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Abstract 
 
In this paper, system of fractional partial differential equation which has numerous applications 
in many fields of science is considered. Adomian decomposition method, a novel method is used 
to solve these type of equations. The solutions are derived in convergent series form which 
shows the effectiveness of the method for solving wide variety of fractional differential 
equations.  

 
Keywords:  Adomian decomposition method, Fractional partial differential equations, System 

of differential equations 
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1.  Introduction 
 

In recent years, considerable interest in fractional differential equations has been stimulated due 
to their numerous applications in many fields of science and engineering. Important phenomena 
in finance, electromagnetics, acoustics, viscoelasticity, electrochemistry and material science 
[Barkai et al. (2000), Meerschaert et al. (2002), Mainardi (2010), Tadjeran (2007)] are well 
described by differential equations of fractional order.  Recently Magin et al. (2011)  published a 
review article on the fractional signals and systems where we can find applications to control 
theory. Various applications of fractional calculus like image processing are found in the edited 
volume of Machado (2011). These applications in interdisciplinary sciences show the importance 
and necessity of fractional calculus. So far there have been several fundamental works on the 
fractional derivative and fractional differential equations, written by Oldham and Spanier (1974), 
Miller and Ross (1993), Podlubny (1999), Kilbas, Srivastava and Trujillo (2006) and others 
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[Samko et al. (1993), Caponetto et al. (2010), Diethelm (2010)]. Machado et al. (2010) published 
a review on article recent history of fractional calculus. Hernández et al. (2010) published a 
paper on recent developments in the theory of abstract differential equations with fractional 
derivatives. These works form an introduction to the theory of fractional differential equations 
and provide a systematic understanding of the fractional calculus such as the existence and the 
uniqueness of solutions, some analytical methods for solving fractional differential equations like 
Green’s function method, the Mellin transform method, the power series method and etc. In the 
literature, there exists no method that yields an exact solution for nonlinear fractional differential 
equations. Only approximate solutions can be derived using linearization or perturbation 
methods. All this motivates us to construct an efficient numerical method for fractional 
differential equations. 
 
The Adomian decomposition method (ADM), introduced by Adomian (1980), provides an 
effective procedure for finding explicit and numerical solutions of a wider and general class of 
differential systems representing real physical problems. This method efficiently works for initial 
value or boundary value problems, for linear or nonlinear, ordinary or partial differential 
equations, and even for stochastic systems as well. Moreover no linearization or perturbation is 
required in this method. In the last two decades, extensive work has been done using ADM as it 
provides analytical approximate solutions for nonlinear equations and considerable interest in 
solving fractional differential equations using ADM has been developed. 
 
Javadi (2007) proposed new ideas for the implementation of the Adomian decomposition method 
to solve nonlinear Volterra integral equations. The study of delay differential equations using 
ADM is done by Evans et al. (2005). Fakharian (2010) solves the Hamilton - Jacobi - Bellman 
equation arising in nonlinear optimal problem using Adomian decomposition method. It is 
interesting to note that Biazar et al. (2004) solved the system of first order ordinary differential 
equations and higher order differential equations which can be converted into a system of first 
order differential equations and consequently this method has been employed to study the system 
of integro - differential equations by Biazar (2005). Hosseini et al. (2006) introduced a simple 
method to determine the rate of convergence of ADM. Further they extended their earlier work 
of second order ordinary differential equations to higher-order ODE’s and systems of nonlinear 
differential equations and obtained solutions by using modified ADM in Hosseini et al. (2009). 
The method of Adomian decomposition was used successfully to solve a class of coupled 
systems of two linear second order and two nonlinear first order differential equations by 
Bougoffa et al. (2006). Gu and Li (2007) introduced a modified ADM to solve a system of 
nonlinear differential equations and also they proved that the calculating speed of the method is 
faster than that of the original Adomian method. Abassy (2010) considered Boussinesq equation 
and obtained the power series solution by using the method of improved Adomian 
decomposition. 
 
