupling modules so that changes have minimal impact. 

Communication problems can be resolved by having a graphical modelling 

tool which is intuitive for users at all levels. Such a tool needs to be able 

to break down the barriers between stakeholders of a technical and those 

of a non-technical background. However, the tool also needs to be 

capable, by iterations, of capturing all levels of system detail through to 

implementation.
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2.2 Computer Aided Software Engineering (CASE)

Before a conclusive definition of Computer Aided Software Engineering 

(CASE) can be established it is crucial to understand the discipline of 

Software Engineering. Stevens (1991) states that it is "the process of 

inventing, improving and selecting among alternative solutions and then 

describing computer programs that meet users' requirements within the 

constraints of the environment and based on the chosen alternative." 

Once again the importance of user requirements is stressed and it is clear 

that the design methodology is the key to achieving this.

The term CASE relates generally to the automation of this software 

development process. Many CASE products are now available which aid 

in automating systems development and improving the productivity of 

analysts and programmers, sometimes by as much as two or three times. 

As stated earlier fifty percent of software projects go over time and budget 

so it is clear that a two or threefold improvement in productivity is a highly 

desirable feature. Historically, the most significant productivity increases 

in manufacturing or building processes have come about when powerful 

tools augment human skills. One man and a bulldozer can probably shift 

more earth in a day than fifty men working with hand tools. Automated tool 

support for software engineers should therefore lead to improvements in 

software productivity. CASE is now generally accepted as the name for
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this automated support for the software engineering process (Finkelstein, 

1989).

However, Sommerville (2006) noted that the first generations of CASE 

products have not led to the high level of productivity improvements which 

were predicted by their vendors. There are various reasons for this:

  Problems of managing complexity in the product and in its 

development process;

  Current CASE products represent 'islands of automation' where 

various process activities are supported to a greater or lesser 

extent;

  Adopters of CASE technology sometimes underestimated the 

training and process adaptation costs which are essential for the 

effective introduction of CASE. They often skimped on these costs 

with the consequence that the CASE technology was under-utilised.

Three different levels of CASE technology can be identified (Finkelstein, 

1989):

1. Production-process support technology. This includes support 

for process activities such as specification, design, implementation 

and testing;

2. Process management technology. This includes tools to support 

process modelling and process management;
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3. Meta-CASE technology. Meta-CASE tools are used to create 

production-process management support tools.

2.2.1 The Goal of CASE

To understand the goal of CASE it is vital to understand the objective of 

traditional design methodologies which are to produce consistent, high 

quality, implementable system specifications (Holloway & Bidgood, 1991). 

Sodhi (1991) states that the principal properties of a good software 

engineering system are that "the final product has achieved the software 

engineering objectives that meet the requirements and satisfy the 

customer." A good software product also has the following properties:

• Functionality - it works as the user requires;

• Performance - it achieves its tasks in the timescale required;

• Economy - it is as cost effective as possible;

• Robustness - it is useful for the maximum possible time;

• Methodology - it is based on a transparent and useful design 

	methodology;

• Documentation - it has useful documentation;

• User Interface - it is user friendly;

• External Interfaces - it has well defined external interfaces.

Fisher (1991) describes how CASE tools can substantially reduce or 

eliminate many of the design and development problems inherent in 

medium to large software products. He proposes that the ultimate goal of
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CASE technology is to separate design process from the actual code 

generation. If this is true then surely CASE tools are exclusive to the 

analysis and design stages of software/system development. However, it 

seems more appropriate that the goal of CASE is to enable the user to 

concentrate on the business aspects of the problem and reduce the 

technical complexity. Further CASE tools can be thought of as a 

complimentary element to the skill of the developer. CASE tools should 

enable projects to produce consistent, high quality, implementable 

systems. It can be seen, therefore, that the goal of CASE is to integrate 

with, and aid, the traditional software development process. To be 

effective CASE tools must, fit into and work with existing software and 

hardware.
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2.3 Formal Methodologies

Software development requires a complex set of activities to be carried out 

some in sequence, others in parallel. Structured methodologies have 

evolved to provide assistance and direction to those involved in this 

process. A structured approach supplies a framework for action within 

which managers can manage and all participants can work constructively 

on specific activities which generate predetermined products (Holloway & 

Bidgood, 1991). As discussed earlier, in order to understand CASE, it is 

important to understand traditional structured methodologies. Several 

structured methodologies have been developed which provide a design 

framework as a set of formalisms and practices which have become the 

basis for software development. Although not perfect and largely relying 

on the thoroughness of the individual practitioner, these methodologies 

have allowed software developers to build more complex systems. 

Usually, these methodologies encourage the decomposition of large 

software systems into sets of smaller modules. The interfaces between 

these modules are well-designed by the software architect, allowing 

individual programmers to independently construct and test their 

respective assigned modules. Then during the final stages of software 

development process, all of the modules are integrated to form the final 

program (Fisher, 1991).
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2.4 The Waterfall software development method

The Waterfall model was first introduced by W. Royce in 1970. It is the 

traditional model followed by most software developers and upon which 

most methodologies are based. The software evolution proceeds in an 

orderly sequence of transition from one phase to the next in linear order. 

It can be roughly subdivided into the following stages:

1. Requirement Analysis. Establish the user's requirements for the 

system. Produce models which aid in capturing user requirements 

that can aid in communication between stakeholders, designers 

and developers;

2. Design Specification. Compose a system blueprint, showing what 

to build and how to build it. Design specifications include module 

decompositions, data structure definitions, file format definitions, 

and important algorithm descriptions.

3. Implementation. Code, test and debug each module designed in 

the design specification;

4. Unit Test and Integration. A unit test is performed on each 

module built during the implementation phase; the modules are 

then integrated into a single program structure. The program as a 

whole is then tested to make sure the modules fit together and 

perform as designed;

5. Maintenance. Fix any bugs or problems found by users of the 

released version.
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2.4.1 The problems with the waterfall development method

There are several problems inherent with the waterfall model as shown in

Table 2-1 below (taken from Fisher, 1991):

Phase Failure Symptom

Requirements Analysis No written requirements; 

Incompletely specified requirements; 

No user interface mock-up; 

No end-user involvement.

Design Specification Lack of or insufficient design documents; 

Poorly specified data structures and file formats; 

Infrequent or no design reviews.

Implementation Lack of or insufficient coding standards; 

Infrequent or no code reviews; 

Poor in-line code documentation.

Unit Test & Integration Insufficient module testing;

Lack of proper or complete test suite;

Lack of an independent quality assurance group.

Maintenance Too many bug reports.

Table 2-1: The problems with the waterfall development method
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To summarise these points it can be seen that:

  At the requirements analysis stage it is crucial to establish the user 

requirements fully. The finished product will fail if the requirements 

are not fully compliant with user requirements;

  The design specification needs to be constantly and consistency 

cross referenced with the user requirements to ensure they are fully 

met;

  Code needs to be well documented and adopt the relevant coding 

conventions to ensure subsequent maintenance, modification or 

upgrades are possible;

  Modules need to be tested individually and subsequently as part of 

the system;

  If all the stages above are completed the system will not suffer from 

extensive bugs at the maintenance stage.

2.4.2 The Benefits of CASE Tools

CASE tools need to be employed at the outset of the design and 

development process. In doing so the project should yield lower overall 

costs and better results in the implementation and maintenance phases. 

Design and development times will almost always be reduced by using 

CASE tools. But perhaps their most satisfying benefit comes in the form 

of insurance, or peace of mind, that the job is being done properly, on 

schedule and to the end-user's specification. CASE tools should aid in
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establishing user requirements well before the implementation begins. 

However, much of the actual value depends on how well it is integrated 

into the organisation. To summarise the main benefits to be gained using 

CASE tools are (Fisher, 1991):

• A more complete Requirements Specification;

• More accurate design specifications;

• Up to date design specifications;

• Reduced development time;

• Highly extensible/maintainable code;

• Simplify. A major goal of CASE technology is to decompose 

requirements and designs into manageable components. Their 

function is to simplify, explain and reduce;

• Reduce costs by yielding higher quality specifications and designs;

• Produce quantitive and verifiable designs as each requirement in 

the software implementation must be verifiable and traceable back 

to the requirements document;

• Support Change;

• Show, not say. Good CASE tools present specification and design 

information visually.
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2.4.3 CASE categories

CASE tools fall into several distinct categories (Fisher, 1991):

Upper CASE tools which are graphical tools for defining system

requirements;

Lower CASE tools such as tools for developing prototypes;

Integrated CASE tools which are a combination of the above.

2.4.4 Reverse Engineering Tools

Reverse engineering is the exact opposite of engineering. It aims to go 

back from code and files to the original system design and thence to the 

system requirement. Reverse engineering tools must extract details of the 

essential business functions and data from ageing, but critical 

applications. This allows an organisation to salvage the investment of 

money and time, programming and database design skills, and user 

knowledge that built the original system. In essence, reverse engineering 

is a bottom-up process that has to assess the value and quality of existing 

systems by means of portfolio analysis.

2.4.5 Integrated Project Support Environment (IPSE) tools

IPSE products originally derived from software project management 

needs, and were based around software specification and project control 

methods. Typically, IPSEs provide the sort of project and configuration 

management facilities that most current CASE tools lack.
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2.4.6 Project Management Tools

The degree to which CASE tools are available to support individual project 

management functions varies considerably. Tasks such as estimating and 

scheduling are well supported but others, such as risk management or the 

handling of actual contract conditions have little or no CASE help.

2.4.7 Verification, Validation and Testing (VV&T) Tools

Verification, validation and testing cover the processes associated with 

ensuring that a product is delivered correctly in the manner required, and 

that it meets its defined requirements.

Verification compares the output of each phase of the systems 

development life cycle with the requirements derived from the previous 

phase. The objective is to ensure that the deliverables produced by a 

phase fulfil all the requirements for that phase.

Validation checks that the original phase specifications were meaningful 

and appropriate, both in terms of the ultimate user requirements and in 

terms of the development methodology employed. In later stages of 

system development, this may be achieved by executing a working 

prototype and observing its behaviour. Testing is the process used to 

validate and verify.
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2.4.8 Why do CASE tools fail?

Holloway and Bidgood (1991) have identified eleven main causes for the 

failure of CASE tools within an organisation:

• No methodology or standards in place

• Ignoring the importance of management

• Too much emphasis of CASE as the 'silver bullet' solution

• Confusion about what the CASE tool does

• Misuse of the tool

• Perception of CASE as a risk

• Unwillingness to change current methods

• Uncertainty, lack of consensus about what problem the CASE tool 

	is trying to solve

• Poor integration of tools

• Inadequate functionality

• Poor documentation and training
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2.4.9 Why do software projects fail?

Three main themes underlie software project failure (Fisher, 1991):

• Lack of complete requirements definition. If you lack a firm idea of 

what you are building, it is very difficult to build it right! Although 

plain common sense, this is often the most overlooked part of 

software development - identifying the system's requirements;

• No development methodology. Once you know exactly what you 

are going to build, you need to select and design techniques and 

establish implementation procedures. Following a formal 

methodology - a set of design techniques, development 

procedures, coding standards, checkpoints and work rules - helps 

ensure software design completeness and implementation quality;

• Improper design partitioning. An incomplete requirements 

specification leads to the development of the wrong software, but 

an improper design leads to low quality implementation. Design 

should be partitioned into manageable components and modules 

with formal pathways for importing and exporting data. Poorly 

partitioned designs lead to nightmarish code!

2-18



Chapter 2 - Object Orientation for Manufacturing System Design

2.5 The Benefits of Object-Oriented Manufacturing 

Modelling

Before it is possible to discuss modelling in detail, it is firstly important to 

establish what is meant by the term modelling. From a computing 

perspective, a model is described by Booch et al (2005) as "a 

simplification of reality". Booch et al (2005) also state that "we build 

models so that we can better understand the system we are developing". 

When discussing complex systems they go on to state that "we build 

models of complex systems because we cannot comprehend such a 

system in its entirety". In engineering terminology a model is a "device 

that simply duplicates the behaviour of the system itself (Cassandros & 

Lafortune, 1999). Whilst these meanings seem to have their basis in the 

same idea, there is a distinct difference between modelling in object- 

oriented terms and modelling in manufacturing engineering terms. In the 

latter, a model is a mathematical representation of a system whilst in the 

former it is a series of diagrams and their associated documentation.

So it can be seen that a model is a way of simplifying (abstracting) the 

necessary detail from a system in order to represent it in a diagrammatic 

or mathematical form. Generally, the resultant models are used to confirm 

user requirements, and aid in the communication of ideas between users 

and developers. Models enable developers to provide robust and yet
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flexible solutions which are able to meet current user requirements and 

expand as their needs grow or change.

A full discussion of object-oriented techniques is available in (Booch, 

1994, Pressman, 2004 and Sommerville, 2006). Here the focus is on the 

manufacturing application of object-oriented design. In a manufacturing 

environment machinery can intuitively be thought of as objects such as 

mills, lathes and so on (Adiga, 1993). The state variables of these objects 

will change at discrete points in time in response to events such as the 

completion of a machining operation. There is therefore a natural one-to- 

one correspondence between the physical items in the factory and the 

instances of software objects that represent them (Glassey and Adiga, 

1989). Systems' design provides a formidable challenge which consumes 

large amounts of capital and human resources. The frequency of change 

in such a dynamic environment means that the design process needs to 

be highly flexible (Wong et al, 1999). This can be accomplished using 

object-oriented techniques where the design concentrates on reusability, 

reconfigurability and scalability.

Manufacturing systems are quite complex and varied in nature. It is 

impractical to imagine that a single solution or software package will 

address all the needs of all manufacturing firms. Therefore, a practical 

approach to designing software for managing a CIM system is to build 

generic solutions to the greatest possible extent, and then to customise
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them to suit the needs of each firm. Thus, generic software object class 

libraries, customisable through sub classing, provide a good starting point 

in the design of practical software.

2.5.1 Abstraction issues

Manufacturing people think of their systems in terms of parts, conveyers, 

lathes or drilling machines etc. In other words they think in terms of 

'objects'. An OO approach allows designers and programmers to 

construct software counterparts of manufacturing entities easily with little 

conceptual mismatch.

2.5.2 Simulation and control

Discrete event simulation has emerged as a powerful and popular tool for 

the analysis and design of manufacturing systems in the 1980s. Both 

simulation and control systems require a model of the real world. Ideally, 

one would like to be able to share for simulation purposes the state model 

developed for control purposes (or vice-versa), including both the structure 

and the data. Also, since simulation is quite popular as a tool used to 

validate control strategies, control modules implementing these strategies 

have to be developed. Again, sharing these modules between the 

simulation and the control tool can improve productivity and also the 

consistency of the application. OO techniques give a unique opportunity 

to develop a system that can be used initially as a simulation tool and, 

later as a production or control software. (Adiga, 1993)
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2.5.3 Incremental Development

The technologies, finance or experience required to build an install CIM 

systems may not be present in all companies. This has led many people 

to believe that the most appropriate way to implement advanced 

manufacturing technology is in an incremental manner. Prototyping 

reduces the risk involved in implementing large products.

2.5.4 Customisation and maintenance

Pan, Tenenbaum and Glicksman (1989) identify two major shortcomings 

of current CIM systems: they are difficult to customise and maintain; and 

they have very limited problem solving and decision making capabilities. 

The first shortcoming can be addressed easily in an OO system. 

Individual objects can be customised through the sub classing enabled by 

the inheritance feature of OO (Adiga, 1993). For example if the 

application requires a representation of a lathe machine that is different 

from the one in the library supplied, a subclass Lathe can be created that 

inherits all the functionality of Lathe with additional methods to enhance its 

functionality. Similarly, an undesirable feature can be overridden through 

a re-implementation in the new subclass.

2.5.5 Complexity and variety

"Manufacturing systems are quite complex and varied in nature. It is 

impractical to imagine that a single solution or software package will 

address all the needs of all manufacturing firms. A practical approach to
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designing software for managing CIM systems is to build generic solutions 

to the greatest possible extent, and then to customise them to the needs 

of each firm. Thus, generic software object class libraries, customisable 

through sub classing, provide a good starting point in the design of 

practical software." (Adiga, 1993)
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2.6 Object Techniques for Modelling of Manufacturing 

Systems

One of the major aims of modelling a manufacturing system is to provide a 

view, or series of views, which can be interpreted by personnel at all levels 

of the system. At the shop floor level this may be the modelling of simple 

components, or groupings of components, which may perform a simple 

task. At the managerial level it may be necessary to examine the system 

from a higher level of abstraction, which ignores the detail that concerns 

lower levels.

A modular approach to manufacturing system design, therefore means a 

system can be viewed as a series of modules that can rapidly be 

combined to form a completely new manufacturing system. This offers 

many benefits to manufacturing system designers, most notably the 

utilisation of a series of well-designed reusable components can speed up 

the design process, ensure quality is kept at a maximum and can reduce 

the time it takes to design such systems.

Initial attempts at object-oriented modelling of manufacturing systems 

used entity relationship approaches to model systems such as that 

proposed by (Adiga and Gadre, 1990). However, the entity-relationship 

approach, while well suited to the modelling of static systems, has no 

facility for capturing the dynamic nature of such systems.
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This problem persisted in other techniques such as the Object Oriented 

Modelling Process suggested by (Mize et al, 1992). Here the emphasis 

was placed upon the benefits of reuse, which are discussed later in this 

chapter. The software techniques in vogue at the time such as object 

modelling technique (OMT) and Object Oriented Analysis and Design 

(OOA/OOD) proposed by Goad and Yourdon (1990) all tend to have a 

software specific focus and do not lend themselves well to manufacturing 

systems without considerable modification. Such modification can lead to 

confusing and non-standardised designs which can actually slow down the 

development process and cause confusion amongst personnel involved 

with the system.

To improve the dynamic capabilities of object-oriented models many 

techniques have attempted to integrate state charts into OO modules 

However these improvised techniques do not allow the representation of 

some core aspects of object-orientation such as dynamic binding and 

polymorphism. (Wu, 2005).
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2.7 The Unified Modelling Language for Manufacturing 

Systems

By their very nature manufacturing systems are extremely complex, with a 

wide range of interconnected objects and a myriad of messages passing 

between them. Designing manufacturing systems is further complicated 

by the individuality of each different system. It follows therefore, that 

manufacturing systems' needs cannot be met by 'off the shelf packages. 

One solution is design generic solutions and then to customise them to the 

requirements of the company or application. The resultant generic object 

class libraries are customisable to the needs of the organisation through 

object-oriented techniques.

This abstraction of complex manufacturing systems into a series of objects 

is more intuitive than for many other systems as previously discussed. It 

is widely accepted that manufacturing systems need to be flexible, 

customisable and maintainable and this is effectively addressed in an 

object-oriented system where individual objects can be customised and 

updated using the key features of the technique (Adiga, 1993).

The Unified Modelling Language (UML) provides many elements which 

can aid manufacturing organisations including libraries of reusable classes 

and objects that can provide the 'building blocks' for new systems; 

inheritance which can simplify the development of new systems; and 

encapsulation through which a loosely coupled, modular approach can
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reduce or even eliminate disruption to the rest of the system through 

incremental changes. The conceptual design of the system provides a 

further benefit to manufacturing managers in that it can allow for 'what-if 

analysis' to be carried out on a proposed system to establish viability, 

improve quality, or enhance production processes.

Ericksson et al (2000), describe the UML as an amalgamation of Grady 

Booch's, James Rumbaugh's and Ivar Jacobson's works standardised by 

the OMG (Object Management Group) in 1997. Later work by Ericksson et 

al (2004) extends the description of the UML to be a "free non proprietary 

language open to all but managed by the Object Management Group 

(OMG)". The purpose of the UML is to model systems in an object- 

oriented manner, bring together conceptual and executable artefacts and 

providing a language for human and machine. Erickson et al (2004) also 

go on to identify that the UML is an extensible language which can be 

modified to suit individuals or organisations.

Holt (2004), describes the UML as a general purpose modelling language 

originally developed for software development but which is also suitable 

for modelling other systems. The literature identifies thirteen UML 

diagrams classifying them into those that model what system is and those 

that show how a system behaves.

Bennett et al (2001), define the UML as a visual formal specification 

language used in the development of software systems and described the
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language as having three rules which are: abstract syntax, well formed- 

ness and semantics which are expressed as diagrams. The work 

continues by explaining that the UML is not a programming language. Holt 

(2004) goes further by highlighting that the UML is not the answer to all 

modelling problems and that it is not a formal method.

From its definition, this work of Bennett et al (2004) suggests that UML is 

only for software which is contrary to other sources (such as Holt, 2004) 

which identify it as a systems modelling language. This is extended by 

Ericksson et al (2000) who describe how the UML has rules (syntax), 

meaning (semantics) but does not contain pragmatics (i.e. how to use it). 

This further reinforces the idea that the UML gives the system modeller 

the framework in which to develop but that it is not prescriptive and can be 

adapted.

The UML is a standardised modelling language consisting of a set of 

diagrams which have been developed to assist system developers 

accomplish the following: specification, visualisation, architectural design, 

construction, simulation, testing and documentation. The literature 

explains that the UML can model systems from different point of view 

utilising what the authors identified as twelve diagrams, categorised into 

static (structural), behavioural and interaction.

The UML has graphical elements which combined to form the models 

using some defined rules so serve the purpose of representing multiple
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views of a system without showing how a system can be implemented. 

This author describes eight UML diagrams but further expresses that a 

system modeller does not have to use all of them in a given modelling 

problem, rather the modeller need to use only those that are required.

Maksimchuk et al (2005), describe the UML as being a standard visual 

modelling language for business process, work flow, sequence queries, 

application, database, and many more. Maksimchuk et al (2005) reiterate 

that the UML is a product of James Rumbaugh's Object Modelling 

Technique (OMT), Ivar Jacobson's Object Oriented Software Engineering 

Method and Gray Booch's Booch method, but adds that contributions were 

also made by many industry experts. He also goes on to praise how it has 

introduced commonality amongst professionals and goes further than 

other authors by stating that the UML can be used to model anything.
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2.8 Requirements for a CIM specific design methodology

The following table outlines some of the issues from CIM implementation 

identified by Adiga (1993) along with their solutions in an OO design 

environment.

Problem Solution

Staff involvement and co­ 

operation
In order to achieve an accurate description of 

a system it is necessary for the analyst to 
obtain both bottom up and top down 

descriptions. The top down descriptions 
allow the analyst to perceive the system/sub­ 
system under investigation in its wider 
context. The bottom down descriptions 
provide the necessary detail for an accurate 

model of the system/sub-system to be 
created.

Staff Training As it is possible to model each subsystem 
and its external interfaces independently 

without regard to the detail of those 
interfaces, it is possible to incrementally 
implement changes. This means that staff 
training can also be implemented on an 

incremental basis.

Corporate Culture Not 

Right for CIM

Whilst the rigidity and inflexibility of many 

companies causes CIM to fail, the same 
rigidity can aid in the modelling of a system
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by providing a fixed system to model.

Human Resistance to 
change

The large involvement of users at all levels in 
the modelling of the system can lead to a 
feeling of "inclusion" on behalf of the staff. In 
general staff are more likely to wish to see a 
project, in which they have played a part, 
succeed.

Failure to encapsulate all 
departments

When modelling the detail of subsystems it is 
apparent which systems are immediately 
interactive with the current one. This means 
that it is unlikely that a system will be 
overlooked. In addition it may not be prudent 
or necessary to include all departments / 
systems in the new model. The idea of 
incremental implementation allows the 
selected implementation of changes. 
Therefore the system can either completely 
overlook departments or systems, or can 
allow for their inclusion at a later stage.

Attempting to implement 
using unsuitable 
methodologies and 
guidelines

The proposed guidelines and methodologies 
aim to overcome any failings with the more 
traditional areas of analysis and design in 
manufacturing.

Inability to implement 
conceptual design

The addition of an interface definition 
language (IDL) to the model will allow for 
automatic code generation of the control code 
for the component.

Failure to streamline The need to understand and model the
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processes workings of even the most basic component 

in the system under review should lead to an 

optimised approach to the actions and 

operations of the system.

Inadequate planning and 

design
The integrated method proposed comprises a 

detailed set of diagrams which encompass all 

necessary planning and design aspects.

Inadequate analysis of 

user needs
The proposed method is very much user 

driven.

Time The methodology allows for the whole system 

to be re-designed on a modular basis which 

allows for components to be upgraded as and 

when time permits.

Cost As above.

