373 research outputs found

    Multiscale Method for Elastic Wave Propagation in the Heterogeneous, Anisotropic Media

    Get PDF
    Seismic wave simulation in realistic Earth media with full wavefield methods is a fundamental task in geophysical studies. Conventional approaches such as the finite-difference method and the finite-element method solve the wave equation in geological models represented with discrete grids and elements. When the Earth model includes complex heterogeneities at multiple spatial scales, the simulation requires fine discretization and therefore a system with many degrees of freedom, which often exceeds current computational abilities. In this dissertation, I address this problem by proposing new multiscale methods for simulating elastic wave propagation based on previously developed algorithms for solving the elliptic partial differential equations and the acoustic wave equation. The fundamental motivation for developing the multiscale method is that it can solve the wave equation on a coarsely discretized mesh by incorporating the effects of fine-scale medium properties using so-called multiscale basis functions. This can greatly reduce computation time and degrees of freedom compared with conventional methods. I first derive a numerical homogenization method for arbitrarily heterogeneous, anisotropic media that utilizes the multiscale basis functions determined from a local linear elasticity equation to compute effective, anisotropic properties, and these equivalent elastic medium parameters can be used directly in existing elastic modeling algorithms. Then I extend the approach by constructing multiple basis functions using two types of appropriately defined local spectral linear elasticity problems. Given the eigenfunctions determined from local spectral problems, I develop a generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media in both continuous Galerkin (CG) and discontinuous Galerkin (DG) formulations. The advantage of the multiscale basis functions is they are model-dependent, unlike the predefined polynomial basis functions applied in conventional finite-element methods. For this reason, the GMsFEM can effectively capture the influence of fine-scale variation of the media. I present results for several numerical experiments to verify the effectiveness of both the numerical homogenization method and GMsFEM. These tests show that the effectiveness of the multiscale method relies on the appropriate choice of boundary conditions that are applied for the local problem in numerical homogenization method and on the selection of basis functions from a large set of eigenfunctions contained in local spectral problems in GMsFEM. I develop methods for solving both these problems, and the results confirm that the multiscale method can be powerful tool for providing accurate full wavefield solutions in heterogeneous, anisotropic media, yet with reduced computation time and degrees of freedom compared with conventional full wavefield modeling methods. Specially, I applied the DG-GMsFEM to the Marmousi-2 elastic model, and find that DG-GMsFEM can greatly reduce the computation time compared with continuous Galerkin (CG) FEM

    Numerical modeling of elastic wave in frequency-domain by using staggered grid fourth-order finite-difference scheme

    Get PDF
     Simulation of elastic wave propagation is an important method for oil and gas exploration. Accuracy and efficiency of elastic wave simulation in complex geological environment are always the focus issue. In order to improve the accuracy and efficient in numerical modeling of elastic modeling, a staggered grid fourth-order finite-difference scheme of modeling elastic wave in frequency-domain is developed, which can provide stable numerical solution with fewer number of grid points per wavelength. The method is implemented on first-order velocity-stress equation and a parsimonious spatial staggered-grid with fourth-order approximation of the first-order derivative operator. Numerical tests show that the accuracy of the fourth-order staggered-grid stencil is superior to that of the mixed-grid and other conventional finite difference stencils, especially in terms of shear-wave phase velocity. Measures of mass averaging acceleration and optimization of finite difference coefficients are taken to improve the accuracy of numerical results. Meanwhile, the numerical accuracy of the finite difference scheme can be further improved by enlarging the mass averaging area at the price of expanding the bandwidth of the impedance matrix that results in the reduction of the number of grid points to 3 per shear wavelength and computer storage requirement in simulation of practical models. In our scheme, the phase velocities of compressional and shear wave are insensitive to Poisson's ratio that does not occur to conventional finite difference scheme in most cases, and also the elastic wave modeling can degenerate to acoustic case automatically when the medium is pure fluid or gas. Furthermore, the staggered grid scheme developed in this study is suitable for modeling waves propagating in media with coupling fluid-solid interfaces that are not resolved very well for previous finite difference method.Cited as: Ma, C., Gao, Y., Lu, C. Numerical modeling of elastic wave in frequency-domain by using staggered grid fourth-order fifinite-difference scheme. Advances in Geo-Energy Research, 2019, 3(4): 410-423, doi: 10.26804/ager.2019.04.0

