74 research outputs found

    Neighboring Extremal Optimal Control Theory for Parameter-Dependent Closed-loop Laws

    Full text link
    This study introduces an approach to obtain a neighboring extremal optimal control (NEOC) solution for a closed-loop optimal control problem, applicable to a wide array of nonlinear systems and not necessarily quadratic performance indices. The approach involves investigating the variation incurred in the functional form of a known closed-loop optimal control law due to small, known parameter variations in the system equations or the performance index. The NEOC solution can formally be obtained by solving a linear partial differential equation, akin to those encountered in the iterative solution of a nonlinear Hamilton-Jacobi equation. Motivated by numerical procedures for solving these latter equations, we also propose a numerical algorithm based on the Galerkin algorithm, leveraging the use of basis functions to solve the underlying Hamilton-Jacobi equation of the original optimal control problem. The proposed approach simplifies the NEOC problem by reducing it to the solution of a simple set of linear equations, thereby eliminating the need for a full re-solution of the adjusted optimal control problem. Furthermore, the variation to the optimal performance index can be obtained as a function of both the system state and small changes in parameters, allowing the determination of the adjustment to an optimal control law given a small adjustment of parameters in the system or the performance index. Moreover, in order to handle large known parameter perturbations, we propose a homotopic approach that breaks down the single calculation of NEOC into a finite set of multiple steps. Finally, the validity of the claims and theory is supported by theoretical analysis and numerical simulations

    Application of Optimal HAM for Finding Feedback Control of Optimal Control Problems

    Get PDF
    An optimal homotopy-analysis approach is described for Hamilton-Jacobi-Bellman equation (HJB) arising in nonlinear optimal control problems. This optimal approach contains at most three convergence-control parameters and is computationally rather efficient. A kind of averaged residual error is defined. By minimizing the averaged residual error, the optimal convergence-control parameters can be obtained. This optimal approach has general meanings and can be used to get fast convergent series solutions of different types of equations with strong nonlinearity. The closed-loop optimal control is obtained using the Bellman dynamic programming. Numerical examples are considered aiming to demonstrate the validity and applicability of the proposed techniques and to compare with the existing results

    Solutions of System of Fractional Partial Differential Equations

    Get PDF
    In this paper, system of fractional partial differential equation which has numerous applications in many fields of science is considered. Adomian decomposition method, a novel method is used to solve these type of equations. The solutions are derived in convergent series form which shows the effectiveness of the method for solving wide variety of fractional differential equations

    On new and improved semi-numerical techniques for solving nonlinear fluid flow problems.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.Most real world phenomena is modeled by ordinary and/or partial differential equations. Most of these equations are highly nonlinear and exact solutions are not always possible. Exact solutions always give a good account of the physical nature of the phenomena modeled. However, existing analytical methods can only handle a limited range of these equations. Semi-numerical and numerical methods give approximate solutions where exact solutions are impossible to find. However, some common numerical methods give low accuracy and may lack stability. In general, the character and qualitative behaviour of the solutions may not always be fully revealed by numerical approximations, hence the need for improved semi-numerical methods that are accurate, computational efficient and robust. In this study we introduce innovative techniques for finding solutions of highly nonlinear coupled boundary value problems. These techniques aim to combine the strengths of both analytical and numerical methods to produce efficient hybrid algorithms. In this work, the homotopy analysis method is blended with spectral methods to improve its accuracy. Spectral methods are well known for their high levels of accuracy. The new spectral homotopy analysis method is further improved by using a more accurate initial approximation to accelerate convergence. Furthermore, a quasi-linearisation technique is introduced in which spectral methods are used to solve the linearised equations. The new techniques were used to solve mathematical models in fluid dynamics. The thesis comprises of an introductory Chapter that gives an overview of common numerical methods currently in use. In Chapter 2 we give an overview of the methods used in this work. The methods are used in Chapter 3 to solve the nonlinear equation governing two-dimensional squeezing flow of a viscous fluid between two approaching parallel plates and the steady laminar flow of a third grade fluid with heat transfer through a flat channel. In Chapter 4 the methods were used to find solutions of the laminar heat transfer problem in a rotating disk, the steady flow of a Reiner-Rivlin fluid with Joule heating and viscous dissipation and the classical von KĪ¬rmĪ¬n equations for boundary layer flow induced by a rotating disk. In Chapter 5 solutions of steady two-dimensional flow of a viscous incompressible fluid in a rectangular domain bounded by two permeable surfaces and the MHD viscous flow problem due to a shrinking sheet with a chemical reaction, were solved using the new methods

