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An optimal homotopy-analysis approach is described for Hamilton-Jacobi-Bellman equation (HJB) arising in nonlinear optimal
control problems. This optimal approach contains at most three convergence-control parameters and is computationally rather
efficient. A kind of averaged residual error is defined. By minimizing the averaged residual error, the optimal convergence-control
parameters can be obtained. This optimal approach has general meanings and can be used to get fast convergent series solutions
of different types of equations with strong nonlinearity. The closed-loop optimal control is obtained using the Bellman dynamic
programming. Numerical examples are considered aiming to demonstrate the validity and applicability of the proposed techniques
and to compare with the existing results.

1. Introduction

Many real-world problems in engineering, economics, and
biomedicine can be formulated as optimal control problem
of the form

minimum 𝐽 = ℎ (𝑥 (𝑡𝑓) , 𝑡𝑓) + ∫

𝑡𝑓

𝑡0

𝑔 (𝑥 (𝑠) , 𝑢 (𝑠) , 𝑠) 𝑑𝑠,

subject to 𝑥̇ (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑢 (𝑡) , 𝑡) ,

𝑥 (𝑡0) = 𝑥0, 𝑥 (𝑡𝑓) = 𝑥𝑓,

(1)

where 𝑢(⋅) is the control function, 𝑥(⋅) is the state function,
constant parameters, 𝑥0 and 𝑥𝑓 are the initial and the final
states, ℎ(⋅) is the salvage value or scrap value function, 𝑓(⋅)
is the vector-valued transition function, 𝑔(⋅) is the integrand
function, and 𝑠 is the dummy variable of integration rather
than 𝑡.

There are various efficientmethods such as those reported
in [1–3] for the computation of open-loop optimal con-
trols. However, feedback controls are much preferred in
many engineering applications. In order to determine the

optimal control law, there is an approach using dynamic
programming [4]. This approach leads to the HJB equation
that is hard to solve in most cases. An excellent literature
review on the methods for solving the HJB equation is
provided in [5], where a successive Galerkin approximation
(SGA) method is also considered. In the SGA, a sequence
of generalized HJB equations is solved iteratively to obtain a
sequence of approximations approaching the solution of HJB
equation. However, the proposed sequence may converge
very slowly or even diverge. Another approach is to treat the
problem with a measure theory approach [6]. This changes
the nonlinear OCP to a linear programming and gives a
piecewise constant control law. In the past two decades, the
indirect methods have been extensively developed. It is well
known that the nonlinearOCP leads to a nonlinear two-point
boundary value problem (TPBVP) or a Hamilton-Jacobi-
Bellman partial differential equation. Many recent researches
have been devoted to solve these two problems.

In particular, we will derive the fundamental first-order
partial differential equation obeyed by the optimal value
function, known as the HJB equation. This shift in our
attention, moreover, will lead us to a different form for the
optimal value of the control vector, namely, the feedback or
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closed-loop form of the control. This form of the optimal
control typically gives the optimal value of the control vector
as a function of the current date, the current state, and the
parameters of the control problem. In contrast, the form
of the optimal control vector derived via the necessary
conditions of optimal control theory is termed open loop and
in general gives the optimal value of the control vector as a
function of the independent variable time, the parameters,
and the initial and/or terminal values of the planning horizon
and the state vector. Essentially, the feedback form of the
optimal control is a decision rule, for it gives the optimal
value of the control for any current period and any admissible
state in the current period that may arise. In contrast, the
open-loop form of the optimal control is a curve, for it
gives the optimal values of the control as the independent
variable time varies over the planning horizon. Thus, it is
required to solve an HJB equation by numerical-analytic-
approximate method. In [7], the authors used the basic ADM
for an example of HJB equation and then finding optimal
control signal. In [8–10], standard HPM, piecewise HPM and
differential transform method (DTM) were used for finding
feedback control of optimal control problems.

One of the semiexact methods for solving linear and
nonlinear equation which does not need small/large param-
eters is homotopy analysis method (HAM), first proposed by
Liao in 1992 [10–13]. Since Liao’s book [14] for the homotopy
analysis method was published in 2003, more and more
researchers have been successfully applying this method to
various nonlinear problems in science and engineering, such
as the viscous flows of non-Newtonian fluids [15], the KdV-
type equations [16], and finance problems [17].

TheHAMcontains a certain auxiliary parameter 𝑐0, which
provides us with a simple way to adjust and control the con-
vergence region and rate of convergence of the series solution.
Moreover, by means of the so-called 𝑐0-curve, it is easy to
determine the valid regions of 𝑐0 to gain a convergent series
solution. Thus, through HAM, explicit analytic solutions of
nonlinear problems are possible.

However, as illustrated in [18], the usual HAM has only
one convergence-control parameter 𝑐0, and it is a pity that
curves for convergence-control parameter (i.e., 𝑐0-curves)
cannot tell us which value of 𝑐0 ∈ R gives the fastest
convergent series. Recently, to overcome this shortcoming,
Liao [18] proposed an optimal HAM with more than one
convergence-control parameter. In this optimalmethod, Liao
introduced the so-called averaged residual error to get the
optimal convergence-control parameters efficiently. In gen-
eral, the optimal HAM can greatly modify the convergence
of homotopy-series solution.

The results obtained in this paper show that the solutions
given by the optimal HAM give much better approximations
and convergence much faster than those given by the usual
HAM. In this paper, we employed a new proposal of Liao [18,
19], namely, optimal homotopy-analysis approach to solve an
HJB equation obtained from (2)–(4). We use here special
deformation functions, which are determined completely
by only one characteristic parameter |𝑐1| < 1 and |𝑐2| <
1, respectively. In this way, there exist at most only three

convergence-control parameters 𝑐0, 𝑐1, and 𝑐2 at any order of
approximations.

