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Abstract

Numerical modelling of seismic waves in heterogeneous, porous reservoir rocks is

an important tool for the interpretation of seismic surveys in reservoir engineer-

ing. Computer simulations allow the assessment of seismic scattering estimates

in heterogeneous environments as well as acoustic attenuation caused by wave-

induced flow of pore fluids. Furthermore, there are various theoretical studies

that derive effective elastic moduli and seismic attributes from complex rock

properties, involving patchy saturation and fractured media. In order to confirm

and further develop rock physics theories for reservoir rocks, accurate numerical

modelling tools are required.

In this thesis, a 2-D velocity-stress finite-differences (FD) scheme is presented

that allows to simulate waves within poroelastic media as described by Biot the-

ory. The scheme is second-order in time, contains higher-order spatial derivative

operators and is parallelised using the domain decomposition technique. Nu-

merical stability and dispersion relations of explicit poroelastic FD methods are

reviewed and these relations are exemplified by a series of numerical tests that

are compared to exact analytical solutions. The focus of several numerical ap-

plications is on accurate modelling of scattering and wave-induced flow in the

vicinity of mesoscopic heterogeneities such as cracks and gas inclusions. In or-

der to extract seismic attenuation and dispersion from quasistatic experiments,

the FD experiments are complemented by numerical experiments based on the

finite-element method.

The results confirm that finite-difference and finite-element modelling are

valuable tools to simulate wave propagation and coupled diffusion in heteroge-

neous poroelastic media, provided that the temporal and spatial scales not only

of the propagating waves but also of the induced fluid diffusion processes are

resolved properly.
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Zusammenfassung

Die numerische Modellierung von seismischen Wellen in porösen Reservoirgestei-

nen ist ein wichtiges Werkzeug für die Interpretation von seismischen Daten und

von gesteinsphysikalischen Labormessungen. Mit Hilfe von Computerberechnun-

gen lassen sich für komplexe, heterogene Gesteine die seismische Streudämpfung

ebenso ermitteln wie Abschätzungen der akustischen Dämpfung infolge von wel-

leninduzierten Fluidbewegungen. Zudem gibt es eine Vielzahl an theoretischen

Modellen, die effektive elastische Eigenschaften und seismische Attribute hete-

rogener Gesteine quantifizieren, beispielsweise im Falle von teilsaturierten oder

geklüfteten Medien. Um theoretischen Modelle zu überprüfen, weiterzuentwickeln

und um die Grenzen ihrer Anwendbarkeit zu untersuchen, sind genaue Compu-

termodelle notwendig.

Ziel und Motivation dieser Arbeit ist es, einen Überblick zu geben über theo-

retische, gesteinsphysikalische Modelle, die die Wellenausbreitung in porösen Me-

dien beschreiben. Zudem wird ein neues 2-D Finite-Differenzen-Verfahren (FD)

entwickelt, das die Simulation der Wellenausbreitung in poroelastischen Medi-

en ermöglicht. Dem Verfahren liegt die Biot-Theorie zu Grunde, die neben der

Wellenausbreitung auch quasistatische Konsolidierungsprozesse beschreibt. Diese

stehen in engem Zusammenhang mit der Dispersion und Dämpfung seismischer

Wellen infolge von mesoskopischen Prozessen an internen Heterogenitäten, etwa

Klüften oder Gaseinschlüssen. Für solche quasistatischen Prozesse werden die FD

Berechnungen durch numerische Experimente ergänzt, die auf der Methode der

Finiten Elemente (FE) basieren.

Einleitung

Reservoirgesteine sind poröse Medien, die aus einem Korngerüst mit fluidgefüllten

Porenräumen bestehen. Ihre gesteinsphysikalischen Eigenschaften ergeben sich

folglich aus der Eigenschaften des Porenfluides und der Gesteinskörner, sowie de-

ren Anordnung auf Porenskala. Diese sogenannte Mikrostruktur wird üblicherwei-

se mit Hilfe von petrologischen Parameter wie der Porosität φ, der Permeabilität

κ oder der Porenraumtortuosität ν charakterisiert. Neben mikroskaligen Hetero-
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genitäten weisen Gesteinsformationen jedoch auch großräumige Strukturen auf,

die etwa als Schichtgrenzen in seismischen Messungen sichtbar werden. Struktu-

ren, die von seismischen Wellen aufgelöst werden, bezeichnet man als makroskalig.

Eine dritte Skala, die Mesoskala, umfasst hingegen all jene Strukturen, die zwar

kleiner sind als die seismische Wellenlänge, jedoch deutlich größer als die Po-

renraumskala. Der Umstand, dass verschiedene geophysikalische Effekte auf allen

beschriebenen Skalen stattfinden, erklärt die Komplexität des Materialverhaltens

von Reservoirgesteinen.

Für die Dispersion und Dämpfung seismischer Wellen im Frequenzbereich

von 10 bis 100Hz sind besonders die Wellenstreuung an Mediumsheterogenitäten

relevant, sowie mikro- und mesoskopische Porenfluidströmungen, welche durch

die einfallenden Wellen induziert werden können. Letztere führen durch viskose

Reibung zwischen Porenfluid und Korngerüst zur Energiedissipation und damit

zu einer charakteristischen Wellendämpfung, die in Feldmessungen beobachtbar

ist.

Bei akustischen Labormessungen im Ultraschallbereich (>20kHz) bestimmen

neben der viskosen Reibung auch Trägheitseffekte die Porenfluidströmungen, so

dass in porösen Medien neben den für elastischen Materialien bekannten Kom-

pressions- und Scherwellen eine zweite, langsame Kompressionswelle auftreten

kann. Diese von Biot (1956a) theoretisch vorausgesagte langsame Wellenmode

wurde von Plona (1980) anhand von Ultraschallmessungen in einem künstlichen

porösen Material hoher Porosität experimentell bestätigt. Aktuellere Forschung

im Bereich der experimentellen Gesteinsphysik widmet sich zunehmend der Quan-

tifizierung von mesoskopischen Effekten, wobei neben Ultraschallmessungen auch

bildgebende Verfahren der Computertomografie Anwendung finden. Dabei mo-

tivieren die immer detaillierteren Laborergebnisse neben der Weiterentwicklung

von theoretischen Erklärungsmodellen auch den stärkeren Einsatz numerischer

Verfahren zur Simulation und Interpretation der im Labor gemessenen Daten.

Mathematische Modelle der Wellenausbreitung

in porösen Medien

Die erste vollständige Theorie der dynamischen Poroelastizität wurde von Mau-

rice Biot (1956a,b) entwickelt. Sie beschreibt die Wellenausbreitung elastischer

Wellen in porösen Medien in der Form von zwei gekoppelten Wellengleichungen

ρbü + ρfẅ = ∇[(λu + µ)∇.u + αM ∇.w] + µ∇2u , (1)

ρf ü + Y ∗ ẇ = ∇[αM ∇.u +M ∇.w] (2)

für die zwei Verschiebungsfelder u und w. Hierbei bezeichnen ρb und ρf die

Gesamt- bzw. die Fluiddichte, λu, µ, α und M sind poroelastische Materialpa-
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rameter. Reibungseffekte zwischen Fluid und Matrix werden durch den viskody-

namischen Operator Y erfasst. Fundamentallösungen der Biot-Gleichungen sind

drei ebene Wellenmoden, von denen zwei den aus der Elastomechanik bekann-

ten Kompressions- und Scherwellen entsprechen. In porösen Medien sind diese

Wellen leicht dispersiv mit einer charakteristischen Übergangsfrequenz ωB, der

Biot-Frequenz. Diese liegt typischerweise im Bereich von 100kHz bis 1MHz, so

dass der Dispersionseffekt bei seismischen Messungen nicht in Erscheinung tritt.

Die dritte Wellenmode, langsame Kompressionswelle oder PII-Welle genannt,

ist im seismischen Frequenzbereich sehr stark gedämpft und verhält sich praktisch

rein diffusiv. Mithilfe der quasistatischen Approximation lässt sich die langsame

P -Welle daher näherungsweise als Diffusionswelle beschreiben. Erst bei hohen

Frequenzen im Bereich der Biot-Frequenz zeigt sie den Charakter einer propagie-

renden Welle.

Obwohl das Verhalten homogener poroelastischer Medien gut verstanden ist,

ist der Einfluss von Heterogenitäten auf das effektive Materialverhalten aktuell

Gegenstand intensiver gesteinsphysikalischer Forschung. Dabei besteht ein be-

sonderes Interesse an der mechanischen Beschreibung teilsaturierter und/oder

geklüfteter Gesteine. Zu den klassischen Ansätzen zählt z. B. das Modell von

White et al. (1975), mit dem der Einfluss von Gasinklusionen definierter Geome-

trie (Kugel, Schicht) auf die Dispersion und Dämpfung von seismischen Wellen be-

schrieben wird. In neueren Modellen wird hingegen die Heterogenität des Medium

nicht durch eine bestimmte Geometrie charakterisiert, sondern durch eine statisti-

sche Verteilungsfunktion der Materialparamter (Gurevich and Lopatnikov, 1995;

Müller and Gurevich, 2005a). Die effektive Wellenzahl des heterogenen Mediums

wird dabei durch die Methode der statistischen Glättung (engl. method of statis-

tical smoothing) der zufallsverteilten Materialparameter gewonnen.

Ein neuer Aspekt, der in dieser Arbeit behandelt wird, ist die Anwendung zu-

fallsbasierter Modelle auf den Fall der von Kármán Verteilungsfunktion. Mit dem

Modell lassen sich teilsaturierte Medien beschreiben, deren Fluidphasen fraktal

verteilt sind.

Numerische Methoden

Falls ein poroelastisches Problem analytisch nicht lösbar ist, so kann mit Hilfe nu-

merischer Verfahren eine Näherungslösung bestimmt werden. Im Kontext dieser

Arbeit werden zwei Verfahren verwendet: das Finite-Differenzen-Verfahren zur

Lösung der dynamischen Biot-Gleichungen sowie die Methode der Finiten Ele-

mente für rein quasistatische Fragestellungen. Der Schwerpunkt liegt dabei auf

dem FD Verfahren, da es im Rahmen dieser Arbeit entwickelt wurde, während für

die FE Berechnungen das kommerzielle Softwarepaket Abaqus verwendet wird.
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Zur Entwicklung des FD Verfahrens werden zunächst die gekoppelten Wel-

lengleichungen 1 und 2 in Form von vier Entwicklungsgleichungen erster Ord-

nung formuliert, wobei die verwendeten Feldgrößen die Partikelgeschwindigkeit

des porösen Mediums, die Filtrationsgeschwindigkeit des Porenfluides, der Ge-

samtspannungstensor sowie der Porendruck sind. Die zeitliche Diskretisierung er-

folgt durch das Ersetzen der zeitlichen Ableitungsoperatoren durch zentrale finite

Differenzen. Durch zeitliche Staffelung der Diskretisierung von Geschwindigkei-

ten und Spannungen wird ein Verfahrensfehler zweiter Ordnung erreicht. Analog

zur zeitlichen Diskretisierung erfolgt auch die räumliche Diskretisierung mit Hil-

fe zentraler FD-Operatoren. Dabei kommen räumliche Operatoren höherer Ord-

nung zum Einsatz, wahlweise in klassischer Form oder auf einem gedrehten Git-

ter (Saenger et al., 2000). Da ein expliziter Zeitschrittoperator verwendet wird,

liefert das poroelastischen FD-Verfahren nur unter der Bedingung eines ausrei-

chend kleinen Zeitschrittes stabile Ergebnisse, wobei die Stabilitätseigenschaften

vergleichbar sind mit denen konventioneller Verfahren für elastische Wellenaus-

breitung. Allerdings muss, um stabile Ergebnisse zu erhalten, als zusätzliche Be-

dingung ν/φ > ρf/ρb gewährleistet sein. Für die Berechnung großer Modelle ist es

schließlich vorteilhaft, das FD-Verfahren parallel auf einem Großrechner durchzu-

führen, was durch die Technik der Gebietszerlegung (engl. domain decomposition)

erreicht wird.

In einem zweiten Abschnitt dieses Kapitels über numerische Methoden wird

eine Übersicht über die Methode der Finiten Elemente für poroelastische Frage-

stellungen gegeben. Im Unterschied zum FD-Verfahren werden hierfür nicht die

Differenzialoperatoren diskretisiert sondern der zu Grunde liegende Lösungsraum.

Dieser wird bei der FE Methode durch Polynom-Ansatzfunktionen mit örtlich be-

grenztem Träger dargestellt. Durch Multiplikation mit den Ansatzfunktionen und

Integration über den Lösungsraum gehen die Grundgleichungen in ein lineares al-

gebraisches System über, das mit Hilfe eines Gradientenabstiegsverfahren gelöst

wird. Zu beachten ist, dass die Implementation des Abaqus FE Programms le-

diglich die quasistatischen Biot-Gleichungen löst und somit dynamische Effekte

wie Wellenausbreitung nicht modelliert werden können.

Genauigkeits- und Skalierungstests

Ein entscheidender Aspekt bei der Berechnung der Wellenausbreitung mit dem

FD-Verfahren ist die Genauigkeit der numerischen Näherungslösung. Durch den

Vergleich von numerischen Ergebnissen mit exakten, analytischen Lösungen kann

die Genauigkeit des FD-Verfahrens untersucht werden, was Gegenstand dieses

Kapitels ist.

Ebenso wie bei Modellierung elastischer Wellen ist es im poroelastischen Fall



vii

notwendig, die Wellenlängen zeitlich und räumlich ausreichend genau aufzulösen,

um den numerische Dispersionsfehler zu begrenzen. Dabei ist die langsamste Wel-

lenmode entscheidend, d. h. es muss die Diffusionswellenlänge aufgelöst werden,

um genaue Ergebnisse zu erzielen. Der Umstand, dass bei Frequenzen weit un-

terhalb der Biot-Frequenz die Skala des Diffusionsprozesses weitaus kleiner ist als

die die Wellenlänge der schnellen Kompressionswelle, wird als numerische Stei-

figkeit (engl. numerical stiffness) bezeichnet. Diese führt insbesondere bei der

Berechnung von poroelastischen Wellen im seismischen Frequenzbereich zu er-

heblichem Rechenaufwand, was anhand des Beispiels einer Reflektion von einer

poroelastischen Grenzfläche gezeigt wird.

Ferner behandelt dieses Kapitel auch die konsistente Modellierung von freien

Fluiden im Rahmen der Poroelastizitätstheorie sowie einen Test zur Bestimmung

der Skalierbarkeit des parallelen Codes. Dabei stellt sich heraus, dass die Effizienz

des Programms mit steigender Anzahl von bearbeitenden Prozessen abnimmt,

jedoch bei 64 parallelen Prozessen noch 91% der Effizienz eines seriellen Prozesses

erreicht wird.

Anwendungen

Ziel dieses Kapitels ist es, anhand numerischer Beispiele zu zeigen, wie poro-

elastische Modellierung einen Beitrag zur Lösung aktueller gesteinsphysikalischer

Forschung leisten kann. Beginnend mit FD-Experimenten der Wellenstreuung an

einfachen poroelastischen Inklusionen lässt sich die unterschiedliche Wellenkon-

version an internen Grenzflächen veranschaulichen. Es werden Ergebnisse gezeigt

für ein teilsaturiertes Medium sowie für einen elliptischen Riss. Wenn die Wellen-

länge sehr groß ist im Verhältnis zur untersuchten Inklusion, findet hauptsächlich

Konversion von schnellen Wellen zur langsamen Diffusionswelle statt, so dass

das Gesamtverhalten mit der quasistatischen Approximation beschrieben werden

kann. Dies ermöglicht die Verwendung der FE-Methode zur Durchführung von

quasistatischen Relaxationsexperimenten, mittels derer effektive Materialeigen-

schaften eines heterogenen, poroelastischen Mediums bestimmt werden können.

Falls die Geometrie des untersuchten Modells effektiv vertikal transversale Isotro-

pie (VTI) aufweist, genügen drei Experimente, um den vollständigen Tensor der

Relaxationsrate zu bestimmen. Durch Fouriertransformation erhält man ferner

den komplexen, frequenzabhängigen Elastizitätstensor, aus dem sich Dispersion

und Dämpfung aller VTI-Wellenmoden berechnet lassen. Numerische Lösungen

werden für ein geschichtetes Medium gewonnen sowie für ein 3-D Medium mit

einer elliptischen Inklusion.

In zufallsverteilten Medien mit makroskopischen Heterogenitäten findet bei

Wellen im seismischen Frequenzbereich hauptsächlich elastische Streuung statt.
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Eine Möglichkeit, diese numerisch zu quantifizieren, bieten elastische FD Pro-

pagationsexperimente. Zu diesem Zweck wird die relative Amplitudenänderung

einer ebenen Kompressionswelle entlang ihres Laufweges durch ein zufallsver-

teiltes Medium statistisch ausgewertet. Die elastische Streudämpfung ist dabei

proportional zur Varianz dieser Amplitudenänderung. Konkret wird anhand ei-

ner Serie von numerischen Experimenten ein anisotrop korreliertes Medium in

Abhängigkeit des Welleneinfallswinkels untersucht. Die Ergebnisse werden an-

schließend interpretiert auf der Grundlage von analytischen Abschätzungen der

elastischen Streudämpfung.

Im Unterschied zur rein elastischen Streuung gibt es in zufallsverteilten poro-

elastischen Medien die Möglichkeit, dass in Abhängigkeit vom Frequenzbereich,

quasistatische Dämpfung infolge welleninduzierter Fluidströmungen stattfindet

in Kombination mit poroelastische Streuung. Dieser Übergang wird anhand ei-

nes teilsaturierten Mediums untersucht, wobei die Fluidphasen zufallsverteilt sind

und einer fraktalen Verteilungsfunktion unterliegen. Abschließend zeigt ein Bei-

spiel die erfolgreiche Anwendung des FD-Verfahrens zur Simulation einer im La-

bor durchgeführten Ultraschallmessung an einem teilsaturierten Sandstein.

Schlussfolgerungen und Ausblick

Wellenstreuung und durch Wellen induzierte Porenfluidströmungen sind zwei

Hauptursachen für seismische Dämpfung in geologischen Reservoiren. In dieser

Arbeit wird ein Überblick gegeben über die mathematischen Modelle zur Be-

schreibung der genannten Effekte auf die Wellenausbreitung in porösen Gestei-

nen, wobei insbesondere auch ein neuer Ansatz vorgestellt wird, mit Hilfe dessen

welleninduzierte Strömungen in zufallsverteilten Fraktalen quantifiziert werden.

Das Hauptergebnis der vorliegenden Arbeit umfasst die Entwicklung, Imple-

mentierung und Validierung eines neuen Finite-Differenzen-Verfahrens zur Lö-

sung der dynamischen Biot-Gleichungen. Das Verfahren erlaubt die Simulation

der Wellenausbreitung in heterogenen, poroelastischen Strukturen in einem brei-

ten Frequenzbereich. Da die dynamischen Biot-Gleichungen bei niedrigen Fre-

quenzen eine hohe numerische Steifigkeit aufweisen, ergibt sich für die Simulation

seismischer Wellen ein hoher Diskretisierungsaufwand, um gleichzeitig makrosko-

pisch propagierende Wellen und kleinskalige Diffusionsprozesse aufzulösen. Zur

Untersuchung mesoskopischer Prozesse ist es daher vorteilhaft, einen quasistati-

schen Finite-Elemente-Löser zu verwenden.