Table 2-2: CIM implementation problems that can be overcome with OO design
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2.9 The Key Benefits of Object-Orientation

The OO paradigm represents a different way of looking at the program 

modules. It defines program modules as a package of data and 

procedures named an 'object1 : i.e. an abstraction of private data and 

operations that are naturally associated together. This abstraction facility 

enables real-life factories and their complex interacting components to be 

represented as objects such as a machine or a part quite close to reality.

Data is stored in locations, i.e. instance variables, which cannot be directly 

accessed by other objects. Procedures are commonly known as 

'methods'. Each procedure (or method) defines the behaviour expected of 

the object. One such behaviour is to change (or return) the data stored in 

its instance variables. Objects interact by sending one another messages. 

Typically, receipt of a message activates a corresponding method in the 

receiving object.

Sending a message to an object is similar to asking it to perform an 

operation on itself and return the result to some place or the requesting 

object.

2.9.1 Object Communication

Inter-object communication - the simplest model of communication 

between objects involves two objects where the sender of a message 

needs to know the identity of the receiving object, but not vice-versa.
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However, the information flow may be bi-directional, i.e. the receiving 

object may return information of interest to the sender. This return may be 

in the form of a value or result sent automatically by the receiving object. 

Alternatively, the receiving object may send a reply message.

2.9.2 Concurrency and synchronisation

Concurrent systems consist of independent activities (or processes) that 

must communicate and synchronise in order to achieve some common 

goal. Two different methods are used in handling concurrency and 

synchronisation issues in OO approaches. In the first one, an object 

management system controls and synchronises access to objects. Thus 

individual objects be regarded as 'passive 1 objects. In the other approach, 

the objects are 'active1 . With active objects, there is no need for an explicit 

synchronisation mechanism as the objects themselves decide when they 

are ready to receive a message. An active object is one that has an 

independent thread of control, i.e. it has control over the execution of 

computation required. It can monitor events that occur during an event 

and take action autonomously. This allows for asynchronous behaviour at 

the program level.
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2.10 Object-Orientation in the Systems Life-Cycle

The property of encapsulation makes it possible to have software objects 

that directly correspond to the physical entities in a manufacturing system 

such as machines, operators, lots etc. Therefore, the entities that the 

users and software engineers discuss, when defining the requirements as 

part of the project, are the same entities designers build objects from and 

programmers work with during implementation of the requirements. This 

helps to make a smooth transition from requirements to design and 

implementation.

2.10.1 Implementation

Since program development follows the abstraction process, it allows 

software objects to be developed in parallel after the interfaces are 

defined. This is possible because the implementation details of one object 

are independent of other objects.

2.10.2 Testing

Since an OO application contains clearly defined and separately 

identifiable modules, these can be tested one at a time. Separate testing 

of individual objects before they are put into one system helps to localise 

errors.
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2.10.3 Maintenance

Encapsulation restricts any undesired side effect from changing the 

contents of any object's data. Since all the data and procedures related to 

an object are located in one place, changes to be made are confined to 

one location. Apart from preventing any accidental corruption of the data, 

this feature helps in both the maintainability and the extendibility of 

software.

Use of explicit communication through messages and polymorphism 

allows the use of entirely new classes of objects in an existing application, 

as long as they follow the same message protocol as the application.

2.10.4 Prototyping and Software Evolution

The flexibility offered by an OO approach presents some special 

advantages for prototyping. Since one object can be treated like any other 

as long as the two have the same message protocol, we can build large 

complex systems from smaller interchangeable ones. But unlike the 

conventional approaches the initial prototype need not be thrown away; it 

can be 'grown 1 into the full production system.

2.10.5 Software Reuse

The basic OO concepts and implementation techniques support the 

development of software objects that can be reused in more than one 

application.
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2.11 Meyer's Five Criteria for Modularity

Meyer's (1997) criteria are used in this work to evaluate the extent to 

which the method develop satisfies the requirements of modularity. Meyer 

(1997) states that "A software construction method is modular if it helps 

the designers produce software systems made of autonomous elements 

connected by a coherent, simple structure." A modular design should 

satisfy the following five fundamental requirements:

1. Decomposability

2. Composability

3. Understandability

4. Continuity

5. Protection

2.11.1 Modular Decomposability

A software construction method satisfies modular decomposability if it 

helps in the task of decomposing a software problem into a small number 

of less complex sub-problems, connected by a simple structure, and 

independent enough to allow further work to proceed separately on each 

of them. Once a system is decomposed into subsystems it should be 

possible to distribute work on these subsystems among different people or 

groups.
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2.11.2 Modular Composability

A method satisfies Modular Composability if it favours the production of 

software elements which may then be freely combined with each other to 

produce new systems, possibly in an environment quite different from the 

one in which they were initially developed

2.11.3 Modular Understandability

A method favours Modular Understandability if it helps produce software in 

which a human reader can understand each module without having to 

know the others, or, at worst by having to examine only a few of the 

others. A method can hardly be modular if a user is unable to understand 

its elements separately.

2.11.4 Modular Continuity

A method satisfies Modular Continuity if, in the software architectures that 

it yields, a small change in a problem specification will trigger a change of 

just one module, or a small number of modules.

2.11.5 Modular Protection

A method satisfied Modular Protection if it yields architectures in which the 

effect of an abnormal condition occurring at run time in a module will 

remain confined to that module, or at worst will only propagate to a few 

neighbouring modules.
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2.12 Five Rules for Modularity

From the preceding criteria, five rules follow which must be observed to 

ensure modularity:

1. Direct mapping

2. Few Interfaces

3. Small interfaces (weak coupling)

4. Explicit interfaces

5. Information hiding

2.12.1 Direct Mapping

Any software system attempts to address the needs of some problem 

domain. If you have a good model for describing that domain, you will find 

it desirable to keep a clear correspondence (mapping) between the 

structure of the solution, as provided by the software, and the structure of 

the problem, as described by the model. Hence the first rule: The 

modular structure devised in the process of building a software system 

should remain compatible with any modular structure devised in the 

process of modelling the problem domain.

2.12.2 Few Interfaces

Every module should communicate with as few others as possible.
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2.12.3 Small Interfaces

If two modules communicate, they should exchange as little information as 

possible.

2.12.4 Explicit Interfaces

Whenever two modules A and B communicate, this must be obvious from 

the text of A or B or both. If a module is decomposed into several sub- 

modules or needs to be composed with other modules, any outside 

connection should be clearly visible. It should be easy to find out what 

elements a potential change may effect.

2.12.5 Information Hiding

The designer of every module must select a subset of the module's 

properties as the official information about the module, to be made 

available to authors of client modules. That is that the rest of the world 

through some official description or public properties knows every module.
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2.13 Software Reuse

Software development with reuse is an approach to development which 

tries to maximise the reuse of existing software components. An obvious 

advantage of this approach is that overall development costs should be 

reduced. Fewer software components need to be specified, designed, 

implemented and validated. However, cost reduction is only one potential 

advantage of reuse. Systematic reuse in the development process offers 

further advantages (Sommerville, 2006):

• System reliability is increased. Reused components, which have 

been exercised in working systems, should be more reliable than 

new components. These components have been tested in 

operational systems and have therefore been exposed to realistic 

operating conditions;

• Overall process risk is reduced. If a component exists, there is 

less uncertainty in the costs of reusing that component than in the 

costs of development. This is an important factor for project 

management as it reduces the uncertainties in project cost 

estimation. This is particularly true when relatively large 

components such as sub-systems are reused;
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Effective use can be made of specialists. Instead of application 

specialists doing the same work on different projects, these 

specialists can develop reusable components which encapsulate 

their knowledge;

Organisational standards can be embodied in reusable 

components. Some standards, such as user interface standards, 

can be implemented in a set of standard components. For 

example, reusable components may be developed to implement 

menus in a user interface. All applications present the same menu 

formats to users. The use of standard user interfaces improves 

reliability, as users are less likely to make mistakes when presented 

with familiar interfaces;

Software development time can be reduced. Bringing a system 

to market as early as possible is often more important than overall 

development costs. Reusing components speeds up system 

production because both development and validation time should 

be reduced.
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2.14 Chapter Summary

The methodology proposed in this work will utilise Hardware/Software 

Objects to enable manufacturing system designers to apply the concepts 

of software engineering.

The chapter has established that software systems are not perfect, indeed 

two out of eight software projects fail and fifty percent are over time and 

budget. However, the reasons for these failures have been established as 

primarily due to the lack of understanding at the user-requirements stage 

of the design methodology.

It is clear that the importance of selecting the most appropriate design 

methodology is paramount in any successful system implementation.

From the literature it has been established that a successful design 

methodology should:

• Accurately capture user requirements in a manner which can be 

understood by all stakeholders. Each stage in the design process 

must constantly and consistently cross reference user requirements 

to ensure they are fully met;

• The final system will fail if it does not adequately meet user 

requirements;
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• Support iterative refinement of user requirements into low level 

technical detail for implementation. This can be achieved by a 

hybrid top-down/bottom-up approach;

• The methodology must endeavour to minimise resource wastage. 

Utilising off the shelf, pre-tested components from a library of 

objects can achieve this goal;

• The development technique must support loose coupling of objects 

and should allow for modular decomposition;

• Code needs to be well documented and adopt the relevant coding 

conventions to ensure subsequent maintenance, modification or 

upgrades are possible;

• Modules need to be tested individually and subsequently as part of 

the system.

The chapter also highlights some important benefits to manufacturing 

organisations for adopting an object-oriented design methodology:

• Manufacturing personnel already think of their systems in terms of 

objects and therefore an OO approach should prove to be intuitive;

• Simulation techniques are useful for validating control strategies 

and for generating software;

• Incremental development approaches reduce costs;

• OO systems utilising class libraries offer customisation 

opportunities and aid in system maintenance;
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• Object class libraries that can be reused in other systems aid in 

breaking down the complexity of manufacturing system design.

These important points and benchmarks drawn from the literature will be 

used in this work to validate the original methodology devised in this work 

against the requirements of manufacturing organisations.

Many system modellers face the inimitable problem of having to cope with 

the recurrent need to become experts in a range of disciplines other than 

their own. For example, a computer system's analyst may need to 

analyse and design a software system for a petrochemical company, or an 

information system specialist may need to develop a new system for a 

supermarket chain. This implies the need for rapid personal knowledge 

expansion, however in reality the system modeller relies on an intuitive 

and highly detailed progression of models which enable them to overcome 

the barriers and bridge the gap between those with a dedicated knowledge 

of the system under consideration and those with the specialist skills 

needed to develop the new system. In short, system modellers need 

models which facilitate communication between the stakeholders at all 

levels within the system and those undertaking the development. These 

models need to be intuitive enough for all parties to understand and yet 

contain enough expressive power to enable the analysis and design of the 

system under consideration, in iteratively more complex levels of detail. 

System modelling tends to fall into two main camps, the slow and
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methodical, but high quality methods such as SSADM, SDLC etc. and the 

fast, low cost and low quality methods, such as RAD, Code and fix etc. 

Some main points can be drawn in this chapter:

• Reduced costs inherent in an incremental implementation.

Customising the solution over time means reduces costs by 

starting with the essential features and functionality and 

customising based on priority;

• Staged building. Building in stages allows the project to be 

broken into smaller, more manageable pieces giving staff the 

time to adapt to the new system and facilitating team 

development;

• Rapid Value. Implement small steps which have the most 

dramatic impact rather than redesign the whole system in one 

go;

• Stakeholder Involvement. Include staff at all levels in the 

development process as they have much to contribute and early 

and repeated involvement will ensure they take ownership;

• Results-based decisions. Make decisions for future 

enhancements based on actual results of previous phases;

• Milestone measurements. Goals and measurement criteria are 

should be defined prior to each new phase of implementation.
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'etri Nets for Functional Modelling

The aim of this chapter is to analyse, describe and evaluate Petri net 

graphs along with the various techniques for extending their modelling 

capabilities. This will enable the identification of the optimum model for 

this work which offers the best combination of analysis and modelling 

power along with visual simplicity. The Petri net model thus identified 

will then be used as the basis of the combined Petri net/object-oriented 

modelling technique presented in Chapter 4. The chapter begins by 

outlining the fundamental concepts underlying Petri net theory and 

demonstrates their applicability to the modelling of asynchronous 

concurrent systems. The various attempts at extending the analysis 

and modelling power of Petri nets are presented in a comprehensive 

literature review before the chapter concludes with a summary of the 

strengths and weaknesses of each technique and a justification of the 

chosen technique. This chapter offers a minor contribution to 

knowledge by presenting a comprehensive and up-to-date literature 

review of the research activity into Petri net theory.
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3.1 Introduction

A Petri net can be described as an abstract, formal model of information 

flow within a system, particularly those that exhibit asynchronous and 

concurrent behaviour (Peterson, 1981). Research into this field is 

primarily concerned with the search for simple, yet powerful, methods 

for describing and analysing the flow and control of information in such 

systems. In addition to being suitable for the description of the dynamic 

changes within a system, Petri nets can also describe the state of 

individual components within that system at any period of time, though 

time is generally not explicitly modelled with Petri nets. This concept of 

modelling state changes with dynamic events can be thought of as 

allowing a description, via models, of the behaviour of the system. As 

systems increase in their complexity the problem of multiple parallel or 

concurrent activities needs to be considered and these can be 

effectively addressed in a Petri net based model as will be 

demonstrated in the remainder of this chapter.
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3.2 Petri net graphs for modelling static systems

A Petri net graph allows the static properties of a system to be modelled 

by using two types of nodes: places (represented by circles) and 

transitions (represented by solid bars). The connection between nodes 

is made by directed arcs, such that a directed arc can link a place to a 

transition or vice-versa. If a node is directed from node /' to node j, then 

/ is an input to j, and j is an output of /'. Figure 3-1 shows a simple Petri 

net graph where P-, is an input to t2 , and t2 is the output of PI.

Figure 3-1: A simple Petri net graph
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3.3 Marked Petri nets for modelling system behaviour 

and dynamics

In addition to the static properties represented by the graph, a Petri net 

has dynamic properties that result from its execution. This execution is 

controlled by the movement of tokens within the Petri net, thereby 

modelling the changes of state in the system. Tokens are represented 

by black dots which reside in the places of the net. A Petri net which 

has tokens is described as a marked Petri net (Peterson, 1977).

The execution of a transition is called firing and is facilitated by its input 

places being marked with tokens. If all the input places to a transition 

are marked, the transition is said to be enabled. In Figure 3-2 (a), 

transition t2 is enabled as its only input (P^ is marked.

Figure 3-2: (a) A marked Petri net (b) The result of t1 firing
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Upon firing an enabled transition moves the tokens from its input places 

and deposits them in its output places as shown in Figure 3-2 (b). The 

distribution of the tokens in a marked Petri net defines the state of the 

net and is called its marking.
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3.4 Conflict

A conflict occurs whenever the firing of one transition disables another. 

Figure 3-3 from (Peterson, 1977), demonstrates a conflict. Transitions 

ts and t5 are enabled, therefore either one can fire, the choice as to 

which should fire first is arbitrary. However, if transition t3 fires then 

transition t5 will no longer be enabled conversely if transition t5 fires then 

transition ts will be disabled.

Figure 3-3: A Marked Petri net with conflict
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3.5 Modelling with Petri net graphs

3.5.1 Uninterpreted models

A Petri net is considered to be an uninterpreted model however, in order 

to make the Petri net graph more intuitive it is sometimes useful to label 

the nodes with system specific information. The labels have no effect 

upon the execution of the net and their purpose is simply to make the 

models more visually intuitive to the reader.

3.5.2 Sinks and Sources

An example is given, in Figure 3-4 of a system whose purpose is to 

provide raw material from an external source to a likewise external sink. 

Raw materials enter the system from the source and enter a storage 

unit. When the raw material and the arm are both ready, the material is 

moved from storage and placed onto the waiting conveyer belt by the 

arm. Once the conveyer is loaded it is moved along whereupon the 

material arrives at its source and the arm once again becomes ready.

A transition can be defined as a source if it has an output place but no 

input. The sink transition is the reverse in that it has an input place but 

no output. The concepts of sink and source transitions are intuitive and 

therefore no further detail will be described here, however, the concept 

of a transition being, fired from or firing, an external entity is important to 

note as it provides the basis of the modular concept presented in this 

thesis.
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Put material 
on conveyer

Move conveyer j 
along

Figure 3-4: Modelling concurrency with Petri net graphs
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3.5.3 Concurrency

Figure 3-4 also demonstrates the concurrency inherent in the system 

which is composed of two main independent entities, the raw material 

and the robot arm. If required, it would be possible to model the events 

which relate solely to the one or the other. Raw materials may enter or 

leave the system independent of the action of the robot arm, there is no 

need to synchronise these two entities. However, in order to begin the 

process of loading the conveyer belt with raw material, both entities 

need to be available and this can also be modelled. Thus a Petri net is 

ideal for modelling systems of distributed control with multiple 

processes occurring concurrently.

3.5.4 Asynchronicity

The basic Petri net graph contains no inherent measure of time which 

reflects the philosophy that the only important property of time, from a 

logical point of view, is in defining a partial ordering of the occurrence of 

events. In real life situations, events will take a variable amount of time 

and this is reflected in Petri net models by not depending upon a notion 

of time to control the sequence of events. Instead a Petri net structure 

contains all the information necessary to define the possible sequences 

of events of a modelled system (Peterson, 1977).
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3.5.5 Non-Determinism

A Petri net, in common with the systems modelled by them, can be 

viewed as a series of discrete events. Any particular order of 

occurrence modelled is generally one of many possible allowed by the 

basic structure. This leads to non-determinism in the execution of a 

Petri net, whereby if at any time more than one enabled transition may 

fire, the choice as to which to fire is made in a nondeterministic 

(randomly or by un-modelled forces) manner (Peterson, 1977). It is 

important to model all event sequences which are possible in real life 

with no regard to those that whilst possible, are not available in the real 

system under consideration. This is to ensure that account is taken in 

the modelling process of forbidden states, that is states that the system 

should never achieve. Knowledge of these forbidden states is crucial to 

the novel concept of behavioural constraints which have been 

developed in this thesis.

The firing of a transition is considered to take zero time, i.e. to be 

instantaneous and since time is a continuous variable, the probability of 

any two or more events happening simultaneously is zero, therefore in 

reality two transitions are unlikely to fire simultaneously (Peterson, 

1977).
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3.6 Petri Net Analysis

Petri nets are composed of places P and transitions, T. Places are 

connected to transitions via their input, / and outputs, O. An input and 

output for a place is always a transition whilst conversely the input and 

output for a transition is always a place. A set of inputs is defined for 

each transition l(tj), accordingly the set of outputs is also defined for 

each transition O(tj). A Petri net (C) is formally defined as a four tuple 

where C=(P, T, /, O).

Figure 3-5: Petri net graph
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The Petri net graph in Figure 3-5 can be structurally defined as: 

P = {Pi, P2, PS, P4, PS}

T={ti,t2,t3,t4}

The inputs are defined as: 

Kti) = {Pi}

/(fc) = (P2, P4> 

I(t3) = {P3} 

I(t4) = {P5}

The outputs are defined as: 

O(ti) = {p2, p5} 

0(t2) = {p3} 

0(t3) = {p4} 

0(t4) = {pi}

A number of features enable a Petri net graph to be analysed and each 

of these is briefly reviewed below. For a more detailed analysis readers 

are referred to the work of Peterson (1977).
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3.6.1 Marking

Markings are used to show the distribution of tokens in a Petri net graph 

and are represented by /L/. Markings are visualised utilising binary 

representations which aid in establishing the current state of places in 

the system. Referring to Figure 3-3 it can be seen that the system 

marking can be represented as: p = {0,0,1,0,0,0,0} which represents of 

the six available places only P3 is enabled (marked) whilst the other five 

places are disabled. A marked Petri net would modify the structure 

defined in section 3.6 to: M = (P, T, I, O, /L/).

The stage of marking of a Petri net graph is shown by jU0 ••• A/n with /J0 

representing the initial marking. For Figure 3-5 the marking tree would 

read as follows:

/y0 = {1,0,0,1,0} 

^ = {0,1,0,1,1} 

A/2 = {1,0,1,0,0} 

//3 = {0,1,0,1,1} 

The system would now continually loop through its actions.
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Understanding the state of an object is useful for aspect to the 

modelling of behavioural constraints and is discussed in more detail in 

Chapter 4.

3.6.2 Reachability

Figure 3-6: A Petri net graph in its \i0 marking
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The marking for Figure 3-6 demonstrates how the reachability tree can 

branch depending upon which transition fires in a Petri net with 

conflicts. At its fJi marking the graph provides two alternatives a) to fire 

ts or b) to fire k as depicted in Table 3-1.

Po

Vi

V3

Marking

{1,0,0,0,1,0,1}

{0,1,1,0,1,0,1}

Alternative A 

(fire ts)

{1,0,0,0,1,1,0}

Return to pi

Alternative B 

(fire tg)

{1,0,0,1,0,0,1}

Return to /Ji

Table 3-1: Two alternatives for a Petri net graph with conflicts

3.6.3 Boundedness and Safe nets

A Petri net in which any place can only have one token is called a safe 

net (Srihari et al, 1990). Boundedness refers to the maximum number 

of tokens that a place can hold. In the context of a bounded-ness a 

safe net is considered a 1-bounded net (Peterson, 1977).

3.6.4 Conservativeness

Conservative Petri nets are useful for modelling situations where tokens 

represent resources. In a conservative net tokens are neither created
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nor destroyed. This means that the number of inputs to a transaction is 

equal to the number of outputs (Peterson, 1977).

3.6.5 Liveness

A transition can have three possible firing states. It is live if it can be 

fired in all reachable markings; it is potentially fireable if at least one 

marking enables it; and it is dead if no markings can enable it. A Petri 

net is live if "all transitions in the net are enabled by a single cycle of 

token movement" (Srihari et a/, 1990).

3.6.6 Properness

A Petri net is said to be proper if the initial marking is reachable from all 

the markings in the reachability set (Cecil et a/, 1992).

3.6.7 Decision Free

A Petri net is decision free if there is a single input arc and a single 

output arc from each place.

3.6.8 Timed transitions

A timed transition is represented by a rectangular box.

3.6.9 Inhibitor arcs

An inhibitor arc will not fire if the place to which it is linked contains a 

token.
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3.6.10 Weighted arcs

A transition associated with a weighted arc will only fire if the number of 

tokens in the place associated with the arc is equal to or greater than 

the weighted value. Upon firing, the weighted number of tokens is 

removed from each associated input place. When weighted arcs are 

used to link output places and transitions, tokens corresponding to the 

weighted value are added to the respective output places (Cecil et a/, 

1992).

3.6.11 Deadlock

Deadlock occurs when a net reaches a marking from which no transition 

can fire (Agerwala, 1979).
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3.7 Petri Net Analysis Methods

Petri nets can be analysed in numerous ways but generally their 

analysis falls into three specific categories:

3.7.1 Reduction or decomposition methods

To aid in the analysis of large scale, complex systems, techniques are 

employed to reduce this complexity and size while preserving the 

properties of the system that are required for analysis. Murata (1989) 

indicates that "reduction techniques are powerful but only applicable to 

special subclasses of Petri nets." This would imply that they are 

particularly useful for decomposing more abstract nets, or removing the 

non-essential properties for specific criteria investigation, but are 

generally not applicable to all types of net or the entire net.

3.7.2 Matrix equations

Matrix equations employ mathematical equations or algebraic 

expressions to study the dynamic behaviour of the net. Murata (1989) 

states that "matrix equations govern the behaviour of concurrent 

systems modelled by Petri nets". However, he recognises the 

limitations of these techniques and maintains that "the solvability of 

these equations is limited due to the inherent non-deterministic nature 

of Petri net modules". The text also points out that, as with reduction
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techniques, these methods are not employable with all types of net and 

are more useful on smaller subclasses of net.

3.7.3 Reachability tree method

The reachability tree method begins from the initial marking of the net 

and for each firing of a transition produces a tree diagram of all possible 

markings within the net.

This type of analysis is useful for a number of reasons. Firstly, it will 

allow identification of unreachable places within the net which, in turn, 

identifies errors in the model. Other errors in the model will also be 

identified through the identification of transitions where the pre-requisite 

conditions for enabling them can never occur. Secondly, the analysis 

can aid in the removal of conflict and confusion in the net as the basic 

tree can only be generated based upon the assumption that the net is 

pure and free from conflict.

