8,442 research outputs found

    Quality-Aware Broadcasting Strategies for Position Estimation in VANETs

    Full text link
    The dissemination of vehicle position data all over the network is a fundamental task in Vehicular Ad Hoc Network (VANET) operations, as applications often need to know the position of other vehicles over a large area. In such cases, inter-vehicular communications should be exploited to satisfy application requirements, although congestion control mechanisms are required to minimize the packet collision probability. In this work, we face the issue of achieving accurate vehicle position estimation and prediction in a VANET scenario. State of the art solutions to the problem try to broadcast the positioning information periodically, so that vehicles can ensure that the information their neighbors have about them is never older than the inter-transmission period. However, the rate of decay of the information is not deterministic in complex urban scenarios: the movements and maneuvers of vehicles can often be erratic and unpredictable, making old positioning information inaccurate or downright misleading. To address this problem, we propose to use the Quality of Information (QoI) as the decision factor for broadcasting. We implement a threshold-based strategy to distribute position information whenever the positioning error passes a reference value, thereby shifting the objective of the network to limiting the actual positioning error and guaranteeing quality across the VANET. The threshold-based strategy can reduce the network load by avoiding the transmission of redundant messages, as well as improving the overall positioning accuracy by more than 20% in realistic urban scenarios.Comment: 8 pages, 7 figures, 2 tables, accepted for presentation at European Wireless 201

    A novel Big Data analytics and intelligent technique to predict driver's intent

    Get PDF
    Modern age offers a great potential for automatically predicting the driver's intent through the increasing miniaturization of computing technologies, rapid advancements in communication technologies and continuous connectivity of heterogeneous smart objects. Inside the cabin and engine of modern cars, dedicated computer systems need to possess the ability to exploit the wealth of information generated by heterogeneous data sources with different contextual and conceptual representations. Processing and utilizing this diverse and voluminous data, involves many challenges concerning the design of the computational technique used to perform this task. In this paper, we investigate the various data sources available in the car and the surrounding environment, which can be utilized as inputs in order to predict driver's intent and behavior. As part of investigating these potential data sources, we conducted experiments on e-calendars for a large number of employees, and have reviewed a number of available geo referencing systems. Through the results of a statistical analysis and by computing location recognition accuracy results, we explored in detail the potential utilization of calendar location data to detect the driver's intentions. In order to exploit the numerous diverse data inputs available in modern vehicles, we investigate the suitability of different Computational Intelligence (CI) techniques, and propose a novel fuzzy computational modelling methodology. Finally, we outline the impact of applying advanced CI and Big Data analytics techniques in modern vehicles on the driver and society in general, and discuss ethical and legal issues arising from the deployment of intelligent self-learning cars

    Intrusion Detection System for Platooning Connected Autonomous Vehicles

    Get PDF
    The deployment of Connected Autonomous Vehicles (CAVs) in Vehicular Ad Hoc Networks (VANETs) requires secure wireless communication in order to ensure reliable connectivity and safety. However, this wireless communication is vulnerable to a variety of cyber atacks such as spoofing or jamming attacks. In this paper, we describe an Intrusion Detection System (IDS) based on Machine Learning (ML) techniques designed to detect both spoofing and jamming attacks in a CAV environment. The IDS would reduce the risk of traffic disruption and accident caused as a result of cyber-attacks. The detection engine of the presented IDS is based on the ML algorithms Random Forest (RF), k-Nearest Neighbour (k-NN) and One-Class Support Vector Machine (OCSVM), as well as data fusion techniques in a cross-layer approach. To the best of the authors’ knowledge, the proposed IDS is the first in literature that uses a cross-layer approach to detect both spoofing and jamming attacks against the communication of connected vehicles platooning. The evaluation results of the implemented IDS present a high accuracy of over 90% using training datasets containing both known and unknown attacks

    An intelligent framework and prototype for autonomous maintenance planning in the rail industry

    Get PDF
    This paper details the development of the AUTONOM project, a project that aims to provide an enterprise system tailored to the planning needs of the rail industry. AUTONOM extends research in novel sensing, scheduling, and decision-making strategies customised for the automated planning of maintenance activities within the rail industry. This paper sets out a framework and software prototype and details the current progress of the project. In the continuation of the AUTONOM project it is anticipated that the combination of techniques brought together in this work will be capable of addressing a wider range of problem types, offered by Network rail and organisations in different industries

    Managed information gathering and fusion for transient transport problems

    Get PDF
    This paper deals with vehicular traffic management by communication technologies from Traffic Control Center point of view in road networks. The global goal is to manage the urban traffic by road traffic operations, controlling and interventional possibilities in order to minimize the traffic delays and stops and to improve traffic safety on the roads. This paper focuses on transient transport, when the controlling management is crucial. The aim was to detect the beginning time of the transient traffic on the roads, to gather the most appropriate data and to get reliable information for interventional suggestions. More reliable information can be created by information fusion, several fusion techniques are expounded in this paper. A half-automatic solution with Decision Support System has been developed to help with engineers in suggestions of interventions based on real time traffic data. The information fusion has benefits for Decision Support System: the complementary sensors may fill the gaps of one another, the system is able to detect the changing of the percentage of different vehicle types in traffic. An example of detection and interventional suggestion about transient traffic on transport networks of a little town is presented at the end of the paper. The novelty of this paper is the gathering of information - triggered by the state changing from stationer to transient - from ad hoc channels and combining them with information from developed regular channels. --information gathering,information fusion,Kalman filter,transient traffic,Decision Support System
    • …
    corecore