    A Rotating-Grid Upwind Fast Sweeping Scheme for a Class of Hamilton-Jacobi Equations

    Full text link
    We present a fast sweeping method for a class of Hamilton-Jacobi equations that arise from time-independent problems in optimal control theory. The basic method in two dimensions uses a four point stencil and is extremely simple to implement. We test our basic method against Eikonal equations in different norms, and then suggest a general method for rotating the grid and using additional approximations to the derivatives in different directions in order to more accurately capture characteristic flow. We display the utility of our method by applying it to relevant problems from engineering

    Modelling Seismic Wave Propagation for Geophysical Imaging

    Get PDF
    International audienceThe Earth is an heterogeneous complex media from the mineral composition scale (10−6m) to the global scale ( 106m). The reconstruction of its structure is a quite challenging problem because sampling methodologies are mainly indirect as potential methods (Günther et al., 2006; Rücker et al., 2006), diffusive methods (Cognon, 1971; Druskin & Knizhnerman, 1988; Goldman & Stover, 1983; Hohmann, 1988; Kuo & Cho, 1980; Oristaglio & Hohmann, 1984) or propagation methods (Alterman & Karal, 1968; Bolt & Smith, 1976; Dablain, 1986; Kelly et al., 1976; Levander, 1988; Marfurt, 1984; Virieux, 1986). Seismic waves belong to the last category. We shall concentrate in this chapter on the forward problem which will be at the heart of any inverse problem for imaging the Earth. The forward problem is dedicated to the estimation of seismic wavefields when one knows the medium properties while the inverse problem is devoted to the estimation of medium properties from recorded seismic wavefields

    Effects of seismic anisotropy and attenuation on first-arrival waveforms recorded at the Asse II nuclear repository

    Get PDF
    For decades, deep geological storage in former salt mines has been a widely recognized strategy for long-term radioactive waste disposal. However, in the case of the Asse II repository in Lower Saxony, groundwater inflow and instabilities in the geological structures rendered the mine unusable as a long-term solution. The nuclear waste needs to be recovered on grounds of safety reasons, hence the need for detailed structural information in order to build a new shaft. In this context, it is essential to use optimized, modern seismic imaging methods, such as, for instance, full-waveform inversion (FWI), to obtain high-resolution, physical parameter models of the Asse salt structure and its surroundings. The goal of this thesis is to draw conclusions on the future application of elastic FWI using first-arrival waveforms at frequencies up to 20 Hz, potentially including anisotropy and attenuation. For this purpose, simple parameter models were created based on previously known geological information and used as references for synthetic forward modeling tests. The objectives were (a) to see if the models are suitable as initial models for FWI, (b) to assess what type of anisotropy needs to be considered, if at all, and (c) to investigate the significance of attenuation. To facilitate the numerical tests, the mathematics of viscoelastic anisotropic wave propagation was studied and a new 2D finite-difference (FD) anisotropic forward solver was implemented. A detailed comparison of wavefield snapshots and seismograms was conducted between isotropic, vertical-transverse isotropic (VTI), and tilted-transverse isotropic (TTI), as well as elastic and viscoelastic modeling. The results demonstrate that, in general, the models are likely to meet the prerequisites for the successful application of first-arrival FWI up to frequencies of about 20 Hz. While attenuation turned out to be only a minor factor, it is, however, essential to incorporate anisotropy. As the Asse salt structure is complex and steeply dipping, TTI modeling is the preferred way to correctly map the subsurface in high resolution and match first-arrival traveltimes. Furthermore, a comparison with field data acquired over the Asse hill shows that many features present in that data can already be explained using the current approach

    Fast Forward and Inverse Wave Propagation for Tomographic Imaging of Defects in Solids