Anhand mehrerer Anwendungsbeispiele wird gezeigt, dass poroelastische Mo-

dellierung einen wertvollen Beitrag leisten kann zur Untersuchung von Wellen-

ausbreitung und gekoppelten Diffusionsprozessen in heterogenen, poroelastischen

Medien.
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Chapter 1

Introduction

Seismic surveys and acoustic borehole measurements are routinely used in the

hydrocarbon exploration industry in order to obtain information about subsurface

geology. The first aim of seismic processing techniques is to construct images

of velocity and reflectivity distributions from recorded elastic wave fields. In a

second step, from the seismic data mechanical and petrophysical properties are

derived such as rock compressibility, porosity and information about the presence

or absence of fluids in the pore space. It is the domain of seismic rock physics

to establish physical relationships between these rock properties and the seismic

response (Dewar and Pickford, 2001).

In particular, the influence of pore fluids on seismic velocity and attenuation

has attracted increasing attention in the past, since wave-induced fluid flow is

considered to contribute mainly to measured signatures in porous reservoirs, e. g.

an interesting question in current rock physics research is concerned with the

estimation of permeability from seismic data. Based on the pioneering work of

Maurice A. Biot on wave propagation in porous media in the 1950’s, a large num-

ber of publications has appeared in the literature dealing with the theoretical and

experimental description of porous media acoustics. With the general availabil-

ity of computers, in the 1990s first attempts were made to solve numerically the

equations governing wave propagation and coupled flow processes and this field

of numerical rock physics is becoming more and more important for the interpre-

tation of experimental observations and for testing the validity and applicability

of new theoretical models.

It is the purpose of this thesis to present a new numerical scheme for solving

the dynamically coupled wave equations in porous media and to demonstrate

how numerical tools are successfully applied to current problems in rock physics

research.

1



2 Introduction

Figure 1.1: Pore spaces of four different natural carbonate rocks. Pho-

tographs of thin sections show an oolitic limestone (1), a sample with large

pores due to the dissolution of microfossils (2), a nummulite limestone (3)

and a totally dolomised oolitic limestone (4). From Bourbié et al. (1987).

1.1 Scales in porous media

Hydrocarbon reservoir rocks such as sandstones, shales and carbonates are porous

media with fluids filling the pore space between mineral grains. Physical proper-

ties of reservoir rocks are therefore determined by the properties of its constituents

and in as much by the distribution of porespace and grain matrix, referred to as

the rock microstructure. The sub-millimetre scale microstructure of four lime-

stones is depicted in Figure 1.1, showing the large variability of natural porespace

geometries. If for one particular rock, one had all information about the the distri-

bution of the pore space and about the properties of grains and fluid, in principle

one could infer the overall mechanical and hydraulic behaviour of the composi-

tion (Guéguen and Palciauskas, 1994). Obviously, this information is usually not

available in practice and it is convenient to describe microstructure and associate
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Figure 1.2: Scales of reservoir characterisation ranging from microscopic

grain sizes (a) via several centimetres for mesoscale heterogeneities (b) up

to seismic wavelengths that are tens of metres (c).

microscale effects using measurable quantities, among the most important are

porosity φ (the volume fraction of the pore space), hydraulic permeability κ (the

ability the conduct fluids) and overall elastic moduli of the rock matrix. Another

parameter is the pore space tortuosity ν, describing the ratio of average flow

path length inside the pore channels of a given rock sample and the total sample

dimension.

Besides the complexity of the porespace, rocks are typically heterogeneous

on various scales, as shown in Figure 1.2. The scale that is resolved by seismic

waves is that of geological layers and reservoir structures. Typically this so-called

macroscale ranges from several centimetres at 10kHz sonic logging frequency up

to tens of metres at 100Hz surface seismic records.

Finally, a third intermediate spatial scale can be defined that is due to het-

erogeneity of the porous medium properties. These so-called mesoscale hetero-

geneities are smaller than the seismic wavelength but still much larger than the

dimensions of the microscopic pore space. Actually rocks always contain to some

extent heterogeneity that is not due to the grains and porespace but to other

features such as fractures, soft inclusion, embedded thin layers or different fluids

distributed on various scales.

It is the multiscale nature of Earth materials that explains their complexity

and the high variability of their physical properties. Seismic measurements that

are carried out using a particular frequency always contain information about a

specific scale. If for example results from sonic logging are interpreted on a larger

scale, one has to take into account scaling effects that are simply not included

in the measurement. This is done by upscaling techniques. From the modelling

point of view, the reasonable and successful application of theoretical models

and numerical rock physics tools requires a good understanding of the physical

processes on the various scales.
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Figure 1.3: Classification of different attenuation mechanisms.

1.2 Seismic attenuation in fluid-saturated rocks

If an initially dry rock sample is fully saturated with water, its compressibility is

reduced while shear stiffness is practically not affected. This static effect has been

quantified by Fritz Gassmann’s work “On elasticity of porous media” (Gassmann,

1951) and is widely applied for fluid substitution calculations. Another fundamen-

tal effect is time-dependent consolidation of geomaterials under a given loading.

Terzaghi and Fröhlich (1936) found that the consolidation of clay is governed by

a diffusive pore pressure relaxation process. His results were later generalised by

Biot (1941) for the three-dimensional case. Biot further developed his theory in

order to include wave propagation effects Biot (1956a,b) and brought up the idea

that pore pressure relaxation may lead to dispersion and attenuation of seismic

waves.

Attenuation denotes all processes leading to a loss in seismic wave amplitude

except for geometrical spreading effects. In general, two classes of wave attenua-

tion can be distinguished (see Figure 1.3). On the one hand, intrinsic attenuation

is caused by non-elastic energy losses, meaning that a part of the wave energy

is transferred to heat by internal friction. Apparent attenuation, on the other

hand, occurs when the wave amplitude is reduced by the redistribution of wave-

field energy (e. g. due to elastic scattering). It is well-known that the attenuation

is a frequency-dependent effect and that it is linked to velocity dispersion by the

causality principle. An introduction to viscoelastic material behaviour and to the

quantitative description of attenuation is given in appendix A. Figure 1.4 gives an

example of a broad frequency-range measurement of seismic intrinsic attenuation

at the Imperial College test site, combining ultrasonic core measurements with
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Figure 1.4: Intrinsic P -wave attenuation 1/Q as determined by

Sams et al. (1997) on rocks at the Imperial College test site at various

depths. VSP and sonic log estimates have been corrected for scattering

attenuation. After Pride et al. (2003).

sonic logs, crosswell and VSP data (Sams et al., 1997). The measured values of

the inverse quality factor 1/Q attain 0.1 and higher for the sonic logs and more

than 0.02 for all the measurements, thus indicating that on all scales, a signif-

icant amount of energy loss is observed. In the following, mechanisms causing

attenuation of seismic waves in reservoirs are discussed in more detail.

In a homogeneous porous medium, pore pressure differences may appear be-

tween the peaks and the troughs of a propagating compressional wave. The relax-

ation associated with pressure equilibration between these extrema is the global

flow mechanism described by Biot (1956a). Since the scale of the Biot global flow

is that of the wavelength, it is a macroscopic effect. The characteristic relaxation

frequency of the process is given by

ωB =
η φ

κ νρf
, (1.1)

where η is the dynamic fluid viscosity, φ is porosity, κ the hydraulic permeability,

ν the pore space tortuosity and ρf the fluid density. Its values are typically of

the order of 100 kHz up to the MHz range and therefore, at seismic frequencies

(usually much below 1kHz) pore pressure is always unrelaxed with respect to

global flow effects and Biot attenuation is negligible. By the way, an analogy

exists between the theory of poroelasticity and thermoelasticity, where unrelaxed

processes are called adiabatic (Norris, 1992). The Biot frequency ωB will be

discussed later in more detail since it separates two regimes that are characterised
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by friction-dominated diffusive fluid flow on the one hand and inertially driven

fluid flow on the other hand, see chapter 2.

A second, very efficient attenuation mechanism occurs if a porous medium

is heterogeneous on mesoscopic scales, i. e. on scales larger than the pore scale

but still smaller than the seismic wavelength. In this case, pore pressure differ-

ences appear not only on macroscopic scales, but also locally across each internal

interface. Therefore, the relaxation may occur due to local flow effects and its

characteristic frequency depends explicitly on the scale of the heterogeneity as

ωc =
κN

η L2
. (1.2)

Here, N is a poroelastic modulus, introduced later in section 2.6 and L is a

characteristic spatial scale of the medium heterogeneity. The local flow mecha-

nism is often referred to as wave-induced fluid flow (e. g. Müller and Gurevich,

2005b). It is important to note that while the characteristic frequency ωB de-

creases with increasing permeability, the characteristic local flow frequency ωc

shows the opposite behaviour. A second remarkable point is that because of the

presence of multiscale heterogeneities in porous rocks, seismic attenuation due to

wave-induced flow affect a large frequency range and play a major role at seismic

frequencies. In this context, note the spatial scale dependence of equation 1.2.

Finally, from a modelling point of view it is important to mention that local flow

effects are completely described by the Biot theory.

An attenuation effect that is not included in Biot’s description of seismic wave

propagation, that is, however, considered to be very efficient is the squirt flow

first described by Mavko and Jizba (1991). The squirt flow is very similar to the

local flow described above, but it emphasises grain-scale heterogeneities and can

therefore be classified as a microscopic effect. Actually, reservoir rocks practically

always have microcracks, loose grain contacts or defects that are often subsumed

as soft porosity. During wave propagation, the soft pore space is squeezed and

since the fluid in the pores is viscous, this leads to energy dissipation and wave

attenuation. The frequency-dependence of the squirt flow has been quantified by

Dvorkin et al. (1995). In their model, the characteristic frequency depends on

microscopic crack scale R and its aperture h such that according to Pride et al.

(2003) one can write

ωsquirt =
β Kf

η
, (1.3)

where Kf denote the fluid bulk modulus and β = (h/R)2. Interestingly, ωsquirt

depends on the fluid viscosity η but not on the permeability κ, unlike in the

case of local flow. The reason for this is that squirt relaxation process occurs on

lengthscales not exceeding the grain size. The characteristic squirt-flow length
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Figure 1.5: Comparison of characteristic relaxation frequencies as pre-

dicted by rock physics theories for typical rock and fluid parameters. Ar-

rows show the direction of change as the labeled parameter increases.

Adapted from Mavko et al. (1998).

is an additional parameter that is not related to material properties appearing

in the theoretical Biot model. In subsequent chapters, the squirt flow effect will

not be considered, but the focus will be on global and local flow effects that are

directly described by the Biot theory.

Figure 1.5 gives an overview of the frequency ranges on which the previously

discussed relaxation processes may occur. As can be seen from this figure, the

Biot global flow occurs typically at ultrasonic frequencies, while squirt flow and

wave-induced local flow may very well affect the seismic frequency range. Typ-

ical frequencies where wave scattering occurs are shown in Figure 1.5, as well.

Scattering and the corresponding apparent attenuation is briefly discussed.

In contrast to the aforementioned intrinsic attenuation mechanisms, the scat-

tering of seismic waves in an elastic medium is not based on absorption but on

the redistribution of wavefield energy. It is therefore called apparent attenuation.

The scattering of seismic waves is most efficient when the seismic wavelength λ

approximately equals the characteristic size of the elastic scatterer, a, and the

effects of scattering become increasingly important with increasing propagation

distance L. According to Aki and Richards (1980), scattering phenomena can be

classified using the dimensionless quantities ka and kL, where k = 2π/λ is the

wavenumber. An overview of the different scattering regimes is given in Figure

1.6. If ka is very small, the wavelength is much larger than the scale of the hetero-
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Figure 1.6: Scattering regimes classified by the products of wavenumber

k, and characteristic scale a or propagation path L, respectively. From

Mavko et al. (1998).

geneities and the medium behaves like an effective homogeneous medium where

scattering is negligible. The effective medium theory requires that the fractional

energy loss ∆E/E is small, as well. On the other hand, if ka is large, the wave

propagates through a piecewise homogeneous medium. A critical frequency for

scattering processes is given by ka = 1 or alternatively

ωs =
c

a
=

√

H/ρ

a
, (1.4)

where H is the elastic modulus and ρ the density. The wave parameter D defined

as

D =
2L

ka2
(1.5)

is another dimensionless number parameter characterising the scattering regime.

It is used as indicator whether diffraction has a significant impact on the scat-

tered wavefield. For D < 1 wave diffraction is small and ray theory can be applied

for the wavefield description. The diffraction regime D > 1 is then furthermore

subdivided into the weak and strong scattering regimes, depending on whether

forward scattering is dominant (weak) or multiple scattering occurs (strong). De-

pending on the scattering regime, different theoretical wavefield approximations

are available (Wu and Aki, 1988; Sato and Fehler, 1998; O’Doherty and Anstey,
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1971; Shapiro and Hubral, 1999; Müller and Shapiro, 2001). A more detailed de-

scription of weak wave scattering in random elastic media is given in section 5.3

together with a corresponding numerical experiment.

1.3 Experimental laboratory results

One of the main results of Biot theory is the existence of a second compressional

wave mode – the slow P -wave – in porous media. To put it simply, this slow

wave mode is associated with an out-of-phase movement of the fluid and the

solid phases, while fluid and solid move in phase during fast P -wave propagation.

This theoretically predicted wave mode has been first experimentally observed by

Plona (1980), who carried out ultrasonic laboratory measurements on a synthetic

highly-porous medium consisting of sintered glass beads.

Synthetic samples with 7–28.3% porosity were placed into water and signals

were recorded after transmission through the samples (see Figure 1.7). Plona

was able to directly identify the slow P -wave, reporting propagation velocities

around 1000 m/s. Seismograms of recorded signals for varying angle of incidence

θ are shown in Figure 1.8. For normal incidence (θ = 0◦, Figure 1.8a), no P -to-S-

conversion occurs and only fast and slow P -waves and multiples are recorded. For

non-normal incidence, an additional converted S-wave is observed. If the angle

of incidence exceeds the critical angles of fast P - and S-waves (θ > θS
c , Figure

1.8d), the seismogram is dominated by the signal of the converted slow P -wave.

In natural rocks, the slow P -wave has not been directly observed due to

their low porosity and strong microscale heterogeneities. This leads to a strong

attenuation of the slow P -wave and makes its direct detection impossible. There

is, however, indirect evidence for the existence of the effects caused by the Biot

slow P -wave. It can be shown that at frequencies below the critical Biot frequency

ωB, the slow P -wave describes a diffusion process, that influences the attenuation

and dispersion behaviour of porous rocks.

As an example, Figure 1.9 shows attenuation measurements of a partially

saturated sandstone (Murphy, 1982). Murphy applied a resonant bar technique

to obtain the frequency-dependence of partial saturation. While attenuation of

the dry sample is very low, maximum measured P -wave attenuation is as high

as 1/Q = 0.1 for 90-92% water saturation. The attenuation of shear waves is

lower and attains 0.075. The saturation-dependence of acoustic attenuation can

be explained by the effects of wave-induced local flow as described in the previous

section 1.2.

For a better understanding of fluid-related attenuation and other seismic sig-

natures the scales of the underlying process have to be analysed in more detail.

Therefore, in recent years, an increasing effort has been made to investigate the
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Figure 1.7: Sketch of the

experimental setup of Plona.

Ultrasonic wave refraction at

different interfaces (a) and

an overview of compressional

wave mode multiples occur-

ring at normal incidence (b).

After Bourbié et al. (1987).

Figure 1.8: Seismograms

proving the existence of the

second slow compressional

wave mode observed by

Plona (1980). Signals are

recorded at different angles of

incidence θ, i. e. at

(a) θ = 0◦,

(b) 0◦ < θ < θP1
c ,

(c) θP1
c < θ < θS

c , and

(d) θS
c < θ < 90◦ .
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Figure 1.9: Frequency-dependent attenuation measurements in partially

saturated sandstone conducted by Murphy (1982).

meso- and microstructure of various rock samples in the laboratory. For that

purpose, modern x-ray computer tomography (CT) is applied to estimate poros-

ity and to characterise the pore space geometry down to the micrometre scale

(e. g. Klobes et al., 1997). An even higher resolution can be obtained by neutron

radiography (de Beer et al., 2004). Commercial CT scanners commonly used in

medical radiology have resolutions in the order of millimetre and are not able to

resolve the pore space of a porous rock sample. They may be applied instead to

characterise mesoscale heterogeneities.

An example of the application of CT scans in rock physics research is given

in Figure 1.10. The figures show the development of gas patches within a water-

saturated limestone sample during a gas injection experiment. Initially, the sam-

ple is fully saturated (upper left subfigure), injection point is in the lower left

side of the rock sample. Interestingly, there is no clear gas front visible, but

gas and water form a complex patch geometry. Therefore, the scans demonstrate

that mesoscopic patchy saturation may occur during fluid replacement. The total

sample diameter is 5cm.

A combined investigation of ultrasonic velocities and CT imaging of rock

heterogeneity has been recently conducted by Monsen and Johnstad (2005) and

earlier also by Cadoret et al. (1995). They found that there is a qualitative link
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Figure 1.10: Computer to-

mography scans of an ini-

tially fully water-saturated

limestone sample during gas

injection. The sample diam-

eter is 5cm. The gas forms

pockets (indicated by black

colour) on a mesoscopic scale.

The image scans have a min-

imum pixel size of 0.36mm.

From Müller et al. (2008).

between the frequency-dependent dispersion characteristics of ultrasonic waves

and the patch distribution of partially saturated rocks. Lebedev et al. (2009)

showed that the speed at which the samples are saturated may influence the

mesoscopic fluid distributions and therefore affect acoustic response. Measured

seismograms at different stages of their saturation experiment are shown in Figure

1.11 together with the picked velocities.

The 3-D imaging of rocks from the pore scale to larger scales representing

whole samples is a relatively new branch of applied geophysics and sometimes re-

ferred to as digital core technology. The general availability of high-resolution

measurements of core structure motivates the development of theoretical ap-

proaches as well as numerical modelling techniques that allow to simulate the

acoustic response of real rocks on the basis of scanned images. An example

demonstrating the applicability of poroelastic finite-difference simulations for this

purpose is given in section 5.5.

1.4 Motivation and overview of this thesis

The motivation to develop a new finite-difference (FD) implementation of Biot’s

equations of dynamic poroelasticity is threefold. Actually, several FD schemes

have been presented in the past (Zhu and McMechan, 1991; Dai et al., 1995;

Jianfeng, 1999, and others, see section 3.1), but the frequency dependence and

characteristic scales were not analysed adequately by the authors, as pointed out

e. g. by Gurevich (1996). Therefore, the first objective of this thesis is to care-

fully analyse the accuracy and scalability properties of poroelastic finite-different

schemes, which is done by conducting several fundamental benchmark tests within
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Figure 1.11: (a) Experimentally obtained ultrasonic velocities in a par-

tially saturated rock sample. During one experiment, the sample is sat-

urated with water and the numbers indicate the stage of the saturation

experiment. (b) Signals corresponding to the five stages of saturation.

