16,086 research outputs found

    P-AODV Routing Protocol for Better Performance in MANET

    Get PDF
    MANET (Mobile Ad-Hoc Network) is an independent collection of mobile nodes that communicate over quite bandwidth constrained wireless links. In Mobile Ad hoc Networks (MANETs), the performance of various on-demand routing protocols significantly affected by the changing network topology.in the route discovery process, AODV (Ad-hoc On-Demand Distance Vector) is the mostly studied on-demand routing protocol that uses single route reply packet with reverse path for answering to the source node. Due to increase in the variability of the network topology, the possibility of route reply packet loss increases & destroys the performance of the routing protocol. It includes related material and details of other modified AODV protocols like R-AODV, Multipath Routing Protocol. This protocols makes better performance as compared to AODV but there we need more modification for efficient. We then focus on the end-to-end delay, throughput and overhead for the performance improvement. As by, we proposed a new AODV routing protocol that uses R-AODV for route discovery and Multipath routing protocol for data(packet) sending from source to the destination. Our proposed Protocol (P-AODV) would improve performance in terms of Average End-to-End Delay, Throughput and Routing Overhead. DOI: 10.17762/ijritcc2321-8169.15058

    A Modified Shared-tree Multicast Routing Protocol in Ad Hoc Network

    Get PDF
    Mobile ad hoc network is a wireless mobile network that does not have any base station or other central control infrastructure. Design of efficient multicast routing protocols in such network is challenging, especially when the mobile hosts move faster. Shared tree routing protocol is a widely used multicast routing protocol in ad hoc network. However, there are problems in end-to-end delay and network throughput for this protocol. In this paper, we propose a protocol to improve the inherent problem of large end-to-end delay in shared tree method as a modification to the existing multicast Ad hoc On-demand Distance Vector (MAODV) routing for low mobility network. The protocol uses n-hop local ring search to establish new forwarding path and limit flooding region. We then propose an extension to our proposed protocol, which uses periodic route discovery message to improve the network throughput for high mobility network. Simulation results demonstrate the improvement with average end-to-end delay in low mobility case as well as high packet delivery ratio in high mobility cas