Usefully, in an ordinary net, where the arc weightings are all one, this 

tree structure could possibly be use as a model for a decision structure 

when the net is used to module software. Each branch may represent 

an outcome of a decision loop and the resultant marking used to 

represent Boolean statements executed on the condition of the branch.
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3.8 Literature review of Petri net extensions

3.8.1 A Brief history of the development of Petri nets

Petri nets were developed by Dr Carl Adam Petri (Petri, 1962) as a 

method for the design and programming of information processing 

machines. Petri's work was subsequently adopted by the 

Massachusetts Institute of technology (Peterson, 1977) where it 

became known as Petri net theory. Stochastic Petri nets are nets in 

which random firing delays associated with transitions. They are a 

mathematical model for description of phenomena with a probabilistic 

nature that usually is time related (Marsan, 1989).Much work has been 

undertaken to use Petri nets for the design and implementation of a 

number of types of systems such as Flexible Manufacturing Systems 

(Chaillet et a/, 1993)).

3.8.2 Application to Manufacturing Systems

Peterson (1981) describes Petri nets as "a tool for the study of 

systems". Cecil et al (1992) note that the "ever increasing application of 

Petri nets in the modelling of manufacturing systems testifies to their 

research potential and modelling capabilities".

The earliest application of Petri nets was as part of the project MAC a 

Masters thesis (Hack, 1972) which dealt with the analysis of production 

systems. A survey paper (Silva and Valette, 1990) cites a number of 

papers in French from 1978 and 1979. Industrial process control is
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cited as one of the applications of Petri nets in (Johnsonbaugh and 

Murata, 1982) where much of the effort was in developing hardware 

implementations of Petri nets.

The mid 1980's saw the publication of more French papers dealing with 

Petri net controllers for flexible manufacturing systems (Silva and 

Velilla, 1982) and (Valette etal, 1985).

Many of the approaches described attempted to incorporate a modular 

approach in order to reduce the size and complexity of models for large 

systems.

The application of Petri nets to manufacturing systems is a very rich 

domain. States and events are represented explicitly. Petri nets 

represent an important aid for integrating the whole system. From 

scheduling to real time control Petri net theory offers solutions for 

design, performance evaluation and implementation.

More work needed to produce efficient and distributed code for control 

purposes (Silva, 1983). The modelling of large concurrent 

manufacturing systems requires some form of modularisation to break 

down the complexity (Reisig, 1986)

The amount of applications to manufacturing systems can be attributed 

to the fact that they can analyse behavioural properties, can be used for
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performance evaluation, simulation and be used to develop controllers 

(Zurawksi and Zhou (1994).

The late 1980's saw the introduction of Controlled Petri nets in (Krogh, 

1987) and (Holloway and Krogh, 1990), which were applied to the 

supervisory control of discrete event dynamic systems.

In (Zurawski and Zhou, 1994) a tutorial is presented with an introduction 

to industrial applications of Petri nets and an up to date bibliography. In 

the late 1990's there is a large concentration on more high level Petri 

net models which incorporate other techniques such as fuzzy logic 

(Hanna et al, 1994) or object oriented methods.

3.8.3 Petri Nets for Control

Controlled Petri nets developed by Krogh (1987) allow state transitions 

to be influenced by external control inputs. They help to reduce 

computational complexity in a system (Holloway and Krogh, 1990) but 

are based more on the mathematical rather than the visual aspects of 

net theory.

Chaillet et al (1993) merged Petri nets with a database to control and 

monitor Flexible manufacturing systems however it provides no OO 

capabilities and is constricted by having a single control net and which 

controls individual modules. The work was extended by Villarroel and 

Muro-Medrano (1994) with their Knowledge Representation Oriented
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Nets which expand the idea proposed by Chaillet to include a 

coordinator between the main and module level controllers.

Automation Petri nets (Uzam et al 2000) extended the basic Petri net 

structure to accommodate sensor signals that help to avoid forbidden 

state problems by utilising inhibitor arcs.

Manufacturing control can be either centralised or decentralised. 

According to (Silva and Valette, 1990), centralised control requires a co­ 

ordinator (or manager) and a set of tasks. The co-ordinator plays the 

'token game' on the net model. The tasks are attached to fired 

transitions.

Performance analysis tasks such as measuring throughput or 

scheduling exercises are performed using timed Petri nets (Murata, 

1989), or stochastic Petri nets, (Marsan, 1989).

Complex simulation of flexible manufacturing systems is performed by 

higher level nets such as coloured Petri nets (Jenson, 1997) and 

attempts at Object-Oriented Petri nets (Adamou et al, 1998).

3.8.4 Object-Oriented Petri nets

Petri Net theory has been a major research topic for some time and 

several attempts have been made to integrate Petri nets and object- 

oriented (Delatour and Paludetto, 1998), (Venkatesh and Zhou, 1998).
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Other researchers have extended the basic Petri net formalism to 

incorporate object-oriented concepts such as the Hierarchical Object 

Oriented Design (HOOD). Hierarchical Object Oriented Design (HOOD) 

was designed as a software development process for the European 

Space Agency. Petri nets were added later to provide a formal 

verification method. (Giovanni, 1991). HOOD generally utilises the 

principles of Object Orientation and adds Petri nets for functional 

modelling but does not enjoyed the standardisation of the UML. HOOD 

is also designed with a focus on ADA applications. However, it does 

have a form of communication mechanism between modules using the 

concept of a buffer (Giovanni, 1991).

However, these approaches have led to extremely complex models 

where the link between Petri nets and object-oriented systems design is 

at best tentative. In addition the techniques do not fully capture all the 

benefits of a true object-oriented approach.

A language for Object-Oriented Petri nets (LOOPN) is an attempt to 

modularise Petri nets (Lakos, 1991). LOOPN are an extension of 

coloured Petri nets which support modularisation, flexible token 

visibility, simulated notion of time and some OO features (Lakos, 1991). 

The main problem with LOOPN is that it is concerned with mapping of 

code rather than actually visualising a system.
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Net Oriented Analysis and Design (NOAD) = OOA/OOD + Net theory. 

(Honiden and Uchihira, 1992). Attempted to integrate object-orientation 

with Petri nets by using the OOA/OOD approach. However, the 

technique is based heavily on data flow diagrams and does not provide 

a complete object-oriented model.

Cooperative Objects use an object control structure which defines the 

inner control structure of each object and is modelled with a Petri net. 

(Bastide, 1993). As with LOOPN this technique is based around 

programme code rather than the visual depiction of systems.

Object-oriented Petri nets (OPN) adds some modularity to Petri net 

graphs but it is not a true OO technique as it does not support classes 

or inheritance (Wang, 1996). This hierarchical approach allows 

individual places to represent entire sub-nets.

Hsiung et al (1997) developed MOBnet: Multiple Token Object Oriented 

Bi directional Net. This uses multiple tokens to represent data and 

introduces OO places and bidirectional arcs. Whilst it is a good 

technique which introduces classes and inheritance it suffers greatly 

from the complexity of the models.

Cooperative Objects (COO) developed by (Sibertin-Blanc, 1997) is 

based on C++ and is not a visual modelling but a language mapping 

process.
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Object Petri Net Language uses high level Petri nets where tokens 

represent data and transitions contain time intervals and functions. It 

has no OO standards and is mainly designed for embedded systems 

(Esser, 1997).

The HOOD approach was expanded by Chen and Lu (1997) to 

incorporate Petri nets in their Petri-net and entity-relationship diagram 

based object-oriented design method (PEBOOD). PEBOOD integrates 

IDEFO, entity relationship diagrams and Petri nets into a suite of 

models. Whilst it provides some OO capabilities it lacks the 

standardisation of UML (Chen and Lu, 1997)

Azzopardi and Holding (1997) attempted to use OMT for modelling the 

static system and Petri net for the dynamics. However the resultant 

models are not integrated with each other and the technique leads to a 

number of unconnected modules

G-CPN (Serey et al, 1997) uses modules for grouping Petri nets but has 

real OO capabilities. The G-CPN method proposes no method of 

communication between modules.

Elementary Object Nets Uses tokens as objects (Valk, 1998) but this is 

only a useful technique where the tokens represent resources that 

move around the system.,
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Object-oriented Predicate/Transition nets (OOPr/T nets) (Philippi, 1998) 

uses Petri nets to diagrammatically represent programming code.

State based object PN (SBOPN) model only states in an object not 

functionality. These use source and sinks for communication (Newman 

efa/,1998)

(Baldassari and Bruno, 1988) first proposed the idea of reducing the 

complexity of Petri net models by integrating them within an object- 

oriented framework where each object is an autonomous net 

exchanging messages w'a tokens.

Extended Object Oriented Petri-nets (EOPNs) were developed by Liu et 

al (2004) for coping with the complexity of wafer fabrication systems. 

The models use a hierarchical structure to model systems using work 

areas for resources, machines and functions. However, the technique 

requires the separation of these entities and results in a model that is 

not a direct representation of the system and which can be confusing for 

stakeholders.

The disadvantages of high level Petri nets as identified by Villani (2004) 

are that they are not useful for representing data and there is no notion 

of a hierarchy. High level Petri nets (Villani, 2004) attempted to 

overcome these problems but are not fully supportive of object oriented 

techniques.
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Stanton etal (1996), discussed Petri Nets in relation to the specification 

and design of control code. The work shows how control code can be 

specified and designed for a manufacturing system using hierarchical 

Petri Nets. Structured Petri nets (Stanton, 1999), allows a direct linkage 

with system inputs and outputs to be modelled.

The main problem to be overcome with Petri net graphs representing 

even quite simple systems is 'state space explosion'. This describes 

the complexity caused by the number of graphical elements required to 

represent even a relatively simple system.
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3.9 Chapter Summary

This chapter has demonstrated how a Petri net can describe a 

manufacturing system graphically allowing system users and designers 

to gain a better understanding of the complex interactions within the 

system.

The basic structure of a Petri net graph allows system modellers to 

identify and visually describe the events present in a system (via 

transitions) and its behaviour (w'a places).

The use of tokens in a marked net allow the representation of the 

sequence of transition firing and subsequent changes in behaviour as 

the system moves through the sequence of events required to achieve 

its goal.

Using a token player it is possible to simulate a system hypothesis and 

the Petri net graph's simplicity means that it is intuitive to modify the net 

to carry out 'what if analysis on the proposed system.

The analysis of Petri net graphs (via reachability marking) provides 

manufacturing system's analysts with a method of mathematically 

proving designs.

The inhibitor arc allows for the implementation of safety features within 

the design along with the mathematical proof this is especially important 

for safety or missing critical systems. The models allow for the
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specification of systems which display properties of synchronicity and 

concurrency and these properties are highly relevant for manufacturing 

systems.

The use of source and sinks enables a modular approach to system 

design to be adopted and this is further enhanced by the ability to 

iteratively refine Petri net graphs at different levels of abstraction. The 

myriad of proposed extensions to the original Petri net formalism allow 

for a range of scenarios to be modelled and this has been demonstrated 

by the diversity of systems which have been successfully modelled.

There are drawbacks to the technique, and these have been highlighted 

in this chapter. The main problem to overcome is the resultant state 

space explosion resulting from the sheer number of places, transitions 

and arcs required to model even a relatively simple system.

Whilst some attempts have been made to modularise the nets, full 

object-orientation has yet to be achieved and this is addressed in this 

thesis by integrating Petri net graphs into UML diagrams, as discussed 

in chapter 4.
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three Lever Control Structure with
Behavioural Constraints

This chapter discusses the Functionally Encapsulated Modules (FEMs), 

developed in this work, in further detail and introduces a novel 

methodology for their use within manufacturing systems. The chapter 

outlines a technique for combining the Unified Modelling Language (UML) 

and Structured Petri Nets (Stanton et al, 1999) for the modelling of 

manufacturing systems. The method presented identifies three levels of 

control in each system and this chapter describes how these control levels 

are decomposed down to a functional model that can intuitively be 

implemented. A top down design methodology is presented which 

maximises the loose coupling, and therefore the reuse capabilities of the 

system as each level is clearly modularised. The novel concept of 

behavioural objects is discussed as a mechanism for further ensuring the 

maximum reuse capability of each object in the system is achieved. A 

case study is presented based on a manufacturing system developed at 

the University of Wales, Newport and the chapter demonstrates how the 

full methodology created during this research work is applied to a working 

system. Finally an original technique for the automated generation of 

control code is presented.
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4.1 Introduction

Manufacturing systems are complex and varied in nature and therefore 

their software needs cannot readily be met by general purpose 'off the 

shelf packages. The approach generally adopted by software engineering 

practitioners is to design generic solutions, which can be customised to 

the specific requirements of the system. The resultant generic object class 

libraries are customisable through object-oriented (OO) techniques, and 

provide a good starting point for the design of practical control software. 

The abstraction of complex manufacturing systems into a series of objects 

is more intuitive because manufacturing end users already consider their 

systems in terms of objects, i.e. parts, conveyors, lathes, drilling machines 

etc. (Adiga, 1993). The Unified Modelling Language (UML) has become 

the de facto standard for object-oriented analysis and design and its 

application to manufacturing systems has already been demonstrated by 

the author (Llewellyn et al, 2000, 2001, 2003). Object-oriented modelling 

as a method of designing manufacturing systems has already been 

proposed in (Adiga and Gadre, 1990), (Adiga, 1993). The idea has further 

been expanded to take account of the increasing use of robots (Lin ef al, 

1994). Much of the early work in this area was based around the object- 

oriented methods described by (Coad and Yourdon, 1991), (Yourdon, 

1994). Booch, Jacobson and Rumbaugh amalgamated the early ideas 

(Booch et al, 1999) into the Unified Modelling Language (UML) which has
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become the ate facto standard for object-oriented modelling and which has 

been used as the object-oriented modelling technique for this work.

In the discipline of manufacturing, Petri nets are widely used to model 

discrete event systems (DES) and Discrete Event Dynamic Systems 

(DEDS). Petri nets provide a model which is mathematically provable and, 

using a token player, one that also functions as a simulation tool. A 

number of works have also considered their ability to map against various 

types of control code.

The challenge facing manufacturing organisations wishing to remain 

competitive in a global economy is to reduce the time from product 

conception to market whilst retaining high quality, low cost goods. This 

situation is complicated by the variety and complexity of manufacturing 

systems and its software, which cannot readily be met by general purpose 

'off the shelf packages.

The rapid growth in the development of powerful, low cost computers has 

seen many attempts to integrate computers into manufacturing 

organisations under the umbrella term of Computer Integrated 

Manufacturing (CIM). However, a fundamental flaw of the ad hoc 

integration of computer technology into manufacturing organisations is the 

resultant 'islands of automation' (Hannam, 1997). These islands arise as
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the result of implementing computers into parts of an organisation with no 

thought as to how these individual parts may be linked together at some 

future point in time. Despite this problem, computerisation offers many 

benefits to manufacturing organisations. A computer can do things quicker 

than a human and is less prone to mistakes, especially when working in 

hazardous environments or long, unsociable hours. The computer also 

provides tools to integrate the whole process from concept to market. For 

instance, it is possible to use a computer aided design tool to produce a 

first draft of the idea, the computer would then be used to aid in 

requirements gathering, to simulate the production processes and 

ultimately as a controller for the finished system. One solution to the 

islands of automation problem, posed by Pressman (2004), is 'loose 

coupling'. A loosely coupled system fully encapsulates the minute detail of 

an object behind a well-defined, publicly accessible interface. For 

example, a manufacturing cell embodying a loosely coupled design 

approach that utilises a pneumatic manipulator could intuitively facilitate 

the replacement of the manipulator with a robot arm. Such a change 

would cause minimal disruption to the remainder of the software 

controlling the system, despite the distinct differences in how the two 

components actually operate. This work has developed a novel approach 

to combining the UML and Petri nets to capture the benefits of both 

techniques and to overcome their shortcomings in a manufacturing 

environment.
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Manufacturing systems are made up of a wide range of inter-related 

hardware and software with the associated communications infrastructure 

to link them together. Whilst the hardware itself is complex, it is the 

software which provides the intelligence to enable a machine to perform its 

operations. This work utilises the concept of a hardware/software object 

(HSO) to visualise and model machinery within the system and its 

associated control software.
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4.2 Functionally Encapsulated Modules - Merging the 

UML and Petri nets.

The UML uses sequence and state charts for modelling the message flow 

and states of the system respectively. This results in two separate 

models, neither of which is mathematically provable. It is proposed that 

Petri net graphs can be used to capture both the message passing and 

states of a system in one graph. Merging the UML and the structured 

Petri net modules, developed in Stanton (Stanton, 1999), produces 

graphical models which take full advantage of current object-oriented 

software engineering techniques and which aid in the reduction of the 

state space explosion problem inherent in Petri nets. The models are also 

mathematically provable (Delatour and Paludetto, 1998) and allow the 

modelling of concurrent and non-deterministic systems (Zapf and Heinzl, 

2000). However, one of the main drawbacks of Petri net graphs is their 

inherent complexity, even on relatively simple systems. In the UML, 

operations are used to access and alter the internal state of the object. 

The proposed technique uses Petri nets to model these operations and 

their resultant behaviour changes. By modelling only the limited range of 

states and operations within a single object the complexity of the graphs is 

reduced considerably. As well as capturing the static, dynamic and 

behavioural attributes of the system, the resultant models help in the 

identification of user requirements, are understandable to a wider range of
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users, are extendable and reusable, and provide enough low level detail 

for the automatic generation of control code (Stanton, 1999). Structured 

Petri nets enable control and feedback places to be added to a basic Petri 

net structure and the encapsulation of these places into the object's 

interface enables a full Petri net diagram to be created if required. 

Breaking Petri nets down into smaller manageable sections during 

development enables system designers to develop modular systems akin 

to those developed by software engineers.
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4.3 Applying Constraints

Once the classes have been designed and their operations and attributes 

established and modelled, the resultant object is highly generic and can be 

applied to a range of applications. However, in order to utilise the object, 

strict control must be placed over the actions it is allowed to perform. For 

example, a manipulator may be able to move left and right, up and down, 

back and forth and the gripper may open and close. When applied to a 

specific system the manipulator may not be able to move right due to an 

impeding obstacle and therefore the controller must always raise the 

object, move it right and lower it, in order for it to achieve the required 

action of moving right. If this constraint is built into the object then it 

becomes system specific and loses some of its genericity. This chapter 

proposes a method of applying a constraint object to the class in order to 

meet the system requirements whilst not affecting the genericity of the 

class itself.

The UML uses the Object Constraint Language (Warmer and Kleppe, 

1999) in order to apply constraints to the model. However, these are little 

more than comments with no direct code conversion possible. The 

forbidden state problem is an is an area widely researched in Petri net 

theory and the work of Holloway and Krogh (1990) in applying constraints 

to controlled marked graphs has been adapted to fit the Petri net/UML 

approached presented in this thesis.
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4.4 A Three Level Control Architecture

This work suggests that a three level architecture be utilised when 

considering the design of manufacturing systems as outlined below:

4.4.1 Goal Control

In a typical manufacturing system it is possible to identify three levels of 

control. The first, commonly known as supervisory control is 'goal 

oriented'. This primary level of control is concerned with aiding the system 

in the achievement of its main goal(s). Typically this will involve a single 

controller co-ordinating several sub-modules. It is possible that the sub- 

modules each have their own goal-oriented controllers. At this level the 

controller is concerned with achieving the specific goal of the system or 

sub-system. Three questions need to be answered in order to define a 

goal controller:

• What does the system do (goal)?

• What does it need to do it (inputs)?

• What does it do with its output (if any) (outputs)?

In order to model the levels of control in the system it is important to 

identify the overall goal. This can be described as the main purpose or 

function of the complete system under consideration. The system's goal 

does not take into consideration anything which is not directly within the 

scope of the system being considered. Anything which provides to the
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target system is considered as an input, whilst anything which takes from 

the system is considered as an output. At this stage the functional 

behaviour of the system is not considered. Simply stated the first stage 

considers what the system does rather than how it does it. The goal 

controller of a system can be thought of as a sequencer, its role is to 

initiate the modules or objects under its control to fulfil their tasks in the 

required sequence in order to achieve the system goal. The goal 

controller in a system will generally be highly system specific and subject 

to major changes if at some later point in time the goal of the system 

changes. Therefore it is important to reduce the complexity within this level 

of control to a minimum whilst ensuring it maintains loose coupling with 

modules or objects it controls. In effect it can be thought that the goal 

controller takes responsibility for the aim of the system.

Definition: A goal controller is control software which co-ordinates task 

controllers in order to achieve the goal of the system.

4.4.2 Task Control

Once the goal control of the system is identified the individual tasks 

required to complete the goal are identified. The task control level is 

designed to operate the sub-systems under the guidance of the goal 

controller. The task controllers will activate upon receipt of a signal from
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the goal controller, carry out their task and then [usually] report to the goal 

controller that the task is achieved. When developing task controllers it is 

imperative that their invocation commands are embedded within a public 

interface and that they communicate only with the goal controller via this 

interface. Direct communication with other sub-systems would violate the 

concept of loose coupling and in the event of the internal software or 

hardware of a sub-system changing, would possibly require knock-on 

changes to other sub-systems.

An example of a task or sub-system level controller is a programmable 

logical controller (PLC) that is responsible for coordinating a series of 

pneumatic actuators that together form a manipulator. Or, the task level 

controller could be required to co-ordinate a number of manipulators to 

achieve some specified task.

At this level of control there is no concern for any goal, the object is simply 

to allow the object(s), i.e. in this case the manipulator, to perform some 

task(s). The task controllers are initiated and co-ordinated by the goal 

controller. Generally there will be a task controller for each module with a 

specific tasks or objective which takes care of an element in the sequence 

of steps needed for the system to reach its goal. Once again the modules 

are examined individually in order to establish their inputs and outputs 

within the rest of the system, however they differ from goal controllers in
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that they are within the scope of the system. Generally a task controller 

will need to co-ordinate with the goal controller above it, and the 

controllers beneath it. The interface between the top level should be 

made via uncomplicated public interfaces and will generally be limited to 

receiving initiate commands and sending feedback signals.

Definition: A task controller is the software which controls a sub-system. It 

receives a single command from the goal controller and then carries out a 

complete task which aids in achieving the goal of the system.

4.4.3 Object Control

The final level of control in a system is the object controllers themselves. 

Carrying on with the example given in the task level control section, an 

object level controller may be responsible for the functions of a single 

actuator. This level of control is highly specific to the object and 

communications, via a public interface, only with the task level controller.

Definition: An object controller is the software which enables a single 

object to perform its function
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4.4.4 Behavioural Constraints

In order to maximise the usefulness of an object in an object-oriented 

system, it is important to design objects that are as generic as possible. 

This applies not only to the objects themselves but also to the links 

between them. Ideally in a system the objects should be as distinct as 

possible from one another, and this idea should follow through to the 

linkages between sub-modules. This loose coupling between objects and 

modules means that changes to elements of a system have little, if any, 

impact upon the rest of the system. However, in practice this is difficult to 

implement as any solution will be designed for a specific system and will 

have to accommodate the peculiarities and constraints of that system. 

System specific design will take place at the expense of the genericity of 

the objects and the overall design. The addition of a constraint object, as 

discussed later in this chapter (section 4.11), allows the designer to keep 

the system specifics separate from the generic objects.
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4.5 A Methodology for Implementation: Analysis and 

Design

The initial stage in the methodology is the analysis and design stage. At 

this stage it is necessary to model the existing or proposed system at all 

levels of detail. The first stages aid in identifying the boundaries of the 

system under consideration including its interactions with other systems. 

The system is then broken down into a number of modules which are each 

analysed and modelled individually. Each module is then broken down 

into its component objects before the system is finally redeveloped.

4.5.1 Step 1: Identify System Boundaries and Interactions

The first step is to identify the boundary of the whole system and describe 

any interactions it has with other systems or external entities. At this stage 

the inputs and outputs of the system are identified and its overall goal is 

determined. Use cases (models and scenarios) are used to describe the 

top-level of the system and should be intuitive for all stakeholders to 

understand.

4.5.2 Step 2: Identify Sub-Systems, Boundaries and Interactions

Having established the system and its goal the sub-systems that make up 

the whole are identified. This is achieved by identifying the distinct tasks 

that must be achieved in order to meet the goal. This stage also 

establishes the boundary of each sub system and its inputs from and 

outputs to the rest of the system, where appropriate. The inputs and
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outputs of sub-systems will ultimately become the control and feedback 

signals passed between the system's goal and task controllers. Use 

cases models and scenarios are once again utilised to capture the 

workings at this level. Class diagrams are also utilised to ensure that the 

make-up of conceptual groupings of components is identified.