From Lebedev et al. (2009).

the frequency band from seismic to ultrasonic. Additionally, the question of nu-

merical stability under strongly heterogeneous conditions is addressed by intro-

ducing rotated FD operators that were formerly used only for FD modelling of

the elastic wave equation (Saenger et al., 2000).

Secondly, many authors analyse the influence of material properties on wave-

field attributes such as attenuation using the spectral ratio method or the fre-

quency shift method (e. g. Helle et al., 2003; Carcione et al., 2003; Picotti et al.,

2007). Although this approach is potentially very accurate, the simulation of

the underlying wavefields in computationally very expensive. As an alternative

to these classic methods, this thesis follows and further develops the ideas of

Masson and Pride (2007) and adopts the quasistatic approach to efficiently and

accurately infer dispersion and attenuation estimates for heterogeneous media.

This part of numerical applications is complemented by elastic scattering exper-

iments and quasistatic finite-element modelling.

Finally, as already mentioned above, FD modelling of poroelastic wave propa-

gation is motivated by the emergence of new laboratory experiments that allow to

characterise the details of rock micro- and mesostructure in the context of digital

core technology. In combination with physical laboratory experiments, numerical

tools may become a powerful simulation tool within the “numerical rock physics

lab”.



14 Introduction

This thesis is structured as follows. In chapter 2, the mathematical models

describing wave propagation in porous media are presented. This includes an in-

troduction to Biot theory, the governing equations, constitutive relations, plane

wave solutions for waves propagating in homogeneous media and the formulation

of boundary conditions. The chapter contains theoretical estimates for the ef-

fective properties of heterogeneous porous media and introduces different models

for the quantitative description of wave-induced fluid flow.

If theoretical solutions are not available, approximate solutions can be ob-

tained by using numerical tools. In particular, a new finite-difference scheme is

presented that allows to numerically solve the Biot equations of dynamic poroelas-

ticity in heterogeneous media (chapter 3). The stability conditions are reviewed

and the problem of numerical stiffness is introduced. It is shown how the FD

code is parallelised. Finally, a short introduction is given to the solution of con-

solidation problems using the finite-element (FE) method.

A detailed analysis of the accuracy properties of the finite-difference scheme

is presented in chapter 4. By means of fundamental examples, the applicability

of FD method is demonstrated. The obtained numerical results are compared to

exact theoretical solutions in order to estimate the approximation error. By a

scaling test the parallel performance of the numerical FD solver is checked.

Chapter 5 deals with applying numerical tools for analysing the behaviour of

heterogeneous porous media. The scattering from discrete inclusions illustrates

the conversion of different wave modes, in particular from fast to slow P -waves.

The quasistatic behaviour of synthetic heterogeneous rocks is analysed in order

to infer dispersion and attenuation characteristics from relaxation experiments.

This is the only class of problems that is based on FE modelling. Then, the focus

is on P -wave scattering experiments in random elastic as well as poroelastic media

and finally, a ultrasonic laboratory experiment is numerically simulated.

Each chapter contains a discussion of the presented material and the thesis is

finalised by concluding remarks in chapter 6.



Chapter 2

Mathematical models for wave

propagation in porous media

The propagation of elastic waves in porous media have first been described by

Biot in the 1950s as a system of two coupled wave equations. So far, preced-

ing work had focused on effective properties and consolidation of porous solids

(Terzaghi and Fröhlich, 1936; Biot, 1941; Gassmann, 1951). Biot’s works on

porous media extend these results by including intertial effects to the mechanical

description and predict three distinct wave modes. In addition to the P - and

S-wave commonly known for elastic media, a second so-called slow P -wave exists

in poroelastic media. In many publications, the two compressional waves are also

referred to as type-I (fast P ) and type-II (slow P ) waves, respectively.

In order to derive the equations of motion for porous media, Biot (1956a)

assumes that continuum mechanics are applicable to the two-phase medium of

a solid matrix, saturated with a fluid. He postulates the existence of strain

and dissipation potentials and then uses Hamilton’s principle to derive the gov-

erning equations of motion. Newer works aim at establishing a more rigorous

derivation of the equations of motion, based on the clear mechanical first prin-

ciples on the microscale and using the homogenisation theory (e. g. Lévy, 1979;

Burridge and Keller, 1981) or the volume-averaging method (e. g. Pride et al.,

1992).

Since the equations of motion are well-established and subject of several re-

views and text books (Attenborough, 1982; Bourbié et al., 1987; Coussy, 1991;

Carcione, 2001), the derivation will not be repeated here. Instead, the main

assumptions of the Biot theory are worked out in the following, some analytical

solutions are presented and special cases are considered. In particular, it is shown

that the theory is consistent with the elastic wave equation, with the coupled pore

pressure diffusion equation and with Gassmann’s fluid substitution relation.

An overview of the fundamental concepts of porous media is given in Figure

15



16 Mathematical models for wave propagation in porous media

Figure 2.1: Overview of theoretical descriptions of porous media.

Gassmann theory allows to calculate the effective moduli of an undrained

fluid-saturated medium. The diffusion-type interaction of pore fluid flow

with elastic deformation is described by the theory of consolidation. Addi-

tionally, inertial effects are considered in Biot theory. The associated fre-

quency regimes are commonly referred to as the static (or elastic) regime,

the quasistatic (or diffusive) regime and the dynamic frequency regime.

2.1. Furthermore, the concept of wave-induced fluid flow is introduced. The pre-

sentation includes classical theories such as the White theory of partial saturation,

but also newly developed so-called continuous random media models.

2.1 Notation

Tensor notation is used throughout this text. The components of a vector b are

written bi, cij are components of the second-rank tensor c. Since there is no

possible ambiguity, the terms vector and tensor are used for their respective com-

ponents, as well, e. g. vector bi instead of vector components bi. Conventionally,

summation over repeated indeces is carried out.

3
∑

i=1

cijbi = cijbi = dj. (2.1)

For convenience, abbreviations for derivatives are used. Derivatives with respect

to time t are written as

∂φ

∂t
= ∂t φ = φ,t = φ̇, (2.2)

∂2φ

∂t2
= ∂2

tt φ = φ,tt = φ̈. (2.3)
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Spatial derivatives are abbreviated as

(gradφ)i =
∂φ

∂xi

= ∂i φ = φ,i (2.4)

divb =
∂bi
∂xi

= ∂i bi = bi,i (2.5)

(curlb)i = ǫijk
∂bk
∂xj

= ǫijk∂j bk = εijkbk,j (2.6)

∇2φ =
∂2φ

∂xi ∂xi

= ∂i∂i φ = φ,ii , (2.7)

where ǫijk is the Levi-Civita-symbol. It is defined as

ǫijk =







1, if (i, j, k) ∈ (1, 2, 3), (2, 3, 1), (3, 1, 2),

−1, if (i, j, k) ∈ (1, 3, 2), (3, 2, 1), (2, 1, 3),

0, else.

(2.8)

The Kronecker symbol δij is also used as the equivalent of the unit tensor 1

δij =

{

1, if i = j,

0, if i 6= j .
(2.9)

A similar symbol is used for the Dirac distribution δ(t). It is related to the

Heaviside step function, both are defined such that

δ(t) = 0 ∀t 6= 0 with

∫ ∞

−∞

δ(t) dt = 1 , (2.10)

H(t) =

{

0 for t < 0,

1 for t ≥ 0 .
(2.11)

If a Fourier transform is required, it is written using the symbol F and trans-

formed quantities from the time domain to the frequency domain are indicated

by a tilde

F {φ(t)} = φ̃(ω) . (2.12)

The kinematic field variables used in the present context are the displacements

of the solid frame ui and the displacements of the fluid phase uf
i . Relative dis-

placements wi are defined as

wi ≡ φ(uf
i − ui) , (2.13)

where porosity φ is the volume fraction of the pore space. Strain of the solid

matrix εij is related to the displacements via the kinematic relation

εij ≡ 1/2 ( ∂jui + ∂iuj) , (2.14)
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its trace or the divergence of the solid displacement is denoted as

ε ≡ εii = ui,i , (2.15)

and that of the relative displacement is called the increment of fluid content

ζ ≡ −wi,i . (2.16)

The formulation of the governing equations using the relative displacement in-

stead of the fluid displacement was introduced by Biot (1962). The present work

follows closely the modern presentation of the textbook by Carcione (2001).

2.2 Momentum equations

Biot’s linear theory of poroelastic wave propagation is valid under the following

assumptions: (i) only connected pores are considered in the equations and dis-

connected pores are treated as part of the solid matrix, (ii) the porous medium

is statistically isotropic, i. e. porosity and permeability are the same in all direc-

tions, (iii) the wavelength is large compared to the microscopic porescale and (iv)

deformations are small in order to ensure linear elastic material behavior.

Then, neglecting source terms, Biot’s equations for an isotropic fluid saturated

porous medium are given by

ρbüi + ρf ẅi = ∂j τij (2.17)

ρf üi + Y ∗ ẇi = −∂i p. (2.18)

On the right hand side of these vector equations, the divergence of the total stress

field τij and the gradient of pore pressure p appear. They are discussed later in

section 2.3. Now on the left hand side, four intertial terms are given, with the

bulk density ρb determined from the density of the solid grains ρs and that of the

pore fluid ρf by

ρb = φρf + (1 − φ)ρs. (2.19)

The viscodynamic operator Y is a function of the differential operator ∂t, and

in the frequency domain it becomes a complex, frequency-dependent quantity

(Biot, 1956b). Biot evaluates the oscillatory flow in a circular duct as a model for

a porous solid and expresses the viscodynamic operator with the help of Bessel

functions. Johnson et al. (1987) use the concept of dynamic permeability k(ω)

to introduce the frequency dependence of the operator, i. e.

Ỹ =
η

k(ω)
=
η

κ
·
[

(

1 − 4 ı ω

ωBn

)1/2

+
ı ω

ωB

]

. (2.20)
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Here, η is the dynamic viscosity of the pore fluid, κ is the dc permeability of the

porous matrix, ωB is the critical transition frequency and n is a dimensionless

parameter that is related to size of the pore channels. The frequency ωB plays an

important role in the characterisation of the mechanical regime for homogeneous

porous solids, since for frequencies lower than ωB, the flow behaves laminar and is

of Poiseuille type. However, for frequencies exceeding ωB, deviations occur from

the laminar flow and therefore additional parameters are needed to characterise

the dynamic behaviour of the flow field and of the corresponding mechanical

response of the porous composite. The critical frequency is calculated according

to

ωB ≡ η φ

κ νρf
, (2.21)

where ν refers to the tortuosity of the pore space, a dimensionless number larger

or equal to one. Now, inserting equation 2.21 into equation 2.20 and taking the

limit of n→ ∞ results in

Ỹ =
ρfν

φ
ı ω +

η

κ
= ρm ı ω + b. (2.22)

The quantities ρm and b are referred to as effective fluid density and the hydraulic

friction coefficient, respectively. They are given by

ρm =
ρfν

φ
, (2.23)

b =
η

κ
. (2.24)

The simple form of the operator Y given in equation 2.22 is referred to as the

classical low-frequency approximation as used in Biot (1956a). The expression

consists of an inertial part ρmiω and a viscous term b, the latter being responsible

for internal friction between the pore fluid and the solid frame. Casting equation

2.22 into the momentum equation 2.18 yields the low-frequency formulation of

the momentum equations for porous media

ρbüi + ρf ẅi = ∂j τij (2.25)

ρf üi + ρmẅi = −∂i p− bẇi . (2.26)

In the chapter on numerical methods, this formulation of the momentum equa-

tions is usually referred to.

2.3 Constitutive relations

Poroelastic constitutive laws relate the total stress field τij and the pore pressure

p to the deformation state of a porous medium. The two independent deformation
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fields are εij and ζ as defined in equations 2.14 and 2.16, respectively. With the

help of these strain variables, the poroelastic constitutive relations are written in

the general, linear case (Carcione, 2001)

τij = cuijklεkl − αijMζ , (2.27)

p = −αijMεij +Mζ . (2.28)

The three material parameters in these equations are the undrained elasticity

tensor cuijkl, the tensor of effective stress coefficients αij and the so-called pore

space modulus M . If the medium is isotropic, cuijkl can be expressed via the two

Lamé parameters λu and µ. The tensor αij then reduces to a scalar, such that

cuijkl = λuδijδkl + µ (δikδjl + δilδjk), (2.29)

αij = α δij. (2.30)

Introducing equations 2.29 and 2.30 into the relations 2.27 and 2.28, the isotropic

constitutive relations are obtained as

τij = 2µεij + λu ε δij − αM ζ δij, (2.31)

p = −αMε+Mζ. (2.32)

In order to illustrate the meaning of these relations, one might consider a few

special deformation states and introduce 6 fundamental poroelastic moduli. Be-

ginning with pure shear and pure dilatational deformation under undrained con-

ditions ζ ≡ 0, one obtains expressions for the undrained shear and bulk moduli.

Using the deformation angle γij = 2 εij for i 6= j, they are

Gu ≡ τij
γij

∣

∣

∣

∣

ζ=0, ε=0

=
2µ εij

2 εij

= µ, (2.33)

Ku ≡ τii
3 ε

∣

∣

∣

ζ=0
=

(3λu + 2µ)ε

3 ε
= λu +

2

3
µ. (2.34)

The same two deformations are now applied using drained conditions with p ≡ 0.

In the pure shear case, ε = 0 and p = 0 imply ζ = 0 and therefore

Gd ≡ τij
γij

∣

∣

∣

∣

p=0, ε=0

=
2µ εij

2 εij

= µ. (2.35)

In the case of pure dilatation, equation 2.32 provides ζ = αε and if this is sub-

stituted into equation 2.31 one computes the drained bulk modulus Kd as

Kd ≡ τii
3 ε

∣

∣

∣

p=0
=

(3λu + 2µ− α2M)ε

3 ε
= λu +

2

3
µ− α2M. (2.36)
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Figure 2.2: Sketches of three deformation experiments for the determi-

nation of the drained and undrained bulk moduli Kd and Ku (a,b) as well

as the shear modulus G (c) that is independent of the fluid properties.

By comparing the results for the undrained and the drained one obtains easily

the famous Gassmann result (Gassmann, 1951)

Gu = Gd = G, (2.37)

Ku = Kd + α2M, (2.38)

that is that the shear modulus is not affected by the presence of fluid in the

pore space and that the undrained bulk modulus is easily obtained from the

drained modulus by adding α2M . The three corresponding experiments for the

determination of Kd, Ku and G are shown in Figure 2.2. By means of a simple

gedankenexperiment (Biot and Willis, 1957; Brown and Korringa, 1975), α and

M can furthermore be related to the bulk moduli of the solid grains Kg and of

that of the pore fluid Kf :

α = 1 −Kd/Kg, (2.39)

M = [(α− φ)/Kg + φ/Kf ]
−1. (2.40)

Eventually, drained and undrained uniaxial strain conditions provide two vertical

incompressibilities, Pd and Pu, that are also denoted as L and H, respectively.

Since they are closely related to the velocity of P -waves, they are also called

drained and undrained P -wave moduli. Without derivation, they are given as

Pd = L ≡ τzz

εzz

∣

∣

∣

∣

p=0, εxx=εyy=0

= Kd + 4/3G, (2.41)

Pu = H ≡ τzz

εzz

∣

∣

∣

∣

ζ=0, εxx=εyy=0

= Ku + 4/3G. (2.42)
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2.4 Plane wave solutions

A system of coupled linear wave equations for the displacements ui and wi is

obtained by inserting the constitutive relations 2.31 and 2.32 into the momentum

equations 2.17 and 2.18, so that

ρbüi + ρf ẅi = (λu + µ)uj,ji + µui,jj + αM wj,ji , (2.43)

ρf üi + Y ∗ ẇi = αM uj,ji +M wj,ji . (2.44)

Using the vector theorem

ui,jj = uj,ji − ǫijkǫklmum,jl (2.45)

and substituting the poroelastic moduli H = λu + 2µ as well as G = µ and

C = αM , the wave equations become

ρbüi + ρf ẅi = H uj,ji + C wj,ji −Gǫijkǫklmum,jl (2.46)

ρf üi + Y ∗ ẇi = C uj,ji +M wj,ji. (2.47)

On the right hand side of equations 2.46 and 2.47, the spatial derivatives grad

div and rot rot of the displacement fields appear. Now, the Helmholtz theorem

states that any vector field can be decomposed into the sum of an irrotational

and a solenoidal vector field. This means that for the irrotational part of the

displacement field, the contribution from the third term on the right hand side

of equation 2.46 disappears. At the same time, for the solenoidal part all the

terms that contain the divergence operator vanish. As in the case of elastic

wave propagation, compressional and shear waves are therefore decoupled. The

dispersion relation of all wave modes are obtained by using plane waves as an

ansatz for the solution of equations 2.46 and 2.47.

A plane wave propagating in direction x with wavenumber k and circular

frequency ω has the form

u = u0 exp[ ı (kx− ωt)], (2.48)

where u(x, t) = (u, w) and u0 = (u0, w0) is constant. Inserting this ansatz into

the wave equations and assuming irrotational motion, one finds the following

equation in matrix form

ω2 Pu = k2 Hu, (2.49)

where the matrices P and H are given by

P =

(

ρb ρf

ρf Ỹ /(ı ω)

)

(2.50)
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and

H =

(

H C

C M

)

. (2.51)

This is an eigenvalue problem with the unknown eigenvalues (k/ω)2. They are

calculated as the solution to the characteristic equation

det
(

H−1P − (k/ω)2 1
)

= 0. (2.52)

Setting

D = H−1P (2.53)

one obtains explicitly the dispersion relation for plane P -waves as

k2

ω2
=

1

2

[

trD ±
(

tr 2D − 4 detD
)1/2
]

(2.54)

with

detD = detP/ detH (2.55)

detH = HM − C2 (2.56)

detP = ρb Ỹ /(ı ω) − ρfρf (2.57)

trD = 1/ detH
[

ρbM − 2ρfC +HỸ /(ı ω)
]

. (2.58)

The same reasoning leads to a characteristic equation in the case of purely

solenoidal particle motion. In that case one has

det
(

P−1G − (ω/k)2 1
)

= 0, (2.59)

where the matrix G is now given by

G = −
(

G 0

0 0

)

. (2.60)

Due to the irregular but simple form of G, the dispersion relation for S-waves is

k2

ω2
=
[

tr
(

P−1G
)]−1

= − detP
ı ω

Ỹ G
. (2.61)

So far, the two roots of the characteristic equations for compressional waves and

the third root of that for shear waves correspond to the three wave modes in

porous media. The compressional waves are referred to as fast and slow P -waves

or sometimes waves of the first and second kind, respectively. The fast P -wave

behaves similarly to the compressional wave mode in elastic media, which is why

it often simply referred to as the P -wave. The slow P -wave is a particularity

of poroelastic media and it usually strongly attenuated in real porous rocks.
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Figure 2.3: Dispersion (a) and attenuation (b) of the three wave modes

in a porous medium (water saturated sandstone, see Tables 2.1 and 2.2).