2. Nonlinear Time-Variant HJB Equation

Consider a process described by the following system of
nonlinear differential equations, which is called the equation
of motion, on a fixed interval [𝑡0, 𝑡𝑓]

𝑥̇ (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑢 (𝑡) , 𝑡) , (2)

where 𝑥 ∈ R𝑛 is the state vector. Let𝑈(⋅) ∈ R𝑛 be a closed set.
A piecewise continuous function 𝑢 : [𝑡0, 𝑡𝑓] → R𝑛 is said
to be an admissible control if 𝑢(𝑡) ∈ 𝑈(⋅). Let U be the class
of such admissible controls. The function 𝑓 is a real-valued
continuously differentiable function and has continuous first
partial derivative with respect to 𝑥. The initial condition for
(2) is

𝑥 (𝑡0) = 𝑥0. (3)

Along with this controlled process, we have a cost functional
of the form

𝐽 (𝑥0, 𝑢) = Φ (𝑥 (𝑡𝑓) , 𝑡𝑓) + ∫

𝑡𝑓

𝑡0

𝐿 (𝑥 (𝜏) , 𝑢 (𝜏) , 𝜏) 𝑑𝜏. (4)

Here, 𝐿(𝑥(𝜏), 𝑢(𝜏), 𝜏) is the running cost, and Φ(𝑥(𝑡𝑓), 𝑡𝑓)
is the terminal cost. This cost functional depends on the
initial position (𝑥0, 𝑡0) and the choice of control 𝑢(⋅). The
optimization problem is therefore to minimize 𝐽(𝑥0, 𝑢), for
each (𝑥0, 𝑢), over all controls 𝑢(𝑡) ∈ 𝑈(⋅). The pair (𝑥0, 𝑢)
which achieves this minimum is called an optimal control.
In fact, the optimization problem with performance index as
in (4) is called a Bolza problem.

In dynamic programming, the minimum value of the
performance index is considered as a function of this initial
point. This function is called the value function. Whenever
the value function is differentiable, it satisfies a nonlinear
first-order hyperbolic partial differential equation called the
partial differential equation of dynamic programming. This
equation is used for constructing a nonlinear optimal feed-
back control law. If we consider a family of optimization
problems with differential initial condition (𝑥, 𝑡), we consider
the dependence of the value of these optimization problems
on their initial conditions. Thus, a value function is defined
by

𝑉 (𝑥, 𝑡) = 𝐽 (𝑥, 𝑢
∗
)

= min
𝑢∈U
{Φ(𝑥 (𝑡𝑓) , 𝑡𝑓) + ∫

𝑡𝑓

𝑡
𝐿 (𝑥 (𝜏) , 𝑢 (𝜏) , 𝜏) 𝑑𝜏} .

(5)

Theorem 1. Let (𝑥, 𝑡) be any interior point of the set {(𝑥, 𝑡) ∈
R𝑛+1|U ̸= 0} at which the function 𝑉(𝑥, 𝑡) is differentiable.
Function 𝑉(𝑥, 𝑡) satisfies the partial differential inequality

𝜕𝑉

𝜕𝑡
+
𝜕𝑉

𝜕𝑥
𝑓 (𝑥, 𝑢, 𝑡) + 𝐿 (𝑥, 𝑢, 𝑡) ≥ 0, (6)
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for all 𝑢 ∈ U. If there is an optimal control 𝑢∗ ∈ U, then the
partial differential equation

𝜕𝑉

𝜕𝑡
+min
𝑢∈𝑈
{
𝜕𝑉

𝜕𝑥
𝑓 (𝑥, 𝑢, 𝑡) + 𝐿 (𝑥, 𝑢, 𝑡)} = 0 (7)

is satisfied [20].

This nonlinear time-variant differential equation is called
“HJB equation.” We have the following boundary condition:

𝐽
∗
(𝑥 (𝑡𝑓) , 𝑡𝑓) = 𝑉 (𝑥 (𝑡𝑓) , 𝑡𝑓) = Φ (𝑥 (𝑡𝑓) , 𝑡𝑓) , (8)

and by introducing the Hamiltonian function

𝐻(𝑥, 𝑢, 𝑉𝑥, 𝑡) =
𝜕𝑉

𝜕𝑥
𝑓 (𝑥, 𝑢, 𝑡) + 𝐿 (𝑥, 𝑢, 𝑡) , (9)

we have

𝐻(𝑥, 𝑢
∗
, 𝑉𝑥, 𝑡) = min

𝑢∈𝑈
𝐻(𝑥, 𝑢, 𝑉𝑥, 𝑡) . (10)

Therefore, by substitution ofHamiltonian function (10) in (7),
we have

𝜕𝑉

𝜕𝑡
+ 𝐻 (𝑥, 𝑢

∗
, 𝑉𝑥, 𝑡) = 0. (11)

3. Basic Idea of Optimal Homotopy
Analysis Method

In this section, we give a brief description of optimal
homotopy-analysis approaches in general cases. For a general
nonlinear differential/integral equation as follows:

𝑁(𝑈 (𝑟, 𝑡)) = 0, (12)

where 𝑈(𝑟, 𝑡) is an unknown function, 𝑟 and 𝑡 denote,
respectively, spatial and temporal independent variables, we
can always choose a proper initial guess𝑈0(𝑟, 𝑡) and a proper
auxiliary linear operator 𝐿 to construct the so-called zeroth-
order deformation equation

[1 − 𝐵𝑛󸀠 (𝑞; 𝑏)] 𝐿 [𝜙 (𝑟, 𝑡; 𝑞) − 𝑈0 (𝑟, 𝑡)]

= 𝑐0𝐴𝑚󸀠 (𝑞, 𝑎)𝑁 [𝜙 (𝑟, 𝑡; 𝑞)] , 𝑞 ∈ [0, 1] ,

(13)

where 𝐴𝑚󸀠(𝑞, 𝑎) is a deformation function with 𝑚󸀠 (𝑚󸀠 ≥
0) unknown convergence-control parameters denoted by
𝑐1, 𝑐2, . . . , 𝑐