It should be emphasized that, to the best of our knowledge, as for as ADM for fractional 
differential equations is concerned, there exists a vast number of publications in the literature. 
Referring to all these items are beyond the scope of this paper. So let us mention briefly. System 
of differential equations with fractional derivatives of Riemann-Liouville and Caputo types was 
studied by Junsheng et al. (2007). Also they developed an algorithm to convert the multi-order 
fractional differential equation into a system of fractional differential equations and found their 
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solutions in Gejji et al. (2007). Moreover the multi-term linear and nonlinear diffusion-wave 
equation of fractional order is solved in Gejji (2008). Recently Saha Ray (2009) solved the 
spatially fractional order diffusion equation by using two-step ADM and the results obtained in 
his paper have been compared with the solutions obtained from ADM. Wang (2006) developed 
the method to obtain the solutions for the nonlinear fractional KdV-Burgers equation with time 
and space fractional derivatives. Hu et al. (2008) found the analytical solution of the linear 
fractional differential equation and shown that the solution by Adomian decomposition method is 
the same as the solution by the Green’s function method. Li (2009) provided a new algorithm 
based on ADM for fractional differential equations and compared the obtained numerical results 
with those obtained in the fractional Adams method. El-Sayed (2010) gave the solution to the 
model that describes the intermediate process between advection and dispersion via fractional 
derivative in the Caputo sense. 
 
In this work, we consider the system of fractional partial differential equations which is studied 
by Jafari et al. (2009) using homotopy analysis method. Mamchuev (2008) proved the unique 
solvability of a boundary value problem for a system of fractional partial differential equations in 
a rectangular domain and constructed the solution in closed form. Relatively Adomian (1996) 
presented a method of solving system of coupled nonlinear partial differential equations. In this 
paper, we find the solution of system of fractional partial differential equations using ADM. The 
graphs of their solutions are provided at the end.  

2.  Preliminaries 

In this section, we provide some basic definitions of fractional integral and differential operators 
[Luchko et al. (1999)] and also we briefly describe the Adomian Decomposition Method (ADM). 
 

Fractional Calculus 

  
Definition 1.  
 
A real function f(t), t > 0, is said to be in the space , ,aC a R if there exists a real number p(>α) 

such that 1( ) ( ),pf t t f t  where 1 [0, ).f C   Clearl,  Cα⊂Cβ,  if  β ≤ α.  

 
Definition 2.  
 
A function  f(t), t > 0, is said to be in the space  , 0 ,m

aC m N   if ( ) .m
af C  

 
Definition 3. [Riemann - Liouville Fractional Integral Operator]  
 
The (left sided) Riemann-Liouville fractional integral of order μ ≥ 0 of a function 

, 1,af C a    is defined as  
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1 ( , )
, 0, 0.1( ) 0 ( )

t f s x
D ds tt

t s

 
        

 

Definition 4. [Caputo Fractional Derivative Operator]  
 
The (left sided) Caputo fractional derivative of  f, 1,

mf C  0 ,m N  is defined as  

( ) ( , ), 1 , .
m

C m
t t m

D D f t x m m m N
t

    
    


 

Note that  

 

D
−μ
t  CD

μ
t f(t,x)=f(t,x)− 

k=0

m−1
  
∂kf

∂tk
(0,x) 

tk

k!, m−1<μ≤m, m∈N.  

 
In this paper, the derivative is considered in Caputo sense, since it provides us the advantage of 
requiring initial conditions given in terms of integer-order derivatives. Also it allows us to 
specify inhomogeneous initial conditions for fractional differential equations with the Caputo 
derivative if it is desired. 
 
Definition 5 [Mittag - Leffler function]  
 
A one-parameter function of the Mittag - Leffler type is defined by the series expansion  
 

E
α
(z)= 

k=0

∞
  

zk

Γ(αk+1)   (α>0). 

 
Adomian Decomposition Method  
 
Consider the differential equation 
  

Lu+Ru+Nu=g,                                                                                                                      (2.1) 
 
where  
 

L - Highest order derivative and easily invertible,  
R - Linear differential operator of order less that L,  
Nu - Nonlinear terms, and  
g - Source term.  

 
Solving Lu from (2.1), we have  
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Lu=g−Ru−Nu. 

 
Because L is invertible, the equivalent expression is 
        

L−1Lu=L−1g−L−1Ru−L−1Nu.                                                                                            (2.2) 
  

If L is a second-order operator, for example, L−1  is a two fold integration operator and 

L−1Lu=u−u(0)−tu'(0), then (2.2) yields, 
  

u=u(0)+tu'(0)+L−1g−L−1Ru−L−1Nu. 
 