    Get PDF
    abstract: Aging-related damage and failure in structures, such as fatigue cracking, corrosion, and delamination, are critical for structural integrity. Most engineering structures have embedded defects such as voids, cracks, inclusions from manufacturing. The properties and locations of embedded defects are generally unknown and hard to detect in complex engineering structures. Therefore, early detection of damage is beneficial for prognosis and risk management of aging infrastructure system. Non-destructive testing (NDT) and structural health monitoring (SHM) are widely used for this purpose. Different types of NDT techniques have been proposed for the damage detection, such as optical image, ultrasound wave, thermography, eddy current, and microwave. The focus in this study is on the wave-based detection method, which is grouped into two major categories: feature-based damage detection and model-assisted damage detection. Both damage detection approaches have their own pros and cons. Feature-based damage detection is usually very fast and doesn’t involve in the solution of the physical model. The key idea is the dimension reduction of signals to achieve efficient damage detection. The disadvantage is that the loss of information due to the feature extraction can induce significant uncertainties and reduces the resolution. The resolution of the feature-based approach highly depends on the sensing path density. Model-assisted damage detection is on the opposite side. Model-assisted damage detection has the ability for high resolution imaging with limited number of sensing paths since the entire signal histories are used for damage identification. Model-based methods are time-consuming due to the requirement for the inverse wave propagation solution, which is especially true for the large 3D structures. The motivation of the proposed method is to develop efficient and accurate model-based damage imaging technique with limited data. The special focus is on the efficiency of the damage imaging algorithm as it is the major bottleneck of the model-assisted approach. The computational efficiency is achieved by two complimentary components. First, a fast forward wave propagation solver is developed, which is verified with the classical Finite Element(FEM) solution and the speed is 10-20 times faster. Next, efficient inverse wave propagation algorithms is proposed. Classical gradient-based optimization algorithms usually require finite difference method for gradient calculation, which is prohibitively expensive for large degree of freedoms. An adjoint method-based optimization algorithms is proposed, which avoids the repetitive finite difference calculations for every imaging variables. Thus, superior computational efficiency can be achieved by combining these two methods together for the damage imaging. A coupled Piezoelectric (PZT) damage imaging model is proposed to include the interaction between PZT and host structure. Following the formulation of the framework, experimental validation is performed on isotropic and anisotropic material with defects such as cracks, delamination, and voids. The results show that the proposed method can detect and reconstruct multiple damage simultaneously and efficiently, which is promising to be applied to complex large-scale engineering structures.Dissertation/ThesisDoctoral Dissertation Mechanical Engineering 201

    Poroelastic Modelling of Wavefields in Heterogeneous Media. Poroelastische Modellierung von Wellenfeldern in Heterogenen Medien

    Get PDF
    Numerical modelling of seismic waves in heterogeneous, porous reservoir rocks is an important tool in the field of reservoir engineering. A new 2-D velocity-stress finite-differences scheme is presented that allows to simulate waves and coupled diffusion processes within poroelastic media as described by Biot theory. The presented numerical methods allow to further develop rock physics theories of wave-induced fluid flow and contribute to the interpretation of new laboratory experiments

    Alternating direction implicit time integrations for finite difference acoustic wave propagation: Parallelization and convergence

    Full text link
    This work studies the parallelization and empirical convergence of two finite difference acoustic wave propagation methods on 2-D rectangular grids, that use the same alternating direction implicit (ADI) time integration. This ADI integration is based on a second-order implicit Crank-Nicolson temporal discretization that is factored out by a Peaceman-Rachford decomposition of the time and space equation terms. In space, these methods highly diverge and apply different fourth-order accurate differentiation techniques. The first method uses compact finite differences (CFD) on nodal meshes that requires solving tridiagonal linear systems along each grid line, while the second one employs staggered-grid mimetic finite differences (MFD). For each method, we implement three parallel versions: (i) a multithreaded code in Octave, (ii) a C++ code that exploits OpenMP loop parallelization, and (iii) a CUDA kernel for a NVIDIA GTX 960 Maxwell card. In these implementations, the main source of parallelism is the simultaneous ADI updating of each wave field matrix, either column-wise or row-wise, according to the differentiation direction. In our numerical applications, the highest performances are displayed by the CFD and MFD CUDA codes that achieve speedups of 7.21x and 15.81x, respectively, relative to their C++ sequential counterparts with optimal compilation flags. Our test cases also allow to assess the numerical convergence and accuracy of both methods. In a problem with exact harmonic solution, both methods exhibit convergence rates close to 4 and the MDF accuracy is practically higher. Alternatively, both convergences decay to second order on smooth problems with severe gradients at boundaries, and the MDF rates degrade in highly-resolved grids leading to larger inaccuracies. This transition of empirical convergences agrees with the nominal truncation errors in space and time.Comment: 20 pages, 5 figure
    • …
    corecore