Fast P - and S-wave show very small dispersion, while slow P -velocity tends

to zero at low frequencies. Note that the inverse quality factors of P1 and

S in (b) have been multiplied by 50.

Actually, at frequencies below the critical Biot frequency ωB, this wave mode

becomes diffusive, while at frequencies higher than ωB, it is a propagating wave

mode. Due to the diffusive behaviour at low frequencies, the slow P -wave is often

considered as a diffusion wave as discussed in more detail in section 2.6.

Propagation velocities v and attenuation in the form of the quality factor Q

are calculated from the wavenumbers as

v =
ω

Re k
(2.62)

Q−1 =
2 Im k

Re k
. (2.63)

Dispersion curves as well as attenuation behaviour for compressional and shear

waves are given in Figure 2.3. The medium considered is water-saturated con-

solidated sandstone model with material parameters given in Tables 2.1 and 2.2.

The dispersion curves in Figure 2.3a show a very small frequency dependence of

the fast P - and S- waves. Both are higher than the velocity of the slow P -wave,

of which the velocity tends to zero as frequency decreases. On the other hand, the

attenuation of the slow P -wave at frequencies below ωc tends to one, see Figure

2.3b. Attenuation values for the S- and P -waves is much smaller; for convenience,

the attenuation amplitudes have been enlarged by a factor of 50.

2.5 Boundary conditions

In order to fully specify a particular poroelastic problem, boundary conditions

and initial conditions are required to constrain the solution of the governing
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equations. For wave propagation problems, the initial conditions are usually a

stress-free medium at rest, i. e. all field variables are 0. Generally, the initial con-

ditions must fulfil all the governing equations and they must be consistent with

the boundary conditions. Deresiewicz and Skalak (1963) considered the possi-

ble cases for external and internal boundaries. A traction free boundary at the

edge of the considered problem domain is described by setting the normal stress

component and the pore pressure to 0 as

τij nj = 0, p = 0 , (2.64)

with nj being the unit vector in normal direction. Similarly, setting the displace-

ments to 0 gives fixed boundaries with

ui = 0, wi ni = 0 . (2.65)

Obviously, boundary conditions of mixed type, e. g. a mechanically constrained

but drained condition or a unconfined/undrained condition are also possible. If

two porous media are in welded contact with each other, continuity is required

for traction, pore pressure, total displacement and the normal component of the

relative displacement. Sometimes, a mixed boundary condition is applied for the

pore pressure to account for partial closure of the pore space at the interface. This

is done by introducing a surface resistance parameter k, where k = 0 corresponds

to the standard case of an open internal boundary. Denoting the two sides of the

interface by a superscript, the porous-porous boundary conditions then read

u1
i = u2

i , w1
i ni = w2

i ni, τ 1
ij nj = τ 2

ij nj, p1 − p2 = k ẇini . (2.66)

Eventually, the two special cases of a porous medium in contact with a fluid or

with an elastic solid are given. For a porous-solid interface one has

u1
i = u2

i , w1
i ni = 0, τ 1

ij nj = p1 = τ 2
ij nj , (2.67)

and for a porous-fluid interface

(u1
i + w1

i )ni = u2
i ni τ 1

ii/3 = p1 = p2 . (2.68)

On the basis of these boundary conditions, reflection and transmission coeffi-

cients of waves in porous media are derived in works by Deresiewicz and Skalak

(1963) for reflections at an external boundary and by Dutta and Odé (1983) for

a gas-water interface. Simplified expressions for normal incidence are given in

Gurevich et al. (2004).
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Table 2.1: Typical material properties of a consolidated and unconsoli-

dated sandstone.

unit consolidated unconsolidated

Grain bulk modulus Kg GPa 35.0 35.0

Drained bulk modulus Kd GPa 5.0 2.5

Shear modulus G GPa 11.0 1.0

Porosity φ 0.2 0.3

Tortuosity ν 2.0 2.0

Permeability κ 10−12m2 1 1000

Grain density ρg kg/m3 2650 2650

2.6 Quasistatic behaviour of porous media

Many mechanical processes in porous media are slow in the sense that the intertial

terms in the momentum equations become negligible. The temporal change in the

displacement and stress fields is then only driven by the internal friction between

the grain framework and the pore fluid. In this case, the viscodynamic operator

reduces to the friction coefficient b = η/κ and the momentum equations 2.43 and

2.44 become

0 = τij,j (2.69)

b ẇi = −p,i . (2.70)

These two equations are an equilibrium condition for the total stress field τij
and the equation of Darcy flow stating the proportionality between the negative

pressure gradient ∂ip and the filtration velocity ẇi. A different way of presenting

the equilibrium and Darcy’s law is obtained by taking the divergence of the Darcy

equation and substituting the constitutive relations. Following Wang (2000), one

finds an equilibrium condition expressed in terms of the displacement field ui

Table 2.2: Material properties of fluids typically found in reservoirs (wa-

ter, gas, oil) or in the laboratory (air) (Batzle and Wang, 1992).

unit water oil gas air

Bulk modulus Kf GPa 2.25 1.3 0.1 0.00014

Density ρf kg/m3 1000 850 100 1

Viscosity η mPas 1.0 4.0 0.22 0.02
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coupled with an inhomogeneous diffusion equation for the pore pressure p as

0 = (λd + µ)uj,ji + µui,jj − α p,i (2.71)

α u̇i,i + ṗ/M = p,ii/ b . (2.72)

Equations 2.71 and 2.72 describe the coupled quasistatic deformation and pore

pressure diffusion in porous media, such as e. g. consolidation processes of fluid

saturated soils or reservoir compaction during depletion. They imply that in the

general case, the pore pressure field cannot be calculated by a single diffusion

equation alone, but the influence of temporal changes in pore pressure on the

overall stress and deformation field (and vice versa) needs to be accounted for.

In four specific circumstances, the pore pressure equation, however, uncouples

from the equilibrium equation and can therefore be solved independently (Wang,

2000). These circumstances are“(1) steady state, (2) a state of uniaxial strain and

constant vertical stress, (3) a highly compressible fluid, and (4) an irrotational

displacement field in an infinite domain without body forces” (Wang, 2000).

For the four cases, simple analytical solutions are available. In particular,

under assumption (4), the diffusion equation 2.72 is decoupled from the strain

term and becomes a homogeneous diffusion equation

ṗ/N = p,ii/ b (2.73)

with the poroelastic modulus

N =
MPd

H
. (2.74)

The quotient of b and N is called the hydraulic diffusivity

D = N/ b =
κMPd

η H
(2.75)

and it is the main material parameter describing diffusion problems. In the

unidimensional case, the solution of equation 2.73 due to an instantaneous point

source with p(x, t = 0) = δ(x) is (Rudnicki, 1986)

p(x, t) =
1√

4πDt
exp

−x2

4Dt
(2.76)

Now, if the point source is a Heaviside step function in time p(x = 0, t) = H(t),

the unidimensional pore pressure response is expressed as

p(x, t) = erfc
x√
4Dt

. (2.77)

Some pore pressure profiles resulting of a point source in a 1-D medium are given

in Figure 2.4.
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Figure 2.4: Quasistatic pore pressure response due to a point source

in a unidimensional homogeneous porous medium (water saturated con-

solidated sandstone, see Tables 2.1 and 2.2). Profiles are given for (a) an

instantaneous source and (b) a constant pressure source.

Eventually, the diffusion equation is applied to derive an low-frequency ap-

proximation of the slow P -wavenumber that was already given in equation 2.54.

Introducing the plane wave ansatz into equation 2.73 gives the dispersion relation

for a “pure diffusion wave”
k2

ω2
=

ı b

ωN
. (2.78)

Simple approximations are obtained for the fast P -wave and for the shear wave,

as well, by considering that at low frequencies with ω ≪ ωB the dispersion and

attenuation are very small. Actually, at low frequencies, friction between the

fluid and the grain matrix is dominant and the porous medium is practically

undrained. Setting the relative motion wi to zero, the coupled wave equation

2.46 reduces to a purely elastic wave equation

ρbüi = H uj,ji −Gǫijkǫklmum,jl (2.79)

from which dispersion relations for the fast P - and S-waves are derived as

k2

ω2
=
ρb

H
(2.80)

and respectively
k2

ω2
=
ρb

G
. (2.81)

Figure 2.5 shows a comparison of predicted wave propagation velocities by the

full formulas 2.54–2.61 and the approximations 2.78, 2.80 and 2.81. As is demon-

strated there, the simplified formulas provide a good approximation of the full

wavenumbers at frequencies sufficiently below the critical Biot frequency ωB.
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Figure 2.5: Dispersion velocities and attenuation of the slow P -wave

in poroelastic media. The quasistatic approximation (qsa) is compared to

the full formulation with dynamic operators according to equation 2.20.

2.7 Heterogeneous porous media

So far, only waves in homogeneous porous media have been considered, where

homogeneous refers to all scales larger than the porescale. For the homogeneous

case in an unbounded domain, plane wave solutions as well as Green’s functions

for instantaneous point sources are available (See Karpfinger, 2006, for a review).

In contrast, for heterogeneous media, i. e. if the medium properties vary as a

function of position, general solutions are available only for a few special cases.

Often, the properties of the heterogeneous medium are expressed based on the

statistical properties of the single constituents. An average of a quantity φ over

the representative elementary volume is then denoted as

〈φ〉 =
1

V

∫

REV

φ(x) dV . (2.82)

If a mixture of two or more fluid phases fill the pore space of a homogeneous rock,

one speaks of partial saturation. In contrast, a double porosity model consists of

a heterogeneous rock fully saturated with only one fluid phase. Partial saturation

occurs typically in a reservoir where one fluid, e. g. oil is replaced by another fluid

such as water during production. Usually, the first fluid phase is not completely

replaced by the second fluid, but both may form patches on multiple scales. An

example of double porosity media is a fractured reservoir in which cracks and

fractures can be considered as soft and permeable inclusions within a stiff host

rock.

A particularity of partial saturation is that exact theoretical limits are avail-

able for the estimation of effective elastic moduli. This estimate is based on the

assumption that a propagating compressional or shear wavelength is much larger

than the scale of the fluid patch. The first result is that the effective shear modu-
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lus is not affected by the presence of different fluids in the rock, which is a direct

consequence of the solenoidal character of the shear motion and the constitutive

relations 2.31 and 2.32. Now, if a compressional wave propagates through a par-

tially saturated medium, a fluid diffusion process is induced and the spatial scale

of this process is estimated as

λD =

√

D

ω
, (2.83)

where the approximate diffusivity D = Kf/b is the governing hydraulic parame-

ter. λD is sometimes called diffusion length (Norris, 1993). If it is small compared

to the scales of the fluid patches, no internal fluid flow occurs, the system is unre-

laxed and behaves like a heterogeneous elastic medium with varying bulk modulus

but constant shear modulus. In this particular case, the theorem of Hill (1963)

states that the heterogeneous medium is effectively isotropic with a bulk modulus

Keff is determined as the weighted harmonic average of the individual bulk mod-

uli, independent of the distribution of the fluid phases inside the volume. One

writes

KH
eff = KH =

〈

K−1
〉−1

, (2.84)

where the individual moduli K are calculated using Gassmann’s equation. This

limit is referred to as Gassmann-Hill.

Now, if the diffusion scale is much larger than the spatial scale of the sys-

tem, the pore pressure is equilibrated throughout the medium and the effective

modulus is obtained by substituting a harmonically averaged effective fluid bulk

modulus into Gassmann’s equation

Kf
eff =

〈

Kf
−1
〉−1

(2.85)

KW
eff = KW = Kd +

α2

(α− φ)/Kg + φ/Kf
eff

, (2.86)

yielding the so-called effective fluid model or Gassmann-Wood average (Wood,

1955). In Figure 2.6, the theoretical limits are given for two fluid mixtures (water–

gas and water–air) that saturate a consolidated sandstone, for material properties

see Tables 2.1 and 2.2. Both curve pairs show qualitatively the same behaviour:

an approximately linear increase in P -wave velocity from fully gas- to fully water-

saturated is characteristic for the Gassmann-Hill bound, while the Gassmann-

Wood bound shows a very strong decay of the effective bulk modulus when only

a little gas is introduced into a fully water-saturated medium. The decay is the

more pronounced, the stronger the contrast is between the fluid phases.

The criterion 2.83 has been given to distinguish between the unrelaxed state

(Hill) and the relaxed state (Wood). The limits can as well be considered as the
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for a consolidated sandstone

saturated with a mixture of
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ulus Keff as function of water

saturation.

high- and low-frequency limits of partial saturation models, where a crossover

occurs around the critical frequency

ωc =
D

L2
. (2.87)

Unfortunately, the Hill theorem does not apply to an elastic medium with varying

shear modulus. This implies that theoretical bounds for double porosity media

are in general not available. An exception is the case when the porous ma-

trix is a conglomerate of only two porous phases that are distributed such that

the conglomerate is again isotropic. Then, effective bulk moduli for the grains

and for the matrix are computed directly from the moduli of the constituents

(Brown and Korringa, 1975; Berryman and Milton, 1991). Their results are a

generalisation of the works of Gassmann (1951).

Another important case with exact theoretical bounds is given by a medium

consisting of a stack of porous layers with varying elastic properties. At high

frequencies, similar to the patchy-saturation case, there is no time for relaxation

by fluid flow and therefore the stack of porous layers behaves like a stack of equiv-

alent elastic layers with moduli determined according to the Gassmann equation.

For this case, it is known that the effective medium is transversely isotropic which

is described by five independent elastic constants that are unambiguously deter-

mined by proper averaging of the elastic moduli of the layers. This averaging

is called Backus averaging (Backus, 1962). A poroelastic Backus average is de-

scribed by Gelinsky and Shapiro (1997) for porous layers with equilibrated pore

pressure, i. e. for the relaxed state. Formulas for calculating the effective moduli

and corresponding wave velocities are given in appendix C.2.

As an example consider a water-saturated consolidated sandstone with 3%

horizontally layered inclusions of unconsolidated sand, such as given in Table 2.1.

Angle-dependent velocities for P - and S-waves are shown in Figure 2.7. First

off all, in a transversely isotropic medium, three different wave modes exist: a
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Figure 2.7: Propagation velocities in an effectively anisotropic porous

medium, calculated with low-frequency (LF) and high-frequency (HF) lim-

its of poroelastic Backus averaging. In (a), P -wave velocities are shown, in

(b) shear waves. While qP and qSV are dispersive, the pure shear mode

SH is not. At zero incidence, the velocities of qSV and SH coincide.

pure shear or SH-wave with polarisation perpendicular to the symmetry axis, as

well as a quasi compressional qP -wave and a quasi shear qSV -wave (e. g. Auld,

1990). While the SH is always solenoidal, the other wave modes are of mixed

type with rotational and divergence components. The angle of incidence is the

angle between the wave vector and the symmetry axis. Three main observations

are made: (1) The normal incident (0◦) P -wave velocities are smaller than the

P -wave velocities within the plane of symmetry at 90◦. (2) Shear wave velocity

is minimal at 0◦ and 90◦ for the vertically polarised qSV -wave where it coincides

with the horizontally polarised SH-wave at 0◦. (3) Both qP - and qSV -waves

are dispersive as is indicated by the grey-shaded areas in Figure 2.7a and b. In

contrast, the SH-wave is not dispersive, high and low-frequency (relaxed and

unrelaxed) behaviour is the same, which is a direct consequence of the purely

solenoidal character of this wave mode.

2.8 Wave-induced fluid flow

After establishing the fundamental high- and low-frequency bounds for heteroge-

neous porous media, rock physics models are now briefly discussed that describe

the frequency-dependence of the poroelastic moduli. In the context of wave scat-

tering, the mechanism of wave-induced fluid flow is introduced.

One of the main results of the Biot theory is the existence of the third slow P -

wavemode that behaves diffusive at low frequencies, i. e. at frequencies ω ≪ ωB.

In that regime, the fast P - and S-waves do not show considerable attenuation

and dispersion.



2.8 Wave-induced fluid flow 33

This situation is very different in heterogeneous porous media, since wave

scattering may occur at internal interfaces, thus affecting the wave amplitude.

In general, scattering is most effective if the scale of the heterogeneity is of the

same order of magnitude as that of the scattered wavemode. A particularity

of the poroelastic rheology lies in the properties of the slow P -wavemode and

obviously, the interaction of fast P - and S-waves with the slow P -deserves par-

ticular consideration. Conversion scattering from fast P - and S- to slow P -waves

is referred to as wave-induced fluid flow (e. g. Müller and Gurevich, 2005b). This

process usually occurs at heterogeneities that are much smaller than the incident

wavelength. Such a scale is called mesoscopic and the wave-induced flow is also

referred to as mesoscopic flow.

From a physical point of view, the incident wave field induces pore pressure

differences across internal interfaces within a heterogeneous porous medium. Dur-

ing wave propagation, these differences drive fluid flow that tend to reequilibrate

the disturbed pore pressure. Since this fluid flow is associated with internal fric-

tion, energy is withdrawn from the incident wavefield, causing attenuation and

velocity dispersion. For reservoir rocks, mesoscopic flow is considered as one of

the most important loss mechanisms at seismic frequencies.

Rock physics models quantifying the effect of wave-induced flow are grouped

according to the material property that is heterogeneous, e. g. partial satura-

tion or double porosity. A further distinguishing feature of the models is the

dimensionality: some assume unidimensional layering, others make use of three-

dimensional structures. And finally, there are models assuming a regular and

periodic pattern while more recently, models assume a random distribution of

the material parameters. Without making the claim to completeness, in Table

2.3, an overview of several theories for wave-induced flow is given. They are

reviewed in the following.

2.8.1 White’s model for partial saturation

White et al. (1975) presented a model to compute P -wave velocity and atten-

uation for partially saturated rocks, where the medium consists of an alternat-

ing stack of layers with different fluid properties. A frequency-dependent esti-

mate of the effective modulus Heff for the periodic layers model takes the form

(White et al., 1975; Norris, 1993)

H−1
eff (ω) =

〈

1

H

〉

+
2

ı ω L

(

αM
H

)

1
−
(

αM
H

)

2
(

b
kd

cot kdSL
2

)

1
+
(

b
kd

cot kdSL
2

)

2

, (2.88)

where S is the fluid saturation, kd is the diffusion wavelength in the quasistatic

approximation (see eq. 2.78) and L is the spatial layer period. Starting from the
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Table 2.3: Overview of rock physics theories for wave-induced fluid flow.

periodic random

1-D

White et al. (1975),

Norris (1993),

Brajanovski et al.

(2005)

Gurevich and Lopatnikov

(1995), Gelinsky et al.

(1998),

Müller and Gurevich

(2004)

3-D

White (1975),

Dutta and Odé (1979),

Johnson (2001),

Galvin and Gurevich

(2006)

Müller and Gurevich

(2005a), Toms et al.

(2007), Müller et al.

