1,488 research outputs found

    On the geometric dilation of closed curves, graphs, and point sets

    Full text link
    The detour between two points u and v (on edges or vertices) of an embedded planar graph whose edges are curves is the ratio between the shortest path in in the graph between u and v and their Euclidean distance. The maximum detour over all pairs of points is called the geometric dilation. Ebbers-Baumann, Gruene and Klein have shown that every finite point set is contained in a planar graph whose geometric dilation is at most 1.678, and some point sets require graphs with dilation at least pi/2 = 1.57... We prove a stronger lower bound of 1.00000000001*pi/2 by relating graphs with small dilation to a problem of packing and covering the plane by circular disks. The proof relies on halving pairs, pairs of points dividing a given closed curve C in two parts of equal length, and their minimum and maximum distances h and H. Additionally, we analyze curves of constant halving distance (h=H), examine the relation of h to other geometric quantities and prove some new dilation bounds.Comment: 31 pages, 16 figures. The new version is the extended journal submission; it includes additional material from a conference submission (ref. [6] in the paper

    Combinatorial computing approach to selected extremal problems in geometry

    Get PDF
    Not provided

    Output-Sensitive Tools for Range Searching in Higher Dimensions

    Full text link
    Let PP be a set of nn points in Rd{\mathbb R}^{d}. A point p∈Pp \in P is kk\emph{-shallow} if it lies in a halfspace which contains at most kk points of PP (including pp). We show that if all points of PP are kk-shallow, then PP can be partitioned into Θ(n/k)\Theta(n/k) subsets, so that any hyperplane crosses at most O((n/k)1−1/(d−1)log⁥2/(d−1)(n/k))O((n/k)^{1-1/(d-1)} \log^{2/(d-1)}(n/k)) subsets. Given such a partition, we can apply the standard construction of a spanning tree with small crossing number within each subset, to obtain a spanning tree for the point set PP, with crossing number O(n1−1/(d−1)k1/d(d−1)log⁥2/(d−1)(n/k))O(n^{1-1/(d-1)}k^{1/d(d-1)} \log^{2/(d-1)}(n/k)). This allows us to extend the construction of Har-Peled and Sharir \cite{hs11} to three and higher dimensions, to obtain, for any set of nn points in Rd{\mathbb R}^{d} (without the shallowness assumption), a spanning tree TT with {\em small relative crossing number}. That is, any hyperplane which contains w≀n/2w \leq n/2 points of PP on one side, crosses O(n1−1/(d−1)w1/d(d−1)log⁥2/(d−1)(n/w))O(n^{1-1/(d-1)}w^{1/d(d-1)} \log^{2/(d-1)}(n/w)) edges of TT. Using a similar mechanism, we also obtain a data structure for halfspace range counting, which uses O(nlog⁥log⁥n)O(n \log \log n) space (and somewhat higher preprocessing cost), and answers a query in time O(n1−1/(d−1)k1/d(d−1)(log⁥(n/k))O(1))O(n^{1-1/(d-1)}k^{1/d(d-1)} (\log (n/k))^{O(1)}), where kk is the output size

    The Minimum Number of Points Taking Part in k-Sets in Sets of Unaligned Points

    Get PDF
    En este trabajo se da un ejemplo de un conjunto de n puntos situados en posiciĂłn general, en el que se alcanza el mĂ­nimo nĂșmero de puntos que pueden formar parte de algĂșn k-set para todo k con 1menor que=kmenor quen/2. Se generaliza tambiĂ©n, a puntos en posiciĂłn no general, el resultado de ErdĂ”s et al., 1973, sobre el mĂ­nimo nĂșmero de puntos que pueden formar parte de algĂșn k-set. The study of k- sets is a very relevant topic in the research area of computational geometry. The study of the maximum and minimum number of k-sets in sets of points of the plane in general position, specifically, has been developed at great length in the literature. With respect to the maximum number of k-sets, lower bounds for this maximum have been provided by ErdĂ”s et al., Edelsbrunner and Welzl, and later by Toth. Dey also stated an upper bound for this maximum number of k-sets. With respect to the minimum number of k-set, this has been stated by Erdos el al. and, independently, by Lovasz et al. In this paper the authors give an example of a set of n points in the plane in general position (no three collinear), in which the minimum number of points that can take part in, at least, a k-set is attained for every k with 1 ≀ k < n/2. The authors also extend Erdos’s result about the minimum number of points in general position which can take part in a k-set to a set of n points not necessarily in general position. That is why this work complements the classic works we have mentioned before