Now the solution u can be presented as a series u= 
n=0

∞
 un with u0 identified as u(0)+tu'(0)+L−1g 

and un, n>0, is to be determined. The nonlinear term Nu will be decomposed by the infinite 

series of Adomian polynomials Nu= 
n=0

∞
 An, where An is calculated using the formula  

 

0

1
( ( )) , 0,1, ,

!

n

n n

d
A N n

n d 

 




 
  

 
   

where  
 

v(λ)= 
n=0

∞
 λnun. 

Now the series solution 
0

n
n

u u




   to the differential equation is calculated iteratively as follows:  

 

u0=u(0)+tu'(0)+L−1g,  

 

un+1=−L−1(Run)−L−1(An),n≥0.  

 
The above described method can be easily extended to a system of differential equations and the 
resulting equations will be of the form  
 

ui,0 =Φi+L−1gi, 

 
1 1

, 1 , ,( ) ( ), 0,i k i k i ku L Ru L A k 
       
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where 1 i n   and Φi represent the terms arising from the given initial and boundary conditions 

for a system containing n equations. 
 
3.  System of Fractional Partial Differential Equations 
 
In this section, we apply ADM to derive the solutions of a system of fractional partial differential 
equations. 
 
Example 1. Consider the following system of linear fractional partial differential equations 
[Jafari (2009)]:  
 

CD
α
t u−vx+u+v=0;

CD
β
t v−ux+u+v=0;

(0<α,β<1)                                                                                         (3.1) 

 
with initial conditions 
  

u(x,0) and v(x,0). 
 
The above system of equations can be rewritten in equivalent form using the above properties as 
  

CDtu=CD
1−α
t vx−

CD
1−α
t u−CD

1−α
t v,  

 

CDtv=CD
1−β
t ux−

CD
1−β
t u−CD

1−β
t v. 

 

In the above equation let us denote vx by Lx(v), ux by Lx(u) and CDt by Lt which is invertible. 

Then, L
−1
t  may be taken as 

0

t
 (.)dt. Therefore, the last equations can be written as   

u(x,t) = 
 

u(x,0)+L
−1
t (CD

1−α
t Lx(v(x,t)))−L

−1
t (CD

1−α
t u(x,t))−L

−1
t (CD

1−α
t v(x,t)),  

 

=v(x,0)+L
−1
t (CD

1−β
t Lx(u(x,t))−L

−1
t (CD

1−β
t u(x,t))−L

−1
t (CD

1−β
t v(x,t)).  

 
Now if we take the initial conditions as  
 

u0=u(x,0)  
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v0=v(x,0) , 

 
then, by using ADM, we can write 
  

u1=L
−1
t (CD

1−α
t Lx(v0))−L

−1
t (CD

1−α
t u0)−L

−1
t (CD

1−α
t v0), 

 

v1=L
−1
t (CD

1−β
t Lx(u0))−L

−1
t (CD

1−β
t u0)−L

−1
t (CD

1−β
t v0), 

 
and, for n>1, we have  
 

un=L
−1
t (CD

1−α
t Lx(v(n−1)))−L

−1
t (CD

1−α
t u(n−1))−L

−1
t (CD

1−α
t v(n−1)) 

 

vn=L
−1
t (CD

1−β
t Lx(u(n−1)))−L

−1
t (CD

1−β
t u(n−1))−L

−1
t (CD

1−α
t v(n−1)). 

 
Then, the solution to the system of above equations (3.1) is given by 

u= 
n=0

∞
 un and  v= 

n=0

∞
 vn.                                                                                         (3.2) 

 
For example, let us consider the initial conditions as sinhx and coshx. Therefore, the iterations 
become  
 

u0=sinhx,  

v0=coshx,  

 

u1=L
−1
t (CD

1−α
t Lx(v0))−L

−1
t (CD

1−α
t u0)−L

−1
t (CD

1−α
t v0) 

  =− 
tα

Γ(α+1)coshx,  

 

v1=L
−1
t (CD

1−β
t Lx(u0))−L

−1
t (CD

1−β
t u0)−L

−1
t (CD

1−β
t v0) 

  =− 
tβ

Γ(β+1)sinhx,  

 

u2=L
−1
t (CD

1−α
t Lx(v1))−L

−1
t (CD

1−α
t u1)−L

−1
t (CD

1−α
t v1) 
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  =







 
t2α

Γ(2α+1)− 
tα+β

Γ(α+β+1) coshx+ 
tα+β

Γ(α+β+1)sinhx,  

 

v2=L
−1
t (CD

1−β
t Lx(u1))−L

−1
t (CD

1−β
t u1)−L

−1
t (CD

1−β
t v1) 