    Adaptive Cross-Layer Multipath Routing Protocol for Mobile Ad Hoc Networks

    Full text link
    [EN] Mobile ad hoc networks (MANETs) are generally created for temporary scenarios. In such scenarios, where nodes are in mobility, efficient routing is a challenging task. In this paper, we propose an adaptive and cross-layer multipath routing protocol for such changing scenarios. Our routing mechanisms operate keeping in view the type of applications. For simple applications, the proposed protocol is inspired from traditional on-demand routing protocols by searching shortest routes from source to destination using default parameters. In case of multimedia applications, the proposed mechanism considers such routes which are capable of providing more data rates having less packet loss ratio. For those applications which need security, the proposed mechanism searches such routes which are more secure in nature as compared to others. Cross-layer methodology is used in proposed routing scheme so as to exchange different parameters across the protocol stack for better decision-making at network layer. Our approach is efficient and fault tolerant in a variety of scenarios that we simulated and tested.The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this research group no. 037-1435-RG.Iqbal, Z.; Khan, S.; Mehmood, A.; Lloret, J.; Alrajeh, NA. (2016). Adaptive Cross-Layer Multipath Routing Protocol for Mobile Ad Hoc Networks. Journal of Sensors. 2016:1-18. https://doi.org/10.1155/2016/5486437S1182016Abusalah, L., Khokhar, A., & Guizani, M. (2008). A survey of secure mobile Ad Hoc routing protocols. IEEE Communications Surveys & Tutorials, 10(4), 78-93. doi:10.1109/surv.2008.080407Murthy, S., & Garcia-Luna-Aceves, J. J. (1996). An efficient routing protocol for wireless networks. Mobile Networks and Applications, 1(2), 183-197. doi:10.1007/bf01193336Toh, C.-K. (1997). Wireless Personal Communications, 4(2), 103-139. doi:10.1023/a:1008812928561Pearlman, M. R., & Haas, Z. J. (1999). Determining the optimal configuration for the zone routing protocol. IEEE Journal on Selected Areas in Communications, 17(8), 1395-1414. doi:10.1109/49.779922ZHEN, Y., WU, M., WU, D., ZHANG, Q., & XU, C. (2010). Toward path reliability by using adaptive multi-path routing mechanism for multimedia service in mobile Ad-hoc network. The Journal of China Universities of Posts and Telecommunications, 17(1), 93-100. doi:10.1016/s1005-8885(09)60431-3Sivakumar, R., Sinha, P., & Bharghavan, V. (1999). CEDAR: a core-extraction distributed ad hoc routing algorithm. IEEE Journal on Selected Areas in Communications, 17(8), 1454-1465. doi:10.1109/49.779926Zapata, M. G. (2002). Secure ad hoc on-demand distance vector routing. ACM SIGMOBILE Mobile Computing and Communications Review, 6(3), 106-107. doi:10.1145/581291.581312Khan, S., & Loo, J. (2010). Cross Layer Secure and Resource-Aware On-Demand Routing Protocol for Hybrid Wireless Mesh Networks. Wireless Personal Communications, 62(1), 201-214. doi:10.1007/s11277-010-0048-ySharma, V., & Alam, B. (2012). Unicaste Routing Protocols in Mobile Ad Hoc Networks: A Survey. International Journal of Computer Applications, 51(14), 9-18. doi:10.5120/8108-1714Tarique, M., Tepe, K. E., Adibi, S., & Erfani, S. (2009). Survey of multipath routing protocols for mobile ad hoc networks. Journal of Network and Computer Applications, 32(6), 1125-1143. doi:10.1016/j.jnca.2009.07.002Shiwen Mao, Shunan Lin, Yao Wang, Panwar, S. S., & Yihan Li. (2005). Multipath video transport over ad hoc networks. IEEE Wireless Communications, 12(4), 42-49. doi:10.1109/mwc.2005.1497857Li, Z., Chen, Q., Zhu, G., Choi, Y., & Sekiya, H. (2015). A Low Latency, Energy Efficient MAC Protocol for Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 11(8), 946587. doi:10.1155/2015/946587Zheng, Z., Liu, A., Cai, L. X., Chen, Z., & Shen, X. (2016). Energy and memory efficient clone detection in wireless sensor networks. IEEE Transactions on Mobile Computing, 15(5), 1130-1143. doi:10.1109/tmc.2015.2449847Dong, M., Ota, K., Liu, A., & Guo, M. (2016). Joint Optimization of Lifetime and Transport Delay under Reliability Constraint Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 27(1), 225-236. doi:10.1109/tpds.2015.2388482Hamrioui, S., Lorenz, P., Lloret, J., & Lalam, M. (2013). A Cross Layer Solution for Better Interactions Between Routing and Transport Protocols in MANET. Journal of Computing and Information Technology, 21(3), 137. doi:10.2498/cit.1002136Sanchez-Iborra, R., & Cano, M.-D. (2014). An approach to a cross layer-based QoE improvement for MANET routing protocols. Network Protocols and Algorithms, 6(3), 18. doi:10.5296/npa.v6i3.5827Cho, J.-H., Swami, A., & Chen, I.-R. (2011). A Survey on Trust Management for Mobile Ad Hoc Networks. IEEE Communications Surveys & Tutorials, 13(4), 562-583. doi:10.1109/surv.2011.092110.0008

    A Composite Trust Model for Secure Routing in Mobile Ad-Hoc Networks

    Get PDF
    It is imperative to address the issue of secure routing in mobile ad-hoc networks (MANETs) where the nodes seek for cooperative and trusted behaviour from the peer nodes in the absence of well-established infrastructure and centralized authority. Due to the inherent absence of security considerations in the traditional ad-hoc routing protocols, providing security and reliability in the routing of data packets is a major challenge. This work addresses this issue by proposing a composite trust metric based on the concept of social trust and quality-of-service (QoS) trust. Extended from the ad-hoc on-demand distance vector (AODV) routing protocol, we propose an enhanced trust-based model integrated with an attack-pattern discovery mechanism, which attempts to mitigate the adversaries craving to carry out distinct types of packet-forwarding misbehaviours. We present the detailed mode of operations of three distinct adversary models against which the proposed scheme is evaluated. Simulation results under different network conditions depict that the combination of social and QoS trust components provides significant improvement in packet delivery ratio, routing overhead, and energy consumption compared to an existing trust-based scheme