󸀠
𝑚, and 𝐵𝑛󸀠(𝑞, 𝑏) is a deformation function with

𝑛
󸀠
(𝑛
󸀠
≥ 0) unknown convergence-control parameters

denoted by 𝑐𝑚󸀠+1, 𝑐𝑚󸀠+2, . . . , 𝑐𝑚󸀠+𝑛󸀠 , respectively. Here,

𝑎 = {𝑐1, 𝑐2, . . . , 𝑐𝑚󸀠} , 𝑏 = {𝑐𝑚󸀠+1, 𝑐𝑚󸀠+2, . . . , 𝑐𝑚󸀠+𝑛󸀠} . (14)

Put 𝑙 = 𝑚󸀠 + 𝑛󸀠. Then, we have 𝑙 + 1 unknown convergence-
control parameters 𝑐0, 𝑐1, 𝑐2, . . . , 𝑐𝑙. Assuming that the initial
guess 𝑈0(𝑟, 𝑡), the auxiliary linear operator 𝐿, and the 𝑙 + 1
convergence-control parameters 𝑐1, 𝑐2, . . . , 𝑐𝑙 are so properly
chosen that the Taylor series

𝜙 (𝑟, 𝑡; 𝑞) = 𝑈0 (𝑟, 𝑡) +

+∞

∑

𝑛=1

𝑈𝑛 (𝑟, 𝑡) 𝑞
𝑛 (15)

converges at 𝑞 = 1, we have the homotopy-series solution

𝑈 (𝑟, 𝑡) = 𝑈0 (𝑟, 𝑡) +

+∞

∑

𝑛=1

𝑈𝑛 (𝑟, 𝑡) . (16)

Substituting the series (15) into the zeroth-order deformation
equation (13) and then equating the coefficients of the like
power of the embedding parameter 𝑞, we have the high-order
deformation equation. Consider

𝐿[𝑈𝑚 (𝑟, 𝑡)−

𝑚−1

∑

𝑘=1

𝜎𝑚−𝑘 (𝑏) 𝑈𝑘 (𝑟, 𝑡)]=𝑐0

𝑚−1

∑

𝑘=0

𝜇𝑚−𝑘 (𝑎) 𝛿𝑘 (𝑟, 𝑡) ,

(17)
where

𝛿𝑘 (𝑟, 𝑡) = (
1

𝑘!

𝜕
𝑘

𝜕𝑞𝑘
𝑁[

+∞

∑

𝑛=1

𝑈𝑛 (𝑟, 𝑡) 𝑞
𝑛
])

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑞=0

, (18)

and 𝜇𝑘(𝑎) and 𝜎𝑘(𝑏) are coefficients of the Taylor series

𝐴𝑚󸀠 (𝑞; 𝑎) =

+∞

∑

𝑘=1

𝜇𝑘 (𝑎) 𝑞
𝑘
, 𝐵𝑛󸀠 (𝑞; 𝑏) =

+∞

∑

𝑘=1

𝜎𝑘 (𝑏) 𝑞
𝑘
. (19)

Let 𝐴𝑚󸀠(𝑞; 𝑎), 𝐵𝑛󸀠(𝑞; 𝑏) be complex functions analytic in the
region |𝑞| ≤ 1, which satisfy
𝐴𝑚󸀠 (0; 𝑎) = 𝐵𝑛󸀠 (0; 𝑎) = 0, 𝐴𝑚󸀠 (1; 𝑎) = 𝐵𝑛󸀠 (1; 𝑎) = 1.

(20)

The special solution 𝑈∗𝑚(𝑟, 𝑡) of (17) is given by

𝑈
∗
𝑚 (𝑟, 𝑡) =

𝑚−1

∑

𝑘=1

𝜎𝑚−𝑘 (𝑏) 𝑈𝑘 (𝑟, 𝑡) + 𝑐0

𝑚−1

∑

𝑘=1

𝜇𝑚−𝑘 (𝑎) 𝑆𝑘 (𝑟, 𝑡) ,

(21)
where

𝑆𝑘 (𝑟, 𝑡) = 𝐿
−1
[𝛿𝑘 (𝑟, 𝑡)] , (22)

and 𝐿−1 is the inverse operator of 𝐿.
Now, we define a kind of averaged residual error [18]

𝐸𝑚 =
1

𝑘

𝑘

∑

𝑗=0

[𝑁(

𝑚

∑

𝑖=0

𝑈𝑖 (𝑗Δ𝑡))]

2

. (23)

The value of 𝑘 is depends to problem, for Examples 2 and 3, we
have Δ𝑡 = 1/10, 𝑘 = 10, and Δ𝑡 = 1/20, 𝑘 = 20, respectively.

Note that 𝐸𝑚 contains 𝑙 + 1 unknown convergence-
control parameters 𝑐0, 𝑐1, . . . , 𝑐𝑙, whose optimal values are
given by the minimum of 𝐸𝑚, corresponding to a set of 𝑙 + 1
nonlinear algebraic equations

𝜕𝐸𝑚

𝜕𝑐𝑗
= 0, 𝑗 = 0, 1, . . . , 𝑙. (24)

So, the above approach is called the 𝑙 + 1-parameter
optimal homotopy-analysis approach. In general, the
above-mentioned optimal homotopy-analysis approaches
can greatly modify the convergence of homotopy-series
solution. And the optimal homotopy-analysis approaches
with one or two unknown convergence-control parameters
are strongly suggested; an optimal approach with too many
unknown convergence-control parameters is not efficient
computationally.
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4. Application

To illustrate the effectiveness of the optimal homotopy anal-
ysis method, we will consider two examples. Comparisons
are made between the exact solution and optimal homotopy-
analysis approaches.