 

  =







 
t2β

Γ(2β+1)− 
tβ+α

Γ(β+α+1) sinhx+ 
tβ+α

Γ(β+α+1)coshx,  

 

u3=L
−1
t (CD

1−α
t Lx(v2))−L

−1
t (CD

1−α
t u2)−L

−1
t (CD

1−α
t v2) 

   =







 
tα+2β

Γ(α+2β+1)− 
t2α+β

Γ(2α+β+1) coshx    

     + 







 
t2α+β

Γ(2α+β+1)− 
tα+2β

Γ(α+2β+1) sinhx− 
t3α

Γ(3α+1)coshx,  

 

v3=L
−1
t (CD

1−β
t Lx(u2))−L

−1
t (CD

1−β
t u2)−L

−1
t (CD

1−β
t v2) 

=







 
tα+2β

Γ(α+2β+1)− 
t2α+β

Γ(2α+β+1) coshx− 







 
tα+2β

Γ(α+2β+1)− 
t2α+β

Γ(2α+β+1) sinhx− 
t3β

Γ(3β+1)sinhx,  

 
and so on. 
 
By collecting the terms and substituting in equations (3.2), we get the solution to (3.1) as 
  

u(x,t)  = sinhx 







1+ 
tα+β

Γ(α+β+1)+ 
t2α+β

Γ(2α+β+1)− 
tα+2β

Γ(α+2β+1)+⋯  

  −coshx(  
tα

Γ(α+1)− 
t2α

Γ(2α+1)+ 
tα+β

Γ(α+β+1)− 
tα+2β

Γ(α+2β+1)   

           + 
t2α+β

Γ(2α+β+1)+ 
t3α

Γ(3α+1)+⋯ ) 

 

          = sinh(x) 










1+ 
n=1

∞
  

k=1

n−1
 (−1)k+1 

t(n−k)α+kβ

Γ((n−k)α+kβ+1)        

                          −cosh(x) 










 
n=1

∞
  










 
k=1

n−1
 (−1)k+1 

t(n−k)α+kβ

Γ((n−k)α+kβ+1)+(−1)n+1tnα , 

8

Applications and Applied Mathematics: An International Journal (AAM), Vol. 8 [2013], Iss. 1, Art. 17

https://digitalcommons.pvamu.edu/aam/vol8/iss1/17



AAM: Intern. J., Vol. 8, Issue 1 (June 2013)                                                                                                             297                               
          

   

v(x,t) =coshx 







1+ 
tα+β

Γ(α+β+1)− 
t2α+β

Γ(2α+β+1)+ 
tα+2β

Γ(α+2β+1)+⋯  

                     −sinhx(   
tβ

Γ(β+1)− 
t2β

Γ(2β+1)+ 
tα+β

Γ(α+β+1)+ 
tα+2β

Γ(α+2β+1) 

                       − 
t2α+β

Γ(2α+β+1)+ 
t3β

Γ(3β+1)+⋯ ) 

                      =cosh(x) 










1+ 
n=1

∞
  

k=1

n−1
 (−1)k+1 

t(n−k)β+kα

Γ((n−k)β+kα+1)  

                      −sinh(x) 










 
n=1

∞
  










 
k=1

n−1
 (−1)k+1 

t(n−k)β+kα

Γ((n−k)β+kα+1)+(−1)n+1tnβ . 

Table 1. Numerical results showing u(x,t) and v(x,t) for different values of α and β by arbitrarily 
fixing x=3 and t=0.1 using Adomian Decomposition Method and Homotopy Analysis 
Method (2009)  

  ADM HAM (2009) 
 α β u(x,t) v(x,t) u(x,t) v(x,t) 
 0.2 5.82663 5.96672 5.82663 5.96672 
 0.4 5.83636 6.85362 5.82663 6.84975 

0.2 0.6 5.84475 7.74879 5.82663 7.74517 
 0.8 5.85115 8.52987 5.82663 8.52726 
 1.0 5.85546 9.11625 5.82663 9.11458 
 0.2 6.76122 5.95700 6.76509 5.96672 
 0.4 6.76509 6.84975 6.76509 6.84975 