(2008)

results of White et al. and Norris, Brajanovski et al. (2005) developed a unidi-

mensional model for a double porosity media, in particular to simulate thin soft

cracks within a stiffer porous matrix.

A famous model of White (1975) considers spherical porous inclusions embed-

ded within a rock saturated with a different fluid. The same configuration has

been investigated by Dutta and Odé (1979) on a more fundamental basis using

poroelasticity theory, who found similar results to that of White. According to

Mavko et al. (1998) the modulus Heff is expressed as

Heff(ω) =
K∞

1 −K∞W (ω)
+

4

3
G , (2.89)

where meaning of the quantities K∞ and W are given in appendix C.4. An

example of different models describing the effect of wave-induced flow on veloc-

ity dispersion and attenuation is given in Figure 2.8. Consider a consolidated

sandstone (see Table 2.1) saturated 50% with water and 50% with gas.

Two models considered are the White models for periodically layered media

(White 1D), and for a periodic array of spherical inclusions (White 3D). The third

model is the continuous random medium model (CRM exp.) with an exponential

correlation function (Toms et al., 2007). The frequencies are normalised with

the critical frequency ωc = D/L2, where D is the diffusivity of the fully water-

saturated rock and L is the layer period, the inclusion diameter or the correlation

length, respectively. The two White models provide approximately the same

dispersion curve and the same amount of attenuation with small frequency shift.

Attenuation is maximum at about ωc. The curves provided by the CRM model

do not differ strongly from the results predicted by White’s theory. However, the
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Figure 2.8: Comparison of three theories of partial saturation. Disper-

sion and attenuation curves are shown for a consolidated sandstone with

50% water and 50% gas saturation (see Tables 2.1 and 2.2 for material

parameters).

dispersion curve is smoother and the attenuation peak is a little less pronounced.

A detailed comparison of the different models for partial saturation is given in

Toms et al. (2006).

2.8.2 Continuous random media models

A new direction of modelling the effective frequency-dependent properties of het-

erogeneous porous rocks was pioneered by Gurevich and Lopatnikov (1995) who

investigate a stack of fine porous layer with a continuous random distribution of

the poroelastic coefficients. They use the method of statistical smoothing, an ap-

proach that has later been generalised to the 3-D case by (Müller and Gurevich,

2005a,b). The model of Müller and Gurevich predicts the complex effective P -

wavenumber in a 3-D randomly heterogeneous porous solid as

keff(ω) = kc

(

1 + ∆2 + ∆1k
2
d

∫ ∞

0

r B( r) exp( ı kd r) dr

)

, (2.90)

where kc and kd are the wavenumbers of the fast and the slow P -wave in the qua-

sistatic approximation. The integral containing the spatial correlation function

B( r) has to be evaluated according to the statical properties of the underlying

medium. ∆1 and ∆2 are dimensionless constants given by (Müller and Gurevich,

2005a)

∆1 =
α2ML

2H2

(

σ2
LL − 2σ2

LM + σ2
MM

)

, (2.91)

∆2 =
L

2H
σ2

LL +
α2M

2H
σ2

MM , (2.92)
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where σLL, σMM , σLM are variances and cross variances of the drained P -wave

modulus L and the pore space modulus M . In double-porosity media, σMM

vanishes, while in partially-saturated porous media, the rock is homogeneous and

consequently σLL = 0. In the latter case, one has

∆1 =
α2ML

2H2
σ2

MM , (2.93)

∆2 =
α2M

2H
σ2

MM =
H

L
∆1 . (2.94)

If an average background P -wave modulus H0 is introduced as

H0 = K0 +
4

3
G = Kd + α2〈M〉 +

4

3
G , (2.95)

and using equation 2.90, one derives an effective P -wave modulus Heff written as

Heff(ω) = H0 (1 − ∆2 − ∆1ξ)
2 (2.96)

with the integral

ξ = k2
d

∫ ∞

0

r B( r) exp( ı kd r) dr (2.97)

containing all information about the actual medium distribution as defined by

the correlation function B(r). It has been shown that the effective modulus Heff

given in equation 2.96 is consistent with the theoretical bounds of Gassmann-

Wood and Gassmann-Hill only if the contrast in material properties are small

(Müller and Gurevich, 2004). In order to make the model consistent with the

theoretical limits, a scaling function is conveniently introduced as (Müller et al.,

2008)

HSC
eff (ω) = HW (1 + δ[τξ2 + (τ − 1)ξ]) (2.98)

with

δ =
HH −HW

HW

, (2.99)

τ =
∆1

2
=
α2ML

4H2
σ2

MM . (2.100)

This scaled model is called continuous random media (CRM) model for partial

saturation. The only thing left to do is to specify a particular random distribu-

tion and calculate the corresponding integral to yield the frequency-dependent

function ξ. The solutions are given for the normal (Gaussian) distribution, the

exponential distribution and for the von-Kármán type fractal distribution. The
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(a) Gauss (b) Exponential (c) Fractal

Figure 2.9: Realisations of random media and corresponding correlation

functions: (a) Gaussian, (b) exponential, (c) fractal with ν = 0.8.

correlation functions are (Sato and Fehler, 1998, pages 14–16)

Bgauss(r) = σ2
MM exp

(

−r
2

a2

)

, (2.101)

Bexp(r) = σ2
MM exp

(

−|r|
a

)

, (2.102)

Bfractal(r) = σ2
MM

21−ν

Γ(ν)

(r

a

)ν

Kν

(r

a

)

, (2.103)

where Γ is the Gamma function and Kν is the modified Bessel function of the

second kind of order ν. Spectra of these distributions Φ(k) = F{B(r)} are

obtained by 3-D Fourier transform as

Φgauss(k) = σ2
MM

a3

8π3/2
exp

(

−k
2a2

4

)

, (2.104)

Φexp(k) = σ2
MM

a3

π2(1 + k2a2)2
, (2.105)

Φfractal(k) = σ2
MM

a3Γ(ν + 3/2)

π3/2Γ(ν)(1 + k2a2)ν+3/2
. (2.106)

The quantity a is the correlation length and a measure of the typical size of

medium heterogeneities. In the fractal distribution, Γ is the Gamma function

and the so-called Hurst exponent ν is an additional model parameter describing

whether neighboring heterogeneities belong to the same phase (persistence) or

to different phases (anti-persistence) (Feder, 1988). For the above mentioned

correlation functions, the integral in equation 2.97 can be solved in closed form
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Figure 2.10: CRM model for partial saturation. Velocity dispersion and

attenuation are given as a function of frequency for models with the same

correlation length but different correlation functions: Gaussian, fractal

(ν = 0.8), exponential.

one obtains according to Toms et al. (2007) and Müller et al. (2008)

ξgauss =
k2

da
2

(ıkda− 1)2
, (2.107)

ξexp =
k2

da
2

2

[

1 +
ıkda

2

√
π exp

(

k2
da

2

4

)

erfc

(

− ıkda

2

)]

, (2.108)

ξfractal = 2ν (kda)
2

2F1

(

[1, ν + 1],
1

2
,−k2

da
2

)

+ 2 ı π2k3
dΦ

fractal . (2.109)

The last equation involves the Gaussian hypergeometric function of complex ar-

gument 2F1 (Gradshteyn and Ryzhik, 1983), a definition is given in appendix

C.5.

2.9 Discussion

In the literature, it is sometimes argued that the Biot model as characterised by

the dispersion relations for the three wave modes 2.54 and 2.61 is incomplete in

the sense that it underestimates the dispersion in saturated porous rocks. The

squirt-flow model of Mavko and Jizba (1991) has been suggested to include the

effects of microscopic heterogeneity on velocity dispersion. Indeed it is true that

real rocks always possess some heterogeneity on various scales.

It shall be pointed out here, that in contrast to the squirt-flow, the wave-

induced mesoscopic flow models presented in section 2.8 are not extensions of

the Biot theory but they are based on the quasistatic approximation of Biot’s

governing equations. Therefore, they can be considered as special solutions of
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the Biot equations under heterogeneous conditions. A numerical model – such

as presented in the subsequent chapter – for solving the Biot equations for het-

erogeneous systems is consequently a valuable tool for testing various theoretical

approaches.

Comparing the effects of the Biot global flow and the mesoscopic flow models,

one finds that the latter generally produce considerably higher dispersion and

attenuation. In addition to that, at seismic frequencies, the Biot global flow

effect is usually insignificant. There is, however, an impact of the Biot global

flow on the dispersion of poroelastic waves at ultrasonic frequencies.

In this chapter, the radiation characteristics of different sources in porous

media were not included, since in the following this thesis will focus on wave

propagation effects rather than on source characteristics. Instead, it is referred

to the review article of Karpfinger (2006) or the textbooks of Bourbié et al. (1987)

and Carcione (2001).

It is natural that mathematical models of linear poroelastic wave propaga-

tion are not universally applicable. For example, it is well known that Earth

materials with microcracks may close under compressive stresses, which leads to

hysteretical and non-linear material behaviour (Johnson et al., 1996). Another

example is the effect of partial saturation, where the wave-induced fluid flow

theory predicts zero attenuation of the shear waves. The laboratory observa-

tion depicted in Figure 1.9, however, shows saturation- and frequency dependent

shear wave attenuation in partially saturated rock, which obviously cannot be

explained directly by mesoscopic flow models. Therefore, theoretical models as

well as numerical results must always be accomplished with corresponding labo-

ratory experiments in order to ensure that all the relevant effects are included in

the mathematical description.
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Chapter 3

Numerical methods

General solutions for waves and diffusion processes in porous media are avail-

able for simple cases. For example, if homogeneity and isotropy is assumed,

Green’s functions are known and are used to calculate the response of a poroelas-

tic medium to external forces, fluid injections or seismic moments. Another class

of theoretical results is used to calculate the effective behaviour of heterogeneous

porous media. Here, it is commonly assumed that the wavelength is much larger

than the characteristic size of the heterogeneity. For the evaluation of fluid flow

effects on the elastic properties of a heterogeneous porous medium, assumptions

are necessary about the geometry of the heterogeneity. For most complex geome-

tries, the theoretical solutions are not presented in closed form but require the

numerical evaluation of integrals (like e. g. in Dutta and Odé, 1979).

For cases when theoretical solutions are not available, numerical methods

provide means to find approximate solutions to a given poroelastic problem. On

the basis of an appropriate mathematical model, a numerical model is obtained by

discretising the governing equations. The resulting system of algebraic equations

is then solved using a computer system and the discrete solution is interpreted

as an approximate solution of the physical problem.

The numerical method most frequently applied in geophysical research for

wave propagation modelling is the finite-difference (FD) method (e. g. Boore,

1972; Virieux, 1986; Bohlen, 2002). The basic concept of this method is the ap-

proximation of the differential operators by finite differences on a discrete mesh

in space and time. Therefore, an approximate solution is obtained at the mesh

grid points. The finite-element (FE) method is also widely used for solving wave

propagation problems, in particular, if the modelling domain has a complex shape

(Smith, 1975; Cohen, 2002). While the FD method discretises the differential op-

erators, the FE method discretise the solution space and applies the differential

operators to a set of ansatz functions. The advantage of the FE method is its

potential to better resolve small-scale geometries by using triangular or tetrahe-

41
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dral elements instead of uniform grids. Complex boundaries can be represented

more accurately this way. If trigonometric functions are used to form the solution

space one also speaks of spectral elements instead of finite elements.

It is the purpose of this chapter to develop a numerical FD scheme for solving

the dynamic Biot equations and to analyse its accuracy and stability proper-

ties. The section is based on corresponding publications (Wenzlau et al., 2007;

Wenzlau and Müller, 2008). In a second part of this chapter, a short introduction

is given to the numerical FE solution of the quasistatic Biot equations. For this

type of problems, the commercial software package “Abaqus” is available and the

aim of the section on FE modelling is to explain the theoretical background of

the Abaqus package for poroelastic rheology.

3.1 Modelling poroelastic wave propagation us-

ing the FD method

The earliest publications on the finite-difference method for solving the dynamic

Biot equations appeared in the 1990s (Hassanzadeh, 1991; Zhu and McMechan,

1991; Dai et al., 1995). These contributions explain the derivation of numerical

schemes and give several 2-D examples related to seismic exploration. However,

the proper use of the numerical codes requires the analysis of the relevant scales

in order to reveal the actual poroelastic effects (Gurevich, 1996).

Carcione and Quiroga-Goode (1995) remark that the existence of the slow

P -wave introduces a scale to the general solution of the Biot equations that is

very different from the scales of the fast P -wave and the S-wave. By comparing

the magnitudes of the eigenvalues given in equation 2.54, they state that at low

frequencies, i. e. at frequencies much below than the Biot frequency ωB, the Biot

equations are stiff. This means that the wave propagation phenomena related to

the fast wave modes occur on spatial scales that are much larger than the spa-

tial scale of the diffusion process associated with the slow P -wave. Resolving the

small diffusion scale as well as the large propagation scale is computationally very

expensive. Since it is the scale resolution is a crucial factor for the accuracy of

the scheme, the stiffness problem will be discussed in section 3.1.5. An important

contribution on numerical stability of poroelastic FD solvers has been made by

Masson and Pride (2007), their results are reviewed in section 3.1.4. As a conse-

quence of the computational demand of large FD simulations, the development

of codes has begun that make use of parallel algorithms (Aldridge et al., 2004;

Sheen et al., 2006). This is particularly necessary, if the simulations are done in

3-D.

In this thesis, the discretisation of the Biot equations is based on the velocity-

stress formulation, an approach suggested for elastic wave propagation by Virieux
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(1986). This means that instead of the displacements, corresponding velocities

are used as field variables. Setting

vi = u̇i , (3.1)

qi = ẇi (3.2)

and using the low-frequency approximation for the viscodynamic operator Y

(equation 2.22), the two wave equations of second order 2.43 and 2.44 are rewrit-

ten as a set of four evolution equations of first order

v̇i = (ρmρb − ρfρf )−1(ρmτij,j + ρfp,i + ρfbqi) , (3.3)

q̇i = (ρmρb − ρfρf )−1(−ρfτij,j − ρbp,i − ρbbqi) , (3.4)

τ̇ij = µ (vi,j + vj,i) + (λuvi,i + αMqi,i) δij , (3.5)

ṗ = −αMvi,i −Mqi,i . (3.6)

The new field variables are the total velocity vi, the filtration velocity qi as well

as the stress tensor and the pore pressure τij and p. For the derivation of a

numerical FD scheme, approximations for the temporal and spatial differential

operators are now introduced.

3.1.1 Time discretisation

If the linear system 3.3–3.6 is written in compact matrix form as

∂tv = A∂jv + Bv . (3.7)

Writing equation 3.7 in a more elaborate way while abbreviating matrix entries

with an asterix as

∂t









vi

qi
τij
p









=









∗ ∗
∗ ∗

∗ ∗
∗ ∗









∂j









vi

qi
τij
p









+









∗
∗

















vi

qi
τij
p









, (3.8)

one observes that the structure of the coefficient matrix A has a form that makes

it advantageous to introduce a discretisation that is staggered time. Therefore,

time-discrete fields for stresses and velocities are

v
n+1/2
i = vi(x, t = (n+ 1/2)∆t) , (3.9)

q
n+1/2
i = qi(x, t = (n+ 1/2)∆t) (3.10)

(3.11)
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and that for the stresses and pore pressure are

τn
ij = τij(x, t = n∆t) , (3.12)

pn = p(x, t = n∆t) . (3.13)

In order to derive the FD scheme, the temporal derivatives in equations 3.3–3.6

are replaced by the second order discrete time differential operator

Dtφ
n =

1

∆t

(

φn+1/2 − φn−1/2
)

(3.14)

and solving for the variable fields at the new time step yields

v
n+1/2
i = v

n−1/2
i + A τn

ij,j + B pn
,i + C

(

q
n+1/2
i + q

n−1/2
i

)

/2 (3.15)

q
n+1/2
i = D q

n−1/2
i + E τn

ij,j + F pn
,i (3.16)

τn
ij = τn

ij + G
(

v
n+1/2
i,j + v

n+1/2
j,i

)

+
(

H v
n+1/2
i,i + I q

n+1/2
i,i

)

δij (3.17)

pn = pn + I v
n+1/2
i,i + J q

n+1/2
i,i . (3.18)

Here, an arithmetic average for the filtration velocity qi at the intermediate time

step n has been used, written as

q̄n
i = 1/2

(

q
n−1/2
i + q

n+1/2
i

)

. (3.19)

The time stepping consists of the following steps:

1. Velocity update at time step n+1/2, beginning with the filtration velocity.

2. Introduction of body forces that act as a momentum source. For a descrip-

tion see section 3.1.3.

3. Stress and pore pressure update at time step n.

4. Introduction of sources to the stress tensor and pore pressure. For a de-

scription see section 3.1.3, as well.
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The six velocity update coefficients A–F in equations 3.15–3.16 and the stress

update coefficients G–J in equations 3.17–3.18 are given by

A = (ρm∆t)/r
2 (3.20)

B = (ρf∆t)/r
2 (3.21)

C = (ρfb∆t)/r
2 (3.22)

D = (2r2 − ρbb∆t)/(2r
2 + ρbb∆t) (3.23)

E = −(ρf∆t)/(r
2 + ρbb∆t) (3.24)

F = −(ρb∆t)/(r
2 + ρbb∆t) (3.25)

G = µ∆t (3.26)

H = λu∆t (3.27)

I = αM∆t (3.28)

J = −M∆t , (3.29)

where the determinant of the density matrix has been abbreviated as

r2 = ρbρm − ρfρf . (3.30)

Since the new timestep is calculated from the preceding and therefore known time

step, the scheme is explicit. The scheme is second order, i. e. the discretisation

error is proportional to the square root of time step ∆t. By decreasing the

time step, an improved approximation of the spatial derivatives is obtained and

in the limit, the scheme is consistent with the governing equations of dynamic

poroelasticity. The time step size plays a crucial role for the stability of the

scheme, as discussed in section 3.1.4.

3.1.2 Calculation of spatial derivatives

In order to spatially discretise the governing equations, staggered grids are in-

troduced for all field variables and the spatial derivatives are approximated by

discrete operators. If a spatial grid is defined by

φi,j,k = φ(x = i∆x, y = j∆y, z = k∆z, t) , (3.31)

the standard expression of finite-difference operators in the x-direction is written

as

D(n)
x φ = 1/∆x

n/2−1
∑

m=0

a(m)
(

φi+m+1/2,j,k − φi−m−1/2,j,k

)

. (3.32)

The maximum number of different coefficients a(m) depends on the integer n,

which is referred to as the order of the operator since

∂xφ = D(n)
x φ+ O(n) . (3.33)
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Table 3.1: Finite-differences coefficients for 2nd, 4th and 8th order dif-

ferentiation.

n a(1) a(2) a(3) a(4) asum =
∑n

i=1 |a(i)|

2 1 1.0000

4
27

24
− 1

24
1.1667

8
1225

1024
− 1225

1024 × 15

1225

1024 × 125
− 1225

1024 × 1715
1.2863

Examples for second, fourth and eighth order operators are given in Table 3.1 and

Figure 3.1 shows a graphical representation of the coefficients. As observed from

Figure 3.1c, the higher order FD operator provides a more accurate estimate of

the spectral behaviour of the differential operator ∂x. However, due to its length,

the numerical evaluation requires more computations than that of the lower order

operator.

