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Abstract: The study of k- sets is a very relevant topic in the research area of computational geometry. The study of the maximum and 
minimum number of k-sets in sets of points of the plane in general position, specifically, has been developed at great length in the 
literature. With respect to the maximum number of k-sets, lower bounds for this maximum have been provided by Erdõs et al., 
Edelsbrunner and Welzl, and later by Toth. Dey also stated an upper bound for this maximum number of k-sets. With respect to the 
minimum number of k-set, this has been stated by Erdos el al. and, independently, by Lovasz et al. In this paper the authors give an 
example of a set of n points in the plane in general position (no three collinear), in which the minimum number of points that can take 
part in, at least, a k-set is attained for every k with 1 ≤ k < n/2. The authors also extend Erdos’s result about the minimum number of 
points in general position which can take part in a k-set to a set of n points not necessarily in general position. That is why this work 
complements the classic works we have mentioned before. 
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1. Introduction  

The search of upper and lower bounds on the number 

of halving lines or k-sets in a set of n  points located in 

the plane in general position is a problem widely 

reflected in the literature. Recall that a halving line in a 
set of n  points  npp ...,,1  is a line that joins two 

points of  npp ...,,1  leaving the same number of 

points of  npp ...,,1  in each half-plane ( n  is an even 

number) and a k-set is a subset of  npp ...,,1  with k 

points that can be separated of the other points of 
 npp ...,,1  by a straight line. 

With respect to the maximum number of k-sets, 

lower bounds for this maximum have been given by 

Erdõs et al. [1], and also independently by 

Edelsbrunner and Welzl [2]. They established a lower 

bound of the order O (nlogk) for the maximum number 
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of k-sets. Later, Tóth [3] discovered a construction of a 

set of n points with O ( kn log2 ) k-sets for every n and k 

< n/2. Attending to upper bounds of this maximum 

number of k-sets, Dey [4] stated an upper bound of the 

order O ( 3

1

kn ). Nowadays, this is the best upper bound 

for this number. 

With respect to the minimum number of halving 

lines and k-sets, it is known that the minimum number 

of halving lines is 
2

n
 [5] and the minimum number of 

k-sets is 1 2 k  [1, 6] (the authors refer to the latter 

fact as “Result 2” throughout the paper). 

The problem of establishing the minimum number 

of points that can intervene in at least one k-sets of a 

given set of n  points was also posed by Erdõs et al. 

[1]. They proved that this minimum is also 1 2 k  

(hereafter “Result 1”), and gave an example where 

this minimum is attained: 1 2 k  points are the 
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vertices of a regular polygon, and the remaining 

points lie close enough to the centre of the polygon 

(this example also attains the minimum number    

of k-sets). 

In this paper the authors present an example of a set 

of n  points in the plane where the minimum of 1 2 k  

points taking part in a k-set is attained for every 2

n
k   

(Subsection 2.1). Furthermore, the authors prove that 

a similar example to the presented in Subsection 2.1 

cannot be found for the minimum number of k-sets 

(Section 3). So the authors conclude that the only 

arrangement of points with the minimum number of 

k-sets ( 1 2 k ) is that described by Erdõs et al. [1] and 

Lovasz et al. [6].  

The authors also generalize Result 1 to sets of points 

that are not necessarily in general position, but do not 

consist of a set of points on a line (Subsection 2.2). 

Throughout the paper k and n  are positive integers, 

the following definitions also apply: 

Definition 1: Consider a set A  of points in the 

plane and the convex hulls of all possible subsets of A  

with t  points. The authors define tAC  ,  as the 

intersection of these convex hulls. 

Remark: The following properties for tAC  ,  hold 

[7]: 

(1) If the points of A  are in general position, then 

tAC  ,  does not consist only of a segment;  

(2) If 1
2


A
t , then tAC  ,  is the empty set, where 

A  is the cardinal of A ; 

(3) If the points of A  are not collinear, then 

}{
1

2
, pC AA 

 for some point p. 

Definition 2: Consider a set A  of points in the 

plane, two points Aqp  ,  and the convex hulls of all 

possible subsets of A with t  points such that p  

and/or q  belongs to the subset. The authors define 
qp
tAC  ,
 ,  as the intersection of these convex hulls. 