4.5.3 Step 3: Identify Modules and their Interactions

Each sub-system is analysed individually to establish the modules that 

form that part of the system. Each module is modelled with use cases to 

establish its task and how it co-operates with other modules within the 

sub-system. Class diagrams are used to capture the composition of each 

module.

4.5.4 Step 4: Identify Objects and their Functionality

The final step in the analysis and design stage is to identify and model the 

objects that make up each module. This is achieved using Functionally 

Encapsulated Modules (FEMs). At this stage all functionality of the object 

is captured and modelled. The modelling allows the system designer to 

capture all possible operations that the object can perform, irrespective of 

the current system. Class diagrams are also utilised to capture the 

inheritance that may exist between system objects.
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4.6 A Methodology for Implementation: Development

The second stage in the methodology is concerned with the development 

of the control software at each level, i.e. - object, task, behavioural and 

goal.

4.6.1 Step 5: Develop Object Controllers

The Object Controllers are developed to ensure that each object is 

capable of performing all possible tasks which it is able to undertake. This 

ensures that the object is fully reusable and can form part of a class library 

of pre-built and tested components for use in other systems.

4.6.2 Step 6: Develop Task Controllers

The task controller ensures that a sub system is able to work together to 

form a specific tasks within the system. In many cases the grouping of 

such objects to perform a task provides a logical module which can also 

be reused in other systems. For example the controller for a group of 

actuator objects which forms a pneumatic manipulator can be reused as a 

complete unit.

4.6.3 Step 7: Develop Behavioural Constraints

In order for modules to be reused in similar systems, behavioural 

constraints are developed to ensure that the module meets the needs of 

the particular system under consideration without having to remove any of
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the generic nature of the control code. The behavioural constraints act as 

an intermediary between task and object level controllers.

4.6.4 Step 8: Develop the Goal Controller

The goal controller acts as a sequencer which co-ordinates all the sub­ 

systems under its control in order to meet the goal of the system. This 

level of control is inevitably system specific and should be designed to be 

as intuitive and non complex as possible. The goal controller is 

established specifically for the current system and will generally not be 

useable in other scenarios.

4.7 A Methodology for Implementation: Testing

At this stage simulations are run on the system to ensure it fully complies 

with user requirements and possibly to evaluate alternative design 

implementations. The models should be reconfigured to ensure the 

system works to optimum capacity. Simulation can be undertaken at 

object, task and goal level control. Each object can be tested to ensure it 

is capable of achieving its full potential. Task controllers can be tested to 

ensure they fully meet their given task. Goal controllers can be tested to 

ensure the whole system achieves its goal.

4.8 A Methodology for Implementation: Implementation

The final stage is to implement the system by automatically generating 

code from the FEMs designed at earlier stages. This work presents a
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method of generating pseudo-code which can be translated into any 

language(s) required by the hardware controllers.

4.9 Functionally Encapsulated Modules

Functionally Encapsulated Modules (FEM) are a method of obtaining full 

object-orientation by using the powerful static modelling capabilities of the 

UML with the dynamic capabilities of a Petri net graph.

To demonstrate how FEM work a pneumatic manipulator will be used as 

an example. The actuator is a composition of four actuators and four 

sensors. The sensors are an inherent part of the actuator and enable the 

current state of that part to be ascertained. Figure 4-1 shows the graphic 

representation of class Manipulator using the UML's notation.

Manipulator

l±

Sensor Actuator

Figure 4-1: A pneumatic manipulator
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An actuator can be in one of two states, that is it can be actuated or de- 

actuated. Its inherent sensor is aware of these two states (see Figure 

4-2).

/ 
( 
l\

Sensor closed 
denoting that

the actuator is 
de-actuated

Xi

\
Sensor open
denoting that

the actuator is
actuated

Figure 4-2: The two states of a pneumatic actuator
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The actuators that make up the pneumatic manipulator each have their 

own characteristics when assembled into the unit. One is responsible for 

moving left or right; one moves up and down; one moves forward and 

backwards and finally one is used as a gripper which can be opened and 

closed (see Figure 4-3).

MFTBI^^^HM

Figure 4-3: A Pneumatic Manipulator

The Manipulator class can undertake eight operations - move forward, 

backwards, up, down, left, right, open and close [gripper]. Each actuator 

can only understand two commands - actuate and de-actuate.

A bottom-up approach is taken to model the capabilities of the actuator 

functions using a Petri net graph as shown in Figure 4-4.
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I 

I

Actuated

Figure 4-4: The functionality of an actuator

However in addition to the physical states of the actuator it is necessary to 

model its interaction with the sensors to model those states and the 

control signals to initialise them.

) )P5 P8

Figure 4-5: A pneumatic actuator showing control and feedback places

Figure 4-5 shows the control (p7 , PS) and feedback places (p5 , Pe). The 

dotted line represents the interface to the object. Only p5 to p8 are
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accessible from outside of the object to ensure the properties of 

encapsulation. The places correspond to the actions show in Table 4-1

Place

Pi

P2

P3

P4

P5

Pe

P7

Ps

Function

Actuator is deactuated

Actuator is actuating

Actuator is actuated

Actuator is deactuating

Sensor is closed showing the actuator is

Sensor is open showing that the actuator

deactuated

is deactuated

Command to begin actuating

Command to being deactuating

Table 4-1: The mapping of places to functions

The Manipulator is made up of four actuator objects as shown in Figure 

4-6, each with their own attributes and operations. No consideration 

needs to be given as to how these operations are performed as they will 

be accessed via their public interface only. The state attribute is private 

and can only be accessed through the getState operation.
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Direction

State

Actuate() 
DeactuateQ 
getStateQ

Horizontal

State

Actuate() 
Deactuate() 
getState()

Vertical

State

ActuateQ 
Deactuate() 
getState()

Gripper

State

ActuateQ 
Deactuate() 
getState()

Figure 4-6: The composition of the manipulator
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4.10 Controlling a Functionally Encapsulated Module

The FEM is controlled via its Petri net representation from a control object. 

The control object itself is also represented with a structured Petri net. As 

an example the manipulator may wish to pick up a component and place it 

on a loading area. The sequence of actions is shown in Table 4-2.

Action

move up

move forward

open the gripper

move down

close the gripper

move up

move right

move down

open the gripper

move up

move left

move back

close the gripper

Function Call

Vertical. actuate

Horizontal. actuate

Gripper.actuate

Vertical. deactuate

Gripper.deactuate

Vertical. actuate

Direction. actuate

Vertical.deactuate

Gripper.actuate

Vertical. actuate

Direction. deactuate

Horizontal.deactuate

Gripper.deactuate

Result

Moves the arm up

Moves the arm forward

Opens the gripper

Moves the arm down

Close the gripper (picking up 

the component)

Moves the arm up

Moves the arm right

Moves the arm down

Opens the gripper (releasing 

the component)

Moves the arm up

Moves the arm left

Moves the arm back

Close the gripper

4-24



Chapter 4-A Three Level Control Structure with Behavioural Constraints

Table 4-2: The sequence of operations for picking up an object

For safety purposes it is vital that the system is in a safe state. It is 

important, therefore to establish a safe state for the object being 

controlled.

Incoming signal
from the goal

controller

Command to the
vertical actuator

to move up

Command to the
horizontal actuator
to move forward

Sensor feedback
showing arm has

moved up

Figure 4-7: Part of the control net for the manipulator

Figure 4-7 shows part of the control net for the manipulator example. An 

incoming signal from the goal controller would request that the manipulator 

carry out its task. This is the invocation for the sub-system to carry out a 

complete cycle thereby performing its task. The sequence of events is 

represented by the grey circles and shows the first three steps being
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carried out. Control places emanate from each stage to the relevant 

object. Feedback from the object is used to ensure that the one stage is 

completed before moving onto the next. It would be possible, based on 

user requirements to allow several actions to occur simultaneously, 

possibly then waiting for a number of feedback signals to occur before the 

system proceeds. For example the arm could move up and forward and 

open the gripper simultaneously before waiting for feedback to ensure it is 

in the correct state before lowering to pick up the object.
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4.11 Behavioural Constraints

The actuator class has been designed to be as generic as possible, as 

indeed is the resultant manipulator. It can be seen that this object can be 

reused in any application. To ensure the object remains as general 

purpose as possible the environment specific constraints are built into a 

separate object which acts as an intermediary between the controller, 

which is goal specific and the manipulator object itself. In the system 

under consideration, the only constraint for the raw materials manipulator 

is that the gripper cannot be opened when the arm is raised. Imagining 

the cylinders to be quite heavy, doing so could amount in considerable 

damage to the other objects in the system and possibly the cylinder itself.

Figure 4-8 shows a constrained object being used. The controller object 

sends a message to the manipulator via its constraint. The constraint 

validates the request based on the current state of the object it is 

constraining, and depending upon the outcome either sends the message 

on to the object for implementation or returns an error message to the 

controller.

The constraint here is the intermediary between the controller and 

manipulator object, in other cases the constraint could be constraining a 

combination of objects where it is ensuring there are no conflicts between 

objects operating in the same environment.
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Controller
Message Request

Feedback
Constraint

Message Request

Feedback Object

Figure 4-8: A constrained object

The actuator class has been designed to be as generic as possible, as 

indeed is the resultant manipulator, which can still utilise its full six 

degrees of freedom, meaning that they can be reused in any application. 

To ensure the object remains as general purpose as possible the 

environment specific constraints are built into a separate object that acts 

as an intermediary between the controller, which is goal specific, and the 

manipulator object itself, which is task specific.
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4.12 Chapter Summary

This chapter has presented a novel methodology for a combined object- 

oriented and Petri net approach to the development of manufacturing 

systems. The technique designed in this work, entitled Functionally 

Encapsulated Modules, utilises Petri net graphs to model the functions of 

each object. This allows system designers to capture both the state and 

dynamics of an object in a single visual representation. It also allows for 

each module to be simulated for testing purposes. Using structured Petri 

nets which allow for modelling of control and feedback signals 

considerably reduces the complexity of the resultant Petri net graphs. 

This goes some way to reducing the state space explosion problem 

inherent in large complex systems.

The technique outlined in this chapter addresses many of the methodology 

issues highlighted in chapter 2:

• User requirements are iteratively captured using a series of use 

case diagrams and scenarios. A top down, abstracted view of the 

system from the perspective of its goals is initially taken. This view 

is then refined to establish more and more detail about the system. 

The use case models are intuitive for all stakeholders and ensure 

clear communication between technical and non-technical 

personnel. The use cases can be cross referenced at each stage of
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the design process to ensure that the system adheres to the user 

requirements;

• Once the system has been modularised a bottom up approach is 

taken to capture the capabilities of each system object. Viewing the 

objects as independent entities ensures their full functionality is 

captured. Object controllers are developed for individual objects or 

groups of objects which are inter-dependant. This facilitates the 

building of a library of generic and reusable classes which can be 

utilised in other systems or later in redesign processes;

• Communication between objects is only undertaken via public 

interfaces in the objects. This is facilitated by control and feedback 

places in the Petri net structure. At implementation stages the 

control and feedback places are coded as public operations. This 

feature ensures that systems are loosely coupled. Loose coupling 

in this case will ensure that changes to objects in the system have a 

minimal impact on other objects. Objects can be used based on 

what they do rather than how they do it;

• Objects and modules can be individually tested using the token 

player facilities of Petri net graphs. Upon system integration the 

entire system can be simulated using the same method;

• The well defined interfaces presented by FEMs enable system 

designers to incrementally upgrade parts or all of a system.

4-30



Chapter 4-A Three Level Control Structure with Behavioural Constraints

References

Adiga, S. 1993. Object-oriented Software for Manufacturing Systems. 

London, UK: Chapman & Hall. 0412397501.

Adiga, S. &Gadre, M. 1990. Object-Oriented Software Modeling of a 

Flexible Manufacturing System. Journal of Intelligent and Robotic 

Systems, 3, pp. 147-165.

Bittner, K. 2003. Use Case Modelling. Boston, USA: Addison Wesley. 

0201709139.

Booch, G., Rumbaugh, J. & Jacobson, I. 1999. The Unified Modeling 

Language User Guide. USA: Addison Wesley Longman. 0321267974.

Chen, K. & Lu, S. 1997. A Petri-net and entity-relationship diagram based 

object-oriented design method for manufacturing systems control. 

International Journal of Computer Integrated Manufacturing. 10(1-4), 

pp. 17-28.

Coad, P. and Yourdon, E., 1990. Object-Oriented Analysis. 2nd edn. 

Michigan: Prentice Hall. 0387333320

Delatour, J. &Paludetto, M. 1998. UML/PNO: A Way to Merge UML and 

Petri Net Objects for the Analysis of Real-Time Systems. Lecture 

Notes in Computer Science, 15 (43), pp. 511-514.

4-31



Chapter 4-A Three Level Control Structure with Behavioural Constraints

Di Giovanni, R. 1991. Hood Nets. Lecture Notes in Computer Science. 

524, pp. 140-160.

Hannam, Roger. 1997. Computer Integrated Manufacturing: from 

concepts to realisation. Harlow: Addison-Wesley. 0201175460.

Lin, L., Wakabayashi, M. & Adiga, S. 1994. Object-oriented modelling and 

implementation of control software for a robotic flexible manufacturing 

cell. Robotics & Computer-Integrated Manufacturing, 11(1), pp. 1-12.

Llewellyn, E.W., Stanton, M.J., Roberts, G.N. 2000. Towards the 

implementation of the Unified Modelling Language (UML) into a 

Computer Integrated Manufacturing (CIM) environment. Fourteenth 

International Conference on Systems Engineering. 12th - 14th 

September 2000. Coventry, UK, pp 398 - 403.

Llewellyn, E.W., Stanton, M.J., Roberts, G.N. 2001. Discrete event 

systems design based upon the UML and Petri net objects. 3rd 

Workshop on European Scientific and Industrial Collaboration. 27th - 

29th June 2001. Twente, The Netherlands, pp. 211-219

Llewellyn, E.W., Stanton, M.J., Roberts, G.N. 2003. A combined object- 

oriented and structured Petri net approach for discrete event systems' 

design. 4th Workshop on European Scientific and Industrial 

Collaboration. 28th - 30th May 2003. Miskolc, Hungary, pp. 398-403.

4-32



Chapter 4-A Three Level Control Structure with Behavioural Constraints

Meyer, Bertrand. 1997. Object-oriented Software Construction. 2nd edn. 

London: Prentice-Hall. 0136291554.

Narisawa, F., Naya, H. &Yokoyama, T. 1998. A Code Generator with 

Application-Oriented Size Optimization for Object-Oriented Embedded 

Control Software. Lecture Notes in Computer Science, 15(43), pp. 

511-514.

Pressman, Roger S. 2004. Software Engineering a practitioner's 

approach. 6th Ed. London: McGraw-Hill. 0071238409.

Stanton, M. J. 1999 .Doctoral Thesis: Structured Petri Nets for the Design 

and Implementation of Manufacturing Control Software with Fault 

Monitoring Capabilities. University of Wales College, Newport.

Venkatesh, K. & Zhou, M. 1998. Object-oriented design of FMS control 

software based on object modeling technique diagrams and Petri 

nets. Journal of Manufacturing Systems, 17(2), pp. 118-136.

Warmer, J. & Kleppe, A. 1999. The Object Constraint Language. 

Reading, USA: Addison-Wesley. 0201379406.

Wu, B. 1995. Object-oriented systems analysis and definition of 

manufacturing operations. International Journal of Production 

Resources, 33(4), pp. 955-974.

4-33



Chapter 4-A Three Level Control Structure with Behavioural Constraints

Yourdon, E. 1994. Object-Oriented Systems Design. New Jersey, USA: 

Prentice-Hall. 0136363253.

Zapf, M. & Heinzl, A. 2000. Approaches to integrate Petri nets and object- 

oriented concepts. Translated from WIRTSCHAFTS 'INFORMATIK . 

42(1), pp. 36-48.

4-34



Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

Application of Functionally
Encapsulated Modules to a

Manufacturing System

This chapter demonstrates a unique technique, called Functionally 

Encapsulated Modules (FEMs). FEMs form one of the contributions of this 

research work by combining the Unified Modelling Language (UML) and 

Structured Petri nets (Stanton, 1999) for modelling manufacturing 

systems. The chapter highlights how the three level control architecture, 

described in Chapter 4, is applied to a manufacturing system where the 

resultant models provide full control of the system. A further contribution, 

entitled behavioural objects, is applied as a mechanism for ensuring the 

maximum reuse capability of each object in the system is achieved. The 

benefits of the loosely coupled and highly reusable systems produced by 

this original methodology are clearly demonstrated. The chapter presents 

a case study based on a manufacturing system developed at the 

University of Wales, Newport and the chapter demonstrates how the full 

methodology created during this research work is applied to a working 

system. Finally an original technique for the automated generation of 

pseudo-control code is presented.

5-1



Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

5.1 Application

The technique described in this paper is demonstrated by applying it to the 

University of Wales, Newport's Computer Integrated Manufacturing (CIM) 

system. Initially user centric views of the system are modelled (Bittner, 

2003) using use case scenarios and their resultant diagrams. Next the 

classes in the system are identified and their attributes and operations 

captured. The attributes (or states) and operations are modelled using 

Petri net graphs, where one graph is used to model all operations for a 

particular class. Output places (Stanton, 1999) are used to represent 

message passing between objects. Finally the system constraints are 

identified and placed in a constraint class for each object.

The system (shown in Figure 5-1 and Figure 5-2) has been designed as 

an example of a modern CIM system and it incorporates a number of 

"modules" that interact in order to produce two end products. The end 

products are a milled block and a lathed cylinder which can be manually 

combined to produce a paper-weight. The raw materials used by the 

system are a Perspex block and a metal cylinder. The block and cylinder 

originate from the Raw Materials Station (RMS) and are placed into trays 

on a conveyor belt for transportation around the system. The system 

performs two main functions - the block is milled and the cylinder lathed 

so that the two items can be fitted together. Finally the finished product is 

stored in the Automated Storage and Retrieval System (ASRS).
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Robotic 
Arm

Conveyor 
Belt x-

I

Lathe

Pallets

Raw Materials 
Station (RMS)

JJ. ASRS

Figure 5-1: A Schematic of the CIM System (adapted from Stanton, 1999)
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B to _-

Figure 5-2: The University of Wales, Newport CIM System
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5.2 Definition of System Goal and Boundaries

The first stage in the methodology is to identify the goal of the system and 

define its boundaries. In order to complete this stage the system must be 

analysed at its highest level of abstraction.

The system begins its process when an employee initiates a start 

sequence. In operation the system processes two raw materials, a cylinder 

and a block which are lathed and milled respectively before being placed 

in an ASRS. At some later stage an employee will remove the completed 

components for manual assembly. A use-case diagram for the overall 

goal of the system is shown in Figure 5-3:

Employee

Employee

Figure 5-3: A use-case diagram depicting the CIM system
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The associated scenario would be:

1. An Employee starts the system by pressing the start button;

2. The components are produced;

3. The components are stored;

4. An Employee withdraws the components from the ASRS.

The only external interactions are the employee who initialises the system 

and who, at some later stage, retrieves the completed components. The 

use-case diagram establishes that the system has two main functions, i.e. 

the production of components and their subsequent storage. Whilst 

withdrawing and assembling the components is vital to the organisation it 

is a manual task performed by an employee and needs no further thought 

in this design process.
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5.3 Identify Sub-Systems

The sub-systems can most easily be identified by analysing the 

processing that is undertaken in order to achieve the goal of the system. It 

has already been established that the system needs to produce two 

components, carry out some tasks upon them and then store them for 

later retrieval. Further analysis of the system indicates that the system is 

comprised of:

• A raw materials station (RMS), which achieves the task of providing 

raw materials;

• A Mill and Lathe, which produce the components in combination 

with an associated robot arm (the combined unit is defined as the 

Machining Unit (MU));

• A conveyer belt for transporting raw materials and components 

around the system;

• The Automated Storage and Retrieval System (ASRS) for storage 

of the machined components.

Identification of tasks is useful for establishing the modular composition of 

the system. The tasks identified are:

• Provide raw materials (RMS);

• Produce components (MU);
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• Transport items (Conveyer belt);

• Store components (ASRS).

The resultant sub-systems that have been identified are shown in Figure 

5-4 below:

The Computer Integrated Manufacturing System

V

Raw Materials 
Station (RMS)

Machining 
Unit (MU) Conveyor Belt

Automated
Storage and 

Retrieval
System

)
Figure 5-4: Identification of Sub-Systems
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5.4 Task Controllers

To demonstrate the process of analysing a task controller within this 

methodology, the RMS will be examined in more detail. Figure 5-5 shows 

a schematic for the RMS which consists of two manipulators and two 

storage units. The storage units contain blocks and cylinders respectively. 

One of the manipulators is used to load cylinders onto a pallet waiting in 

the loading area, whilst the other serves the dual purpose of placing 

pallets onto the loading area, and populating pallets with blocks. The 

whole station is controlled by a programmable logic controller (PLC) which 

interacts with a series of valves and pneumatic actuators.

wagon \ ouuu

Figure 5-5: Schematic of the RMS (adapted from Stanton, 1999)
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The RMS undertakes two main tasks and use case scenarios can 

describe these as:

Scenario 1: Provide a Block

1. A pallet is retrieved from the pallet storage area by the pallet 

manipulator and placed onto the loading area;

2. A block is retrieved from the block storage area by the pallet 

manipulator and placed onto the pallet;

3. The loaded pallet is placed onto the conveyor belt by the pallet

manipulator. 

Scenario 2: Provide a Cylinder

1. A pallet is retrieved from the pallet storage area by the pallet 

manipulator and placed onto the loading area;

2. A cylinder is retrieved from the cylinder storage area by the cylinder 

manipulator and placed onto the pallet;

3. The loaded pallet is placed onto the conveyor belt by the pallet 

manipulator.

The use case-scenario is interesting as it demonstrates that step 1 and 3 

of both scenarios is identical providing an opportunity to reuse code. As 

the system requires both components to undertake a complete production 

cycle the two scenarios can be thought of as a single task which is to 

provide raw materials.
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The resultant use case diagram is shown in Figure 5-6. The use case 

diagram combines both scenarios i.e. putting a Block onto the conveyer 

and putting a Cylinder onto conveyer. These scenarios are combined as 

the use-case scenario clearly indicates that they are highly similar. Use 

case modelling has already shown one of its benefits as it becomes 

apparent from the diagram that a raw material cannot be placed onto the 

conveyor without first requesting a pallet. This may not have initially been 

evident from any textual description. For control purposes two commands 

can be established - getBlock and getCylinder and these represents the 

tasks for which the RMS is responsible. A further command - getPallet is 

also utilised but as this does not fulfil a task (for goal purposes) it can be 

called from within the other functions. Using a function in this way helps 

reduce the complexity of the task level controller. Without identifying the 

overlap in this sub-system the task level controller would have needed four 

operations to be invoked in sequence - getPallet, getBlock, getPallet, 

getCylinder. This has a significant impact on the amount and efficiency of 

the control code required. It is important to note that communication from 

the rest of the system can only be conducted via the RMS controller 

through its public interface containing the two specified public functions - 

getBlock and getCylinder.

When attempting to establish how to decompose a system, the need for 

reuse should be borne in mind. For example, the system described
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contains a RMS which is responsible for supplying the raw materials to 

processes later in the system. It can be considered in three ways 

depending upon the design approach:

1) Provide: A block, a cylinder and a pallet - These are the 

actual raw materials that are contained in the RMS and one 

description of the system could be: Put Pallet, Put Block and 

Put Cylinder. These cases would need to be called by the 

main system controller and would have to be distinctly 

sequenced by that control mechanism.

2) Provide: A block and cylinder - The RMS cannot provide 

either a block or cylinder unless a pallet is supplied first, and 

therefore it is possible to describe a Put Block and Put 

Cylinder method with each implicitly relying on, including in 

use case parlance, the Put Pallet operation. The former two 

methods are again called from, and sequenced by the main 

system controller, however a small degree of control has been 

taken out of this level and placed within the scope of the RMS 

itself.

3) Provide: Raw materials for a complete unit - In terms of the 

system's goal, the fact that a block and cylinder are needed is
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incidental, whilst the pallet is irrelevant. These details, whilst 

crucial to the operation of the system, do not form part of the 

goal, which is to supply a complete unit. This goal level 

control is specific to the system and it is therefore usually 

difficult to encompass any form of reusability at this level. 