If the velocity-stress formulation is applied as a basis for FD schemes, the

standard grid staggering method is described by Levander (1988) and Virieux

(1986). In this case, the derivatives are calculated along the coordinate axes. A

2-D example of such a grid is shown in Figure 3.2a. Actually, four different grids

are applied to represent the positions of all field variables. Isotropic components of

the stresses and strains are located in the centre of a control volume, referred to as

the p-grid. Horizontal components of the velocity vector are stored on the u-grid,

appearing horizontally staggered with respect to the p-grid. Vertical components

are staggered vertically on the v-grid and finally, the shear components – requiring

horizontal derivatives of vertical velocity components – are stored on the τ -grid.

On every grid, certain material properties are required to link e. g. the strains

and stress components. Densities are stored on the two velocity grids, while the

elastic moduli are required on the p- and τ -grids. The consequence is that material

properties have to be averaged according to the position where they are required.

In particular, it is known in the case of elastic waves that the shear modulus needs

to be averaged harmonically in order to ensure stable results (Bohlen, 2002).

A modified staggering scheme has been proposed for elastic and viscoelastic

wave equation modelling by Saenger et al. (2000). The idea is to apply rotated

operators such that the FD approximation is calculated first along diagonal lines

and then in a second step the derivatives along the coordinate axes are obtained
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Figure 3.1: Finite-difference operators for (a) 8th order and (b) second

order approximations. Amplitude spectra of the discrete operators are

given in (c). Note that the optimal spectrum is a linear function, since

|F{∂i}| = k.

Figure 3.2: Stencils of finite-differences formulations. (a) Standard stag-

gered grid, with normal stresses stored on the p-grid, shear stresses stored

on the τ -grid; horizontal and vertical velocity components are stored on

separate the u- and v-grid respectively. (b) Rotated staggered grid, with

all velocity components stored at the same gridpoints and therefore only

one grid for all stress components.
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by a linear transformation. As an advantage of this method, the different velocity

grids and the grids for the strains and stresses coincide, respectively, such that

only one velocity and one stress grid is required. This reduces the need for aver-

aging of material properties: only densities are averaged over the control volume.

It has been found in the case of elastic and viscoelastic waves that this so-called

rotated staggered grid approach enhances the stability properties of the underly-

ing FD scheme in the presence of high material contrasts (Saenger et al., 2000).

In Figure 3.2b, a sketch of the rotated staggered grid is shown in comparison to

the standard staggered grid. In fact, the u- and v-grids coincide as well as the p-

and the τ -grid.

3.1.3 Boundaries and sources

Typically, seismic sources are represented by a spatio-temporal distribution of

body forces (Aki and Richards, 1980). These are easily included in the numerical

scheme by adding an acceleration term to the evolution equations of the total

velocity vi. Alternatively, stress sources are added to evolution equations of the

stress tensor components and to the pore pressure in order to simulate pure di-

latational forces (source to mean stress and/or pore pressure) or pure shear forces

(source to the shear stress). For convenience, a source distribution parameter qp
is introduced to distinguish between pressure sources acting on the solid matrix

and on the pore fluid. The sources to stress and pore pressure are then written

Sτij
= S0(1 − qp) , (3.34)

Sp = S0 qp , (3.35)

where S0 is a time-dependent source function. Obviously, a source parameter

qp = 0 describes a pure dilatational excitation of the solid frame, while qp = 1

indicates a pure pore pressure source.

The numerical treatment of the domain boundaries is also straightforward.

Dirichlet conditions are implemented by assigning in every time step a given,

time-dependent value to the velocity fields. E. g. setting the filtration qi velocity

to zero corresponds to hydraulic sealing of the boundary, this is referred to as

undrained boundaries. A confining boundary is obtained by setting the total

velocity vi to zero.

Additional boundary conditions are used to mimic waves propagating within

an unbounded domain. In this case, the aim is to avoid reflections from the

domain edges. If plane waves are considered with a wave vector parallel to the

lateral boundaries, it is often possible to use periodicity conditions for all field

variables. This is done by assigning to the left domain edges the values of the

right domain edge and vice versa. If this periodic boundaries are not applicable,
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Figure 3.3: Examples of boundary conditions for poroelastic wave simu-

lation.

absorbing boundaries are used in order to attenuate all signals approaching the

domain edges, analogous to the elastic case described e. g. in Bohlen (2002).

Within an absorbing layer the field variables are multiplied with static absorption

coefficients that are exponentially dependent on the distance from domain edge.

By adequately choosing the width of the absorbing layer and the decay exponent

of the absorption coefficients, reflections of artificial boundaries are significantly

reduced.

Four examples of boundary conditions are given in Figure 3.3. Subfigures a

and b represent Dirichlet conditions for total and filtration velocity, respectively,

while periodic and absorbing boundaries are sketched in subfigures c and d.

3.1.4 Stability

The explicit time stepping scheme ( equations 3.15–3.18) can be presented in the

short form

un+1 = Aun, (3.36)

with the field variable vector u = (vx, vy, qx, qy, τxx, τyy, τxy, p) and the discrete

matrix A containing material parameters, time step size and discrete spatial

operators. By analysing the properties of A, information can be obtained about

the accuracy and stability of the scheme. Standard von Neumann type analysis

states that if the spectral radius of A is smaller or equal to 1, the explicit scheme is

stable. In 2-D, eigenvalues of a 8×8-matrix must be computed analytically, which

is not possible in the general case. However, for the poroacoustic (τxy = 0) and

frictionless (b = 0) case, analytical expressions for the eigenvalues are available. In

the 1-D case, A reduces to a 4×4 matrix, and in order to evaluate the eigenvalues,

an equation of 4th order has to be solved. For a similar scheme, this has been
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done by Masson et al. (2006).

The main finding is that the well-known stability requirement for elastic wave

propagation holds also for the poroelastic case: the time step must be sufficiently

small that the fastest wave mode travels less than the distance between two grid

points. This relationship is

∆t <
∆x

asum cmax

, (3.37)

where cmax is the maximum phase velocity and the coefficient asum ≥ 1 is the sum

of the absolute FD coefficients, see Table 3.1. A safe estimate of cmax is given by

equation 2.54 by setting friction to zero. In this case one has

cmax = cP1 =
√

2
[

trD −
(

tr 2D − 4 detD
)1/2
]−1/2

, (3.38)

where D is given in equation 2.53. The analysis of this formula reveals that

the existence of an inverse density matrix P is necessary and consequently, the

determinant detP = r2 must be positive and larger than zero. This condition

is also related to the appearance of the determinant r2 in the denominator of

the update coefficients, as defined in equations 3.20–3.29. As a consequence, the

phase velocity of the compressional wave modes have a pole at detP = 0 implying

that at
ν

φ
≤ ρf

ρb
, (3.39)

velocities increase without bounds and the scheme becomes unconditionally un-

stable. In the limit of large tortuosity parameters, equation 3.38 approaches the

quasistatic limit with cqs =
√

H/ρb.

In Figure 3.4, normalised maximum timestep ∆t is given as function of nor-

malised tortuosity ν. The solid blue line indicates the strictest stability criterion

3.38 that applies if no friction between fluid and solid matrix is taken into account.

For increasing friction, the condition is relaxed, and the domain of stability, indi-

cated by a grey shaded area is enlarged. However, the condition 3.39 must always

be respected even for b→ ∞, when the size of the stability domain is maximum

(dashed red line). A more detailed discussion of stability is given in Masson et al.

(2006).

Note that inequality 3.39 is usually not crucial in homogeneous porous rock. For

a water-saturated porous sandstone with φ = 20% porosity and tortuosity ν = 2,

one obtains for ν
φ

ρb

ρf a value of 4.3 which is approximately at the very right edge

of Figure 3.4. The value of the stability limit is 0.97 which is 3% below the limit

estimated from equation 3.37 by using the quasistatic approximation cmax = cqs.

The situation changes for inclusions with high porosity φ and a tortuosity ν close

to one. E. g. choosing φ = 0.9 and ν = 1.1 yields ν
φ

ρb

ρf ≈ 1.44 where time stability

limit is 0.54. Therefore, the time step has to be chosen about half as large as
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for normal sandstone. A combination of 100% porosity and tortuosity 1 yields

unconditionally unstable results, as discussed later in section 4.4.

3.1.5 Accuracy

The accuracy of the computation is governed by the effects of numerical disper-

sion. The dispersion errors depend on the order of the spatial FD approximation

and the number of gridpoints per smallest wavelength. They accumulate with

increasing propagation distance and therefore, depending on the size of the com-

putational domain as well as the desired accuracy, a sufficiently fine grid spacing

∆x is necessary. In poroelasticity, the slowest wave, being consequently critical

for dispersion errors, is the slow P -wave. At seismic frequencies this wave mode

is associated with a diffusion process. One possibility to quantify the scale of this

diffusion process is the diffusion length introduced earlier in section 2.7

λD =

√

D

ω
, (3.40)

with D being the coefficient of hydraulic diffusivity. Note that the hydraulic dif-

fusivity is usually a very small quantity, resulting in a very small diffusion length

that is considerably smaller than the wave lengths of the fast compressional and

shear waves. A system that responds on very different time scales and spatial

scales, is called stiff (Carcione and Quiroga-Goode, 1995). Since the system re-

sponse is described by its eigenvalues it is sufficient to analyse the dispersion

relation 2.54 of plane waves in poroelastic media. Plotting the eigenvalues of the

governing system in the complex plane reveals their large difference in amplitude,

as shown in Figure 3.5.

Quantifying the stiffness by

stiffness =
λPf

λD

=
cPf

ω−1

√
Dω−1

=

√

c2Pf

Dω
(3.41)
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Figure 3.5: System eigenvalues, i. e. complex slownesses, of fast and slow

P -waves as well as shear waves illustrating the stiffness of the governing

equations. For a water-saturated sandstone at seismic frequencies (a) the

slowness amplitudes are very different while at ultrasonic frequencies (b)

they are closer to each other.

reveals that the problem becomes stiffer the lower the frequency is. Using the Biot

frequency ωB given in equation 2.21, this is also expressed by the dimensionless

Deborah number De = ω/ωB used in rheology (Reiner, 1964). For small Deborah

numbers we again obtain stiff behavior of the equations, resulting in a high com-

putational effort, since small-scale diffusion processes have to be resolved, while

the scale of the fast propagating wave is orders of magnitude larger. In the same

way, the time increment has to be chosen according to the stability requirement

3.37, while the very slow diffusion process needs a long time to evolve.

3.1.6 Parallelisation

The computational effort for wave simulations increases linearly with increasing

size of the problem, i. e. with (1) the number of total grid points, (2) the number

of the simulated time steps and (3) the length of the spatial FD operator. As

discussed in the previous sections, the accuracy requirements mainly control the

choice of the spatial sampling while the time step size is usually chosen such that

stable results are obtained.

The availability of parallel computing facilities makes it possible to simulate

wave propagation experiments in larger domains and with an increased spatial

resolution. In order to exploit the computing facilities, the numerical code needs

to be distributed to several communicating processes. This parallelisation in done

by the domain decomposition technique, implying that the computational domain

is subdivided into smaller cells, each of which is assigned to a particular process.

In order to propagate signals from one cell to an adjacent cell, communication

buffers are located at the edges of each local cell, as shown in Figure 3.6. The

communication is implemented using the message passing interface (MPI).
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Figure 3.6: Sketch of the par-

allelisation by domain decomposi-

tion. Subdomain cells are sur-

rounded by buffers, arrows indi-

cate communication between differ-

ent processes.

Communication via MPI is required after each update step and therefore twice

in a time step. Preferably, the communication time should be as small as possible

if compared to the actual time needed to compute the time update of the field

variables. Unfortunately, the fraction of communication runtime rises with the

degree of parallelisation and therefore, the number of processes involved in a

particular simulation is limited. The ability of a numerical code to reduce the

total wallclock time when more processes are involved in the simulation is called

scalability. A parallel performance test is given later in section 4.5.

3.2 Modelling quasistatic consolidation using the

FE method

In physics and engineering, the method of finite elements is widely used for solv-

ing mechanical problems due to its flexibility to handle complex geometries. The

principle of the method is based on the partitioning of the problem domain using

elements of simple geometry, e. g. triangles in the two-dimensional case as shown

in Figure 3.7. Within each element, the solution is interpolated by polynomial

basis functions where the interpolation coefficients are n nodal values of the field

variables. The discretised governing equations are then multiplied with n weight-

ing functions and integration is performed over the element volume V , yielding a

set of n× n algebraic equations for the unknown nodal values. The approximate

solution fulfils Galerkin’s principle that states the minimisation of the weighted

residuals. Therefore, the finite-element method is a special case of the Galerkin

method (Zienkiewicz, 1977).

The aim of this section is to give an overview of the FE method for quasistatic

poroelastic problems as described e. g. by Wang (2000) and Wang and Anderson

(1982). I follow their presentation and account for the particularities of the com-
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Figure 3.7: Example of a finite-element mesh (b) constructed on the

basis of triangular elements (c) and resolving a problem domain of complex

shape (a).

mercial Abaqus FE package (Abaqus, Inc., 1998). Abaqus is a flexible tool for a

variety of poroelastic problems including partially saturated rheologies, different

laws of fluid flow, buoyancy effects, matrix anisotropy and plastic deformation.

Since these options are beyond the scope of this work, the derivations are re-

stricted to isotropic poroelasticity such as described by equations 2.69 and 2.70.

Please note that the rheology as implemented in the Abaqus porous elastic model

is generally non-linear. For the reduction of the material parameters to the linear

case of small deformation see appendix D.

3.2.1 Spatial discretisation by the Galerkin method

Under the absence of body forces, the equilibrium condition within an element e

is generally written as the vanishing sum of internal and external forces F i
i and

F e
i

F i
i + F e

i =

∫

V

τij,j dV +

∫

∂V

ti dS = 0 , (3.42)

where ti is the traction vector acting on the element boundary ∂V . Applying

the principle of virtual work leads to the variational or weak formulation of equi-

librium: the variational sum of internal and external energies is zero. With the

virtual strain δεij within V and the virtual displacement at the boundary δui one

writes

δEi + δEe =

∫

V

τij δεij dV +

∫

∂V

ti δui dS = 0 . (3.43)

Now, in order to derive a discrete approximation of equation 3.43, the virtual

displacement and strain are substituted by interpolation functions

δui =
m
∑

k=1

k

N i

k

U i . (3.44)
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Figure 3.8: The virtual displacement δui within a triangular element is

approximated by three linearly independent basis functions Ni.

Here, Ni are m basis functions that depend on the position within the element,

U i are interpolation coefficients and commonly the unknown nodal values of the

element. E. g. a plane linear triangular element (see Figure 3.8) uses 3 indepen-

dent interpolation functions, while bilinear rectangular elements and tetrahedral

elements use m = 4 functions.

For the virtual strain one writes

δεij =
1

2
(δui,j + δuj,i) =

m
∑

k=1

1

2

(

k

N i,j

k

U i +
k

N j,i

k

U j

)

=
m
∑

k=1

k

βij

k

U j (3.45)

and this equation makes clear how the spatial differentiation is passed on from

the field variables to the known basis functions. If the approximations 3.44 and

3.45 are introduced into the virtual energy equation 3.43, an algebraic equation is

obtained for the m nodal unknowns. In order to derive m independent equations

for all unknowns, the virtual energy equation is multiplied successively with m

so-called weighting functions. In the finite-element method, the basis functions

are used for this purpose which is referred to as isoparametric ansatz or Ritz

ansatz (Zienkiewicz, 1977). This approach provides a m × m linear system of

algebraic equations

∫

V

l

N i

m
∑

k=1

τij
k

βij

k

U j dV +

∫

∂V

l

N i

m
∑

k=1

ti
k

N i

k

U i dS = 0 (3.46)

representing on the one hand side the internal energy in the form of a volume

integral and work done by external forces in the form a surface integral.

A global system is obtained by summing up the contributions from individual

elements, which is referred to as assembling. The resulting system is formally the

same as that used in elastic finite-element descriptions. There is, however, the

particularity of poroelastic FE modelling that the stress tensor τij depends not

only on the displacement field but also on the pore fluid flow as described by the

coupled diffusion equation 2.72. Therefore, a simultaneous solution of equilibrium
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and pore pressure diffusion is necessary to describe the time-dependent stress field

(Abaqus, Inc., 1998).

The discretisation of the diffusion equation is carried out analogously to that

of the equilibrium equations: the pore pressure field is approximated using the

same basis functions as for the displacements; multiplication with isoparametric

weighting functions and integration over one element provides a local system of

algebraic equations that is assembled to the global system by summing contribu-

tions from every element. For details, it is referred to the literature (Wang, 2000;

Abaqus, Inc., 1998, and references therein).

3.2.2 Boundaries and sources

Initial conditions and boundary conditions have to be specified to constrain the

solution of a given poroelastic problem. Within the context of this work, the

initial fields are assumed to be in equilibrium, i. e. all fields are set to zero

throughout the model domain.

Boundary conditions are specified either by constraining the relevant degrees

of freedom at the model edges, e. g. normal displacement, or by specifying a

(potentially time-dependent) traction vector. If the displacement components or

the traction vector are zero at the model boundary, this leads to a vanishing of

the corresponding virtual work in the global energy budget.

Although it is possible to include volume forces such as gravity or point mass

sources such as fluid injections within the model domain, a discussion is passed

on since in the subsequent chapter, the focus is on consolidation processes that

are generally driven by externally applied forces.

3.2.3 Time integration and solution of the linear system

In contrast to static problems in elasticity, quasistatic formulations as described

by the coupled diffusion process in poroelasticity are time-dependent. The so-

lution of such problems therefore requires an approximation of the temporal be-

haviour of the field variables. This is done by introducing a backward FD operator

such that the time derivative is written at the new time step t+ ∆t

φt+∆t
= φt + ∆tφ̇t+∆t

. (3.47)

The resulting numerical scheme is implicit implying that a matrix inversion is

required within each time step. This entails a higher computational cost if com-

pared to explicit schemes such as described in section 3.1.1. The main advantage

of implicit schemes, however, is their better stability behaviour. Actually, there

is no restriction on the time step size to ensure stable results and the choice of

the number of required time steps can therefore be drastically reduced as long
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as the physical time scales are properly resolved. This means that for consolida-

tion processes, being typically characterised by strong spatio-temporal changes

of the stress and displacement fields at the beginning of the simulation, the time

step is short at the beginning and is then augmented during the simulation when

pore pressure equilibration takes place, and the stress and strain fields become

smoother. In practice, the time step size is determined automatically such that

the increment in pore pressure does not exceed a specified value during each time

step.