Example 2. Consider the following purely mathematical
optimal control problem:

𝑥̇ = 𝑥 (𝑡) + 𝑢 (𝑡) . (25)

Suppose that we consider the following cost function for this
system:

𝐽 = 𝑥
2
(𝑡𝑓) + ∫

𝑡𝑓

0
𝑢
2
(𝑡) 𝑑𝑡. (26)

The Hamiltonian function will be

𝐻(𝑥, 𝑢, 𝑉𝑥, 𝑡) = 𝑢
2
(𝑡) + 𝑉𝑥 (𝑥, 𝑡) [𝑥 + 𝑢] . (27)

Since the Hamiltonian, which as you know is the right-hand-
side expression to be minimum, is a convex function of the
state and control variables, a solution of the necessary condi-
tions is a solution of the optimal control. Thus, the necessary
and sufficient condition for the above minimization problem
in the HJB equation is given by

𝜕𝐻

𝜕𝑢
= 2𝑢 (𝑡) + 𝑉𝑥 (𝑥, 𝑡) = 0, (28)

which is easily solved to get

𝑢
∗
(𝑡) = −

1

2
𝑉𝑥 (𝑥, 𝑡) . (29)

Because 𝜕2𝐻/𝜕𝑢2 = 2 > 0, 𝑢∗ is a minimum and acceptable.
Now, by substitution of 𝑢∗ in HJB equation, we have the
following:

−𝑉𝑡 = −
1

4
𝑉
2
𝑥 + 𝑥𝑉𝑥,

𝑉 (𝑥 (𝑡𝑓) , 𝑡𝑓) = 𝑥
2
(𝑡𝑓) .

(30)

In Chapter 19 of [21], the authors obtained the solution of the
above HJB equation in the form

𝑉 (𝑥, 𝑡) =
2𝑥
2

1 + 𝑒2(𝑡−𝑡𝑓)
, 𝑢
∗
(𝑡) = −

2𝑥

1 + 𝑒2(𝑡−𝑡𝑓)
, (31)

for simplicity, let 𝑢∗(𝑥, 𝑡) = 𝑘(𝑡)𝑥(𝑡), where

𝑘 (𝑡) =
−2

1 + 𝑒2(𝑡−𝑡𝑓)
. (32)

To solve (30) bymeans of optimal homotopy analysismethod,
we choose the initial approximation, final time, and auxiliary
linear operator

𝑉0 (𝑥, 𝑡) = 𝑥
2
, 𝑡𝑓 = 1,

𝐿 [𝜙 (𝑥, 𝑡; 𝑞)] =
𝜕𝜙 (𝑥, 𝑡; 𝑞)

𝜕𝑡
.

(33)
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Figure 1: Deformation function 𝐴1(𝑞; 𝑐1) defined by (34) and (35).

There are an infinite number of deformation functions
satisfying the properties (19). For the sake of computation effi-
ciency, we use here the following one-parameter deformation
functions:

𝐴1 (𝑞; 𝑐1) =

+∞

∑

𝑚=1

𝜇𝑚 (𝑐1) 𝑞
𝑚
, 𝐵1 (𝑞; 𝑐2) =

+∞

∑

𝑚=1

𝜎𝑚 (𝑐2) 𝑞
𝑚
,

(34)

where |𝑐1| < 1 and |𝑐2| < 1 are constants, called the
convergence-control parameter, and

𝜇𝑚 (𝑐1) = (1 − 𝑐1) 𝑐
𝑚−1
1 , 𝑚 ≥ 1,

𝜎𝑚 (𝑐2) = (1 − 𝑐2) 𝑐
𝑚−1
2 , 𝑚 ≥ 1.

(35)

The different values of 𝑐1 give different paths of 𝐴1(𝑞; 𝑐1), as
shown in Figure 1.

Let 𝑞 ∈ [0, 1] denote the embedding parameter, 𝑐0 ̸= 0 an
auxiliary parameter, called the convergence-control param-
eter, and 𝜙(𝑥, 𝑡; 𝑞) a kind of continuous mapping of 𝑉(𝑥, 𝑡),
respectively. Obviously, when 𝑞 = 0 and 𝑞 = 1, it holds

𝜙 (𝑥, 𝑡; 0) = 𝑉0 (𝑥, 𝑡) , 𝜙 (𝑥, 𝑡; 1) = 𝑉 (𝑥, 𝑡) , (36)

respectively. Thus, as 𝑞 increases from 0 to 1, the solutions
𝜙(𝑥, 𝑡; 𝑞)vary from the initial guesses 𝑉0(𝑥, 𝑡) to the solutions
𝑉(𝑥, 𝑡).We construct the zeroth-order deformation equation:

[1 − 𝐵1 (𝑞; 𝑐2)] 𝐿 [𝜙 (𝑥, 𝑡; 𝑞) − 𝑉0 (𝑥, 𝑡)]

= 𝑐0𝐴1 (𝑞, 𝑐1)𝑁 [𝜙 (𝑥, 𝑡; 𝑞)] , 𝑞 ∈ [0, 1] ,

(37)

subject to the boundary condition

𝜙 (𝑥 (1) , 1; 0) = 𝑥
2
(1) . (38)
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As mentioned, we have the𝑚th-order deformation equation

𝐿[𝑉𝑚 (𝑥, 𝑡) −

𝑚−1

∑

𝑘=1

𝜎𝑚−𝑘 (𝑐2)V𝑘 (𝑥, 𝑡)]

= 𝑐0

𝑚−1

∑

𝑘=0

𝜇𝑚−𝑘 (𝑐1) 𝛿𝑘 (𝑥, 𝑡) ,

(39)

where

𝛿𝑘 (𝑥, 𝑡) =
𝜕𝑉𝑘

𝜕𝑡
−
1

4

𝑘

∑

𝑗=0

(
𝜕𝑉𝑗

𝜕𝑥
)(
𝜕𝑉𝑘−𝑗

𝜕𝑥
) + 𝑥

𝜕𝑉𝑘

𝜕𝑥
(40)

and the coefficients 𝜇𝑘(𝑐1) and 𝜎𝑘(𝑐2) are defined by (35). Let
𝑉
∗
(𝑥, 𝑡) denote a special solution of (39) and 𝐿−1 the inverse

operator of 𝐿, respectively. We have

𝑉
∗
𝑚 (𝑥, 𝑡) =

𝑚−1

∑

𝑘=1

𝜎𝑚−𝑘 (𝑐2) 𝑉𝑘 (𝑥, 𝑡)

+𝑐0

𝑚−1

∑

𝑘=0

𝜇𝑚−𝑘 (𝑐1) 𝐿
−1
[𝛿𝑘 (𝑥, 𝑡)] .