Therefore the goal controller i.e. that controlling the overall 

flow of the system needs to be as streamlined as possible. In 

terms of this work, streamlined would mean containing the 

least functionality possible, or at its simplest, the least number 

of functions. By adopting, the "provide raw materials for a 

complete set approach" the designer has reduced the number 

of functions in the goal controller from three to one and 

encapsulated more of the detail into the RMS itself, which 

would now be responsible for providing a pallet, then block, a 

pallet and then cylinder. The RMS would include all the 

functions for this action and would be responsible for 

sequencing the order of events at goal level.

The order in which the block or cylinder tasks are accomplished and 

whether the system should be able to provide individual raw materials is 

established by discussion with the end users of the system. In this case- 

study the order of raw materials processing is irrelevant as long as both 

components are provided. However, the goal controller needs to be
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'aware' of what is being loaded onto the conveyor in order to decide 

whether to invoke the mill or the lathe in later stages of the process. If this 

were not the case a single, provide raw materials, command would have 

sufficed.

RMS Controller

Raw Materials Station

RMS Controller

Figure 5-6: Use case scenarios for the raw materials station

The use-case modelling technique provides an intuitive method of 

capturing user requirements. It is important to initially model the system in 

its 'optimum' state, i.e. fully working as intended by the end-user as this is 

ultimately what the system designer is attempting to achieve. However, 

subsequent iterations can capture more detail about the system, including 

building in fault tolerance. Figure 5-7 shows the use-case diagram
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extended to allow for possible exception conditions such as running out of 

raw materials.

RMS Controller RMS Controller

Put Cylinder onto 
Conveyor

Blocks Empty ) ( Pallets Empty ) Cylinders Empty

Figure 5-7: The RMS use case extended to show exception conditions

The use case diagram in Figure 5-7 identifies the communication between 

the RMS task controller and the components within the module. By 

encapsulating (also known as information hiding) this information so that 

external entities can only communicate with the RMS through its public 

interface, this technique achieves the concept of loose coupling 

(Sommerville, 2006), (Meyer. 1997), (Pressman, 2004). The internal 

operations of the module are hidden from the user. In order to operate 

this module, external entities only need to know about its interface, which 

describes the operations it performs. The internal details of how it
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provides a cylinder or block, or gets a pallet, are unimportant when calling 

these operations. Therefore, modifications made to the internals of an 

object should have a minimal, if any, effect on other objects in the system, 

as long as its interface remains unchanged.

The models describe so far demonstrate the concept of a 

hardware/software object, where no distinction is drawn between the 

software and hardware in the module. Instead the module is thought of in 

terms of the operations it performs and the interface to those operations.

The storage units are fairly intuitive devices and simply provide raw 

materials on demand. Each storage unit contains an actuator which is 

used to release the component into an area for retrieval by the 

manipulators. The two manipulators within the system however are 

required to do a range of tasks. The Pallet Manipulator (PM) is 

responsible for retrieving pallets from the conveyor belt and placing them 

on the loading bay and retrieving blocks from the block storage unit (BSD) 

and placing them on pallets. It is also responsible for placing loaded 

pallets, containing either a block or a cylinder onto the conveyor belt. This 

whole series of operations would generally take place as a result of a 

single command from the RMS controller requesting that a block be 

placed onto the conveyer (Figure 5-8).
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RMS Controller

Pallet Manipulator

Put pallet on 
loading area

Get palletfrom 
conveyor belt

Figure 5-8: A use-case diagram for the pallet manipulator

The Cylinder Manipulator (CM) has a single function and that is to retrieve 

cylinders from the Cylinder Storage Unit (CSU) and place them onto a 

pallet waiting in the loading area. However, it is reliant on the PM first 

providing a pallet from the conveyor onto the loading area.

The use-case diagram for the CM (Figure 5-9) clearly shows that to 

complete a request by the RMS controller to provide a cylinder, it must rely 

upon the PM and so these two objects are tightly coupled. Such tight 

coupling is acceptable in this case as these two objects are being 

conceptually integrated to form a module.
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RMS Controller

Pallet Manipulator

Cylinder Manipulator

Put cylinder onto 
conveyor

Get palletfrom 
conveyor belt

Put cylinder on 
loading area

Figure 5-9: A use-case diagram for the cylinder manipulator

The system goal requires that both a block and a cylinder are provided in 

order to produce a complete unit and therefore the system must present 

both items for a successful execution cycle.

A typical use-case scenario for the execution cycle would proceed as 

show in Table 5-1.
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Stage

1

2

3

4

5

6

7

8

Process One (Block) Process Two (Cylinder)

A pallet is retrieved from storage and placed onto the loading area.

A block is retrieved from storage 

and loaded onto a pallet before 

being placed on a conveyer belt. 

This process is carried out by a 

pneumatic manipulator

A cylinder is retrieved from 
storage and loaded onto a pallet 
before being placed on a 
conveyer belt. This process is 
carried out by a pneumatic 
manipulator

The loaded pallet is moved to a machining unit by the conveyer belt

A robot arm removes the block 

and positions it in the cradle of 

the mill

A threaded circle is cut into the 

block by the mill

A robot arm removes the 
cylinder and positions it in the 
cradle of the lathe

The cylinder has a thread cut 
into it by the lathe

The robot arm places the completed component back into its pallet 

on the conveyer belt

The loaded pallet is moved to an automated storage and retrieval 

unit (ASRU).

A robot arm loads the pallet and its cargo into the ASRU

Table 5-1: A use-case scenario for the RMS
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5.5 Capturing the Static System for Reuse Purposes

From an abstracted viewpoint, it can be seen that the RMS is made up of 

a number of storage units and manipulators. Figure 5-10 shows such an 

aggregation (or generalisation) relationship using the UML's class diagram 

convention. An aggregation relationship is denoted by an unfilled triangle 

and each end of the relationship is qualified. As this is a generic and 

multi-purpose description, which is not system specific, a one to many (*) 

qualifier is shown. This denotes one RMS as being an aggregation of a 

number of, or many (*) StorageUnit classes and Manipulator classes. In 

the actual case-study the relationship would be one to two for both the 

RMS to StorageUnit and RMS to Manipulator.
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RMS

StorageUnit Manipulator

Figure 5-10: The RMS as an aggregation

Examining the RMS system in more detail it can be seen that whilst the 

RMS is the top level grouping for two other classes, i.e. the StorageUnit 

and Manipulator classes, each of these in turn is composed of its own sub­ 

classes. The StorageUnit class is composed of StorageBay, Sensor and 

Actuator classes. The Manipulator Class is composed of Sensor and 

Actuator Classes. This relationship denoted in Figure 5-11 differs from 

that shown earlier in Figure 5-10, as this is a different type of inheritance 

relationship known as a composition. The relationship in Figure 5-11 

denotes the actual case study rather than a generalised version. A 

composition relationship is a stronger form of relationship than an 

aggregation. A RMS is generally composed of a number of StorageUnit
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classes and Manipulator classes, but could possibly be made up of just 

StorageUnits with no Manipulators. A Manipulator, however, can only 

exist with its child classes intact. An aggregation can be thought of as an 

optional or loosely coupled form of inheritance, whilst a composition is a 

compulsory or tightly coupled relationship.

2

StorageUnit
2

Manipulator

1 -1
StorageBay

4 1
Sensor

1
4

Actuator

Figure 5-11: The full class make-up of the RMS

The class diagram in Figure 5-11 aids in the identification of sub-modules 

and this highly abstracted model is subsequently refined to flesh out the 

details of each individual class, as described below.

A Manipulator is actually composed of a number of actuators and sensors 

(4 in this case), which are classes in their own right. Figure 5-12 shows 

this composition with each end of the relationship being qualified, i.e. for 

one manipulator there is a composition of four actuators (for the Newport
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system at least). It is also possible to qualify these roles with ranges, such 

as 0..4 meaning a possible range of 0 to 4 children to a parent class; with 

no fixed limitation (*) meaning an infinite number of children to a parent 

class including none; or 1..* meaning at least one, but no upper limit.

Manipulator

J_f.

Sensor Actuator

Figure 5-12: A pneumatic manipulator showing a composition relationship

From an object-oriented point of view, it can be seen that the system 

described consists of a series of classes. Booch et al (1999) define a class 

as "a description of a set of objects that share the same attributes, 

operations, relationships and semantics." An object then, is a unique 

instance of a class.
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Two other important properties of a class are:

• Operations - which are used to read or manipulate the data of an 

object and;

• Attributes - the structure of the objects: their components and the 

information or data contained therein

The 'building block1 of this section of the system is the pneumatic actuator, 

which can be either actuated or de-actuated. These operations take place 

when a Programmable Logic Controller (PLC) opens a valve, which 

pumps air into the actuator, thus actuating it. When the PLC closes the 

valve, the air is removed and the actuator de-actuates. This description 

provides a basic overview of the system, which is all that is required in 

order to model it. From this description it is possible to identify the 

following classes: - PLC, Valve and Actuator. These classes can now be 

examined in further detail.

The actuator can be in either one of two final states - actuated or de- 

actuated. It can also be midway between these states, i.e. it can be in the 

process of actuating or de-actuating. Therefore, the actuator requires two 

operations, one to carry out the action of actuating and the other to carry 

out the action of de-actuating. In addition, if the system is to provide 

feedback it must allow external entities, such as a controller, to interrogate
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the actuator to determine its current state. This can be achieved via 

feedback from sensors. It is therefore possible to establish that an 

actuator has a state attribute and an operation that provides that state to 

external entities. The possible range of values that the actuator can take 

are: actuating, de-actuating or busy. An important concept for attributes is 

that of visibility. Visibility applies to attributes and operations and specifies 

the extent to which other classes can use a given class' attributes or 

operations. Three levels of visibility can be described. At the public level, 

usability extends to other classes (represented by a "+" symbol). At the 

protected level, usability is open only to the classes that inherit from the 

original class (represented by a "#" symbol). At the private level, only the 

original class can use the attribute or operation (represented by a "-" 

symbol). The actuate and de-actuate operations are called by the Valve 

class and therefore are public, as is the getState operation. Generally, 

classes are shown with the first letter of each word in uppercase. 

Attributes and operations usually start with a lower case letter. Figure 5-13 

shows a class diagram for a class of type Actuator.

Attributes
Actuator

-state
+getState()
+actuate()
+deActuate()

Class name

Operations

Figure 5-13: The Actuator Class
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In addition, a state diagram shows all the possible states an actuator can 

have. This helps to identify all the possible values the state attribute can 

take. This is shown in Figure 5-14, where it can be ascertained that in 

order to arrive at the desired states of actuated or de-actuated, the 

actuator must pass through a 'working 1 phase where it is either actuating 

or de-actuating.

Deactuated ^—————— Deactuating

Deactuated J———————>{ Actuating J———————>[ Actuated

Figure 5-14: A state diagram for the actuator class

The more explicit Actuating and Deactuating states have been used rather 

than busy, as it is important for the system sequence controller to be 

aware of these states, so that it does not try to invoke the operations of a 

busy object.
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Figure 5-15: A Petri net diagram for the actuator class

Figure 5-15 gives the equivalent Petri net model for the state diagram 

shown in Figure 5-14. It can be seen that the resultant diagrams are 

similar. The only notable difference being the addition of transition places 

in the Petri net graph. Transition places are an important aspect of the 

code generation discussed in section 5.9.

The textual description shows that the valve can be either open or closed, 

and again there must be the intermediate steps of opening or closing. For 

feedback purposes it will be necessary to establish the current state of the 

valve. The class and state diagrams for the valve are similar to those for 

the actuator. From the description it becomes apparent that the PLC class 

controls the operation of opening and closing the valve, therefore it is 

logical to assume that the open and close methods are public, as is the 

valve's state attribute.
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In this instance, the PLC class (shown in Figure 5-16) needs only to start 

or stop the predetermined sequence of events of the objects under its 

control. These operations (start and stop) are public.

PLC

+start() 
+stop()

Figure 5-16: The PLC class

It would be reasonable to assume that in other circumstances the 

controller could be another object in the system. This is known as an 

external entity, which may well be an integral part of the larger system. 

Decomposition into subsystems allows the external entity or actor to be 

represented with a stick figure, indicating that while it is understood to be 

an important object, which needs representation, its complexity need not 

be modelled at this stage. It is sufficient to know that it performs the action 

of starting and stopping the PLC. The ability to generalise in this way 

enables the system designer to plan for various types of implementation. 

For example, the PLC could be controlled by a human, another PLC or a 

computer. The diagram would not need to change in any of these 

circumstances. The functional details of how the PLC works are 

encapsulated within the Class. In order to interface an instance of class 

PLC with a controller, all the required information can be accessed via the
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public operations and attributes. These represent the interface between 

the Class and the outside world.

5.6 Modelling System Dynamics

The method calls between objects can be more clearly seen on a 

sequence diagram, which also shows the order in which the operations 

are invoked (Figure 5-17). The diagram gives a pictorial representation of 

the two possible final states of a pneumatic actuator and the procedure for 

arriving in those states i.e. the actuator being actuated, and the actuator 

being de-actuated. This model shows the functional detail of the dynamics 

of the actuator. Once this information has been captured it is possible to 

write all the functional code and ignore the complexity involved in the 

actions of the actuator. This 'code and forget' approach means it is no 

longer necessary to consider the PLC or the valve, instead the system 

designer can concentrate on the detail of what the actuator is intended to 

do, as part of the greater system. However, as the functionality of the 

system increases in complexity, or the system becomes larger, these 

diagrams become complex and unwieldy.
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open()

actuate()

gets ate()

closet)

state()

deactuate()

getState()

state()

actuate()

deactuate()

Figure 5-17: A sequence diagram for control of an actuator
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In the four-actuator model described, each of the actuators can carry out 

the same basic function, i.e. they can actuate or de-actuate. However, the 

same operation call has differing effects on the action being performed by 

its recipient object. For example, actuating an actuator can raise it, move it 

left, or open it. This sharing of an operation is called polymorphism, which 

may be described as the situation where an operation has the same name 

in different classes and each class 'knows' how that operation is supposed 

to take place.

An instance of class Manipulator may comprise of four pneumatic 

actuators as shown in Figure 5-12. It can be clearly seen in this diagram 

that the four separate actuators whilst all having the same basic 

characteristics, are slightly different. This raises another important object- 

oriented concept, that of inheritance. As Yourdon (1994) defines it 

"[inheritance] allows an object to incorporate all or part of the definition of 

another object as part of its own definition." The Class Actuator used to 

make up the Manipulator above is actually decomposed into three 

subclasses or child classes - a LinearActuator, RotaryActuator and Gripper 

(Figure 5-18).
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Actuator
+state
+actuate()
+deactuate()
+getState()

Rotary Actuator

#position() 
#direction()

Gripper LinearActuator

#direction()

Figure 5-18: The actuator class showing inheritance

Each subclass inherits all the attributes and operations of the Actuator 

class and each add their own unique attributes. For example, the 

LinearActuator Class adds the position attribute which enables the 

actuator to have a horizontal or vertical position. The RotaryActuator has a 

direction which enables it to find out the direction of travel when the 

actuate operation is carried out. The Gripper will open when actuated and 

close when de-actuated. This demonstrates the principle of 

polymorphism, each of the Actuators has an actuate operation, but each 

reacts differently when called. These new attributes are visible only to the 

creating class and are therefore protected.

Focusing on the CM, it can be observed that the object is an instance of 

class manipulator, and that this class itself is a composition of four 

instances of class actuator. The actuator class has two simple methods
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that allow it to actuate or deactuate. However, these actions carry out a 

different operation depending on the receiving object. For instance, an 

actuator in the system under consideration may take one of four types. It 

contains a rotary actuator, which is able to actuate right or deactuate left. 

It contains a horizontal actuator which is able to extend or retract, and a 

vertical actuator which is able to move up or down upon receiving its 

actuate or deactuate command. Finally it contains a gripper which when 

actuated opens and on deactuation closes. This demonstrates the object- 

oriented concept of polymorphism whereby each of the classes responds 

differently to the same command based upon its hidden internal 

mechanisms. The manipulator class itself responds to commands such as 

move left, move right, up, down, open and close. These commands or 

operations form the interface to the manipulator class, with the individual 

actuators, and indeed their pneumatic valves and the PLC controller being 

encapsulated from the user.

Figure 5-18 demonstrates how the fundamentals of a hardware/software 

object are designed. From a software perspective the different variants of 

actuator all have exactly the same functionality. The class diagram 

enables the system designer to represent the hardware differences of 

each such as direction and position. This information is valuable in terms 

of sourcing and utilising the correct hardware but, as can be seen, has no 

impact on the software as each type of actuator will respond in the correct
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way due to its physical makeup. For example an actuate signal to a rotary 

actuator will make it rotate whereas an actuate signal to an vertical 

actuator will make it extend. As long as the correct hardware is used the 

software will enable it to function correctly within the system.
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5.7 Functionally Encapsulated Modules

As demonstrated in this chapter the UML uses a series of models to 

describe the varying levels inherent in a system, until enough detail is 

established to translate the design into code. The models enable the 

system designer to establish modularity within the system and identifies, 

using inheritance, elements that are capable of being shared amongst 

components. This aspect of the design is crucial for enabling the system 

to be decomposed into modules for team development and for the 

reduction in code duplication. It is also fundamental to the principles of 

reuse which are a cornerstone of the techniques presented in this work.

In a system thus modelled with objects, operations (functions and 

procedures) are used to access and alter the internal state of an object 

and to invoke its behaviour. In the UML sequence diagrams are used to 

capture the interaction between objects whilst state diagrams are used to 

capture state changes. Neither diagram provides the functional level 

detail necessary to module the detailed operations of an object, or indeed, 

a system. In addition, the UML diagrams do not offer any form of 

mathematical provability which can be vital in safety critical systems.

This work uses Petri nets to model the operations of objects and their 

resultant behaviour changes (states). By modelling only the limited range
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of states and operations within a single object the complexity of the graphs 

is reduced considerably. The resultant diagrams, entitled Functionally 

Encapsulated Modules (FEMs), provide true object-oriented capabilities 

and combined with the modelling technique presented in this work are:

• Mathematically provable utilising Petri net analysis techniques as 

outlined in (Delatourand Paludetto, 1998);

• Provide full object-oriented capabilities;

• Allow the capture of user requirements in a form that is easy to 

communicate between users and system designers;

• Enable a system to be rapidly deployed using pre-tested 

components;

• Provide a simulation tool and;

• Facilitate the automatic generation of control code.

Having captured the class diagrams and any inheritance present in the 

system using standard UML notation, it is possible to model the dynamic 

capabilities of the class with Petri net graphs. These are the operations 

that need to be invoked in order to make the class carry out its functions. 

In addition, the operations provide a method of altering the state or 

behaviour of the object.
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In a discrete event system (DES) such as the CIM system being 

considered, the state of the system at any moment in time can be 

captured by obtaining the states of all objects in that system. A Petri net 

graph allows these states to be represented visually or, if required, 

mathematically.

The actuator class can be modelled using the Functionally Encapsulated 

Module (FEM) shown in Figure 5-19. In the diagram smaller circles 

represent control places and feedback. The former are signals from the 

controller that invoke the method of the object. In this instance these can 

be either actuate or deactuate. The feedback is being sent to the 

controller object, with double circles representing input from external 

feedback sources. The dashed line represents the external (public) 

interface to the object.

FEM Class:: Actuator

state

actuateQ 
deactuate()

The object's actuate 
operation is invoked

The object's deactuate 
operation is invoked

Pulic interface 

Private implementation

Figure 5-19: A functionally encapsulated module for the actuator class
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The FEM uses standard UML class notation but adds a Petri net 

representation of the operations within the object. The Petri net graph in 

Figure 5-19 contains all the detail required to code the Actuator object.

Figure 5-19 contains labels to clarify the objective of the FEM Class:: 

Actuator. To generate the code from the model a formally labelled Petri 

net graph is shown in Figure 5-20.

o

Figure 5-20: A Petri net for code generation

The private implementation contains the low level code for each operation 

as follows:

Public Sub objectNameAciuate (P3 = true) 

object, name. State = "actuating" 

If P3 = true and P4 = true THEN 

P6 = true 

P3 = false
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P4 = false 

End IF 

If P5 = true and P6 = true THEN

P8 = true

P5 = false

P6 = false

object, name. State = "actuated" 

End IF 

End sub

Public Sub o/j/ecfA/ame.Deactuate (P7 = true) 

object, name. State = "deactuating" 

If P7 = true and P8 = true THEN

P2 = true

P7 = false

P8 = false 

End IF 

If P2 = true and P1 = true THEN

P4 = true

P1 = false

P2 = false

object.name.Stete - "deactuated"

End IF 

End sub
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The actuator (hardware and software) is now reduced to its functionality 

(behaviour) represented by its public operations. The functionality is 

encapsulated away in the private implementation and can only be 

accessed via its public interface. Any system wishing to reuse the 

actuator object only needs to be aware of its public interface.

The next stage in developing the functionality is to define an FEM for the 

Manipulator's controller. The Manipulator is a physical object which relies 

on a composition of four actuators. As the individual code for each 

actuator has already been defined all that is needed at this stage is to 

define the control sequence for it to be able to operate flexibly. The 

manipulators can move up/down, left/right, extend/retract and can 

open/close a gripper. Each of these four actions is the individual 

responsibility of an actuator so it is possible to take the code from the FEM 

created above and utilise its functionality within this component.
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Move Up Move Down

Command to the 
vertical actuator to Feedback showing 

actuate actuator is actuated 
(up)

Command to the 
vertical actuator to Feedback showing 

deactuate actuator is
deactuated (down)

5-21: Part of the control structure for a Manipulator

Figure 5-21 shows the private implementation section of an FEM Class for 

the Manipulator. As the manipulator controls four separate actuators it 

would have the structure in Figure 5-21 replicated a further four times one 

each for up/down (shown), left/right, extend/retract and open/close. Each 

net would be identical to the one shown above other than the labels and 

which object it interacts with. The manipulator describe above is "aware" 

of the state of its child components through the information gained from 

feedback places.

5-40



Chapter 5 -Application of Functionally Encapsulated Modules to a Manufacturing System

From the case study it can be established that there are two manipulators 

within the RMS. One is responsible for providing a blocks and pallets, the 

other takes care of placing cylinders onto the loading area (upon a pre- 

placed pallet).

The manipulator control has been genetically designed to provide 

maximum reuse capabilities, however, in the system under consideration 

the cylinder manipulator has a very specific task within the RMS. Its task is 

to retrieve a cylinder and place it upon a waiting pallet in the loading area 

which requires a precise set of movements. The steps the controller must 

take to achieve its goal, outlined below and shown in Table 5-2:

• Move up;

• Extend;

• Move down;

• Close;

• Move up;

• Move right;

• Move down;

• Open;

• Move up;

• Retract;

• Move left;

• Move down.
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Up/Down Right/Left Extend/Retract Close/Open 
1/0 1/0 1/0 1/0

0
1
1
0
0
1
1
0
0
0
1
1
1
0

0
0
0
0
0
0
1
1
1
1
1
1
0
0

0
0
1
1
1
1
1
1
1
1
1
0
0
0

0
0
0
0
1
1
1
1
1
0
0
0
0
0

Table 5-2: Markings for the RMS Manipulator carrying out its task
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5.8 Applying constraints to the object

The actuator class has been designed to be as generic as possible, as 

indeed is the resultant manipulator. It can be seen that this actuator object 

can be reused in any application. To ensure the object remains as 

general purpose as possible the environment specific constraints are built 

into a separate object which acts as an intermediary between the 

controller, which is task specific and the manipulator object itself. In the 

system under consideration, the only constraint for the cylinder 

manipulator is that the gripper cannot be opened when the arm is raised. 

Imagining the cylinders to be quite heavy, doing so could amount in 

considerable damage to the other objects in the system and possibly the 

cylinder itself.

Constraint objects act as intermediaries between the controller and the 

object. Messages passing from one to the other are routed via the 

constraint object. To develop a constraint it is first necessary to model all 

the states that can be achieved in the object under consideration. This will 

be applied to the cylinder manipulator which is required to retrieve 

cylinders from the storage unit and place them onto the loading bay.
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The Manipulator is composed of four actuators - direction (A1), horizontal 

(A2), vertical (A3) and the gripper (A4). As these are discrete event 

objects their states can be represented with binary as shown in Table 5-3.

A1

0

0

0

0

0

0

0

0

1

1

1
1

1

1

1
1

A2

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

A3

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

A4

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Table 5-3: All possible states of the cylinder manipulator
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Actuator A3 controls the arms upwards movement and when it is enabled 

(1) it is in the raised position. Actuator A4 controls the gripper and when it 

is enabled (1) it is open. Therefore it can be seen that any series of states 

which gives a * * 1 1 result is a forbidden state. By analysing Table 5-3 it 

can be seen that this state arises four times (shaded areas).