The result of the implicit FE discretisation is a large and sparse linear alge-

braic system with a size that is proportional to the number of elements as well

as to the number of nodal points per element. With the system matrix A, the

vector of unknown nodal values u and the source vector b the linear system is

Au = b . (3.48)

This system is solved using the conjugate gradient method that minimises the

function

f =
1

2
utAu − Au. (3.49)

which is then the case if the gradient of f

− grad f = r = b − Au (3.50)

approaches zero. Starting with an initial point in the solution space, in every

iteration k, a vector pk is determined that determines the direction in which the

solution should be approached. Basically, two successive directions are conjugate

with respect to A

pt
k Apk+1 = 0 (3.51)

and hence the name of the method. The approximation accuracy of the conju-

gate gradient method is controlled by a user-specified tolerance value. In order

to improve the convergence properties of the solver, the system matrix is precon-

ditioned.

The Abaqus FE code is parallelised using the domain decomposition technique

and can therefore be executed on large computer clusters. The numerical effort

for simulating 2-D and 3-D poroelastic processes is discussed in the chapter 5

concerning applications of the numerical FE model.

3.3 Discussion

The finite-difference method is the oldest method for determining approximate

solutions of partial differential equations and in many engineering applications
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it has already been replaced by more modern concepts such as e. g. the finite-

element method. FD methods are nevertheless still popular and widely used

in many branches of engineering and applied physics, in particular for solving

hyperbolic problems such as wave propagation. One reason for this is that the

limiting factor for code accuracy is inherently the propagating wavelength that

has to be resolved propertly throughout the whole domain through which the

propagation occurs. Therefore, the advantage of unstructured meshes is less than

e. g. for static stress calculation, where localisation effects may play an important

role. A similar argument applies for the case of random media where medium

heterogeneities are distributed throughout the model domain. In this case, the

creation of an irregular grid is also a difficult task. If a FE scheme is written for

a regular grid, it becomes similar to the schemes derived by the FD method.

The FE method, however has several advantages for modelling quasistatic

consolidation. In particular, if a well-defined internal interface is modelled, the

irregular grid allows to accurately resolve the strong spatial gradients in its vicin-

ity. The automatic determination of the time step size is another advantage for

consolidation experiments, since the strongest temporal changes are usually en-

countered in the beginning of a simulation, while for later times, the diffusion

process becomes very slow. If the time step is determined accordingly before

each time update, the discrete FE solution is optimally adapted to the physical

problem under consideration.

A difference between the formulations of the FD and FE method is in the

stability properties of the two schemes. While the implicit time stepping, as

used by the FE solver, provides unconditionally stable solutions, the explicit FD

time stepping requires that the maximum time step size is chosen sufficiently

small, as explained in section 3.1.4. It is however important to note that all

derived stability criteria are only applicable for homogeneous media, and in the

heterogeneous case, general stability conditions are not available.

In the section on spatial FD operators, two approaches were presented: stan-

dard and rotated staggered grids. As was pointed out, the rotated approach

entails lower memory requirements for storing material parameters, or update

coefficients, respectively. On the other hand, an additional mapping operation

is required per computed derivative. Sometimes, the rotated grid approach is

found to improve the stability of the algorithm when high material contrasts are

present within the medium. In contrast to the work of Saenger et al. (2000) on

elastic wave propagation, in the context of this work no evidence was found that

rotated operators if compared to standard operators provide more stable results

under strongly heterogeneous conditions. Actually, both staggered approaches

provide stable results, even if the contrasts are extremely large. This will be

demonstrated in the following chapters by different numerical examples.



Chapter 4

Accuracy and scalability tests

The numerical methods presented in the preceding chapter provide approximate

solutions of a given poroelastic problem. Before applying numerical methods for

practical problems, it is useful to carefully investigate the conditions under which

accurate solutions are obtained. As far as the simulation of wave propagation

is concerned, the resolution of the wavelength plays a key role in the context of

accuracy. If the wave length is not well sampled, numerical dispersion effects

deteriorate the solution which is similar to aliasing effects in signal processing.

The Biot slow P -wave is an additional wavemode in poroelastic media with a large

impact on simulation accuracy. Depending on the frequency regime, this wave

mode is either inertially dominated of diffusive. In the latter case, the diffusion

lengthscale needs to be resolved by the numerical simulation in addition to the

propagating fast P - and S-waves.

In this chapter, a series of finite-difference experiments is presented that allows

the accuracy of the numerical scheme presented in section 3.1 to be investigated

under various conditions. For this purpose, the simulation results are compared

to exact analytical solutions. A performance test carried out on a parallel Linux

cluster demonstrates the scalability of the FD scheme.

4.1 Numerical dispersion

In this first numerical example, I simulate wave propagation within a homoge-

neous porous medium and compare it to an analytical solution given by Norris

(1985). Such a solution is available in the time domain if friction between fluid

and matrix is neglected, i. e. if the viscosity η is set to zero or permeability κ

to infinity, respectively. This corresponds to the high-frequency limit of Biot’s

equations. As a source, a Ricker wavelet with centre frequency 25 kHz is used.

At 100 mm offset, two incoming waves are recorded: first, a fast P -wave arrives

and then a slow P -wave. The two seismograms in Figure 4.1a are calculated

59
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Figure 4.1: Numerical dispersion in a 2-D frictionless, homogeneous,

porous medium. (a) Synthetic seismograms, calculated with 4th order

operators and different spatial resolution. (b) Deviation from the exact

analytical solution given by Norris (1985) for varying spatial resolution

and spatial FD operators. (c) Associated wall clock time required per

timestep.

using 4th order FD operators, a time step ∆t = 0.2µs and two different spatial

samplings. The seismogram with the coarser resolution ∆x = 4mm shows typical

oscillations that indicate strong numerical dispersion. In order to quantify the

dispersion errors, I compute the sum of rms deviation of the computed seismo-

grams from Norris’ exact solution. For varying spatial resolution and different

spatial operators, the dispersion errors are given in Figure 4.1b. The error is

reduced by both decreasing the spatial sampling ∆x and increasing the order of

the spatial operator, thus approaching the theoretical solution. As can be seen in

Figure 4.1c, the price for accuracy is of course an increased computational cost.

A comparison of velocity and pore pressure seismograms for the same numer-

ical setup is shown in Figure 4.2. Here, the seismograms of relative velocity q

reveal that the fast mode is associated with very little relative motion between

the fluid and the solid phase, unlike the slow wave mode. This makes the relative

particle velocity field particularly useful to emphasise slow P -wave modes. Pro-

vided that the spatial discretisation is sufficiently fine, the FD approximation is

accurate and numerical and thus analytical results are in excellent agreement.

4.2 Intertial and diffusive regimes

One of the fundamental results of Biot’s theory is the existence of a slow com-

pressional wave mode in addition to the compressional and shear wave modes in

elastic solids. At very high frequencies this slow Ps-wave has the character of a

propagating wave mode, while at low frequencies, it shows diffusive behaviour.

The example given in Figure 4.3 shows that numerical implementations of
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Figure 4.2: Synthetic velocity and pore pressure seismograms simulated

within a 2-D frictionless, porous medium using 4th order operators and

1mm grid spacing. Synthetic seismograms of total velocity (a), relative

velocity (b) and pore pressure (c) are compared to the exact solution given

by Norris (1985).

Biot’s equations describe not only propagating waves, but also completely contain

the low-frequency diffusive behaviour of the slow P -wave. For that purpose, a

fluid injection source (in units of Pa) of the form

p(t) =







0 if t < 0
∫ t

0
sin3(πτ/ts) dτ if 0 < t < ts

1 if t > ts

, (4.1)

is used to excite a slow P -wave within a homogeneous wet sandstone model. By

varying the medium permeability κ and therefore ωB, the spatiotemporal response

is either more of an inertial type with a propagating wave front or of a diffusive

type. In the inertial regime, the wave front moves with a constant velocity. This

high-frequency velocity is obtained easily from the dispersion relation 2.54

At low-frequencies, the slow P -wave does not propagate any more. Instead, in

the diffusive regime, the pore pressure is governed by the homogeneous diffusion

equation and the solution to a step load is given in form of the complementary

error function, see equation 2.77.

The results as shown in Figure 4.3 indicate that both limits are modelled

accurately by the numerical implementation of the dynamic Biot equations. At

a very small time scales with t = 0.2ω−1
B , one observes a propagating front whose

position in agreement with the expected velocity as calculated from equation

2.54. At large time scale with t = 20ω−1
B , the diffusion limit provided by equation

2.77 is met. At intermediate timescales that are in the order of the critical

relaxation time, i. e. at t = 2ω−1
B , the diffusion solution is also valid but the

signal propagation is bounded by the velocity for the slow wave.
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Figure 4.3: Pore pressure profiles for a “step” loading at x = 0. The

numerical solution of the fully dynamical Biot equations is compared to the

limiting cases of pure intertial wavefront and the solution of the diffusion

equation. The response a pure wave front for short times (a), a diffusive

response for long times (c) or a combination of both at intermediate times

(b).

4.3 Resolution of the diffusion boundary layer

In the preceding example, a slow P -wave is excited by a Dirichlet pore pressure

source. Now it is demonstrated that at poroelastic interfaces, fast P -waves may

excite fast and slow P -waves and the reflection coefficient is governed by the

behaviour of the slow P -wave. From the frequency-dependence of the slow P -

wave it follows that the reflection response also depends on the frequency of the

incident wave.

Consider an interface between a gas-saturated and a fully water-saturated

unconsolidated sandstone with material properties given in Tables 2.1 and 2.2.

A Ricker wavelet is chosen as an input signal. The model domain consisting of

two halfspaces is four times as large as one P -wavelength. In order to reveal the

frequency-dependence of the reflection response, a set of simulations with varying

permeability κ is conducted, exploiting the fact that the normalised frequency

ω/ωB is the governing non-dimensional parameter in the system. This implies

that changing the permeability of the porous matrix κ (and therefore the Biot

frequency ωB) is mathematically equivalent to changing the source frequency

and the spatial scale of the simulation. The frequency regimes modelled this way

range from seismic where friction is dominant to ultrasonic where the inertial

terms prevail. The spatial sampling is varied between 30 and 240 gridpoints per

fast P -wavelength and 4th order spatial operators are used. As in the previous

example, the time step is ∆t = 0.2µs. The results are compared to the exact

analytical solution given by Dutta and Odé (1983), see Figure 4.4.

The reflection coefficient is obtained from the synthetic pore pressure seismo-

grams by dividing the maximum amplitude of the reflected fast P -wave by the
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Figure 4.4: Frequency-dependent reflection from a gas-water contact in

unconsolidated sandstone. (a) The numerical coefficients, obtained for

four different spatial samplings, are computed as the fraction of maximum

pore pressure of the reflected wave pr and the incident wave pi. The

solution is compared to an exact analytical solution (solid line) given by

Dutta and Odé (1983). (b) Estimates of the relative error as a function of

frequency and spatial resolution. (c) Integral error obtained by summing

up the deviation of the numerically obtained values from the exact solution.

maximum amplitude of the incident fast P -wave

Rnum.
11 (ω/ωB) =

pr

pi

. (4.2)

In Figure 4.4a, two frequency regimes are identified. In the low-frequency limit,

i. e. for very low permeabilities, the diffusion length is very small compared to

the wavelength and therefore practically no fluid flows during one wave cycle.

For very high permeabilities with b → 0, i. e. in the high-frequency limit, fast

and slow P -waves are reflected and transmitted from the gas-water contact, since

intertial terms dominate the friction effects. The crossover between these two

regimes occurs at frequencies around and below the critical Biot frequency.

Qualitatively, the simulations with different spatial samplings provide similar

results. In particular, the high- and low-frequency limits are met. There are,

however, deviations from the exact solution at intermediate frequencies, especially

for the lower resolution. This is emphasised in Figure 4.4b showing the relative

deviation of the numerically obtained estimates of R11 from the exact solution.

Maximum relative errors are obtained at approximately the Biot frequency and

their magnitude decreases with increasing spatial resolution. An integral measure

of the overall error is shown in Figure 4.4c.

Figure 4.4b shows comparatively strong deviations at frequencies around and

below the characteristic Biot frequency ωB, while the error is smaller for ω/ωB <

10−3 and ω/ωB > 10. This is due to the fact that at frequencies considerably

exceeding ωB, the diffusion lengthscale of the slow P -wave is large and therefore, a
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coarse grid is basically sufficient to resolve the process. The lower the frequency is,

the smaller is the diffusion length and errors occur due to improper resolution of

the diffusion process at the interface. The numerical solution is biased towards the

low-frequency limit or in other words, low spatial resolution enhances apparent

friction and hampers the diffusion process. In the low-frequency limit, the effects

of the diffusive slow P -wave become insignificant and therefore, a good estimate

of the reflection response is obtained even if the diffusion scale is not resolved.

Although no seismograms of the reflection experiment are shown, it should

be noted that the amplitude errors cannot be observed in the shape of the fast

P -waveform. The fact that a very fine spatial sampling of the propagating P -

wave is required to yield an adequate reflection response is a manifestation of the

problem of numerical stiffness addressed in the preceding chapter.

4.4 Modelling free fluids

A special question arising in poroelastic modelling is the correct representation

of free fluids within the framework of poroelasticity. This problem appears when

high-porous inclusions such as cracks and fractures are embedded within a porous

rock matrix. They are mechanically very soft and on the other hand characterised

by a very high permeability. Indeed, in reservoirs fractures usually govern the

fluid mobility while most of the pore space volume is often associated with the

porous host rock.

As was shown section 2.6, the Biot wave equations are consistent with the

equations of elastic wave propagation and this limit is approached by increasing

the friction between fluid and solid matrix.

There are two possible approaches to numerically model fluids in contact

with a porous medium. The first approach is to explicitly define different do-

mains that are filled by fluid or a porous medium, respectively. In both domains,

the poroelastic or acoustic wave equations are solved and they are then linked

dynamically at the internal interface. Although this is a common approach for

analytical models, its numerical implementation is complex and comes with a lot

of administrative cost for exchanging mass and momentum internally between

different domains.

Therefore, it would be useful to model fluids directly within the framework

of poroelastic rheology by choosing the material parameters appropriately. An

obvious choice for the porosity is letting φ → 1 and at the same time tortu-

osity ν → 1. This implies ρb, ρm → ρf as well as α → 1 and H, M → Kf

(Bourbié et al., 1987). Furthermore, letting Kd, G → 0, the poroelastic wave

equation 2.25 becomes

ρf üi + ρf ẅi = Kfuj,ji +Kfwj,ji (4.3)
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Figure 4.5: Frequency-dependent reflection from an interface between a

free fluid (water) and a porous rock (saturated sandstone), as shown in (a).

The reflection response is very different if the fluid is modelled with 100%

porosity or porosity 99.9% (b). The latter is identical with an analytical

solution (Quiroga-Goode and Carcione, 1997).

which simplifies using wi = uf
i − ui to

ρf üf
i = Kfuf

j,ji . (4.4)

This is indeed the acoustic wave equation, describing compressional waves in flu-

ids. Although this reduction to the acoustic case is done easily, the modelling of

fluids by using poroelastic equations requires particular care. E. g., one observa-

tion of the behaviour of the numerical FD code is shown in Figure 4.5. The model

contains an interface between fluid (water) and a consolidated porous sandstone,

fully saturated with water, as well. For this case, an analytical solution is given

by Dutta and Odé (1983) or alternatively Quiroga-Goode and Carcione (1997).

Numerical results show a strong deviation from the theoretical values if the fluid

is modelled using φ = 1. If porosity is only slightly smaller than 1, the numeri-

cal results are in agreement with the theoretical values. In this case, the elastic

moduli should be

Ks = ǫ , (4.5)

i. e. a small value larger than one,

Kd = (1 − φ)Ks , (4.6)

G = 0 , (4.7)

thus ensuring the conditions for the Biot coefficient α = 1 and the pore space

modulus M = Kf . If the model parameters are chosen such, fluids and interfaces
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Figure 4.6: Seismograms of normal incidence plane wave scattering from

an interface between a free fluid and a porous water saturated sandstone.

In the low-frequency limit (a), the porous rock behaves like an equivalent

elastic medium, such that one one fast P -wave is transmitted. At high

frequencies (b), however, fast and slow P -waves appear and the amplitude

of the reflected wave mode is lower.

are consistently represented within the framework of poroelastic modelling tools.

Figure 4.6 illustrates the behaviour of an acoustic wave reflected and transmitted

at a fluid-porous interface. In the low-frequency regime, the slow P -wave does not

propagate and only one wave is transmitted, one reflected. At high frequencies,

the slow P -wave propagates and an additional wave mode is involved in the mass

and momentum balance across the interface.

Finally, stability is also an important issue when modelling cracks and free

fluids. Critical in this context is the stability condition 3.39

ν

φ
>
ρf

ρb
, (4.8)

stating that the tortuosity ν is cannot be approach 1 simultaneously with porosity

φ. This would violate the stability condition. Therefore, a value slightly larger

than one is required for the tortuosity to yield stable results.

4.5 Parallel performance

The scalability of the poroelastic FD scheme is estimated by two performance

tests performed on the XC6000 Linux cluster of the Scientific Supercomputing

Center of Karlsruhe University. Simulations are carried out on 4, 8, 16, 32 and

64 Intel Itanium2 processors, where each processor is located on a two-way node

with 12 GB of main memory. The communication network is a Quadrics QsNet

II Interconnect. The performance tests differ insofar that first, total number of
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np wall clock time / time step (ms)

ngp = 106 ngp = 106× np

4 53 2121

8 27 215

16 15 217

32 08 221

64 05 232

1 Reference value wctref

Table 4.1: Elapsed wall

clock time for two sets of test

simulations: one with con-

stant total domain size, the

other one with constant do-

main size per process.

grid points is kept constant while increasing the number of processes involved,

and in the second test, the number of gridpoints per process is kept constant.

First, the model with a total size of 1000×1000 grid points (ngp) was con-

sidered. Increasing the number of processes (np) results in a reciprocal decay

of elapsed wall clock time (wct) per time step. The speedup is then the inverse

relative decay in computation time

speedup1 = wctref/wcti . (4.9)

In the second test set, the domain size was increased with increasing number of

processes up to a maximum domain size of 8000×8000 grid points. Obviously,

the elapsed time per timestep is approximately constant with a slight increase

due to communication between the processes. For this set, the fraction

efficiency2 = speedup1 = wctref/wcti (4.10)

is the efficiency of the simulation. For comparison, a speedup curve is also com-

puted according to

speedup2 = wctref/wcti × np . (4.11)

The results of the scaling investigation are listed in Table 4.1 and furthermore

given in Figure 4.7. A continuous decay in efficiency with rising number of pro-

cesses is observed for both sets of simulations. However, if the domain size per

process is kept constant, an efficiency of 91% is obtained for 64 processes.

4.6 Discussion

The quantification of numerical discretisation errors for poroelastic FD modelling

has been the main focus of this chapter. In seismic modelling of purely elastic

waves, numerical dispersion criteria are well-known, stating that the smallest

wavelength has to be resolved properly. The better the criterion is fulfilled, the
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Figure 4.7: Scalability test of the poroelastic FD scheme. Two sets of

test simulations are considered with values given in Table 4.1.

better is the conservation of waveforms and the reproduction of phase velocities.