    Circumscribing Polygons and Polygonizations for Disjoint Line Segments

    Get PDF
    Given a planar straight-line graph G=(V,E) in R^2, a circumscribing polygon of G is a simple polygon P whose vertex set is V, and every edge in E is either an edge or an internal diagonal of P. A circumscribing polygon is a polygonization for G if every edge in E is an edge of P. We prove that every arrangement of n disjoint line segments in the plane has a subset of size Omega(sqrt{n}) that admits a circumscribing polygon, which is the first improvement on this bound in 20 years. We explore relations between circumscribing polygons and other problems in combinatorial geometry, and generalizations to R^3. We show that it is NP-complete to decide whether a given graph G admits a circumscribing polygon, even if G is 2-regular. Settling a 30-year old conjecture by Rappaport, we also show that it is NP-complete to determine whether a geometric matching admits a polygonization

    Geometric Dilation and Halving Distance

    Get PDF
    Let us consider the network of streets of a city represented by a geometric graph G in the plane. The vertices of G represent the crossroads and the edges represent the streets. The latter do not have to be straight line segments, they may be curved. If one wants to drive from a place p to some other place q, normally the length of the shortest path along streets, d_G(p,q), is bigger than the airline distance (Euclidean distance) |pq|. The (relative) DETOUR is defined as delta_G(p,q) := d_G(p,q)/|pq|. The supremum of all these ratios is called the GEOMETRIC DILATION of G. It measures the quality of the network. A small dilation value guarantees that there is no bigger detour between any two points. Given a finite point set S, we would like to know the smallest possible dilation of any graph that contains the given points on its edges. We call this infimum the DILATION of S and denote it by delta(S). The main results of this thesis are - a general upper bound to the dilation of any finite point set S, delta(S) - a lower bound for a specific set P, delta(P)>(1+10^(-11))pi/2, which approximately equals 1.571 In order to achieve these results, we first consider closed curves. Their dilation depends on the HALVING PAIRS, pairs of points which divide the closed curve in two parts of equal length. In particular the distance between the two points is essential, the HALVING DISTANCE. A transformation technique based on halving pairs, the HALVING PAIR TRANSFORMATION, and the curve formed by the midpoints of the halving pairs, the MIDPOINT CURVE, help us to derive lower bounds to dilation. For constructing graphs of small dilation, we use ZINDLER CURVES. These are closed curves of constant halving distance. To give a structured overview, the mathematical apparatus for deriving the main results of this thesis includes - upper bound: * the construction of certain Zindler curves to generate a periodic graph of small dilation * an embedding argument based on a number theoretical result by Dirichlet - lower bound: * the formulation and analysis of the halving pair transformation * a stability result for the dilation of closed curves based on this transformation and the midpoint curve * the application of a disk-packing result In addition, this thesis contains - a detailed analysis of the dilation of closed curves - a collection of inequalities, which relate halving distance to other important