(41)

We now successively obtain

𝑉1 (𝑥, 𝑡) = − 𝑐0 (−1 + 𝑐1) (𝑡 − 1) 𝑥
2
,

𝑉2 (𝑥, 𝑡) = 𝑐0𝑡𝑥
2
− 𝑐0𝑥
2
− 𝑐0𝑐2𝑡𝑥

2
+ 𝑐0𝑐2𝑥

2

+ 𝑐0𝑐2𝑐1𝑡𝑥
2
− 𝑐0𝑐2𝑐1𝑥

2
− 𝑐0𝑐
2
1 𝑡𝑥
2

+ 𝑐0𝑐
2
1𝑥
2
+ 𝑐
2
0 𝑡𝑥
2
− 𝑐
2
0𝑥
2
− 2𝑐
2
0 𝑐1𝑡𝑥2

+ 2𝑐
2
0 𝑐1𝑥
2
+ 𝑐
2
0 𝑐
2
1 𝑡𝑥
2
− 𝑐
2
0 𝑐
2
1𝑥
2
,

𝑉3 (𝑥, 𝑡) = 𝑐0𝑥
2
𝑡 − 𝑐0𝑥

2
− 𝑐0𝑐2𝑥

2
𝑡 + 𝑐0𝑥

2
𝑐2

+ 𝑐0𝑥
2
𝑐2𝑐1𝑡 − 𝑐0𝑥

2
𝑐2𝑐1 − 𝑐0𝑥

2
𝑐
2
1 𝑡

+ 𝑐0𝑥
2
𝑐
2
1 + 𝑐
2
0𝑥
2
𝑡 − 𝑐
2
0𝑥
2
− 2𝑐
2
0𝑥
2
𝑐1𝑡

+ 2𝑐
2
0𝑥
2
𝑐1 + 𝑐
2
0𝑥
2
𝑐
2
1 𝑡 − 𝑐

2
0𝑥
2
𝑐
2
1 ,

...

(42)

It should be emphasized that 𝑉𝑚(𝑥, 𝑡) contains at most
three unknown convergence-control parameters 𝑐0, 𝑐1, and
𝑐2, which determine the convergence region and rate of
the homotopy-series solution. Obviously, if the convergence-
control parameters 𝑐0, 𝑐1, and 𝑐2 are properly chosen, the
homotopy-series solution may converge fast. So, we should
find out the good enough values of 𝑐0, 𝑐1, and 𝑐2, so that the
homotopy-series solution converges fast enough.

4.1. Comparisons of Different Approaches for Example 2.
In this section, we will give optimal homotopy-analysis
approacheswith different numbers of unknown convergence-
control parameters and compare them in detail.
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Figure 2: Averaged residual error 𝐸𝑚 versus 𝑐0 in case of 𝑐1 = 𝑐2 = 0.

Table 1: Comparison of averaged residual error given by different 𝑐0
in case of 𝑐1 = 𝑐2 = 0 and 𝑥 = 1.

𝑚 Optimal value of 𝑐0 Minimum value of 𝐸𝑚
5 −0.8187 1.7876𝑒 − 004

7 −0.8193 1.1659𝑒 − 004

9 −0.8296 4.2456𝑒 − 006

4.1.1. Optimal 𝑐0 in Case of 𝑐1 = 𝑐2 = 0. In this case, only
one convergence-control parameter 𝑐0 is unknown. For given
order of approximation𝑚, the optimal value of 𝑐0 is given by
the minimum of 𝐸𝑚, corresponding to a nonlinear algebraic
equation 𝑑𝐸𝑚/𝑑𝑐0 = 0.

The curves of 𝐸𝑚 versus 𝑐0 at a different order of approx-
imation 𝑚 = 5, 7, and 9 are shown in Figure 2. In case of
𝑐1 = 𝑐2 = 0, there is only one unknown convergence-control
parameter 𝑐0; thus the optimal value of 𝑐0 is determined by
theminimumof𝐸9, corresponding to the nonlinear algebraic
equation 𝑑𝐸9/𝑑𝑐0 = 0. According to Table 1, the value
minimum of 𝐸9 is obtained at −0.8296. It should be noted
that, when we fixed 𝑐0 = −1 and 𝑐1 = 𝑐2 = 0, automatically
the problem turns into the so-called homotopy perturbation
method (HPM). So, the HPM is only a special case of the
HAM when 𝑐0 = −1.

In case of 𝑐1 = 𝑐2 = 0, one has the plain deformation
functions 𝐴1(𝑞, 𝑐1) = 𝐵1(𝑞, 𝑐2) = 𝑞, which is exactly the same
as that used in traditional HAM.

4.1.2. Optimal 𝑐1 = 𝑐2 in Case of 𝑐0 = −1. In this case, 𝐸9 has
the value minimum of 2.8203×10−6 at the optimal point 𝑐1 =
𝑐2 = 0.2458. This illustrates that the second one-parameter
optimal homotopy-analysis approach is as good as the first
one mentioned in Section 4.1.1. (See Table 2).

4.1.3. Optimal 𝑐0 in Case of 𝑐1 = 𝑐2. In this case, we obtain the
unknown convergence-control parameters 𝑐0 and 𝑐1 in case of
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Table 2: Comparison of averaged residual error given by different
𝑐1 = 𝑐2 in case of 𝑐0 = −1 and 𝑥 = 1.