It is intuitive to identify forbidden states in this way and control nets are 

cross checked against the forbidden state list to ensure no such states are 

embedded into the system.

I

A

5-22: A constraint applied to the controller

Figure 5-22 shows how a system specific behavioural constraint is applied 

to the controller which ensures that it only performs the actions required 

for this system. The constraint can be easily detached from the object as
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it is bound at run-time ensuring the controller contains the maximum, 

generic reuse capabilities.

In the system utilised for this case study the overall control of the system is 

reduced to its simplest with the controller acting as a sequencer to co­ 

ordinate the actions of sub-units. Functional level control is devolved to 

the lowest system level possible to ensure the maximum reuse capabilities 

are obtained.

In Figure 5-22 it can be seen that if the requirement for the manipulator to 

move down first and up last became necessary, the controller software 

would need to reconfigure to accommodate this change but the object 

itself remains unchanged. This is crucial to ensure the loose coupling of 

the objects in the systems and to retain full reuse capabilities. In the case 

study presented, if the requirement for the mill to operate before the lathe 

became important the system controller would need slight readjustment 

but the underlying sub-systems and the objects themselves would function 

without change.

In Figure 5-22 the controller for the pneumatic manipulator is shown but 

due to the use of public interfaces which simply control the movements of 

the component replacing the pneumatic manipulator with a robot arm 

would have no impact on the system provided the public interface of both
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objects was designed to accept the same commands and give the same 

feedback.
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5.9 Automated Code Generation

The process used to automatically generate code is based on a 

Boolean/decision structure that relies, in this implementation, on the net 

being safe, i.e. a place can never contain more than a single token.

From the coding perspective a place is represented in the application as a 

Boolean value, with 'true' representing a marked place and 'false' 

representing an unmarked place. At the initialisation stage all places are 

declared as Boolean type variables with their corresponding values set to 

the initial marking of the net.

A transition in the diagram is represented by an IF statement in the code. 

The IF statement's conditions are based upon the corresponding input 

places for the transition it represents. The IF statement, and therefore the 

transition, is enabled when all its input places (Boolean values) become 

true. The IF statement then performs the result of setting its input places 

to false and its output places to true. The code is controlled via a software 

application which is responsible for the generation and co-ordination of 

hardware linked directly to the software.
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Figure 5-23: Automated code generation from Petri net models
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Using the rules outlined above the Petri net listed in Figure 5-23 the 

following pseudo-code would be generated:

'Transaction ti

IF pi = TRUE and p2 = TRUE then

PS = TRUE

Pi = FALSE

p2 = FALSE 

'Transaction t2 

ELSE IF p3 = TRUE then

p3 = FALSE

p4 = TRUE

p5 = TRUE 

END IF
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5.10 Simulation

The operation of individual actuators in Figure 5-20 can be simulated 

using a Petri net token player. This can be useful to establish that they 

are functioning correctly, and to ensure they work in the most optimised 

fashion. Once the system designer is certain that a unit functions to its full 

capability it can be placed into a class library for reuse in other projects. 

The controller shown in Figure 5-21 can also be simulated to ensure all of 

its operations function correctly, including its interactions with the pre­ 

tested actuators.

The control net
Move Up

o

Feedback places i 
object map directly 

back to the controller
Controller commands

to actuate and
deactuate map directly

to the object under
control

The net for a vertical actuator

5-24: A merged net showing how the controller and objects interact
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To facilitate full simulation using token players the associated control and 

feedback places in the controller can be mapped directly onto their 

equivalents in the object as shown in Figure 5-22. The diagram also 

illustrates how controllers interact with their child objects.

Figure 5-22 also demonstrates how the controller is able to perform any of 

its available actions and is in no way constrained. This ensures that the 

manipulator object, which is a collection of one controller and four 

actuators has the capability of being used in any system. Further the 

actuators can also, individually be used in any system with no 

modifications required.

Simulation in this work is undertaken using Petri net token players. The 

token player allows the Petri net (and therefore the model of the system) 

to be stepped through by allowing a visual representation of a marking 

tree. Simulation in this way enables system modellers to validate and 

verify the operation of individual objects, sub-systems and complete 

systems. By merging the contol and feedback places and integrating the 

behavioural constraints a complete Petri net can be de described which 

represents the whole system. Simulation in this work facilitates what if 

analysis on all aspects of the system to ensure safety and enables 

designers to optimise system operation.
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5.11 Chapter Summary

It is widely accepted that manufacturing systems need to be flexible, 

customisable and maintainable. This is effectively addressed in the 

proposed modelling technique where individual objects can be customised 

and updated using the key features of UML, such as inheritance, 

polymorphism and encapsulation while the functional requirements of the 

object is expressed by Petri net models.

By integrating the two types of models, the design of manufacturing 

systems is greatly enhanced. Manufacturing systems will be able to take 

advantage of the concepts of object-oriented programming that have been 

widely available in software engineering for some time. Future upgrades 

to the resultant system will be more intuitive as manufacturing design 

adopts the 'plug and play1 philosophy of other computer systems. The 

technique provides a model that can be used initially as a simulation tool 

and later as the basis for the automated generation of the control software. 

Once the initial design has been carried out many objects can be reused 

in future systems with no requirement for additional modelling.

In a climate governed by costs and rapidity it is important to reduce the 

time from conception to market as stated previously, however, this rapidity 

cannot have any impact on product quality. Modern programming is
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typified by a code and fix approach, however this technique falls down 

when the software will need to function in complex and rapidly changing 

circumstances such as those found in manufacturing organisations. The 

UML has gone some way to addressing many of the issues to overcome in 

manufacturing system design by providing a user-centric view of the 

system using use-case analysis and design. This facilitates effective 

communication between system modellers, software designers, 

management and all levels of staff involved in the operation of the system.

The object-oriented paradigm focuses very firmly upon design for reuse 

which is an important property for manufacturing systems where the 

market demands high quality products, at a low cost, with shortening 

product lives and ever increasing demands for customisation. Whilst 

manufacturing systems lend themselves to such an approach, the long 

and iterative process demanded by successful design for reuse and the 

time overhead spent translating models into code is at odds with the rapid 

approach required in global manufacturing organisations. It can be seen, 

therefore, that such approaches are long overdue for an automated code 

generation phase.

The techniques presented in this paper achieve these aims by combining 

the best features of object-orientation and structured Petri nets with 

models that are iteratively refined until the detail required for automatic
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code generation are established. The modelling and development stage 

are integrated meaning all time spent in the initial stages is utilised all the 

way through to the final system.

FEMs reduce the state space explosion by removing the requirement for a 

complete Petri net model in order to drive the system. The modules are 

invoked by feedback and control places so there is an increase in 

message passing within the system but a complete removal of state space 

explosion. Each object can be tested and simulated in isolation. Modules 

that take advantage of a collection of objects can be tested to ensure they 

work together as expected. Once each object works as it should the 

module level controller can be tested to ensure it works correctly. 

Behavioural constraints can be added to control system specific factors. 

The overall system control can them be tested to ensure it functions 

correctly by invoking the systems under its command.

The case study outlined in this chapter has demonstrated how the 

technique developed in this work utilised the UML to decompose the 

system into a number of sub units which are then further sub-divided until 

the operational units are identified. In the case study the system is broken 

down into the Raw Materials Station, the Mille/Lathe and the Automatic 

Storage and Retrieval Unit. The case study focuses on the RMS which 

has been broken down into a number of pneumatic manipulators and
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storage units. Each manipulator has then been broken down into its 

lowest level functional unti which is the actuator. Once the functional 

detail of the actuators was captured, modelled, coded and tested, they 

have been composed into a logical unti to form a manipulator which in turn 

forms part of the larger Raw Materials Station. As the objects within the 

system are considered individually from a functional perspective, the 

resultant models are understandable to stakeholders at all levels of the 

system, due to their small size and limited scope.
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Conclusions, Analysis of Findings 
__ and Future Work

In this concluding chapter this work will be evaluated and it will be 

demonstrated that this thesis provides several contributions to the field 

of manufacturing system design. Functionally Encapsulated Models 

implemented within a three level control architecture are evaluated 

against the findings of this research. The Behavioural Constraint 

method outlined in this work is shown to reduce design times by 

enabling all system designs to make use of a library of off-the shelf 

components. It is proposed that the techniques outlined in this work go 

some way towards overcoming the problems involved with an integrated 

approach to CIM implementations. This chapter proves how the novel 

modelling technique developed in this work addresses all of Meyer's 

criteria for modularity. The benefits of object-orientation for 

manufacturing systems modelling are reinforced and the findings of this 

work are conclusively evaluated Finally, some discussion is given for 

areas of future research within this field.
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6.1 Introduction

Manufacturing has changed dramatically since the mass production era 

of the Second World War. As demand for high, quality, low cost and 

customisable products increased in the post war years Computer 

Integrated Manufacturing (CIM) was introduced. The integration of 

computers into manufacturing helps organisations to centralise their 

data and control. Computers are able to interact with all levels of the 

manufacturing design process. They key factors for organisations 

wishing to compete in a twenty first century global economy are 

established in this work as:

• Speed. Organisations need to get their products onto the market 

as quickly as possible. This requires design or redesign of 

manufacturing systems in the shortest possible timescale;

• Cost. Production costs need to be reduced to the minimum 

possible, whilst maintaining quality;

• Quality through Consistency. Consistency throughout the 

organisation can improve the quality of its processes and greatly 

aid in communication between end users and system designers.

It has been established that the ability for manufacturing organisations 

to be able to quickly refocus their systems is vital. Indeed this is almost 

as important as being able to design totally new systems.
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6.2 Modularity for Manufacturing

Modularity is identified in this work as an important concept which can 

help manufacturing system designers achieve flexible systems that can 

be easily reconfigured. Modularity is also an important factor in the 

speed of design and development of systems as it enables distributed 

team development. The main benefits of modularity identified in this 

work are outlined below:

6.2.1 Hardware/Software Objects

The concept of a hardware/software object enables system designers 

from manufacturing to utilise technologies available in software 

engineering. This concept is a vital component in this work as it 

enables development of complex systems containing hardware and 

software to be thought of as exclusively software problems.

6.2.2 Removal of Islands of Automation

Islands of automation, which have plagued CIM implementations, 

generally arise where sub-systems are redeveloped with no thought to 

how they will interact with the rest of the system. Modularising the 

system, and defining public interfaces to the objects within them, 

ensures that the 'islands of automation' problem is completely 

addressed. As long as interfaces are defined by what the module does 

rather than how it does it all sub-systems are able to inter communicate.
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6.2.3 Minimised Disruption from Upgrade or Redesigns

The use of public interfaces will also reduce downtime considerably as 

for much of the process modules are only conceptually upgraded. This 

solution will dramatically reduce development times and be a vital step 

in addressing the issues of system development speed.

6.2.4 Reusable Class Libraries

Generic and highly reusable objects will enable system builders to 

utilise previously designed high quality components that will rapidly 

decrease development times whilst maintaining quality. Utilising such 

pre-tested, high quality components would clearly address the need for 

a "first time right" design.

6.2.5 Enterprise Wide Consistent Modelling

By utilising the UML for the design of such systems manufacturing 

organisations can benefit from the ability of the technique to model all 

elements of the company enhancing communication amongst 

stakeholders and ensuring organisational consistency.

6.2.6 Reduced Modelling Complexity

The integration of Petri nets into the UML reduces the number of 

models required and solves the state space explosion problem. Such a 

technique provides a ready-made simulation and testing tool and lends 

itself well to the automatic generation of control code considerably 

reducing the time to implementation.
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6.3 Manufacturing System Design

Many system modellers face the inimitable problem of having to cope 

with the recurrent need to become experts in a range of disciplines 

other than their own. For example, a computer system's analyst may 

need to analyse and design a software system for a petrochemical 

company, or an information system specialist may need to develop a 

new system for a supermarket chain.

This implies the need for rapid personal knowledge expansion, however 

in reality the system modeller relies on an intuitive and highly detailed 

progression of models which enable them to overcome the barriers and 

bridge the gap between those with a dedicated knowledge of the 

system under consideration and those with the specialist skills needed 

to develop the new system.

In short, system modellers need models which facilitate communication 

between the stakeholders at all levels within the system and those 

undertaking the development. These models need to be intuitive 

enough for all parties to understand and yet contain enough expressive 

power to enable the analysis and design of the system under 

consideration, in iteratively more complex levels of detail.

Despite considerable research into software engineering two out of 

eight software projects fail and fifty percent are over time and budget. 

This work has gone some way to establishing the reasons for system
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failure and has noted that many are due to poor design methodologies. 

In some cases the methodology fails because the users do not 

understand it.

It is clear that the importance of selecting the most appropriate design 

methodology is paramount in any successful system implementation. 

From the literature it has been established that a successful design 

methodology should:

• Accurately capture user requirements in a manner which can be 

understood by all stakeholders. Each stage in the design process 

must constantly and consistently cross reference user requirements 

to ensure they are fully met;

• Support iterative refinement of user requirements into low level 

technical detail for implementation. This can be achieved by a 

hybrid top-down/bottom-up approach;

• Endeavour to minimise resource wastage. Utilising off the shelf, 

pre-tested components from a library of objects can achieve this 

goal;

• Support loose coupling of objects and should allow for modular 

decomposition;

• Ensure that code is well documented and adopt the relevant coding 

conventions to ensure subsequent maintenance, modification or 

upgrades are possible;
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• Permit modules to be tested individually and subsequently as part 

of the system.

Other important points drawn from the literature are that:

• Incrementally implementing a system over time spreads costs. 

Implementation should be based on priority;

• Building in modular stages allows the project to be broken into 

smaller, more manageable pieces giving staff the time to adapt to 

the new system and facilitating team development;

• Implementation in small steps will have the most dramatic impact 

rather than redesign the whole system in one go;

• Including staff at all levels in the development will ensure they 

take ownership;

• It is important to make decisions for future enhancements based 

on actual results of previous phases;

• Goals and measurement criteria should be defined prior to each 

new phase of implementation.
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6.4 Object-Oriented Modelling for Manufacturing

This work highlights some important benefits to manufacturing 

organisations for adopting an object-oriented design methodology:

• Manufacturing personnel already think of their systems in terms of 

objects and therefore an OO approach should prove to be intuitive;

• Simulation techniques are useful for validating control strategies 

and for generating software;

• Incremental development approaches reduce costs;

• OO systems utilising class libraries offer customisation 

opportunities and aid in system maintenance;

• Object class libraries that can be reused in other systems aid in 

breaking down the complexity of manufacturing system design
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6.5 Petri Nets for Manufacturing Modelling

This work has demonstrated how a Petri net can describe a 

manufacturing system graphically allowing system users and designers 

to gain a better understanding of the complex interactions within the 

system.

6.5.1 Visualisation of System Events

The basic structure of a Petri net graph allows system modellers to 

identify and visually describe the events present in a system.

6.5.2 Modelling System States and Behaviour

The use of tokens in a marked net a/low the representation of the 

sequence of transition firing and subsequent changes in behaviour as 

the system moves through the sequence of events required to achieve 

its goal.

6.5.3 Simulation and Optimisation

Using a token player it is possible to simulate a system hypothesis and 

the Petri net graph's simplicity means that it is intuitive to modify the net 

to carry out 'what if analysis on the proposed system.

6.5.4 Mathematical Proof

The analysis of Petri net graphs provides manufacturing system's 

analysts with a method of mathematically proving designs.
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6.5.5 Synchronicity and Concurrency

The models allow for the specification of systems which display 

properties of synchronicity and concurrency and these properties are 

highly relevant for manufacturing systems.

6.5.6 State Space Explosion

State space explosion can be a major drawback to the use of Petri nets 

exclusively for modelling manufacturing systems. Complex systems 

produce complex Petri nets which remove the ability of users to 

visualise the system.

6.5.7 Lack of Object-Oriented Modelling Power

Whilst some attempts have been made to modularise Petri nets, full 

object-orientation has yet to be achieved.
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6.6 Merging the UML and Structured Petri Nets

This work presented a novel methodology for a combined object- 

oriented and Petri net approach to the development of manufacturing 

systems. This is one of the main contributions of this work.

A novel technique, entitled Functionally Encapsulated Modules, utilises 

Petri net graphs to model the functions of each object. This allows 

system designers to capture both the state and dynamics of an object in 

a single visual representation. It also allows for each module to be 

simulated for testing purposes.

Using structured Petri nets which allow for modelling of control and 

feedback signals considerably reduces the complexity of the resultant 

Petri net graphs. This goes some way to reducing the state space 

explosion problem inherent in large complex systems.

The technique developed addresses many of the methodology issues 

highlighted with manufacturing system design:

• User requirements are iteratively captured using a series of use 

case diagrams and scenarios. A top down, abstracted view of the 

system from the perspective of its goals is initially taken. This view 

is then refined to establish more and more detail about the system. 

The use case models are intuitive for all stakeholders and ensure 

clear communication between technical and non-technical
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personnel. The use cases can be cross referenced at each stage of 

the design process to ensure that the system adheres to the user 

requirements;

• Once the system has been modularised a bottom up approach is 

taken to capture the capabilities of each system object. Viewing the 

objects as independent entities ensures their full functionality is 

captured. Object controllers are developed for individual objects or 

groups of objects which are inter-dependant. This facilitates the 

building of a library of generic and reusable classes which can be 

utilised in other systems or later in redesign processes;

• Communication between objects is only undertaken via public 

interfaces in the objects. This is facilitated by control and feedback 

places in the Petri net structure. At implementation stages the 

control and feedback places are coded as public operations. This 

feature ensures that systems are loosely coupled. Loose coupling 

in this case will ensure that changes to objects in the system have a 

minimal impact on other objects. Objects can be used based on 

what they do rather than how they do it;

• Objects and modules can be individually tested using the token 

player facilities of Petri net graphs. Upon system integration the 

entire system can be simulated using the same method;

• The well defined interfaces presented by FEMs enable system 

designers to incrementally upgrade parts or all of a system.
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6.7 Contributions of this Research Work

The original contributions of this work are evaluated below. It is 

demonstrated how the original methodology and modelling tool 

developed in this thesis satisfy Meyers five criteria for modularity 

(1997).

6.7.1 The Application of the UML to Manufacturing Systems

The Unified Modelling Language has successfully been applied to a 

complete manufacturing system. (Llewellyn et al, 2000). This has 

proven benefits for manufacturing organisations including the provision 

of a reusable system, and the opportunity to build a library of classes, 

which makes subsequent designs or modifications to existing systems 

more intuitive.

Using the technique presented in this theses it can be seen that the 

UML provides manufacturing organisations with the full benefits of 

object-orientation including encapsulation, inheritance and the ability to 

use class hierarchies.

By focusing on the objects and their interactions via a public interface, 

the dynamics of the system can be presented to technical and non­ 

technical users, allowing the designer to focus on what the 

object/system is to do, without an in-depth knowledge of how it does it. 

This satisfies Meyer's criteria for modular understandability.
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The UML also facilitates the unique ability to model all aspects of a 

manufacturing organisation from business processes through to shop 

floor machinery.

6.7.2 A Methodology for Incremental Implementation

An incremental approach to the analysis of CIM systems enables 

manufacturing organisations to computerise anything from individual 

manufacturing workstations through to entire departments on a staged 

basis.

Manufacturing organisations adopting this approach will see a reduction 

in the development times for new systems and for redesigns.

Use-case analysis ensures user requirements are accurately captured 

and in a format which enhances communication between system 

modellers and stakeholders. This satisfies Meyer's criteria for modular 

understandability.

The design stages of a use-case driven approach take into account the 

needs of all levels of the workforce, ensuring all personnel are involved 

in the process.

The initial use-case scenarios used to capture the system requirements 

can be reused at the testing stage to verify all requirements are 

adequately met.
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6.7.3 Development of a Three Level Control Architecture

The hybrid bottom-up and top-down approach of the incremental 

methodology proposed enables the controllers required at all levels of 

the system to be adequately modelled and ensures the functionality of 

the system is maintained.

The methodology developed in this work distributes the complexity of 

system control across the sub-systems. This ensures that most of the 

objects and modules within the system can be reused with little or no 

changes. This achieves Meyer's criteria for modular composability.

The object-oriented approach to the system design allows designers to 

capture the system at its most generic, but also provides a method of 

capturing the dynamics of the system.

Utilising token players each object and module can be tested 

independently before they are integrated into the complete system. The 

final system can also be simulated for optimisation testing.

Behavioural constraints ensure that all objects in the system can be 

instantly stored in a reusable class library that will enhance the speed 

and quality of subsequent system designs.

The constraint objects also server the purpose of capturing error 

conditions. This goes some way towards achieving Meyer's criteria for 

modular protection.
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6.7.4 Merging the UML and Petri Nets

A technique for successfully combining the UML and Petri nets has 

been developed called Functionally Encapsulated Modules (FEM) 

(Llewellyn et al, 2001).

The technique is superior to other attempts to merge these two powerful 

modelling tools in that it supports the full range of object-oriented 

capabilities.

The FEMs also enable UML designers to utilise the functional modelling 

power of Petri nets.

State space explosion is reduced by modelling only parts of the system, 

i.e. the operations of objects. However, utilising control and feedback 

places ensures the system meets the criteria of modular composability.

FEMs reduce the number of diagrams required to model both state and 

behaviour of systems.

The FEMs develop a unique method of capturing the attributes of both 

software and hardware which can be intuitively implemented into any 

manufacturing system.

The encapsulation of hardware and software with a distinct user 

interface allows the designer, and the users of the system, to visualise 

the objects that make up the system's model without worrying about the
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inherent complexity. Public interfaces also satisfy Meyer's criteria for 

modular continuity.

6.7.5 Simulation and Automated Code Generation

Each object and module can be tested independently by comparing 

their use case scenarios against the simulation tool provided by the 

Petri net models.

The whole system can be tested against the goal of the system against 

the token player aspect of Petri nets.

The system can be reconfigured intuitively by adjusting the Petri net 

graphs to test out control optimisation scenarios. As the code is based 

directly on the graphical notation the code will reconfigure.

A method for mapping Petri net diagrams to pseudo-code is presented 

in this thesis. It is an intuitive method which corresponds well with 

discrete event systems.
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6.8 Thesis Conclusions

It is widely accepted that manufacturing systems need to be flexible, 

customisable and maintainable. This is effectively addressed in the 

object-oriented system outlined in this these where individual objects 

can be customised and updated using the key features of UML, such as 

inheritance, polymorphism and encapsulation.

By integrating the two types of models, the design of manufacturing 

systems is greatly enhanced. Manufacturing systems will be able to 

take advantage of the concepts of object-oriented programming that 

have been widely available in software engineering for some time.

Future upgrades to the resultant system will be more intuitive as 

manufacturing design adopts the 'plug and play' philosophy of other 

computer systems. The technique provides a model that can be used 

initially as a simulation tool and later as the basis for the automated 

generation of the control software.

Once the initial design has been carried out many objects can be 

reused in future systems with no requirement for additional modelling.

In a climate governed by costs and rapidity it is important to reduce the 

time from conception to market as stated previously, however, this 

rapidity cannot have any impact on product quality. The UML has gone 

some way to addressing many of the issues to overcome in
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manufacturing system design by providing a user-centric view of the 

system using use-case analysis and design. This facilitates effective 

communication between system modellers, software designers, 

management and all levels of staff involved in the operation of the 

system.

The object-oriented paradigm focuses very firmly upon design for reuse 

which is an important property for manufacturing systems where the 

market demands high quality products, at a low cost, with shortening 

product lives and ever increasing demands for customisation. Whilst 

manufacturing systems lend themselves to such an approach, the long 

and iterative process demanded by successful design for reuse and the 

time overhead spent translating models into code is at odds with the 

rapid approach required in global manufacturing organisations. It can be 

seen, therefore, that such approaches are long overdue for an 

automated code generation phase.

The techniques presented in this thesis achieve these aims by 

combining the best features of object-orientation and structured Petri 

nets with models that are iteratively refined until the detail required for 

automatic code generation are established. The modelling and 

development stage are integrated meaning all time spent in the initial 

stages is utilised all the way through to the final system.
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6.9 Future Work

As with all research work there is still much to be done before the tools 

proposed in this work can be applied to manufacturing systems.

6.9.1 Development of a Graphical Modelling Tool

Though many prototypes and simulations have been conducted by the 

author, there is a need for the development of the graphical modelling 

tool.