    Energy aware routing protocols in ad hoc wireless networks

    Get PDF
    In Mobile Ad hoc Network, communication at mobile nodes can be achieved by using multi-hop wireless links. The architecture of such a network is based, not on a centralized base station but on each node acting as a router to forward data packets to other nodes in the network. The aim of each protocol, in an ad hoc network, is to find valid routes between two communicating nodes. These protocols must be able to handle high mobility of the nodes which often cause changes in the network topology. Every ad hoc network protocol uses some form of a routing algorithm to transmit between nodes based on a mechanism that forwards packets from one node to another in the network. These algorithms have their own way of finding a new route or modifying an existing one when there are changes in the network. The novel area of this research is a proposed routing algorithm which improves routing and limits redundant packet forwarding, especially in dense networks. It reduces the routing messages and consequently power consumption, which increases the average remaining power and the lifetime of the network. The first aim of this research was to evaluate various routing algorithms in terms of power. The next step was to modify an existing ad hoc routing protocol in order to improve the power consumption. This resulted in the implementation of a dynamic probabilistic algorithm in the route request mechanism of an ad hoc On-Demand Distance Vector protocol which led to a 3.0% improvement in energy consumption. A further extension of the approach using Bayesian theory led to 3.3% improvement in terms of energy consumption as a consequence of a reduction in MAC Load for all network sizes, up to 100 nodes.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A distributed cross-layer routing protocol with channel assignment in multi-channel MANET

    Full text link
    An innovative cross-layer routing approach, MCORCA (Multi-Channel On-demand Routing with Coordinate Awareness), is presented that utilizes multiple channels to im- prove the performance of wireless ad-hoc networks. The proposed cross-layer scheme adapts the strategy of channel assignment and the mechanism of dealing with conflicts. Channels are divided into a control channel and data channels; the control channel is used for scheduling, and data channels are used for data transmissions. MCORCA is an extension of an on- demand routing protocol for single channel wireless networks, called ORCA (On-demand Routing with Coordinates Awareness). Simulation results indicate that MCORCA yields a significant capacity improvement as well as lower end-to-end delays by using multiple channels

    Simulasi dan Analisis Performansi Jaringan MANET Menggunakan Routing Protocol AODV dengan DCCP untuk Menangani Congestion

    Get PDF
    ABSTRAKSI: Mobile Ad-Hoc Network (MANET) merupakan pengembangan Ad-Hoc Network, dimana node dari jaringan ini memiliki mobilitas yang dinamis. Mobilitas dari node ini menyebabkan perubahan topologi jaringan sesuai dengan kondisi yang ada. Ad-Hoc On Demand Distance Vector (AODV) merupakan reactive routing protocol yang sangat sesuai diimplementasikan pada MANET karena pembangunan route pada AODV menyesuaikan dengan topologi jaringan. Penelitian membuktikan bahwa karakteristik mobilitas pada MANET akan menimbulkan congestion sebagai penyebab packet-loss yang lebih besar dan delay yang lebih panjang. Untuk itu, direkomendasikan DCCP (Datagram Congestion Control Protocol) sebagai transport protocol yang mengimplementasikan mekanisme congestion control pada MANET. Melalui skenario pengaruh nilai Packet Rate dan Pause Time, akan dibandingkan performansi UDP dan DCCP dalam menangani pemodelan traffic video streaming. Hasil simulasi menunjukkan performansi yang lebih baik pada DCCP dengan rata-rata nilai Packet Delivery Ratio sebesar 95%, Packet Loss Ratio sebesar 5%, End to End Delay sebesar 0.3s dan Routing Overhead sebesar 0.20.Kata Kunci : MANET, AODV, DCCP, congestion controlABSTRACT: Mobile Ad-Hoc Network (MANET) is an improvement of Ad-Hoc Network, which its node has capability of dynamic mobility. This feature will cause the topology changes in current condition. Ad-Hoc On Demand Distance Vector (AODV) is a relevant reactive routing protocol for MANET since the route is built based on the current network topology. Research proved that mobility characteristic of MANET will cause congestion as a trigger of frequent packet loss and longer delay. In that case, DCCP (Datagram Congestion Control Protocol) is suggested as a congestion control featured transport protocol for MANET. Through the scenario of different Packet Rate and Pause Time, simulation will compare the performance of UDP and DCCP when handling video streaming traffic model. Simulation result showed better performance of DCCP, where average mark of Packet Delivery Ratio reached 95%, Packet Loss Ratio reached 5%, End to End Delay reached 0.3s dan Routing Overhead reached 0.20.Keyword: MANET, AODV, DCCP, congestion contro