quantities from convex geometry, and their proofs; including four new inequalities - the rediscovery of Zindler curves and a compact presentation of their properties - a proof of the applied disk packing result.Geometrische Dilation und Halbierungsabstand Man kann das von den Straßen einer Stadt gebildete Netzwerk durch einen geometrischen Graphen in der Ebene darstellen. Die Knoten dieses Graphen reprĂ€sentieren die Kreuzungen und die Kanten sind die Straßen. Letztere mĂŒssen nicht geradlinig sein, sondern können beliebig gekrĂŒmmt sein. Wenn man nun von einem Ort p zu einem anderen Ort q fahren möchte, dann ist normalerweise die LĂ€nge des kĂŒrzesten Pfades ĂŒber Straßen, d_G(p,q), lĂ€nger als der Luftlinienabstand (euklidischer Abstand) |pq|. Der (relative) UMWEG (DETOUR) ist definiert als delta_G(p,q) := d_G(p,q)/|pq|. Das Supremum all dieser BrĂŒche wird GEOMETRISCHE DILATION (GEOMETRIC DILATION) von G genannt. Es ist ein Maß fĂŒr die QualitĂ€t des Straßennetzes. Ein kleiner Dilationswert garantiert, dass es keinen grĂ¶ĂŸeren Umweg zwischen beliebigen zwei Punkten gibt. FĂŒr eine gegebene endliche Punktmenge S wĂŒrden wir nun gerne bestimmen, was der kleinste Dilationswert ist, den wir mit einem Graphen erreichen können, der die gegebenen Punkte auf seinen Kanten enthĂ€lt. Dieses Infimum nennen wir die DILATION von S und schreiben kurz delta(S). Die Haupt-Ergebnisse dieser Arbeit sind - eine allgemeine obere Schranke fĂŒr die Dilation jeder beliebigen endlichen Punktmenge S: delta(S) - eine untere Schranke fĂŒr eine bestimmte Menge P: delta(P)>(1+10^(-11))pi/2, was ungefĂ€hr der Zahl 1.571 entspricht Um diese Ergebnisse zu erreichen, betrachten wir zunĂ€chst geschlossene Kurven. Ihre Dilation hĂ€ngt von sogenannten HALBIERUNGSPAAREN (HALVING PAIRS) ab. Das sind Punktpaare, die die geschlossene Kurve in zwei Teile gleicher LĂ€nge teilen. Besonders der Abstand der beiden Punkte ist von Bedeutung, der HALBIERUNGSABSTAND (HALVING DISTANCE). Eine auf den Halbierungspaaren aufbauende Transformation, die HALBIERUNGSPAARTRANSFORMATION (HALVING PAIR TRANSFORMATION), und die von den Mittelpunkten der Halbierungspaare gebildete Kurve, die MITTELPUNKTKURVE (MIDPOINT CURVE), helfen uns untere Dilationsschranken herzuleiten. Zur Konstruktion von Graphen mit kleiner Dilation benutzen wir ZINDLERKURVEN (ZINDLER CURVES). Dies sind geschlossene Kurven mit konstantem Halbierungspaarabstand. Die mathematischen Hilfsmittel, mit deren Hilfe wir schließlich die Hauptresultate beweisen, sind unter anderem - obere Schranke: * die Konstruktion von bestimmten Zindlerkurven, mit denen periodische Graphen kleiner Dilation gebildet werden können * ein Einbettungsargument, das einen zahlentheoretischen Satz von Dirichlet benutzt - untere Schranke: * die Definition und Analyse der Halbierungspaartransformation * ein StabilitĂ€tsresultat fĂŒr die Dilation geschlossener Kurven, das auf dieser Transformation und der Mittelpunktkurve basiert * die Anwendung eines Kreispackungssatzes ZusĂ€tzlich enthĂ€lt diese Dissertation - eine detaillierte Analyse der Dilation geschlossener Kurven - eine Sammlung von Ungleichungen, die den Halbierungsabstand zu anderen wichtigen GrĂ¶ĂŸen der Konvexgeometrie in Beziehung setzen, und ihre Beweise; inklusive vier neuer Ungleichungen - die Wiederentdeckung von Zindlerkurven und eine kompakte Darstellung ihrer Eigenschaften - einen Beweis des angewendeten Kreispackungssatzes
    • 

    corecore