2. Minimum Number of Points Taking Part 
in k-Sets of A  

2.1 Example for a Set of n Points and Every 
2

n
k   

In order to give the example of a set of n  points, 

with even n , with the minimum number of points 

taking part in at least one k-set for every 2

n
k  , the 

authors shall need some previous results. Throughout 

this Subsection it is assumed that the points of every set 

are in general position: 

Proposition 1: Let A  be a set of n  points. The 

points of A  included in knAC  ,  cannot belong to any 

k-set. 

Proof: If one of these points belonged to a setk  , 

then a straight line would separate it from  kn  points 

of A . Therefore, this point would not be included in at 

least one convex hull of kn   points and could not 

belong to knAC  , , a contradiction.  

Remark: Conversely, the points of A  that are not 

included in knAC  ,  belong to at least a k-set. 

Consequently the authors wish to find an example of a 

set A  of n  points such that  1 2  kn  points 

belong to knAC  ,  for every k  in the range 
2

 1
n

k  . 

Lemma 1: Let U and V be the sets  tppU ,...,1 , 

 211 ,,,...,  ttt ppppV , where t  is an odd number. 

If the points 1tp  and 2tp  belong to 2
2

 , 



 t

U
C , then 

these points also belong to 2
2

2
 , 







 t
V

C
. Furthermore, 

2
2

2
 , 



 t

V
C

 has a non empty interior set (    stands for 

the floor). 

Proof: Consider a set of 3
2

2
2

2

















  tt  points of 

V. If these points do not include both 1tp  and 2tp , 

then they will contain at least 2
2








 t  points of U. Thus, 

the convex hull of the 3
2





 t

 points considered must 

contain the convex hull of 2
2








 t  points of U. 
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Consequently, the first convex hull contains the segment 

joining 1tp  and 2tp  by the hypothesis of the lemma.  

Now, if the set of 2
2

2








 t
 points of V considered 

contains both 1tp  and 2tp , then the segment joining 

1tp  and 2tp  is included in the convex hull. This 

segment is therefore in 2
2

2
 , 







 t
V

C
 and consequently 

2
2

2
 , 







 t
V

C
 is not a finite set. But the set 2

2

2
 , 






 t

V
C

 does 

not consist only of this segment, because the points are 

in general position. Hence, 2
2

2
 , 






 t

V
C

 has non empty 

interior set.  
Lemma 2: Consider a set of n  points 
 nppA  ..., ,1  and its subset  1 21  ..., ,  kppB . If 

2
2

1 2
 , 



 k

B
C

 contains the  1 2  kn  points of BA  , 

then knAC  ,  also contains these  1 2  kn  points of 
A . 

Proof: Consider a subset of kn   points taken 

from A . If this subset does not contain all of the last 

 1 2  kn  points of A ( nk pp  ..., ,22  ), then there are at 

least 2
2

1 2
2 







 


k
k  points in subset B, so their 

convex hull contains the last  1 2  kn  points of A  

by assumption, then nk pp  ...,,22   are in knAC , . 
Let us next describe the example satisfying the 

required conditions: 

Example 1 
Let  nppA  ..., ,1  be a set of n points (n is an even 

number) defined in the following way: 1p , 2p , 3p  

are not in a line, and for 
2

4
 ..., ,1



n

k , 22 kp , 

32 kp  are in   2
2

1 2
 , ..., , 1 21 






 



k
pp k

C
 in such way 

that 321  ..., , kpp  are in general position (this can 

always be done, since   2
2

1 2
 , ..., , 1 21 



 



k
pp k

C
 has 

non empty interior set by Lemma 1). Finally, np  is 

located in   2
2

1
 , ..., , 11 






 



n
pp n

C
 (Fig. 1). 

This configuration of points satisfies the condition 

that for every 
2

4
 ..., ,1



n

k , nk pp  ..., ,22   belong to 

 
Fig. 1  The set of the example for 8n .  
 

  2
2

1 2
 , ..., , 1 21 



 



k
pp k

C
. The authors already know that 

3222  ,  kk pp  belong to   2
2

1 2
 , ..., , 1 21 







 


k
pp k

C
. Hence, to 

prove the assertion it is enough to see that 

    2
2

1 2
 , ..., ,2

2

1 2
 , ..., , 1 211 21 



 





 



 t
pp

k
pp tk

CC
 for kt  . 

This relation will be true for all t > k if the authors see it 
for 1 kt . The following inclusion is obvious: 

   
3 22 2

3 213 21

 ,

2
2

3 2
 ,,...,2

2

3 2
 ,,...,



 






 







   kk

kk

pp
k

pp
k

pp
CC  . 