Many token player tools have been analysed during the progress of this 

work but due to the complexity of modelling even small systems with 

Petri net graphs they either are limited to a restricted number of places 

or become difficult to interpret.

Utilising the FEM approach outlined in this work the software would 

focus on individual objects and their operations. This would 

considerably reduce the complexity of the diagrams and make the 

screen layout more intuitive.

The tool should encompass the methodology proposed in this work and 

should enable a system designer to document all stages of the design 

process.
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6.9.2 Expansion of the Modelling Power of the Petri net Graphs

This work has focussed on the use of Structured Petri nets due to their 

ability to model control and feedback places. Petri net theory is being 

continuously developed and a number of interesting possibilities for 

modelling time factors are being researched.

The scope of this work could be expanded to explore the potential of 

this technique for modelling systems with a time dimension such as real 

time systems.

6.9.3 Development of an Automated Coding Tool

This work has presented a method of mapping Petri net diagrams to 

pseudo-code. Whilst the resultant code can be interpreted into a range 

of programming languages it would be useful to have a tool which could 

generate the code directly.

Such a tool could generate pseudo-code, as in this work, which could 

then be output into a range of programming languages based on add-on 

modules.

The code generation work in this thesis takes no account of code 

optimisation. Much work is being undertaken into the area of Aspect 

Oriented and Generative Programming. This is certainly and area in 

which this work could expand.
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6.9.4 Regenerative Coding for Autonomous Robots

The Petri net diagrams in this thesis can be directly mapped to the code 

required to control the system. Changes to the diagram result in 

corresponding changes to the code.

Research needs to be conducted into the feasibility of expanding this 

idea to autonomous robots where the code can regenerate in response 

to factors such as environmental considerations.
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Abstract
A methodology based on the use of the Unified Modelling 
Language (UML) for the modelling and design of control 
software for a Computer Integrated Manufacturing (CIM) 
environment is presented. This is demonstrated by modelling 
a pneumatically controlled manipulator comprising of four 
separate actuators, which forms part of a pneumatic station - 
an integral component in the University of Wales College, 
Newport's (UWCN's) CIM system. The major causes of CIM 
implementation problems along with their possible UML 
solutions are identified and it is shown that the resultant 
models allow the designer to capture the static, dynamic and 
behavioural attributes of the system. This provides 
organisations with a unique opportunity to develop a system 
that, if required, can be used initially as a simulation tool and 
later as the basis for the development of control software.

1 The problems facing manufacturing 
organisations in the 21 st Century

The latter part of the last century saw a paradigm shift from 
mass production to customisation. Waldner [1] describes how 
lie markets in which manufacturing organisations compete 
have become increasingly complex and diverse with highly 
customisable, small-scale products replacing mass 
Production. To compete in the global markets of the 21 st 
Century, industry needs to produce new products to 
customer's requirements with the shortest possible lead and 
Wvery times, to the highest possible quality, and at the 
lowest possible price [2]. During the 1970s manufacturing 
focus shifted from productivity to flexibility and quality. To 
tompete with these changes the Japanese attempted to 
("Mease flexibility by reducing the administrative procedures 
"ivolved in management and control. These ideas also 
"vealed that over-automation of processes could have 
""desirable consequences. Often it was found that functions

performed by very complex automated systems could equally 
well be achieved by elementary manual procedures or by 
simple mechanical devices. The notion of system and process 
simplicity had been lost. Computerisation became an 
automatic response in companies, with no attempt being made 
to find a less complex alternative to a proposed procedure 
[1,1]. This in turn has led to so called 'islands of automation' 
where isolated cells of computer controlled machines are 
unable to link together [3]. Many factors have exacerbated 
this problem, such as the undocumented internal departmental 
solutions to problems, the ad-hoc acquisition of hardware and 
software and the lack of standardisation among vendors. 
Communication among these 'islands' is often made via media 
such as disks, CD-ROMs or hard copy [4] taking valuable 
time and effort and adding to the overall inefficiency of the 
system.

2 Computer Integrated Manufacturing 
(CIM) as a solution

Computer Integrated Manufacturing (CIM) aims to address 
the problems created by linking these 'islands' into a single 
system. Hannam [3] neatly defines CIM as "the integration of 
business, engineering, manufacturing and management 
information that spans company functions from marketing to 
product distribution." Clearly CIM is a way for companies to 
compete in the present global context. It is important to note 
however, that CIM is a goal, which cannot be purchased off 
the shelf, since its application will be unique to each company 
[5]. CIM itself has brought a whole host of new problems. 
Design of control software for CIM systems by traditional 
methods is typically characterised by high installation costs 
and long lead times. The resultant software is often difficult 
and costly to maintain, making the system limited in 
functionality and almost impossible to expand [6]. The 
software for CIM systems needs to reflect the flexible nature 
of the systems themselves. It should be easy to design, 
maintain and upgrade. The code should be modular so as to 
be reusable, and general to ensure the interface remains 
unchanged [7]. These techniques are already in use in 
software engineering and have been enhanced via the use of 
Computer Aided Software Engineering (CASE) tools.
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3 Why use the UML in a manufacturing 
context?

Manufacturing systems can be complex and varied in nature 
due to the wide range of interconnected objects and the 
myriad of messages passing between them. It follows 
therefore that manufacturing software needs cannot be met by 
general purpose 'off the shelf packages. One approach is to 
design generic solutions, and then to customise them to the 
requirements of each company. The resultant generic object 
class libraries are customisable through object-oriented 
techniques, and provide a good starting point for the design of 
practical control software. This abstraction of complex 
manufacturing systems into a series of objects is more 
intuitive because manufacturing end users already consider 
their systems in terms of objects, i.e. parts, conveyers, lathes, 
or drilling machines etc. It is widely accepted that CIM 
systems need to be flexible, customisable and maintainable 
[g]. This is effectively addressed in an object-oriented system 
where individual objects can be customised and updated using 
the key features of the UML, such as inheritance, 
polymorphism and encapsulation. Further, a common object 
model for the design of CIM systems provides a method of 
incremental implementation where the building of custom 
applications from a common repository of software objects 
helps to achieve conceptual integration. The conceptual 
design allows for 'what-if analysis to be carried out on any 
proposed system before implementation saving the company 
time, money and effort. Gunasekaran and Thevarahjah [9] 
identify three key stages in the successful implementation of 
CIM i.e. simplification, integration and computerisation. The 
UML aids in all three areas as will be demonstrated.

In order to capture all aspects of the system under 
investigation, it is important for the designer to capture three 
aspects of it i.e. its static state, its dynamic state and its 
behaviour. The static state of a system describes the objects 
that it is comprised of, and how they relate to each other. The 
dynamic state describes how these components interact to 
make the system serve its purpose. Finally the behaviour of a 
system describes the states a component may be in at each 
stage of its operation. The term behaviour has been 
deliberately used to demonstrate the fact that it may be 
necessary to model undesirable states. For example, a crane 
should never be allowed to open its gripper when in the air, if 
it is carrying a two ton weight!

4 A simple pneumatic actuator system 
based system

As a practical example the Pneumatic Station, part of the 
University of Wales College Newport's CIM system will be 
"sed. The 'building block' of this section of the system is the 
pneumatic actuator. A pneumatic actuator can be either 
actuated or de-actuated. These operations take place when a 
Programmable Logic Controller (PLC) opens a valve, which 
Pumps air into the actuator, thus actuating it. When the PLC 
doses the valve, the air is removed and the actuator de- 
actuates. This description provides a basic overview of the 
system, which is all that is required in order to begin the 
feign of the system.

5 Class identification

From an object-oriented point of view, the system described 
consists of a series of classes. Booch et al [10,10] define a 
class as "a description of a set of objects that share the same 
attributes, operations, relationships and semantics." An object 
then, is a "unique instance of a class" [11]. Two other 
important properties of a class are:

• Operations:- which are "used to read or manipulate the 
data of an object" [12] and;

• Attributes:- "the structure of the objects: their components 
and the information or data contained therein" [13]

From the brief description given it is possible to identify the 
following classes: - PLC, Valve and Actuator. These classes 
can now be examined in further detail.

5.1 The Actuator Class

The actuator can be in either one of two final states - actuated 
or de-actuated. It can also be midway between these states, 
i.e. it can be in the process of actuating or de-actuating. 
Therefore the actuator requires two operations, one to carry 
out the action of actuating and one to carry out the action of 
de-actuating. In addition, if the system is to provide feedback 
it must allow external entities, such as a controller, to 
interrogate the actuator to determine its current state. It is 
therefore possible to establish that an actuator has a state 
attribute and an operation that provides that state to external 
entities. An important concept for attributes is that of 
visibility. Visibility applies to attributes and operations, and 
specifies the extent to which other classes can use a given 
class's attributes or operations. Schmuller [14] identifies 
three levels of visibility. At the public level, usability extends 
to other classes (represented by a "+" symbol). At the 
protected level, usability is open only to the classes that 
inherit from the original class (represented by a "#" symbol). 
At the private level, only the original class can use the 
attribute or operation (represented by a "-" symbol). The 
actuate and de-actuate operations are called by the Valve 
class and therefore are public, as is the getState operation. 
Generally, classes are shown with the first letter of each word 
in uppercase. Attributes and operations usually start with a 
lower case letter. Figure 1 shows a class diagram for a class 
of type Actuator.

Class Name

Attributes 

Operations

Actuator

+state

+getState
+actuate

+deactuate

Figure 1: The Actuator class
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In addition a state diagram shows all the possible states an 
actuator can have. This helps to identify all the possible 
values the state attribute can take.

deactuated actuating

deactuating actuated

Figure 2: The Actuator state diagram

From figure 2 it can be ascertained that in order to arrive at 
the desired states of actuated or de-actuated, the actuator must 
pass through a 'working' phase where it is either actuating or 
de-actuating. It is important for the system sequence 
controller to be aware of these states, so that it does not try to 
invoke the operations of a busy object.

5.2 The Valve Class

From the description it can be seen that the valve can be 
either open or closed, and again there must be the 
intermediate steps of opening or closing. For feedback 
purposes it will be necessary to establish the current state of 
the valve. The class and state diagrams for the valve are 
similar to those for the actuator. From the description it 
becomes apparent that the operation of opening and closing 
the valve is controlled by the PLC class, therefore it is logical 
to assume that the open and close methods are public, as is 
the valve's state attribute.

5.3 The PLC Class

PLC's act as controllers in our system by instructing other 
objects to perform their operations. The PLC class works 
with a predetermined sequence of object method calls such as 
those shown in the following pseudo-code fragment:

BEGIN
'Wait until the Valve is not busy 

DO
InstanceOfValve.GetState 

LOOP UNTIL(InstanceOfValve.GetState)=
"Closed" 

'Open the Valve 
InstanceOfValve.Open

END

h this instance the PLC class needs only to start or stop its 
Predetermined sequence of events. In the example system 
described it is imagined that a human operator controls these 
operations, probably via some form of stop and start buttons, 
tod therefore these operations (start and stop) are public. It
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would be reasonable to assume that in other circumstances the 
controller could be another object in the system. This is 
known as an external entity, which may well be an integral 
part of the larger system. Decomposition into subsystems 
allows the external entity or actor to be represented with the 
stick figure shown in figure 4. This indicates that while it is 
understood as an important object, which needs 
representation, its complexity need not be modelled at this 
stage. It is suffice to know that it performs the action of 
starting and stopping the PLC. The ability to generalise in 
this way enables the system designer to plan for various types 
of implementation. For example, the PLC could be controlled 
by a human, another PLC or a computer. The diagram would 
not need to change in any of these circumstances. The 
functional details of how the PLC works are encapsulated 
within the Class. In order to interface an instance of class 
PLC with a controller all the required information can be 
accessed via the public operations and attributes. These 
represent the interface between the Class and the outside 
world.

PLC

+start 
+stop

Figure 3: The PLC class

6 The associations between classes

The brief description of the system provides enough detail for 
a diagram outlining the various associations between the 
classes. Each of these associations represents a method call 
to another object. By analysing these associations it is 
possible to establish how objects in the subsystem interact 
with each other. It is also possible to establish how the 
subsystem itself interacts with objects outside of its domain. 
In order to make the diagram clearer, items such as the 
attributes and operations of each class are not displayed. As 
previously stated the external entity in this system could in 
fact represent a human or another object. The external entity 
in this instance represents an interface to another object in 
another part of the larger system being considered.

External 
Entity

Figure 4: The Interaction between classes
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7 The dynamic capabilities of a 
pneumatic actuator

The method calls between objects can be more clearly seen on 
a sequence diagram, which also shows the order in which the 
operations are invoked (figure 5). The diagram gives a 
pictorial representation of the two possible final states of a 
pneumatic actuator, and the procedure for arriving in those 
states, i.e. the actuator being actuated, and the actuator being 
de-actuated. This model shows the functional detail of the 
dynamics of the actuator. Once this information has been 
captured it is possible to write all the functional code and 
forget about the complexity involved in the actions of our 
actuator. This 'code and forget' approach means it is no 
longer necessary to consider the PLC or the valve, instead the 
system designer can concentrate on the detail of what the 
actuator is intended to do, as part of the greater system. 
However, as the functionality of the system increases in 
complexity, or the system becomes larger, these diagrams 
become long, complicated and unwieldy.

artd:R£ CMixterl:

Y
1:open()

T

T

rV
SgetaaeO

T 
i

JL

uI

Figure 5: The sequence of available operations for a 
pneumatic actuator

lie following text presents the idea of Functional 
'encapsulation Modules (FEMs). The whole dynamic 
rocess, represented by figure 5, can also be represented by 
sing a single pair of FEMs as depicted in figure 6. It can 
learly be seen that this provides a convenient way of 
escribing these operations.

Figure 6: A FEM for the Actuator's two operations

These FEMs can now be encapsulated into whichever 
software language is used to control the system. It is 
envisaged that the FEMs could be implemented in an 
application that with its 'drag and drop' interface would allow 
system designers to manipulate the operations of the actuator 
with no thought to the technical detail. The important 
concept is that by manipulating easy to understand graphical 
symbols, the user is also manipulating the associated code. 
At the same time as they are remodelling the system, they are 
regenerating the code to control it. The idea of flexibility and 
quality can be taken to their extremes. A system can be 
redesigned, optimised, upgraded or maintained and be back 
on line with new code in a fraction of the time taken with 
traditional software design methods.

8 Expanding the idea to a manipulator

The idea of using the UML and FEMs will now be expanded 
to show its use on a manipulator subsystem of the UWCN 
CIM system.

Figure 7: A Manipulator comprising of a series of pneumatic 
actuators

Schmuller [14] indicates that "sometimes a class consists of a 
number of component classes. This is a special type of 
relationship called an aggregation. The components and the 
class they constitute are in a whole-part relationship." A 
manipulator shares such an aggregation with a set of 
actuators, where the manipulator is the whole and the 
actuators are the parts. In the four-actuator model shown in
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figure 7, each of the actuators can carry out the same basic 
(unction, i.e. they can actuate or de-actuate. However, the 
same operation call has differing effects on the action being 
performed by its recipient object. For example actuating an 
actuator can raise it, move it left, or open it. This sharing of 
an operation is called polymorphism. Schmuller [14] 
describes polymorphism as the situation where "an operation 
has the same name in different classes" and "each class 
loiows' how that operation is supposed to take place." Figure 
8 describes the aggregation relationship between a 
manipulator and its actuators. It can be seen that any 
particular one instance of the class Manipulator contains at 
least one and up to n actuators. A Manipulator is an 
aggregation of 1 to n Actuators. The UML denotes the many 
end of a relationship with the "*" symbol. The use of 1 in the 
relationship, i.e. l..n, denotes the fact that the relationship 
must have at least 1 and, in this case, up to many actuators to 
each 1 manipulator.

Manipulator

Actuator

Figure 8: A Manipulator as an aggregation of Actuators

8.1 A practical example

An instance of class Manipulator may comprise of four 
pneumatic actuators as shown in figure 9. It can be clearly 
seen in this diagram that the four separate actuators whilst all 
having the same basic characteristics, are slightly different. 
This raises another important object-oriented concept, that of 
inheritance. As Yourdon [15] defines it "[inheritance] allows 
an object to incorporate all or part of the definition of another 
object as part of its own definition."

A4

Al A3

Figure 9: A Manipulator

The Class Actuator used to make up the Manipulator above is 
actually decomposed into three subclasses or child classes - a 
LinearActuator, RotaryActuator and Gripper (figure 10).

Linear 
Actuator

#position 
^direction

Rotary 
Actuator

#direction

Gripper

Figure 10: Three subclasses inheriting from their parent class

Each subclass inherits all the attributes and operations of 
the Actuator class and each add their own unique ones. For 
example the LinearActuator Class adds the position attribute 
which enables the actuator to have a horizontal or vertical 
position. The RotaryActuator has a direction which enables 
it to find out the direction of travel when the actuate operation 
is carried out. The Gripper will open when actuated and close 
when de-actuated. This demonstrates the principle of 
polymorphism, each of the Actuators has an actuate 
operation, but each reacts differently when called. These new 
attributes are visible only to the creating class and are 
therefore protected.

In the UWCN CIM system, the manipulator needs to pick 
up a metal cylinder from a tray and place it on a waiting 
palette. From its start position over the tray, the manipulator 
needs to follow this sequence of events:

Open the gripper; Move down; Close the gripper 
(with a tube held); Move up; Move right; Move 
down; Open the gripper (dropping the tube); 
Move up; Close the gripper; Move left

^ fr A3
^f^\ actuah

Figure 11: A FEM showing the operations required to move a 
cylinder between two points
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The diagram in figure 11 represents this sequence of 
events, when mapped into actuator movements, as a FEM. It 
is worth noting again that if the FEM were to be implemented 
in a software application, the required control code would 
also be generated in the target language.

9 Conclusions

Presented in this paper are the building blocks for designing 
and maintaining manufacturing systems based on the UML. 
The method presented allows for a complex system to be 
broken down into subsystems and modelled in detail. This 
not only simplifies the task of modelling large, complex 
systems, but also allows for the building of a library of 
classes. These classes can then be used for developing new 
systems or for upgrading and maintaining existing systems.

The idea of FEMs proposes a method of modelling the 
overall control of related subsystems by controlling the 
sequence of events that needs to take place in order for that 
system to perform some task. It is envisioned that a software 
application developed around the concept of FEMs will 
enable relatively inexperienced users to design and alter 
manufacturing systems. The structure of the UML diagrams 
lend themselves well to the simplification of developing 
optimised control code in a high level language and provide 
the possibility of the automation of this task.

10 Future work

An investigation into the application of the UML into real 
time systems will be carried out, with particular attention to 
the reduction of redundant code normally produced by object- 
oriented techniques [16]. The idea of integrating structured 
Petri nets [17] into the UML diagrams offers many benefits 
including a formal validation method [18] and a method of 
modelling concurrent and non-deterministic systems [19]. 
The generation of control code from the model will be 
implemented and tested on the Pneumatic Station, at the 
University of Wales College, Newport.
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Abstract

A method for the design of discrete event systems is presented which 
combines the Unified Modelling Language (UML) and Petri Net Objects 
(PNO). The genericity of the model is enhanced by the addition of 
constraint objects that allow reusable, general-purpose classes to be 
developed, which can be easily tailored to specific systems. By merging 
the UML and PNO the resultant models allow for accurate requirements 
analysis and provide object-oriented designs which are reusable and 
mathematically provable.

1 Introduction

Manufacturing systems are complex and varied in nature and therefore their software 
needs cannot readily be met by general purpose 'off the shelf packages. The approach 
generally adopted by software engineering practitioners is to design generic solutions, 
which can be customised to the specific requirements of the system. The resultant 
generic object class libraries are customisable through object-oriented (OO) techniques, 
and provide a good starting point for the design of practical control software. The 
abstraction of complex manufacturing systems into a series of objects is more intuitive 
because manufacturing end users already consider their systems in terms of objects, i.e. 
parts, conveyors, lathes, drilling machines etc. (Adiga, 1993). The Unified Modelling 
Language (UML) has become the de facto standard for OO analysis and design and its 
application to manufacturing systems has already been demonstrated (Llewellyn et al, 
2000). Petri nets are widely used to model discrete event systems (DBS) and provide a 
model which is mathematically provable and using a token player, also functions as a 
simulation tool.

2 Merging the UML and PNO
The UML uses sequence and state charts for modelling the message flow and states of 
the system respectively. This results in two separate models, neither of which are
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mathematically provable. It is proposed that Petri net graphs can be used to capture both 
the message passing and states of a system in one graph. Merging the UML and 
structured Petri net modules, as proposed in Stanton (Stanton, 1999), produces graphical 
models which take full advantage of current OO software engineering techniques. The 
models are also mathematically provable (Delatour and Paludetto, 1998) and allow the 
modelling of concurrent and non-deterministic systems (Zapf and Heinzl, 2000). One of 
the main drawbacks of Petri net graphs is their inherent complexity, even on relatively 
simple systems. In the UML, operations are used to access and alter the internal state of 
the object. The proposed technique uses Petri nets to model these operations and their 
resultant behaviour changes. By modelling only the limited range of states and 
operations within a single object the complexity of the graphs is reduced considerably. 
As well as capturing the static, dynamic and behavioural attributes of the system, the 
resultant models help in the identification of user requirements, are understandable to a 
wider range of users, are extendable and reusable, and provide enough low level detail 
for the automatic generation of control code {STANTON 1999 #97}.

3 Applying Constraints

Once the classes have been designed and their operations and attributes established and 
modelled, the resultant object is highly generic and can be applied to a range of 
applications. However, in order to utilise the object, strict control must be placed over 
the actions it is allowed to perform. For example, a manipulator may be able to move 
left and right, up and down, back and forth and the gripper may open and close. When 
applied to a specific system the manipulator may not be able to move right due to an 
impeding obstacle and therefore the controller must always raise the object, move it right 
and lower it, in order for it to achieve the required action of moving right. If this 
constraint is built into the object then it becomes system specific and loses some of its 
genericity. This paper proposes a method of applying a constraint object to the class in 
order to meet the system requirements whilst not affecting the genericity of the class 
itself.

4 Related Work

4.1 Object Oriented Design
(Adiga and Gadre, 1990)), (Adiga, 1993) proposed OO modelling as a method of 
designing manufacturing systems and expanded the idea to take account of the 
increasing use of robots (Lin et al, 1994). Much of the early work was based around the 
methods proposed by (Coad and Yourdon, 1991), (Yourdon, 1994). Booch, Jacobson 
and Rumbaugh amalgamated the early ideas (Booch et al, 1999), (Jacobson et al, 1999) 
into the UML, and current work by the authors (Llewellyn et al, 2000) has applied the 
UML to a manufacturing system.

4.2 Object Oriented Petri Nets
Petri Net theory has been a major research topic for some time and several attempts have 
been made to integrate PNO and OO techniques (Delatour and Paludetto, 1998), 
(Venkatesh and Zhou, 1998). Other researchers have extended PNO to incorporate OO 
concepts such as the Hierarchical Object Oriented Design (HOOD). The HOOD 
approach (Wu, 1995), (Di Giovanni, 1991) first proposed by the European Space
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t K and LU' 1997> to incOTPorate Petri nets in 
entlty-relat'°nship diagram based OO design method (PEBOOD).

TS" ve led to extremely complex models wh*re the lh*
dont n *"?, °° Systems desi§n is at b^t tentative. In addition the techniques 
do not folly capture all the benefits of a true OO approach.

4.3 Constraints

The UML uses the Object Constraint Language (Warmer and Kleppe, 1999) in order to 

apply constraints to the model. However, these are little more than comments with no 

direct code conversion possible. The forbidden state problem is an is an area widely 
researched in Petri net theory and the work of Holloway and Krogh (HOLLOWAY and

fift? P'J ?i!LfP ymg constraints to controlled marked graphs has been adapted to 
fit the Petri net/UML approached presented in this paper.

5 Application

The technique described in this paper is demonstrated by applying it to the raw materials 

station (RMS), part of the University of Wales College, Newport's computer integrated 

manufacturing (CIM) system. Initially the system views are captured from a user's 

perspective using use case scenarios. Next the classes in the system are identified and 

their attributes and operations captured. The attributes (or states) and operations are 

modelled using Petri net graphs, where one graph is used to model all operations for a 

particular class. Output places (Stanton, 1999) are used to represent message passing 
between objects. Finally the system constraints are identified and placed in a constraint 
class for each object.