𝑚 Optimal value of 𝑐1 = 𝑐1 Minimum value of 𝐸𝑚
5 𝑐1 = 𝑐2 = 0.3971 2.2134𝑒 − 004

7 𝑐1 = 𝑐2 = 0.3689 1.3731𝑒 − 004

9 𝑐1 = 𝑐2 = 0.2458 2.8203𝑒 − 006

Table 3: Comparison of averaged residual error given by different
𝑐0 in case of 𝑐1 = 𝑐2.

𝑚 Optimal value of 𝑐0 and 𝑐1 = 𝑐2 Minimum value of 𝐸𝑚
5 𝑐0 = −0.9238 and 𝑐1 = 𝑐2 = 0.1001 1.0893𝑒 − 004

7 𝑐0 = −0.9997 and 𝑐1 = 𝑐2 = 0.1003 1.0425𝑒 − 005

9 𝑐0 = −1.0012 and 𝑐1 = 𝑐2 = 0.0398 1.4099𝑒 − 006

𝑐2 = 𝑐1.The corresponding residual error𝐸9 is now a function
of both 𝑐0 and 𝑐1, which has the value minimum of 1.4099 ×
10
−6 at the optimal point 𝑐0 = −1.0012, 𝑐1 = 𝑐2 = 0.0398. (See

Table 3).

4.1.4. Optimal 𝑐0, 𝑐1, and 𝑐2 in Case of 𝑐1 ̸= 𝑐2. Let us consider
the optimal approach with the three unknown convergence-
control parameters. The corresponding 𝐸9 is now a function
of 𝑐0, 𝑐1, and 𝑐2, which has the minimum 1.7716 × 10

−5

at the optimal values 𝑐0 = −0.6932, 𝑐1 = −0.2440, and
𝑐2 = −0.1039. The corresponding homotopy-series solution
converges much faster than homotopy-series solution in case
of 𝑐0 = −1 and 𝑐1 = 𝑐2 = 0, as shown in Table 4.

Based on the above calculations for this equation,
we found that all optimal homotopy-analysis approaches
can give much better approximations, which converge
much faster than those without optimal convergence-control
parameters in case of 𝑐0 = −1 and 𝑐1 = 𝑐2 = 0, as shown in
Tables 1–4.

The absolute error of the 20th-order approximate solution
and analytic solution (31) with 𝑐0 = −1, 𝑐1 = 𝑐2 = 0, and
𝑐0 = −0.8296, 𝑐1 = 𝑐2 = 0is shown in Figures 3 and 4,
respectively. Comparison of the analytic solution (31) with the
optimal homotopy analysis method solution by 𝑐0 = −0.8296
and 𝑐1 = 𝑐2 = 0 is given in Figure 5. The absolute errors
|𝑘analytic −𝑘approximate| have been calculated for different cases
of 𝑐0, 𝑐1, and 𝑐2 in Table 5.

Example 3. Consider a single-input scalar system as follows:

𝑥̇ = −2𝑥 (𝑡) + 𝑢 (𝑡) ,

𝐽 =
1

2
𝑥
2
(1) +

1

2
∫

1

0
(𝑥
2
(𝑡) + 𝑢

2
(𝑡)) 𝑑𝑡.

(43)

The corresponding Hamiltonian function will be

𝐻(𝑥, 𝑢, 𝑉𝑥, 𝑡) =
1

2
𝑥
2
(𝑡) +

1

2
𝑢
2
(𝑡)

+
𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥
[−2𝑥 (𝑡) + 𝑢 (𝑡)] .

(44)
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Figure 3: |𝑘analytic −𝑘approximate| (𝑚 = 20), with 𝑐0 = −1 and 𝑐1 = 𝑐2 =
0.
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Figure 4: |𝑘analytic − 𝑘approximate| (𝑚 = 20), with 𝑐0 = −0.8296 and
𝑐1 = 𝑐2 = 0.

For finding 𝑢∗, we have

𝜕𝐻

𝜕𝑢
= 𝑢 (𝑡) +

𝜕𝑉

𝜕𝑥
= 0. (45)

Therefore, we obtain

𝑢
∗
(𝑡) = −

𝜕𝑉

𝜕𝑥
. (46)
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Table 4: Comparison of averaged residual error given by different approaches.

𝑚 𝑐0 = −0.6932, 𝑐1 = −0.2440, and 𝑐2 = −0.1039 𝑐0 = −1, 𝑐1 = 𝑐2 = 0 𝑐0 =−1.0012, 𝑐1 = 𝑐2 = 0.0398
5 1.4𝑒 − 004 1.4357𝑒 − 003 1.0012𝑒 − 004

7 4.27026𝑒 − 004 4.0327𝑒 − 004 1.3265𝑒 − 004

9 1.7716𝑒 − 005 6.5798𝑒 − 005 1.4099𝑒 − 006

Table 5: The absolute error of approximate solution and exact solution of 𝑘(𝑡) by 20th-order approximate.

𝑡 𝑐0 = −0.8296, 𝑐1 = 𝑐2 = 0 𝑐0 = −1, 𝑐1 = 𝑐2 = 0 𝑐0 =−1.0012, 𝑐1 = 𝑐2 = 0.0398 𝑐0 = −0.6932, 𝑐1 = −0.2440, and 𝑐2 = −0.1039
0 2.3195𝑒 − 006 6.8965𝑒 − 005 3.0012𝑒 − 006 8.5935𝑒 − 006

0.2 1.2977𝑒 − 008 7.0978𝑒 − 007 2.3265𝑒 − 008 1.0202𝑒 − 007

0.4 2.2350𝑒 − 010 1.8553𝑒 − 009 3.4065𝑒 − 010 1.1207𝑒 − 009

0.6 4.3885𝑒 − 013 4.0035𝑒 − 013 1.0039𝑒 − 013 1.1423𝑒 − 013

0.8 1.9864𝑒 − 016 0 0 0

1.0 0 3.3307𝑒 − 016 0 0

OHAM
Analytic

−1

−1.1

−1.2

−1.3

−1.4

−1.5

−1.6

−1.7

−1.8

𝑘
(𝑡
)

0 0.2 0.4 0.6 0.8 1
𝑡

Figure 5: Comparison of the analytic solution (31) with the
approximate solution of 𝑘(𝑡) (𝑚 = 20), by 𝑐0 = −0.8296 and 𝑐1 =
𝑐2 = 0.