    Preemptive Routing & Intrusion Detection for MANETs

    Get PDF
    An ad-hoc network will often change rapidly in topology, this courses for routes in the network to often disappear and new to arise. The Ad-hoc On-Demand Distance Vector Routing Protocol(AODV), is based on the principle of discover routes as needed. In this paper we will extend the definition of AODV with the ability to discover multiple routes to a host and switch between them, if an active route is becoming weak and there is a risk that it will disappear. We will refer to it as pre-emptive AOMDV . We will show that the performance of pre-emptive AOMDV do handle changes in topology better than AODV it self. To show the effect of extending AODV, the suggested protocol is implemented in a simulator. Performance enhancements will be presented from different scenarios, to compare pre-emptive AOMDV with the ordinary AODV. In this paper we also focus on intrusion detection based on Finite State Machine and cache memory in ad hoc networks. Security is one of the most important issues in current networks. The most common cases of attacks in mobile Ad hoc networks can be drop of routing packets and changes in the incoming packets which aims at disrupting the network routing and overall network reduce performance. The presented approach based on FSM focuses at recognizing the malicious nodes within the network in a fast and accurate way, then it deals with rapid introduction of the malicious nodes to other nodes in the network to prevent sending multiple packets and drop and packet change. Finally, we will show the significant improvement in comparison with others, we simulated our methods by NS2 software

    An Intelligent Routing Protocol Based on DYMO for MANET

    Get PDF
    in this paper, intelligent routing protocols for mobile ad-hoc networks (MANET) will be proposed .Depending on the concepts of fuzzy and neural networks. The goal is to get good quality service by finding the most convenient data transfer paths, therefore a Fuzzy-based, Neural-Fuzzy based and Energy aware are three approaches have been proposed to enhance Dynamic Manet On-demand (DYMO),All approaches were implemented in ns-2 simulator and compared with original protocol in terms of performance metrics, which showed that there was an improvement in route efficiency