0.4 0.6 6.76834 7.74680 6.76509 7.74517 
 0.8 6.77076 8.52876 6.76509 8.52726 
 1.0 6.77235 9.11562 6.76509 9.11458 
 0.2 7.67438 5.94860 7.67799 5.96672 
 0.4 7.67636 6.84649 7.67799 6.84975 

0.6 0.6 7.67799 7.74517 7.67799 7.74517 
 0.8 7.67917 8.52788 7.67799 8.52726 
 1.0 7.67992 9.11513 7.67799 9.11458 
 0.2 8.46545 5.94221 8.46805 5.96672 
 0.4 8.46655 6.84408 8.46805 6.84975 

0.8 0.6 8.46743 7.7440 8.46805 7.74517 
 0.8 8.46805 8.52726 8.46805 8.52726 
 1.0 8.46844 9.11479 8.46805 9.11458 
 0.2 9.0579 5.9379 9.05956 5.96672 
 0.4 9.05853 6.84248 9.05956 6.84975 

1.0 0.6 9.05902 7.74324 9.05956 7.74517 
 0.8 9.05935 8.52687 9.05956 8.52726 
 1.0 9.05956 9.11458 9.05956 9.11458 
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The solution obtained above in series form is convergent for all values of 0<α,β<1. The 
convergence of the series can be easily examined by using the ratio test.  
 
Table 1 shows the numerical results obtained from Adomian decomposition method and 
homotopy analysis method [Jafari et al. (2009)]. From the table, one can observe that there is no 
effect of β on u(x,t) and α on v(x,t) while using HAM obtained in [Jafari et al. (2009)], which is 
not accurate since the problem considered is coupled. This difficulty is overcome when we use 
the ADM. The exactness of the solution is clear by its convergence to the exact solution when 

, 1    (see Table 1). Also the implementation of this method to the system of fractional 
partial differential equation is easy and accurate compared with other methods. 
 
Moreover the solution obtained here is in simple form through which the implementation into the 
computers can be done easily. Also when we take α=β=1, the solution converges to 
u(x,t)=sinh(x−t) and v(x,t)=cosh(x−t) which is an exact solution that was proved in [Wazwaz 
(2007)] using variational iteration method. The graphs were drawn for α≠β (Figure 3.1)and for α 
= β by fixing an arbitrary value to x, say x = 3 (Figure 3.2).  

             

Figure 3.1. Graph showing u(x,t) and v(x,t) when α=0.3 and β=0.8 by varying x and t  

          

Figure 3.2. Graph showing u(x,t) and v(x,t) when x=3 and for different values of α and β 

 

Example 2. Consider the following nonlinear system of fractional differential equations [Error! 
Reference source not found.affari(2009)]: 

CD
α
t u+v

x
w

y
−v

y
w

x
=−u;CD

β
t v+u

x
w

y
+u

y
w

x
=v;CD

γ
t w+u

x
v

y
+u

y
v

x
=w;   (0<α,β,γ<1).  

with initial conditions  
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u(x,y,0)=u
0
,v(x,y,0)=v

0
 and w(x,y,0)=w

0
.  

 
By using the properties of Caupto derivative, we can rewrite the given system as 
  

CDtu=CD
1−α
t (−vxwy+vywx)−CD

1−α
t u,  

CDtv=CD
1−β
t (−uxwy−uywx)+CD

1−β
t v,  

CDtw=CD
1−γ
t (−uxvy−uyvx)+CD

1−γ
t w. 

As we did in the first example let us take CDt(⋅) as Lt(⋅). So L
−1
t (⋅) may be taken as 

0

t
 (⋅)dt. 

Then, the above equation becomes   

u   = u(x,y,0)+L
−1
t (CD

1−α
t (−vxwy+vywx))−L

−1
t (CD

1−α
t u),  

v   =  v(x,y,0)+L
−1
t (CD

1−α
t (−uxwy- uywx))−L

−1
t (CD

1−α
t v),  

w  =  w(x,y,0)+L
−1
t (CD

1−γ
t (−uxvy−uyvx))+L

−1
t (CD

1−γ
t w).  