5.1 An overview of the CIM system

The system shown in figure 1 is designed as an example of a CIM system. It is 

composed of a number of modules that interact in order to produce end products. The 
raw materials used by the system are a perspex block and a metal cylinder. The block 

and cylinder originate from the raw materials station and are placed into trays on a 
conveyor belf

Robot Lathe Mill

Conveyor
Buffers

Figure 1 The CIM system
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The block is milled and the cylinder lathed so that the two items fit together. Finally the 
finished product is stored in the automated storage and retrieval system (ASRS). The 
focus of this paper is on the RMS.

5.2 Use Case Scenarios
The RMS can be shown as a use case diagram, figure 2, and it can be seen that it 
interacts with the conveyor belt in order to perform its operations. These operations are - 
get a pallet from the conveyor belt (getPallet), put a pallet and block on the conveyor 
belt (putBlock) and put a pallet and cylinder on the conveyor belt (putCylinder).

putBlock^

conveyer belt

conveyer belt ^ _ ,. ,^-—»______^-^^ putCylinder

conveyer belt 
Figure 2 Use case scenarios for the raw materials station

The use case diagram in figure 2 identifies the communication between the module 
under consideration and the outside world and gives the basic information needed to 
operate the module. This can be described as the interface between this module and any 
component that needs to interact with it. This concept of encapsulation, also known as 
information hiding, is an important OO technique and helps achieve the idea of loose 
coupling (SOMMERVILLE, 1995), (Meyer, 1997), (PRESSMAN, 2000). The internal 
operations of the module are hidden from the user. In order to operate this module 
external users need only know about its interface, which describes the operations it 
performs. The internal details of how it provides a cylinder or block, or gets a pallet, are 
unimportant when calling these operations. Therefore, modifications made to the 
internals of an object should have a minimal, if any, effect on other objects in the 
system, as long as its interface remains unchanged. Expanding this idea gives the 
concept of a hardware/software object, where no distinction is drawn between the 
software and hardware in the module. Instead the module is thought of in terms of the 
operations it performs and the interface to those operations.

The RMS itself (figure 3) consists of a series of interacting objects. It contains two 
manipulators and two storage units. The latter contain blocks and cylinders respectively 
with one manipulator used to load cylinders onto a pallet waiting in the loading area, 
whilst the other serves the dual purpose of placing pallets onto the loading area, and 
populating pallets with blocks.

The whole station is controlled by programmable logic controllers (PLC's) via a series of 
pneumatic actuators. A description of the using the UML to create an aggregation of 
these actuators to form a manipulator is described in (Llewellyn et al, 2000).
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0000

Figure 3 Layout of the raw materials station

The RMS can also be modelled with a use case diagram, to give an understanding of the 
behaviour of the module's interactions. The resultant diagrams are not shown for space 
considerations but give the following operations:

Object

Cylinder Manipulator

Pallet Manipulator

Action

Get cylinder from cylinder storage

Put cylinder on loading area

Get pallet from conveyor

Put pallet on loading area

Get block from block storage

Put block on loading area

Table 1 The operations of the raw materials station

These actions help in the design of the operations for each of the objects in the RMS, and 
further identify the interface of each object which can be used later to design the module 
controller. Using use case analysis is an iterative process where each module is 
decomposed into its component sub-modules and these in rum are modelled. Ultimately 
all levels of the system are modularised and enough detail is obtained to design each 
object fully using a bottom-up approach. Ultimately the top levels of the system are 
combinations of lower level objects.
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5.3 Class diagrams

Focusing on the cylinder storage manipulator, it can be observed that the object is an 
instance of class manipulator, and that this class itself is a composition of four instances 
of class actuator. The actuator class has two simple methods that allow it to actuate or 
deactute. However, these actions carry out a different operation depending on the 
receiving object. For instance, an actuator in the system under consideration may take 
one of four types. It contains a rotary actuator, which is able to actuate right or deactuate 
left. It contains a horizontal actuator which is able to extend or retract, and a vertical 
actuator which is able to move up or down upon receiving its actuate or deactuate 
command. Finally it contains a gripper which when actuated opens and on deactuation 
closes. This demonstrates the OO concept of polymorphism whereby each of the classes 
responds differently to the same command based upon its hidden internal mechanisms. 
The manipulator class itself responds to commands such as move left, move right, up, 
down, open and close. These commands or operations form the interface to the 
manipulator class, with the individual actuators, and indeed their pneumatic valves and 
the PLC controller being encapsulated from the user.

5.4 Modelling the behavioural capabilities of an object using Petri 
net graphs

Having captured the class diagrams and any inheritance present in the system, it is 
possible to model the dynamic capabilities of the class. These are the operations that 
need to be invoked in order to make the class carry out its functions. In addition, the 
operations provide a method of altering the state or behaviour of the object. In a discrete 
event system (DBS) such as the CIM system being considered, the state of the system at 
any moment in time can be captured by obtaining the states of all objects in that system. 
A Petri net graph allows these states to be represented visually or, if required, 
mathematically. The corresponding UML diagrams for capturing the dynamic and state 
aspects of a system are interaction and state diagrams. However, not only does this 
require the modelling of two separate diagrams, but neither are mathematically provable. 
The actuator class can be modelled using the following class/Petri net diagram:

ACTUATOR

state {actuated, deactuated, busy}

actuateO 

deactuate()

Figure 4 The complete actuator object
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In the diagram smaller circles represent control places and feedback. The former are 
signals from the controller that invoke the method of the object. In this instance these 
can be either actuate or deactuate. The feedback is being sent to the controller object, 
with double circles representing input from external feedback sources. The dashed line 
represents the external (public) interface to the object.

5.5 Applying constraints to the object
The actuator class has been designed to be as generic as possible, as indeed is the 
resultant manipulator. It can be seen that this object can be reused in any application. 
To ensure the object remains as general purpose as possible the environment specific 
constraints are built into a separate object which acts as an intermediary between the 
controller, which is goal specific and the manipulator object itself. In the system under 
consideration, the only constraint for the raw materials manipulator is that the gripper 
cannot be opened when the arm is raised. Imagining the cylinders to be quite heavy, 
doing so could amount in considerable damage to the other objects in the system and 
possibly the cylinder itself.

Figure 5 shows a constrained object being used. The controller object sends a message 
to the manipulator via its constraint. The constraint validates the request based on the 
current state of the object it is constraining, and depending upon the outcome either 
sends the message on to the object for actioning or returns an error message to the 
controller.

Controller Message Request

Feedback
Constraint Message Request

Feedback Object

Figure 5 A constrained object

The constraint here is the intermediary between the controller and manipulator object, in 
other cases the constraint could be constraining a combination of objects where it is 
ensuring there are no conflicts between objects operating in the same environment.
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6 Conclusions

It is widely accepted that manufacturing systems need to be flexible, customisable and 
maintainable. This is effectively addressed in the proposed OO system where individual 
objects can be customised and updated using the key features of UML, such as 
inheritance, polymorphism and encapsulation. By integrating the two types of models, 
the design of manufacturing systems is greatly enhanced. Manufacturing systems will 
be able to take advantage of the concepts of OO programming that have been widely 
available in software engineering for some time. Future upgrades to the resultant system 
will be more intuitive as manufacturing design adopts the 'plug and play' philosophy of 
other computer systems. The technique provides a model that can be used initially as a 
simulation tool and later as the basis for the automated generation of the control 
software. Once the initial design has been carried out many objects can be reused in 
future systems with no requirement for additional modelling.

7 Future Work

Whilst the idea of hardware software components (Kopetz, 1999), and Petri net modules 
(Stanton, 1999) has already been proposed, the communication between these modules 
needs translation into real systems. Petri net diagrams have been successfully converted 
into ladder logic (Stanton, 1999), however, as modern systems increasingly take 
advantage of more up to date programming languages, this idea needs to be extended to 
translate from Petri nets to their syntax. Thought also needs to be given to the 
elimination of the redundant code inherent in automated code generation from OO 
models (Narisawa et al, 1998). This paper proposes the concept of a constraint object 
based around the UML and Petri net graphs. Future work will expand this idea to cover 
a larger system that incorporates multiple objects and constraints.
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A NINE STEP APPROACH TO DESIGNING 
SUCCESSFUL VISUAL PROGRAMMING 
APPLICATIONS

Eric Llewellyn, Martin Stanton and Geoff Roberts

Mechatronics Research Centre, University of Wales College, Newport 
Allt-yr-yn Campus, PO Box 180, NP20 5XR, United Kingdom

Abstract: The following paper presents a nine-step method for overcoming the 

limitations of traditional models when designing visual applications. 

Microsoft Visual Basic is used to demonstrate the technique which can be 

applied to most visual programming languages. The method described takes 

account of factors such as an interface driven approach, the psychology of 

programmer commitment, the need to develop readable code, and provides a 

method of modularly designing detailed test documents. The method has 

proved to be suitable for existing visual basic developers and those wishing to 

move from procedural into visual programming.

Introduction

Visual programming is increasingly being adopted for software development and 

languages such as Visual Basic are becoming the tools of choice for applications 

development. This is inevitably due to their flexibility and ease of use, though their 

use is more usual within the software development rather than software-engineering 

domain. Command and control and real time systems will more likely run under 

languages such as C. For many applications there is an increasing need for traditional 

programmers to embrace this new technology and design quick, customised 

applications. It is inappropriate to approach the design of such systems using 

conventional design methodologies such as the waterfall model [2] {Sommerville 

1995 #78}as these methods tend to be structured to procedural software development. 

Even experienced visual programmers tend to take an exploratory approach to rapid 

applications development (RAD) and this exploratory nature often leads to poorly 

designed programs with inefficient code. With exploratory programming, debugging 

is an ongoing affair as errors often result from the confusion caused by this approach.
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Programmers often take a cursory glance at the requirements and immediately begin 

developing their applications with no real picture of the overall project. This means 

that problems are solved as they are encountered which very often leads to the 

creation of other problems further along the development process. The code is 

reworked from front to back with problems being fixed along the way, and this 

method is iteratively carried out until the application works satisfactorily. This can 

lead to frustration and dissatisfaction on the part of the programmer. In many 

instances the initial good intentions of the programmer to apply interesting techniques 

and routines to the code is destroyed by the final rush to get the application working. 

For all forms of programming the foundations of the application are code 

commenting, indenting, and naming of variables and objects. If these foundations are 

not correctly laid out from the outset of the project several problems can arise. 

Amending procedure names etc. can cause errors in the application. The programmer 

may have lost the inclination to do any more than is absolutely necessary towards the 

end of the project life cycle. In visual programming, often too much time at the 

outset is spent designing the interface, which is often important coding time wasted.

The following nine-step plan is suggested as a method of overcoming many of the 

problems identified:

Step 1 - Plan the application

Step 2 - Design a working interface

Step 3 - Assign meaningful names

Step 4 - Identify events and describe the required behaviour for each event

Step 5 - Code the easy statements

Step 6 - Formulate complex code

Step 7 - Implement the complex code

Step 8 - Test and debug the application

Step 9 - Enhance the GUI
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Motivation

Programmer motivation during a software development project can be likened to a 

musician playing a guitar. For example, the musician strikes chord C. The note 

follows a path as shown in Figure 1 below:

Amplitude

Time (Normalised to note duration) 

Figure 1: The rise and decay of a guitar chord

The note rises quickly to its peak and then slowly begins to fade as time progresses. 

The same is true for programmer motivation. It is possible to use the same graph 

with a different label on the y-axis to represent this.

Motivation

Time (Normalised to project duration)

Figure 2: The rise and fall of programmer motivation
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The programmer's motivation is at its highest level at the inception of the project, 

shown as a shaded area in Figure 2, as the project progresses and the tasks become 

tedious and repetitive, the motivation of the programmer fades, although there is often 

a slight upturn as the project reaches completion.

If this concept is taken a stage further it can be seen in Figure 3 that this cycle is 

actually composed of smaller, similar cycles for each task in the development of the 

project. Each cycle will have higher or lower motivation depending on how the 

individual programmer likes that particular task.

Motivation

Time (Normalised over the duration of the task) 

Figure 3: Programmer motivation over the duration of a project

To return to the guitarist analogy, the chord previously struck is about to lapse and yet 

the musician wishes to extend the note. He/she does not want to strike the note again, 

as this would alter the musical score. Instead the guitarist has a range of techniques 

such as adjusting the tremolo arm or vibrating their arm which can extend the note. 

Likewise if the programmer begins to tire of a task, he or she does not want to begin 

the task again. Instead a method is needed which takes the task in another direction. 

This change of direction is hopefully enough to re-motivate the programmer to
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complete the current task and begin the new one. The methodology presented in this 

paper aims to counteract this 'waning of programmer' interest by placing the more 

interesting elements of development at key stages within the process. The suggested 

steps will aid in the generation of efficient and robust code.

Step 1 - Plan the application

Action: Understand what is required and plan the program

It seems obvious but it is important to understand the whole application problem 

before embarking upon any development task. In many cases a developer may skirt 

through the detail of a problem and begin programming in an almost top down 

approach. Imagine the situation where a programmer is given a lengthy brief about a 

change handling system that is required by a client in an amusement arcade. Having 

quickly glanced over the specification the program begins coding in the 'code and fix' 

fashion and arrives at a fully functional application. The system can accept any 

sterling paper denomination and can duly give a various combination of change as 

required by the user. The developer is pleased with his/her effort and subsequently 

demonstrates the application to the client. However, the client quickly draws the 

programmer's attention to some of the small print in the specification, the system 

must be able to deal with different currencies as it is to be implemented throughout 

their international gaming business. Whilst the code can be modified to 

accommodate this it may require a considerable amount of time to do so. Time which 

could have been spent on other tasks had the problem been thought through in detail.

At this step any available documentation should be read and understood. Interviews 

should be held with the client to establish anything not stated and to clear up any 

queries. Despite the ad-hoc nature of event driven programming, there will be some 

basic path which the application follows and this can be drawn as in the generic step
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diagram shown in Figure 4 which shows the basic route through the application. The 

dotted lines represent possible conditions or repetitions in the program

Initialise

Stepl

Step2

StepS

Unload

Figure 4: The generalised path of event driven software development

As applications such as Visual Basic are inherently interface oriented it should be 

possible to identify the type of controls, i.e. buttons, check boxes and so on, and 

possibly events related to these controls, i.e. mouseOver, click etc.

Step 2 - Design a Working Interface

Action: Develop a working interface in order to begin implementing the plan

Visual languages are by their very nature, and as the name suggests, based around 

interfaces. The effective design of such graphical user interfaces (GUI) plays a strong 

role in the usability of the finished product. Therefore much thought should be 

placed on effective design. There are many articles available which discuss the 

design of GUI's and how computers and humans interact ([3], [1]), however, this is 

beyond the scope of this paper. GUI design can be an interesting and satisfying part 

of the project life-cycle and many developers enjoy this aspect of the project, 

however, at the initial phase of the design cycle there is the danger of spending too 

much time on the GUI design, especially in a time constrained project where this 

could be at the cost of the functionality of the program.
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A rough or functional interface should be developed for all forms required by the 

application and these should be populated with the various controls required. The 

planning step should have suggested some of the controls and a reasonable idea of the 

form hierarchy which can be developed at this step. This step can be carried out, 

where necessary, with the direct involvement of the client. It is not important here to 

adjust fonts, screen colours and the aesthetics of the forms.

Having considered the application in its entirety at stepl, even the novice visual 

programmer will find it easy to ascertain the control types to use drawing on their 

experience with other Window's applications.

Step 3 - Assign meaningful names

Action: Assign meaningful names to all objects and variables in the system

To demonstrate the benefit of correct naming compare the code snippets shown 

below:

Public sub commandl_click()
a=(b/2)*c
labell.caption=str(a) 

End Sub

Public sub calcArea_click()
strArea=(sngBase/2)*sngHeight 
IblArea.caption=str(sngArea)

End Sub

Whilst it can be seen that the leftmost example is halving a variable and multiplying 

by another, assigning the value to a third variable, it becomes apparent from the 

rightmost code that it is the area which is being calculated. By simply giving code, 

objects and events sensible names code becomes easier to decipher for anyone 

examining the work at a later step or indeed for the developer. Adding the sng to the 

variable names gives the reader and indication they are type single. Microsoft 

provides a valuable list of naming conventions, the most common of which are shown 

in the Table 1 below:
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Data type
Boolean
Byte
Collection object
Currency
Date (Time)
Double
Error
Integer
Long
Object
Single
String
User-defined type
Variant

Prefix
bin
byt
col
cur
dtm
dbl
err
int
Ing
obj
sng
str
udt
vnt

Example
blnFound
bytRasterData
colWidgets
curRevenue
dtmStart
dblTolerance
errOrderNum
intQuantity
IngDistance
objCurrent
sngAverage
strFName
udtEmployee
vntCheckSum

Table 1: Common variable names based on the Microsoft standard

This process can be carried out in parallel with step 2, it is important that all objects 

and variables have sensible, meaningful names at the end of this step.

Step 4 - Identify events and add comments

Action: Identify all events in the application and describe the required 
behaviour for each event as appropriate___________

Having designed a working interface for the application and with the plan from step 

1, the developer at this step will have some concept of the program's overall flow. 

Tying the two together the events which trigger these paths become apparent i.e., 

buttons, mouse events etc are the user inputs which can cause actions. Likewise some 

actions, such as timers, that are under the control of the program itself can also invoke 

events.

These events should be commented with sensible statements, which can later provide 

guidelines for implementing in the language syntax. Where the code is simple such 

as "end" application the comments may be simple. Where the code is complex, the
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comments can be broken down further to provide more guidance when coding. For 

example, an end button may invoke a message box warning containing the option to 

exit (Yes) or continue (No). This could be commented as follows:

Public Sub cmdEnd_Click()

'User has clicked the end button

'Display message box

'End application if user clicks yes 

End Sub

The first comment is a general statement as to the purpose of the subsequent code, 

whilst the next statements break down the task for coding. At the end of this step the 

comments will describe 'pseudocode' statements detailing the function of each event.

Step 5 - Code the easy statements

Action: Write the code for the easier parts of the application

Sections of code may be quite simple to implement, such as 'End' and 'Clear' buttons. 

However, there are different degrees to which this is completed effectively. For 

example, an end button can contain no more than an 'End' statement at which, by 

accident or choice, the user is abruptly taken from the application. A more suitable 

end statement displays a warning offering the user a further choice. These 

refinements are generally simple to implement and add much to the user friendliness 

of applications. At the early stage of the development when the programmer is still 

motivated and keen to complete the application, these should be coded. Towards the 

end of the life cycle the programmer motivation and/or time may preclude these 

statements being effectively coded.
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Write all essential code so that the application has basic functionality. Where the 

application has multiple forms this can include opening and closing the relevant 

screens and probably includes a working end button.

Step 6 - Formulate complex code

Action: Outline any complex code or calculations outside of the Integrated 
____Development Environment (IDE)

Almost inevitably the application will be required to perform some calculations or 

complex data handling. The comments from step 3 will have aided in the 

identification of the necessary steps required, which should now be outside of the 

IDE. Accompanying the calculations should be, where applicable, test data which 

reinforces the formula. By working outside of the programming environment the 

developer is able to pursue the most effective method of solving a problem and does 

not try to impose 'language terminology' on the solution. At this step he/she is free 

from the constraints of the programming language. It is suggested that once an 

effective solution to a problem has been found, the problem is to establish the best 

method of implementing this in the chosen language and not the other way around. 

The resulting test data also becomes useful in step 9 of the design.

Step 7 - Implement the complex code

Action: Code the complexities of the application

Once the complex code has been described and manually tested, a viable solution 

needs to be found to carry out the required tasks. Using the commentary provided 

from step 4 and the plan developed in step 1, this task should be more intuitive. It is 

however the most crucial step of development as the main functionality of the 

application is within this step. The main requirement of the application and the
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purpose for its design will be coded during this step. It is also the point at which the 

programmer's motivation is usually beginning to degrade as he/she tires of the 

project.

Step 8 - Test and debug the application

Action: Design a test requirements document and test the application

The first priority at this step is to design a test requirements document (TRD) which 

is used to test the performance of the application. The document should identify each 

event and the associated action(s) and ensure they perform correctly. For many 

programmers TRD design is one of the least interesting and tedious parts of the 

development process and is generally disliked. However, the approach suggested 

here lends itself well to TRD design. At step 4 all events were identified and 

commented such as that shown in Figure 5. These events and comments map neatly 

into the TRD as shown below:

Event Action Check

End button clicked Warning displayed

User clicks no program continues

User clicks yes program ends

>/
V
V

Figure 5: An event/action test document

Taking this a stage further the TRD should also concern itself with accuracy as well 

as functionality. For example, an application may be required which allows the user 

to enter two numbers, which are added together and displayed upon pressing a button. 

The test for the button may be as shown in Figure 6:
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Event Action Check

Button clicked Result is calculated and displayed V

Figure 6: A test documents showing a calculation event

Therefore, if the numbers 10 and 20 are entered and 30 is displayed it would be 

correct to check off this test as being complete. However, if the same numbers are 

entered and the number 40 is displayed is the test satisfied? In this case yes, a result 

was calculated and displayed. There was no stipulation that the result had to be 

correctly calculated. It is suggested that to overcome this inadequacy the wording of 

the test is carefully prepared and that all calculations are validated using test data. 

Conveniently step 8 will provide tests and answers which can now be used with the 

application and compared to ensure the program functions correctly. The probability 

is that the testing of the application will highlight any bugs in the system or 

inadequacies with the operation of the program. At this step these can be amended.

Step 9 - Enhance the Graphical User Interface (GUI)

Action: Enhance the GUI

By step 9 the application is well coded and commented, fully functional and 

thoroughly tested and the programmer is possibly eagerly awaiting the signing off of 

the project. After spending a large amount of time dealing with the intricacies of the 

code, the programmer is now free to spend as much or as little time as necessary in 

the pursuit of enhancing the interface.
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Conclusions

This article has presented a nine-step plan to a successful visual software 

development. The technique will eliminate many of the problems inherent in the 

development of these types of applications. One of the important aspects of the 

method is that it takes into account the initial enthusiasm when a new project is 

undertaken and the wane in interest as the project progresses. Whilst much work has 

been carried out in the field of user psychology, this paper approaches the design 

from the perspective of programmer psychology. It identifies the aspects of projects 

that are generally poorly implemented such as 'easy code' and TRDs and offsets the 

unwillingness to do this by placing them in the enthusiastic period of development. 

The more interesting aspect of RAD programming, i.e. GUI design is placed at the 

end of the project when it provides a resurgence of interest before the project is 

finally completed. Programmers moving into the visual programming field from 

more procedural languages now have a structured framework in which to develop 

efficient and robust applications. Whilst the method outlined in this paper has been 

applied to Microsoft's Visual Basic, the technique can readily be applied any visual 

application such as Borland's Delphi or C builder. The method presented is equally 

applicable for students and industrialists and provides a driving force that addresses 

the fundamentals of visual software development.
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Abstract

This paper proposes a method of designing discrete event systems utilising a 
combined object-oriented and Petri net approach. The approach allows manufacturing 
system designers to develop truly generic, and therefore reusable systems and 
components that can aid in the speed up of system design and implementation. It also 
provides a user-centric view of the system that can facilitate effective communication 
between system designers and end users.

Initially use-cases are iteratively developed until the resultant diagrams fully capture 
user requirements along with a suitable level of detail in order to implement the design. 
Subsequently the use-case scenarios provide a series of 'test cases' that enable the end 
system to be fully tested against the original design requirements. A series of class 
diagrams are then produced using the standardised notation provided by the Unified 
Modelling Language (UML). The resultant class diagrams provide a generic and 
abstracted view of the system and enable the system designer to identify all levels of 
modularity within the system under consideration. Careful identification of the 
'interface' to each module in the system presents two major benefits to manufacturing 
system design: firstly it allows a large project to be concurrently developed by a team 
thereby reducing the time to implementation; secondly it enables manufacturing 
organisations to incrementally implement new systems by department or even cell level. 
A well-defined interface and encapsulated module mean that it is possible to combine 
new and existing technologies without leaving 'islands of automation'.

The approach outlined in this paper draws no distinction between hardware and 
software, and instead views the system as a series of events and resultant state changes 
that are modelled using structured Petri nets. Structured Petri nets allow a model to 
more closely resemble the system under consideration by extending the basic Petri net 
graph to include input and output places that can be used to model direct control of a 
system and allow for the capture of feedback. In common with the basic Petri net 
model the structured Petri net graphs can be used to simulate a system, enabling the 
system modeller to carry out 'what if analysis on any proposed design or change. The 
structured Petri net approach also allows for the generation of control code, which again 
reduces the all-important time to implementation.
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