    An altruistic cross-layer recovering mechanism for ad hoc wireless networks

    Full text link
    Video streaming services have restrictive delay and bandwidth constraints. Ad hoc networks represent a hostile environment for this kind of real-time data transmission. Emerging mesh networks, where a backbone provides more topological stability, do not even assure a high quality of experience. In such scenario, mobility of terminal nodes causes link breakages until a new route is calculated. In the meanwhile, lost packets cause annoying video interruptions to the receiver. This paper proposes a new mechanism of recovering lost packets by means of caching overheard packets in neighbor nodes and retransmit them to destination. Moreover, an optimization is shown, which involves a video-aware cache in order to recover full frames and prioritize more significant frames. Results show the improvement in reception, increasing the throughput as well as video quality, whereas larger video interruptions are considerably reduced. Copyright © 2014 John Wiley & Sons, Ltd.Arce Vila, P.; Guerri Cebollada, JC. (2015). An altruistic cross-layer recovering mechanism for ad hoc wireless networks. Wireless Communications and Mobile Computing. 15(13):1744-1758. doi:10.1002/wcm.2459S174417581513Li J Blake C De Couto DSJ Lee HI Morris R Capacity of ad hoc wireless networks Proceedings of the 7th Annual International Conference on Mobile Computing and Networks (MobiCom) 2001 61 69Akyildiz, I. F., & Xudong Wang. (2005). A survey on wireless mesh networks. IEEE Communications Magazine, 43(9), S23-S30. doi:10.1109/mcom.2005.1509968Hsu, C.-J., Liu, H.-I., & Seah, W. K. G. (2011). Opportunistic routing – A review and the challenges ahead. Computer Networks, 55(15), 3592-3603. doi:10.1016/j.comnet.2011.06.021Huang, X., Zhai, H., & Fang, Y. (2008). Robust cooperative routing protocol in mobile wireless sensor networks. IEEE Transactions on Wireless Communications, 7(12), 5278-5285. doi:10.1109/t-wc.2008.060680Wieselthier, J. E., Nguyen, G. D., & Ephremides, A. (2001). Mobile Networks and Applications, 6(3), 251-263. doi:10.1023/a:1011478717164Clausen T Jacquet P Optimized Link State Routing Protocol (OLSR), IETF RFC 3626 2003 http://www.rfc-editor.org/rfc/rfc3626.txtMarina, M. K., & Das, S. R. (2006). Ad hoc on-demand multipath distance vector routing. Wireless Communications and Mobile Computing, 6(7), 969-988. doi:10.1002/wcm.432Zhou X Lu Y Ma HG Routing improvement using multiple disjoint paths for ad hoc networks International Conference on Wireless and Optical Communications Networks (IFIP) 2006 1 5Fujisawa H Minami H Yamamoto M Izumi Y Fujita Y Route selection using retransmission packets for video streaming on ad hoc networks IEEE Conference on Radio and Wireless Symposium (RWS) 2006 607 610Badis H Agha KA QOLSR multi-path routing for mobile ad hoc networks based on multiple metrics: bandwidth and delay IEEE 59th Vehicular Technology Conference (VTC) 2004 2181 2184Wu Z Wu J Cross-layer routing optimization for video transmission over wireless ad hoc networks 6th International Conference on Wireless Communications Networks and Mobile Computing (WiCOM) 2010 1 6Schier, M., & Welzl, M. (2012). Optimizing Selective ARQ for H.264 Live Streaming: A Novel Method for Predicting Loss-Impact in Real Time. IEEE Transactions on Multimedia, 14(2), 415-430. doi:10.1109/tmm.2011.2178235Nikoupour M Nikoupour A Dehghan M A cross-layer framework for video streaming over wireless ad-hoc networks 3rd International Conference on Digital Information Management (ICDIM) 2008 340 345Yamamoto R Miyoshi T Distributed retransmission method using neighbor terminals for ad hoc networks Proceedings of the 14th Asia-Pacific Conference on Communications (APCC) 2008 1 5Gravalos I Kokkinos P Varvarigos EA Multi-criteria cooperative energy-aware routing in wireless ad-hoc networks Proceedings of the 9th International Wireless Communications and Mobile Computing Conference (IWCMC) 2013 387 393Abid, R. M., Benbrahim, T., & Biaz, S. (2010). IEEE 802.11s Wireless Mesh Networks for Last-Mile Internet Access: An Open-Source Real-World Indoor Testbed Implementation. Wireless Sensor Network, 02(10), 725-738. doi:10.4236/wsn.2010.210088Yen, Y.-S., Chang, R.-S., & Wu, C.-Y. (2011). A seamless handoff scheme for IEEE 802.11 wireless networks. Wireless Communications and Mobile Computing, 13(2), 157-169. doi:10.1002/wcm.1102Liangzhong Yin, & Guohong Cao. (2006). Supporting cooperative caching in ad hoc networks. IEEE Transactions on Mobile Computing, 5(1), 77-89. doi:10.1109/tmc.2006.15Biswas S Morris R ExOR: opportunistic multi-hop routing for wireless networks Proceedings of ACM SIGCOMM 2005 133 144Chachulski S Jennings M Katti S Katabi D Trading structure for randomness in wireless opportunistic routing Proceedings of ACM SIGCOMM 2007 169 180Kohler E Handley M Floyd S Datagram Congestion Control Protocol (DCCP), IETF RFC 4340 2006 http://www.rfc-editor.org/rfc/rfc4340.txtSchierl, T., Ganger, K., Hellge, C., Wiegand, T., & Stockhammer, T. (2006). SVC-based multisource streaming for robust video transmission in mobile ad hoc networks. IEEE Wireless Communications, 13(5), 96-103. doi:10.1109/wc-m.2006.250365Iera, A., Molinaro, A., Paratore, S. Y., Ruggeri, G., & Zurzolo, A. (2011). Making a mesh router/gateway from a smartphone: Is that a practical solution? Ad Hoc Networks, 9(8), 1414-1429. doi:10.1016/j.adhoc.2011.03.00
    • …
    corecore