    Time-Delay Switch Attack on Networked Control Systems, Effects and Countermeasures

    Get PDF
    In recent years, the security of networked control systems (NCSs) has been an important challenge for many researchers. Although the security schemes for networked control systems have advanced in the past several years, there have been many acknowledged cyber attacks. As a result, this dissertation proposes the use of a novel time-delay switch (TDS) attack by introducing time delays into the dynamics of NCSs. Such an attack has devastating effects on NCSs if prevention techniques and countermeasures are not considered in the design of these systems. To overcome the stability issue caused by TDS attacks, this dissertation proposes a new detector to track TDS attacks in real time. This method relies on an estimator that will estimate and track time delays introduced by a hacker. Once a detector obtains the maximum tolerable time delay of a plantā€™s optimal controller (for which the plant remains secure and stable), it issues an alarm signal and directs the system to its alarm state. In the alarm state, the plant operates under the control of an emergency controller that can be local or networked to the plant and remains in this stable mode until the networked control system state is restored. In another effort, this dissertation evaluates different control methods to find out which one is more stable when under a TDS attack than others. Also, a novel, simple and effective controller is proposed to thwart TDS attacks on the sensing loop (SL). The modified controller controls the system under a TDS attack. Also, the time-delay estimator will track time delays introduced by a hacker using a modified model reference-based control with an indirect supervisor and a modified least mean square (LMS) minimization technique. Furthermore, here, the demonstration proves that the cryptographic solutions are ineffective in the recovery from TDS attacks. A cryptography-free TDS recovery (CF-TDSR) communication protocol enhancement is introduced to leverage the adaptive channel redundancy techniques, along with a novel state estimator to detect and assist in the recovery of the destabilizing effects of TDS attacks. The conclusion shows how the CF-TDSR ensures the control stability of linear time invariant systems

    Multistage Spectral Relaxation Method for Solving the Hyperchaotic Complex Systems

    Get PDF
    We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM) is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results

    The Vanishing Moment Method for Fully Nonlinear Second Order Partial Differential Equations: Formulation, Theory, and Numerical Analysis

    Full text link
    The vanishing moment method was introduced by the authors in [37] as a reliable methodology for computing viscosity solutions of fully nonlinear second order partial differential equations (PDEs), in particular, using Galerkin-type numerical methods such as finite element methods, spectral methods, and discontinuous Galerkin methods, a task which has not been practicable in the past. The crux of the vanishing moment method is the simple idea of approximating a fully nonlinear second order PDE by a family (parametrized by a small parameter \vepsi) of quasilinear higher order (in particular, fourth order) PDEs. The primary objectives of this book are to present a detailed convergent analysis for the method in the radial symmetric case and to carry out a comprehensive finite element numerical analysis for the vanishing moment equations (i.e., the regularized fourth order PDEs). Abstract methodological and convergence analysis frameworks of conforming finite element methods and mixed finite element methods are first developed for fully nonlinear second order PDEs in general settings. The abstract frameworks are then applied to three prototypical nonlinear equations, namely, the Monge-Amp\`ere equation, the equation of prescribed Gauss curvature, and the infinity-Laplacian equation. Numerical experiments are also presented for each problem to validate the theoretical error estimate results and to gauge the efficiency of the proposed numerical methods and the vanishing moment methodology.Comment: 141 pages, 16 figure
    • ā€¦
    corecore