Because 𝜕2𝐻/𝜕𝑢2 = 1 > 0, 𝑢∗ is a minimum and acceptable.
Now, by substitution of 𝑢∗ in HJB equation, we have the
following:

−
𝜕𝑉

𝜕𝑡
=
1

2
𝑥
2
(𝑡) +

1

2
(−
𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥
)

2

+
𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥
[−2𝑥 (𝑡) −

𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥
] ,

𝑉 (𝑥 (1) , 1) =
1

2
𝑥
2
(1)

(47)

or

𝜕𝑉

𝜕𝑡
= −
1

2
𝑥
2
(𝑡) +

1

2
(
𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥
)

2

+ 2𝑥
𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥
,

𝑉 (𝑥 (1) , 1) =
1

2
𝑥
2
(1) .

(48)

Note that, by (29), the optimal control law is 𝑢∗(𝑡) =

−𝑘(𝑡)𝑥(𝑡) = 𝑓(𝑡)𝑥(𝑡), where the exact solution of 𝑘(𝑡) is [2]

𝑘 (𝑡) =
√5 cosh√5 (1 − 𝑡) − sinh√5 (1 − 𝑡)
√5 cosh√5 (1 − 𝑡) + 3 sinh√5 (1 − 𝑡)

. (49)

To solve (48) bymeans of optimal homotopy analysismethod,
we choose the initial approximation and auxiliary linear
operator

𝑉0 (𝑥, 𝑡) =
1

2
𝑥
2
,

𝐿 [𝜙 (𝑥, 𝑡; 𝑞)] =
𝜕𝜙 (𝑥, 𝑡; 𝑞)

𝜕𝑡
.

(50)

We construct the zeroth-order deformation equation

[1 − 𝐵1 (𝑞; 𝑐2)] 𝐿 [𝜙 (𝑥, 𝑡; 𝑞) − 𝑉0 (𝑥, 𝑡)]

= 𝑐0𝐴1 (𝑞, 𝑐1)𝑁 [𝜙 (𝑥, 𝑡; 𝑞)] , 𝑞 ∈ [0, 1] ,

(51)

subject to the boundary condition

𝜙 (𝑥 (1) , 1; 0) =
1

2
𝑥
2
(1) . (52)

As mentioned, we have the𝑚th-order deformation equation

𝐿[𝑉𝑚 (𝑥, 𝑡) −

𝑚−1

∑

𝑘=1

𝜎𝑚−𝑘 (𝑐2) 𝑉𝑘 (𝑥, 𝑡)]

= 𝑐0

𝑚−1

∑

𝑘=0

𝜇𝑚−𝑘 (𝑐1) 𝛿𝑘 (𝑥, 𝑡) ,

(53)
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Table 6: Comparison of averaged residual error given by different
𝑐0 in case of 𝑐1 = 𝑐2 = 0.

𝑚 Optimal value of 𝑐0 Minimum value of 𝐸𝑚
5 −0.42943 2.9072𝑒 − 004

7 −0.49327 2.9543𝑒 − 006

9 −0.44032 1.3871𝑒 − 007

where

𝛿𝑘 (𝑥, 𝑡) =
𝜕𝑉𝑘

𝜕𝑡
−
1

2

𝑘

∑

𝑗=0

(
𝜕𝑉𝑗

𝜕𝑥
)(
𝜕𝑉𝑘−𝑗

𝜕𝑥
) − 2𝑥

𝜕𝑉𝑘

𝜕𝑥
+
1

2
𝑥
2

(54)

and the coefficients 𝜇𝑘(𝑐1) and 𝜎𝑘(𝑐2) are defined by (35). Let
𝑉
∗
(𝑥, 𝑡) denote a special solution of (53) and 𝐿−1 the inverse

operator of 𝐿, respectively. We have

𝑉
∗
𝑚 (𝑥, 𝑡) =

𝑚−1

∑

𝑘=1

𝜎𝑚−𝑘 (𝑐2) 𝑉𝑘 (𝑥, 𝑡)

+ 𝑐0

𝑚−1

∑

𝑘=0

𝜇𝑚−𝑘(𝑐1) 𝐿
−1
[𝛿𝑘 (𝑥, 𝑡)] .

(55)

We now successively obtain

𝑉1 (𝑥, 𝑡) = 2𝑐0 (−1 + 𝑐1) (𝑡 − 1) 𝑥
2
,

𝑉2 (𝑥, 𝑡) = − 2𝑐0𝑡𝑥
2
+ 2𝑐0𝑥

2
+ 2𝑐0𝑐2𝑡𝑥

2

− 2𝑐0𝑐2𝑥
2
− 2𝑐0𝑐2𝑐1𝑡𝑥

2
+ 2𝑐0𝑐2𝑐1𝑥

2

+ 6𝑐0𝑡
2
𝑥
2
+ 8𝑐
2
0𝑥
2
− 12𝑐
2
0 𝑐1𝑡
2
𝑥
2

− 16𝑐
2
0 𝑐1𝑥
2
+ 6𝑐
2
0 𝑐
2
1 𝑡
2
𝑥
2

+ 8𝑐
2
0 𝑐
2
1𝑥
2
+ 2𝑐0𝑐

2
1 𝑡𝑥
2
− 2𝑐0𝑐

2
1𝑥
2

− 14𝑐
2
0 𝑡𝑥
2
+ 28𝑐
2
0 𝑐1𝑡𝑥
2
− 14𝑐
2
0 𝑐
2
1 𝑡𝑥
2
,

...