On the other hand, consider a selection of 2
2

3 2








 k  

points from the sequence 321  ..., , kpp . Assuming that 
2 2 kp  and/or 3 2 kp  are included, this selection 

contains at most 2
2

1 2








 k  points from the sequence 

1 21 ...,, kpp . Therefore, the convex hull of the 

2
2

3 2








 k  points is contained within a convex hull of 

2
2

1 2








 k  points from 1 21  ...,, kpp . This result follows 

from the fact that 2 2 kp  and 3 2 kp  are in every 

convex hull of 2
2

1 2








 k  points taken from the 

sequence 1 21 ...,, kpp .  

Thus     2
2

1 2
 ,,...,

,

2
2

3 2
 ,,..., 1 21

3 22 2

3 21 






 







 






 k
pp

pp
k

pp k

kk

k

CC  

This completes the desired inclusion. 

For 2

2


n
k , it is also true that the point 

nk pp 2 2  is in     2
2

1
 ,,...,2

2

1 2
 ,,..., 111 21 







 







 



n

pp
k

pp nk

CC , 
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according to the construction of A . 
Thus, according to Lemma 2 there are  1 2  kn  

points in knAC  ,  for 1
2

 ..., ,1 
n

k . Therefore, by 

Proposition 1 this is an example of a set of n points that 

attains the minimum of 1 2 k  points taking part in 

k-sets for every 1
2

 ..., ,1 
n

k . 

Remarks: 
(1) For odd n , the previous example can be 

modified to obtain an example of a set of n  points 

with the minimum number of 1 2 k  points belonging 

to at least one k-set for every 2

n
k  . The authors just 

avoid placing the last point in the last intersection. 

(2) As Fig. 1 shows,   2
2

1 2
 ,,..., 1 21 







 


k
pp k

C
 is a 

triangle such that kp  2 , 1 2 kp  are two of its vertices. 

(3) It is not possible to obtain a similar example 

where the minimum number of k-sets in a set of n  

points is attained for every 
2

n
k  , because this example 

would contradict the lower bound on the number of 

k -sets given by Lovasz [6] that is 






 
2

1
 3

k
. As a 

matter of fact, it is easy to see that the number of k-sets 

in the present example is 1 4 k  for every 
2

n
k  , 

1 2 k  being the minimum number of k-sets. 

2.2 Case of Points That Are Not in General Position 

This Subsection generalises Result 1 by proving that 

for every 








2

n
k  and every set of n points, the 

minimum number of points taking part in k-sets is 

1 2 k , provided that the n points are not collinear. A 

previous lemma is given: 
Lemma 3: For a set  nppA  ..., ,1 , if knAC  ,  

contains l  points of A , say 1p , …, lp , then these 

points must be located in    1 , ..., ,1  lknpp nl
C  

( 1 knl ). 

Proof: If there is some point of 1p , …, lp  that is 

not located in the proposed intersection, then there 

exists a convex hull C  of  1 lkn  points of 

nl pp  ..., ,1  that does not contain every point of 1p , …, 

lp . But if such is the case, at least one point of 1p , …, 

lp , for example 1p  is located at a vertex along the 

boundary of the convex hull of 1p , …, lp  and the 

 1 lkn  points aforementioned. This implies that 

the convex hull of the following points of A , 2p , …, 

lp  and the  1 lkn  points defining C , does not 
contain 1p , a contradiction because knACp  ,1 . 

Hence 1p , …, lp  are in    1 , ..., ,1  lknpp nl
C .  

Remark: If 1 2  knl , then   klkn  1  

with 
 

1
2

 ..., ,1   nl pp
k , so the set    1 , ..., ,1  lknpp nl

C  is 

empty. In this case 1p , …, lp  cannot be included in 

the set. Consequently the maximum number of points 

of A  that can be located in knAC  ,  is kn  2 . This 

maximum is always attained if the n  points of A  are 

arranged in a line. 
Next, it is can be seen that this is the only case in 

which the maximum number of points in knAC  ,  is 

attained. 

Proposition 2: If the maximum of kn  2  points of 

A  inside knAC  ,  is attained, then the n  points of A  

are in a straight line ( 







2

n
k ).  

Proof: If there are kn  2  points of 
 nppA  ..., ,1 , say 1p , …, knp  2 , included in knAC  , , 

then by Lemma 3 the authors find that 1p , …, knp  2  

must belong to   1 , ..., ,1 2  kpp nkn
C . 