 
If we take the initial conditions as 
  

u0=u(x,y,0),  

v
0
=v(x,y,0),  

w
0
=w(x,y,0),  

 
then, by using the ADM, we get  
 

u
1
=L

−1
t (CD

1−α
t (A

0
))−L

−1
t (CD

1−α
t u),  

v
1
=L

−1
t (CD

1−β
t (B

0
))+L

−1
t (CD

1−β
t v),  

w
1
=L

−1
t (CD

1−γ
t (C

0
))+L

−1
t (CD

1−γ
t w),  

 
and, for n>1, we have  
 

u
n
= L

−1
t (CD

1−α
t (A

n−1
))−L

−1
t (CD

1−α
t u),  

v
n
=L

−1
t (CD

1−β
t (B

n−1
))+L

−1
t (CD

1−β
t v),  

w
n
=L

−1
t (CD

1−γ
t (C

n−1
))+L

−1
t (CD

1−γ
t w),  
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where An, Bn, and Cn  are Adomian polynomials corresponding to the non-linear terms 

(−vxwy+vywx), (−uxwy−uywx), and (−uxvy−uyvx)  respectively. Then the solution is given by 

  

u= 
n=0

∞
 un,v= 

n=0

∞
 vn and  w= 

n=0

∞
 wn.                

 

For example, if we take the initial conditions as ex+y, ex−y, e−x+y, then the iterations become 
  

u0=ex+y, 

v0=ex−y, 

w0=e−x+y, 

u1=L
−1
t (CD

1−α
t (A0))−L

−1
t (CD

1−α
t u0)=− 

ex+ytα

Γ(1+α), 

v1=L
−1
t (CD

1−β
t (B0))+L

−1
t (CD

1−β
t v0)= 

ex−ytβ

Γ(1+β), 

w1=L
−1
t (CD

1−γ
t (C0))+L

−1
t (CD

1−γ
t w0)= 

e−x+ytγ

Γ(1+γ) , 

u2=L
−1
t (CD

1−α
t (A1))−L

−1
t (CD

1−α
t u1)= 

ex+yt2α

Γ(1+2α), 

v2=L
−1
t (CD

1−β
t (B1))+L

−1
t (CD

1−β
t v1)= 

ex−yt2β

Γ(1+2β), 

w2=L
−1
t (CD

1−γ
t (C1))+L

−1
t (CD

1−γ
t w1)= 

ex−yt2γ

Γ(1+2γ), 

 
and so on. 
 
By collecting the terms, we get the solution as 
 

u(x,y,t) =ex+y 










1+ 
m=1

∞
  

(−tα)m

Γ(mα+1) =ex+yEα(−tα),  

 

v(x,y,t) =ex−y 










1+ 
m=1

∞
  

(tβ)m

Γ(mβ+1) =ex−yEβ(tβ),  

 

w(x,y,t) =e−x+y 










1+ 
m=1

∞
  

(tγ)m

Γ(mγ+1) =e−x+yEγ(t
γ). 
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The series solution converges to the Mittag-Leffler function of the first kind which is the exact 
solution of the problem that can be verified by directly substituting into the equation. Also, when 
we substitute α = β = γ = 1, the solution converges to  
 

u(x,y,t)=ex+y−t, v(x,y,t)=ex−y+t, w(x,y,t)=e−x+y+t,  
 

which was proved by Wazwaz(2007) for integer type problem using variational iteration method. 
Also the same results are obtained in [Jafari et al. (2009)] using homotopy analysis method. The 
graphs (Figures 3.3 - 3.5) are plotted for different values of α,β and γ by fixing arbitrary values 
of x and y, say x=0.5 and y=0.5.   

  
Figure 3.3. Graph showing u(x,y,t) , when x=y=0.5 and for different values of α, β and γ 

 

 

Figure 3.4. Graph showing v(x,y,t) when x=y=0.5 and for different values of α, β and γ 

 
 

Figure 3.5. Graph showing w(x,y,t) when x=y=0.5 and for different of α, β and γ  
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4.  Conclusion 
 
In this paper, Adomain decomposition method is efficiently used to obtain the solution of the 
system of fractional partial differential equations. Since its convergence to the exact solution, 
when the system is of integer order, proves that this method is very much effective to solve the 
system of partial differential equations. However, the necessity of discretization or perturbation 
is not needed, the method can be easily implemented using any symbolic mathematical 
softwares. It is observed that the results obtained in this article can be extended to any system of 
n fractional partial differential equations. Moreover, it provides more realistic series solutions 
that converge very rapidly in real physical problems. 
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