(56)

4.2. Comparisons of Different Approaches for Example 3.
In this section, we will give optimal homotopy-analysis
approacheswith different numbers of unknown convergence-
control parameters and compare them in detail.

4.2.1. Optimal 𝑐0 in Case of 𝑐1 = 𝑐2= 0. In this case, only one
convergence-control parameter 𝑐0 is unknown.We solved this
example by standardHAM, and we investigated the influence
of 𝑐0 by means of the so-called 𝑐0-curves. As pointed out by
Liao [14], the valid region of 𝑐0 is a horizontal line segment.
So, we can just determine the possible valid region of 𝑐0 as
shown in Figure 6. However, usually the 𝑐0-curves cannot tell
us which value of 𝑐0 gives the fastest convergent series.

To overcome this shortcoming, we determined the possi-
ble optimal value of 𝑐0 by the minimum of averaged residual
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Figure 6: The 𝑐0-curve of the 9th-order approximation in case of
𝑐1 = 𝑐2 = 0.
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Figure 7: Averaged residual error 𝐸𝑚 versus 𝑐0 in case of 𝑐1 = 𝑐2 = 0.

error 𝐸9, corresponding to the nonlinear algebraic equation
𝐸
󸀠
9 = 0. According to Table 6, the value minimum of 𝐸9 is

obtained at 𝑐0 = −0.44032. The curves of 𝐸𝑚 versus 𝑐0 at
different order of approximation 𝑚 = 5, 7, and 9 are shown
in Figure 7.

4.2.2. Optimal 𝑐1 = 𝑐2 in Case of 𝑐0 = −1. In this case, 𝐸9
has the value minimum of 8.2039 × 10−2 at the optimal
point 𝑐1 = 𝑐2 = 0.0228. Our calculations showed that
the corresponding 𝐸9 in case of 𝑐0 = −1, 𝑐1 = 𝑐2 = 0

has the minimum 21.865. This illustrates that the second
one-parameter optimal homotopy-analysis approach is not
obviously better than the first onementioned in Section 4.2.1.
But this approach can give much better approximation than
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Table 7: The absolute error of approximate solution and exact solution of 𝑓(𝑡) by 15th-order approximate.

𝑡 𝑐0 = −0.44032, 𝑐1 = 𝑐2 = 0 𝑐0 = −1, 𝑐1 = 𝑐2 = 0 𝑐0 =−0.6084, 𝑐1 = 𝑐2 = 0.1611 𝑐0 = −0.1836, 𝑐1 = −0.2070, and 𝑐2 = −0.4554
0 1.6173𝑒 − 009 5.0401𝑒 + 005 6.2742𝑒 − 002 3.6240𝑒 − 001

0.2 1.2106𝑒 − 010 1.6493𝑒 + 004 2.0901𝑒 − 003 1.1136𝑒 − 002

0.4 1.1105𝑒 − 010 1.9738𝑒 + 002 9.0034𝑒 − 005 2.1428𝑒 − 002

0.6 1.0013𝑒 − 010 3.7288𝑒 − 001 1.9358𝑒 − 005 1.7872𝑒 − 002

0.8 1.7154𝑒 − 011 7.4725𝑒 − 006 6.2182𝑒 − 007 9.5152𝑒 − 007

1.0 1.3831𝑒 − 012 1.6595𝑒 − 007 2.0572𝑒 − 011 3.4417𝑒 − 015
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Figure 8: |𝑓analytic − 𝑓approximate| with 𝑐0 = −0.44032 and 𝑐1 = 𝑐2 = 0.

those without optimal convergence-control parameters in
case of 𝑐0 = −1 and 𝑐1 = 𝑐2 = 0.

4.2.3. Optimal 𝑐0 in Case of 𝑐1=𝑐2. In this case, we obtain the
unknown convergence-control parameters 𝑐0 and 𝑐1 in case of
𝑐2 = 𝑐1.The corresponding residual error𝐸9 is now a function
of both 𝑐0 and 𝑐1, which has the value minimum of 4.6895 ×
10
−4 at the optimal point 𝑐0 = −0.6084, 𝑐1 = 𝑐2 = 0.1611.

4.2.4. Optimal 𝑐0, 𝑐1, and 𝑐2 in Case of 𝑐1 ̸= 𝑐2. Let us consider
the optimal approach with the three unknown convergence-
control parameters. The corresponding 𝐸9 is now a function
of 𝑐0, 𝑐1, and 𝑐2, which has the minimum 4.94 × 10−3 at the
optimal values 𝑐0 = −0.1836, 𝑐1 = −0.2070, and 𝑐2 = −0.4554.

Based on the above calculations for this equation,
we found that all optimal homotopy-analysis approaches
can give much better approximations, which converge
much faster than those without optimal convergence-control
parameters in case of 𝑐0 = −1 and 𝑐1 = 𝑐2 = 0. But in this
example, the first one-parameter optimal homotopy-analysis
approach is better than other cases.

The absolute error and comparison of the 15th-order
approximate solution and analytic solution (49) with
𝑐0 =−0.44032, 𝑐1 = 𝑐2 = 0 are shown in Figures 8 and 9,
respectively. The absolute errors |𝑓analytic − 𝑓approximate| have
been calculated for different cases of 𝑐0, 𝑐1, and 𝑐2 in Table 7.

OHAM
Analytic
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𝑓
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Figure 9: Comparison of the exact solution with the approximate
solution of 𝑓(𝑡) by 𝑐0 = −0.44032 and 𝑐1 = 𝑐2 = 0.

5. Conclusion

In this paper, we have successfully developed an opti-
mal homotopy-analysis approach for solving HJB equation
arising in nonlinear optimal control problems. With the
deformation functions defined, the method used here con-
tains three auxiliary convergence-control parameters, which
provide us with a simple way to adjust and control the
convergence region of the solution. By minimizing the aver-
aged square residual error, the optimal convergence-control
parameters 𝑐0, 𝑐1, and 𝑐2 can be obtained.
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