If 1 2  knp , …, np  are not collinear, then they have 

   pC kpp nkn
 1 , ..., ,1 2

. (since  
1

2

,...,
1 1 2   nkn pp

k ). 

Hence, because 1p , …, knp  2  are in 

  1 , ..., ,1 2  kpp nkn
C , the authors necessarily have that 

1 2  kn  and thus 










22

1 nn
k , in contradiction with 

the condition 







2

n
k . Consequently, 1 2  knp , …, np  

are in a line, and   1 , ..., ,1 2  kpp nkn
C  is included in this 

line. This implies that 1p , …, knp  2  are also in the 

line, so all n  points of A  are aligned.  
Thus, if 







2

n
k  and the n  points of a set A  are not 
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in the same line, then the maximum number of points 
of A  that can be included in 

knAC  ,
 is  1 2  kn . 

This yields the statement that the authors wanted to 
prove: 

Corollary: If 







2

n
k  and the n  points of a set A  

are not collinear, then the minimum number of points 

of A  taking part in some k-set is 1 2 k .  

3. Minimum Number of k-Sets  

Remark 2 of Subsection 2.1 states that it is 

impossible to find an example similar to Example 1 for 

the minimum number of k-sets. This section proves that 

for a set of n  points, the minimum number of k-sets 

can be attained for at most one value of k . This 

minimum is necessarily attained in an example 

equivalent to the one shown in Erdõs et al. Ref. [1] and 

Lovasz et al. Ref. [6].  

Proposition 3: For 
2

n
k  , if the minimum number 

of 1 2 k  k-sets is attained in a set of n  points in 

general position  nppA  ..., ,1 , then there is a subset 

of 1 2 k  points of the set A, say  121  ..., ,  kppB  in 

the boundary of the convex hull of the points of A. The 

other points are in 2
2

1 2
 , 







 k
B

C
.  

Proof: If the minimum number of 1 2 k  k-sets is 

attained in a set A, then there can be only 1 2 k  

points taking part in k-sets, because a distinct k-set can 

be attached to each point belonging to some k-set [1]. 

Therefore, the other  1 2  kn  points must be in 

knAC  ,  (Proposition 1). But then the number of 

 k -sets in A is  kk  1 2   and the number of 

  1k  -sets is       1 1 21 2 1 2  kkkkk . 

But this is the maximum number of   1k  -sets 

when there are just 1 2  km  points of the set taking 

part in them being   11 2  km . Hence, the 12 k  

points must be in a convex configuration [4]. The other 

points must be in 2
2

1 2
 , 



 k

B
C

 because they don’t 

belong to any k-set. 

To end this section, let us show that Result 2 cannot 

be generalised to points not in a line in the same way as 

Result 1:  

Example 2 

Consider a set of eight points, seven in a line and one 

out of line, as shown in Fig. 2. 
This set only has four 3-sets: }3 ,2 ,1{ , }8 ,2 ,1{ , 

}7 ,6 ,5{ and }8 ,7 ,6{ . This number is less than 

71 2 k .  

4. Conclusions 

This paper complements some of the results 

contained in Erdõs et al. Ref. [1]. One of their findings, 

referred to as Result 1 in this paper, was that for a set of 

n points in general position, the minimum number of 

points taking part in k-sets is 2k+1 if 2

n
k  . Erdõs et al. 

[1] offered an example of a set of n points where this 

minimum is attained for a single value of k. 

One improvement offered by the presented paper is 

an example where the lower bound of 2k + 1 -sets is 

attained for every 2

n
k  . According to the notation of 

Ábrego et al. [8] this is an example of a set with exactly 

two points in the k-layer, for every k  with 2
1

n
k  .  

 

1

2

3

4

5

6

7

8

 
Fig. 2  A set of points is not in general position with fewer 
than 2k + 1 k-sets.  
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The other main improvement is the extension of 

Result 1 to any set of n  points not arranged in a line. 

The authors next analysed another theorem of Erdõs 

et al. [1] referred to here as Result 2. This theorem 

states that the minimum number of k-sets in a set of n 

points in general position is also 2k+1.  

The present paper proves that the example provided 

for Result 2 in the literature, where the minimum 

number of k-sets is attained, is essentially the only 

possible example.  

Finally, the authors provide an example to prove that 

Result 2 cannot be generalised in the same way as 

Result 1, for any set of unaligned points. 
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