Within the seismic frequency range in poroelasticity, the smallest relevant scale

is the diffusion length λD that is usually orders of magnitudes smaller than the

largest wavelength λPf
of the fastest wavemode. This is a well-known problem

of poroelastic modelling (Carcione and Quiroga-Goode, 1995), however it is often

disregarded in the literature. If the grid is too coarse to sample the slow and hence

small-scale diffusion process, the grid acts like a spatial filter and the solution

deteriorates. It was found that the effect of such a “grid filter” is that instead

of the true poroelastic response, one obtains numerically the response of the

equivalent elastic medium. In order to give physically consistent results, the grid

increment often has to be orders of magnitude smaller than what is needed for

elastic or viscoelastic modelling. The stiffness of the problem rises with decreasing

frequency as 1/
√
ω.

One answer to the problem of numerical stiffness and the resolution of the

diffusion length is the application of parallel schemes that allow for the calcu-

lation of larger models, i. e. models with a finer discretisation and therefore a

greater number of grid points and timesteps. The scalability test presented in

this chapter proved the high efficiency of the poroelastic FD scheme even on

larger computer clusters. However, on currently available supercomputers, the

simulation of surface seismic surveys with frequencies around 50 Hz, wavelengths

of 60–100m, diffusion lengths around 1 cm and domain sizes in the order of several

kilometres would require tens of thousands of gridpoints per spatial dimension

which is still beyond feasibility. The application of the FD method as a simula-

tion tool is therefore restricted to the scales of borehole acoustics and laboratory

experiments.



Chapter 5

Applications

There are two principal aims of applying numerical tools in the context of this

work, that shall be subsequently called experiment and simulation. The goal of

numerical experiments is the systematic determination of fundamental relation-

ships between the material properties of the medium and the seismic response.

Characteristic for this type of modelling philosophy is a certain degree of abstrac-

tion, simplification and reduction of the influential parameters to a minimum.

The advantage of results from numerical experiments if compared to analytical

estimates is that no assumptions have to be made beyond those inherent in the

poroelastic description. Experiments provide means of verifying theoretical esti-

mates and for evaluating the range of their applicability.

In contrast to experiments, numerical simulation aims at reproducing lab-

oratory data and predicting the behaviour of particular rock types. Instead of

considering a simplified synthetic representation of a real rock sample, the numer-

ical setup is chosen such that the complexity of the sample geometry is reflected

as much as it is possible. In combination or complementary to laboratory expe-

riments, numerical simulation can provide insights onto the underlying physical

mechanisms, thus contributing to the interpretation of measurements. Eventu-

ally, this may lead to substituting additional laboratory tests.

The purpose of this chapter is to give several numerical examples to show how

poroelastic modelling contributes to solving modern problems in rock physics re-

search. Beginning with finite-difference (FD) wave propagation experiments of

wave scattering from porous inclusions, the conversion of different wave modes at

internal interfaces is illustrated. Results are shown for the cases of partial satu-

ration and cracked media. If the wavelength of the incident wave is much larger

than the size of the inclusion, scattering from fast to slow waves is dominant and

the overall behaviour is then described by the quasistatic approximation. This

makes it possible to use finite-element (FE) relaxation experiments to estimate

effective material properties. The scattering of elastic and poroelastic waves in

69
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Table 5.1: Material properties used in the numerical applications.

consolidated unconsolidated

sandstone sandstone crack

Ks (GPa) 35 35 10−3

Kd (GPa) 5 2.5 10−5

µ (GPa) 11 1 0

φ 0.2 0.3 0.99

ν 2.0 2.0 1.01

κ (D) 1 1000 ∞
ρs (t/m3) 2.65 2.65 2.65

water gas air

Kf (GPa) 2.25 0.10 0.00014

ρf (t/m3) 1.0 0.1 0.001

η (mPas) 1.0 0.22 0.02

random media is the topic of the following sections. Finally, the simulation of

an ultrasonic laboratory experiment is presented. An overview of the material

parameters used in the numerical examples is given in Table 5.1.

The examples given in this chapter are based on publications of Wenzlau et al.

(2007), Wenzlau and Müller (2008), Wenzlau et al. (2008) and for the ultrasonic

wave simulation of Lebedev et al. (2009).

5.1 Scattering from porous inclusions

The influence of cracks on effective poroelastic parameters is a current research

topic in rock physics. Mechanically, cracks are very thin, soft and highly perme-

able heterogeneities within a porous rock matrix. Usually, cracks and fractures

are considered to be much larger than the average pore size of the surrounding

medium (Gurevich et al., 2007). They are characterised by their thickness and

shape as well as their distribution in the rock matrix. The presence of cracks

and their geometry may cause characteristic frequency-dependent dispersion and

attenuation of seismic waves (Brajanovski et al., 2006; Berryman, 2007). This is

particularly important when during one wave cycle, there is an exchange of fluid

between crack and matrix.

As an example, consider a 2-D model with a size of 400×400mm, surrounded

by an absorbing layer of 100mm. The grid increment ∆x is 1mm. A plane
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Figure 5.1: Scattering of a plane compressional wave from an elliptic

crack. Snapshots of pore pressure fields at four different times.

fast P -wave with 25kHz centre frequency is used that encounters an elliptically-

shaped crack, embedded within a water-saturated consolidated sandstone model

(see Table 5.1).

The crack is modelled as a free fluid (see section 4.4) by setting the porosity to

99% and the matrix moduli to a very small value, according to relations 4.5–4.7.

In order to fulfil condition 3.37, a time step ∆t of 0.1µs is used.

Figure 5.1 shows pore pressure snapshots of a plane wave interacting with the

elliptical inclusion. A slow P -wave is generated at the crack-matrix interface,

slow modes are distinguished from the fast modes by their smaller wavelength.

Induced fluid motions can also be emphasized by comparing the scattered pore

pressure field with the corresponding elastic case, i. e. when permeability κ is

considered to be zero (results not shown). Due to the wavemode conversion at

the applied frequency of 25kHz, the wavefield around the crack shows a complex

pattern.

A second example of plane wave scattering is now considered that is moti-

vated by the typical observation that reservoir rocks show patchy saturation in

the presence of two or more fluid phases, often liquid and gaseous. The term

patchy refers to the situation when the fluid phases are not homogeneously dis-
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Figure 5.2: Same as figure 5.1, but for a circular gas inclusion.

tributed, but rather form isolated pockets of a characteristic size. Partial satu-

ration is particularly relevant for waves in reservoirs, since it may significantly

affect seismic velocities and attenuation (White et al., 1975).

2-D snapshots show plane wave propagation within a medium with an air

saturated inclusion, embedded in water-saturated consolidated sandstone. The

experiments are similar to those of Carcione et al. (2003). All material properties

are given in Table 5.1. The general numerical setups are the same as in the

previous example of a cracked medium. The model has a circular dry inclusion

with a diameter of 7.5cm. Again, a plane fast P -wave is used to excite the

medium. The wavelet is of Ricker type with 25kHz centre frequency.

For the partial saturation scattering experiment, pore pressure fields are given

in Figure 5.2. The incident fast P -wave is almost perfectly transmitted through

the inclusion. No pore pressure is built up within the dry inclusion during the

passage of the incident wave. This has to be expected due to the low bulk modulus

of the gaseous phase. Consequently, a pore pressure gradient appears that drives

fluid flow across the interface and a slow P -wave arises at the interface between

dry inclusion and wet surrounding. The slow waves are strongly dissipated, as is

seen in the snapshots for larger propagation times.
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5.2 Quasistatic relaxation experiments

Conventionally, dispersion and attenuation are estimated from numerical wave

propagation experiments by using the spectral ratio or frequency shift method

(e. g. Rubino et al., 2007, and references therein). In these experiments, wave

signals are recorded along the propagation path, then dispersion and attenuation

are calculated by measuring traveltime and the log-amplitude decay. A differ-

ent approach was suggested by Masson and Pride (2007) where they simulate

quasistatic experiments based on a finite differences solver for the dynamic Biot

equations. Using their approach, the model size is considerably reduced to only

one representative elementary volume (REV).

In this example, the idea of Masson and Pride (2007) is further developed

and a new and simple strategy is proposed for estimating effective elastic moduli

from quasistatic relaxation experiments. From the moduli, velocity dispersion

and attenuation can be derived in a straightforward manner. The simulations are

carried out using the commercial Abaqus finite-element solver, a package that

allows to calculate consolidation processes based on the Biot theory. A synthetic

rock model consisting of two porous layers serves as a benchmark test for the

approach.

For the sake of clarity, first the one-dimensional case is considered, and then

the idea is extended to the 3-D case. Consider a heterogeneous, fluid saturated,

porous rock sample with the height L that is confined laterally, sealed hydrauli-

cally and represents an REV of a porous rock. Initially, a vertical uniaxial strain

〈εzz〉 is imposed instantaneously on the sample, resulting into an initial stress

state 〈τ 0
zz〉 = 〈τzz(t = 0)〉 within. The following pore pressure diffusion process

governs the relaxation of the whole sample.

The simulations are carried out in the time domain. From the time signals,

the limiting cases of relaxed and unrelaxed moduli are directly calculated from

the time signals as

Hu =
〈τzz(t)〉
〈εzz〉

∣

∣

∣

∣

t=0

, (5.1)

Hr =
〈τzz(t)〉
〈εzz〉

∣

∣

∣

∣

t→∞

. (5.2)

In order to evaluate the frequency-dependence of the elastic modulus, one cal-

culates the relaxation function ψ commonly used in the context of viscoelastic

materials (Aki and Richards, 1980). It is expressed by

ψ(t) =
〈τzz(t)〉
〈τ 0

zz〉
− 1 , (5.3)
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The complex, frequency-dependent, effective P -wave modulus is then

H̃(ω) = Hu

[

1 + F{ψ̇(t)}
]

(5.4)

= Hu



1 +

∞
∫

0

ψ̇(t) exp(ıωt) dt



 . (5.5)

Here, the dot denotes the time derivative. P -wave velocity and attenuation are

obtained from the effective modulus H̃ and bulk density ρ by

v =

√

Re H̃

ρb
and (5.6)

Q−1 = −Im H̃

Re H̃
. (5.7)

An elaborate explanation of this procedure is given in appendix A.

In order to exemplify the applicability and accuracy of the proposed method,

results are shown for a porous rock (consolidated sandstone, see Table 5.1) with

diffusivity D given by equation 2.75. The synthetic sample is saturated with two

fluids, 50% water and 50% gas. A periodically layered fluid distribution with

spatial period L is assumed. For this case, an analytical solution is provided by

White et al. (1975). Results for the velocity dispersion and attenuation of a P -

wave are shown in Figure 5.3. We find that our numerically obtained estimates

are in excellent agreement with the predicted values.

As a consequence of Hill’s theorem, a partially-saturated rock with isotropic

matrix properties is always isotropic, regardless of the distribution of the fluid

phases inside the sample. In the case of the previous example, this is easily

verifiable by calculating the time-dependent shear modulus as

G(t) =
1

2

〈τzz(t)〉 − 〈τxx(t)〉
〈εzz〉 − 〈εxx〉

, (5.8)

where z denotes the vertical direction (loading direction) and x is one horizontal

direction. Numerical results indeed show that in the example given in Figure 5.3,

the shear modulus is time-independent, implying dispersion-free propagation of

shear waves in partially-saturated rocks.

The situation changes if the matrix shear modulus is inhomogeneous, gener-

ally resulting in an anisotropic effective behaviour of the heterogeneous medium.

In this case, multiple relaxation experiments are necessary to determine all ef-

fective elastic moduli. A special case of anisotropy is obtained, if the geometry

of the heterogeneity has a symmetry plane in horizontal direction, as e. g. for

horizontal layering. In this case, the corresponding effective medium possesses
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Figure 5.3: Velocity disper-

sion (a) and attenuation (b)

for a partially saturated rock

sample. Frequencies are nor-

malised using the diffusivity

D and spatial scale L.

vertical transverse isotropy (VTI) and it is described by five independent elastic

constants c11, c12, c13, c33 and c44, as explained in appendix C.2. In order to

determine all five moduli from numerical relaxation experiments, three deforma-

tion states are required. They are shown in Figure 5.4. Note that the vertical

symmetry axis denotes the 3-direction. The components of the VTI elasticity

tensor are then given in long and short notation by

c11 = c1111 =
〈τ11〉
〈ε11〉

, (5.9)

c12 = c1122 =
〈τ22〉
〈ε11〉

, (5.10)

c13 = c1133 =
〈τ33〉
〈ε11〉

, (5.11)

c33 = c3333 =
〈τ33〉
〈ε33〉

, (5.12)

c44 = c55 = c1313 =
〈τ13〉
〈ε13〉

. (5.13)

Additionally, the dependent elastic modulus for shear deformation within the

symmetry plane is

c66 =
c11 − c12

2
. (5.14)
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Figure 5.4: Three deformation states used to obtain all 5 effective elastic

moduli (assuming effective transversal isotropy). (a) vertical compression

or 〈ε33〉-deformation. (b) horizontal compression or 〈ε11〉-deformation. (c)

simple shear or 〈ε13〉-deformation.

In the general, anelastic case, the elasticity tensor cIJ derived such is a time-

dependent quantity and one should better speak of cIJ(t) as a complete relaxation

tensor. It can be transformed to the frequency domain by calculating a relaxation

tensor ψIJ analogous to the unidimensional case.

ψIJ(t) =
c(IJ)(t)

cu(IJ)

− 1 , (5.15)

where the index brackets denote elementwise division (no summation is applied).

Transformation to the frequency-domain is done analogous to equations 5.3–5.5,

but now carried out subsequently for every component of the relaxation tensor.

According to Carcione (2001), velocity and attenuation are calculated from the

complex stiffness matrix as

vIJ =

√

Re c̃IJ

ρb
, (5.16)

Q−1
IJ = −Im c̃(IJ)

Re c̃(IJ)

. (5.17)

Note the formal similarity of equations 5.16 and 5.17 with equations 5.6 and 5.7.

In order to exemplify the anisotropic case, two heterogeneous double-porosity

media will now be considered, both with an effectively anisotropic, viscoelastic

material behaviour. The first medium is a water-saturated, consolidated sand-

stone with thin, soft embedded porous unconsolidated layers with higher porosity.

Material parameters for these two rock types are given in Table 5.1. A second

model is considered with the same materials, but with a soft ellipsoidal inclusion

instead of the porous layer. Both models are chosen such that the volume fraction
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Figure 5.5: Two model geometries for double porosity relaxation exper-

iments. (a) Layered model with layer thickness h, (b) ellipsoidal inclusion

with semiminor and semimajor axes a and b, respectively. Total model

dimension is L × L × L.

of the inclusion is 2.83%. The model geometries of the representative elementary

volumes are shown in Figure 5.5. Due to the model geometries, both models are

effectively vertically transverse isotropic (VTI).

For the layered case, exact theoretical solutions are available for the effective

P -wave modulus H̃(ω) for normal incidence (Norris, 1993; Brajanovski et al.,

2005). In addition to that, the poroelastic Backus averaging gives the high- and

low-frequency limits for all three wavemodes (qP , qSV , SH), see section 2.7 and

appendix C.2. For the case of the ellipsoidal inclusion, a theoretical solution for

the effective P -wave modulus has been reported recently by Galvin and Gurevich

(2006). Their model includes fast-to-slow mode conversion but similar to theories

for layered models it is restricted to the case of normal incidence. In addition to

that, the solution assumes a fluid-filled inclusion and a weak shear modulus of

the surrounding rock matrix, such that G/Kf < a/b.

The advantage of numerical results if compared to the previously mentioned

theoretical solutions is that it is possible to obtain the total complex, frequency-

dependent VTI stiffness tensor. Using numerical modelling, dispersion and at-

tenuation of all three wave modes are obtained for arbitrary angle of incidence.

Results for the attenuation of qP - and qSH-waves at normal and grazing

incidence are depicted in Figure 5.5. The attenuation is derived using equation

5.17 and the depicted attenuation values correspond to the diagonal entries of

the QIJ matrix, i. e. Q11 and Q33 for qP -waves, Q44 and Q66 for SH-waves. The

first observation is that maximum attenuation throughout the whole frequency

band is encountered for the qP -wave at normal incidence (θ = 0◦) for both

models, but the values are higher for the layered case by a factor of 2.5 (note

the different axes scaling in the two subfigures). Second, the depicted shear wave

attenuation is zero for the layered case. This should be expected, since the Backus

averaging formulas provide zero dispersion for horizontally polarised shear waves.
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Figure 5.6: Frequency-dependent attenuation Q−1 derived from double

porosity relaxation experiments, (a) for the layered model, (b) for the

model with an ellipsoidal inclusion. P - and SH-waves are considered with

normal (0◦) and grazing (90◦) angle of incidence. In contrast to the lay-

ered case, where shear wave attenuation is zero, it is non-zero for the 3-D

geometry.

Interestingly, shear wave attenuation is non-zero in the 3-D case of a model with

the elliptical inclusion. Actually, the shear wave attenuation of normal incident

waves is comparable to that of normal incident qP -waves, attaining a value of

Q−1
SH = 0.0018 if compared to Q−1

qP = 0.0028. Third, the attenuation curves show

a similar frequency-dependence, such that the main difference e. g. between the

two curves in Figure 5.5a is the amplitude of the attenuation effect.

This similarity can be further analysed by considering the time-dependence of

the relaxation tensor. In the unrelaxed state, the relaxation tensor is zero as can

be seen by inserting the undrained limit cIJ(t = 0) = cuIJ into expression 5.15.

On the other hand, in the unrelaxed limit, cIJ(t → ∞) = crIJ and inserting this

in equation 5.15 yield the low-frequency-limit of the relaxation tensor

ψ0
IJ =

cr(IJ)

cu(IJ)

− 1 . (5.18)

Normalisation of the relaxation tensor with its low-frequency limit yields a nor-

malised ψn
IJ such that one can decompose ψIJ as

ψIJ(t) = ψn
(IJ)(t) ψ

0
(IJ) (5.19)

with 0 < ψn
IJ(t) < 1 and a time-independent tensor ψ0

IJ that is completely deter-

mined by the high- and low-frequency limits of the stiffness tensor c̃IJ .

Normalised relaxation ψn
IJ as obtained from the numerical experiments is de-

picted in Figure 5.7 for the 1-D layered model as well as for the 3-D model with

the elliptical inclusion.
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Figure 5.7: Normalised relaxation functions obtained from double poros-

ity experiments. In the 1-D layered case (a) all relaxation functions coin-

cide, while in the 3-D case (b), small deviations are observed.

In the 1-D case, the relaxation due to shear deformation is immediate, or ψ44 =

ψ66 = 0, and therefore, only four components are plotted in the corresponding

Figure 5.7a. Interestingly, the curves for all four remaining relaxation functions

coincide. In other words, the frequency-dependence of all corresponding complex

moduli is the same and one has

ψn
IJ(t) = ψn(t) δIJ (5.20)

As a consequence, one can generalise the theoretical results of Norris (1993)

and Brajanovski et al. (2006) simply by combining the frequency-dependence ob-

tained for the normal incident P -wave modulus and the frequency limits obtained

from Backus averaging (Gelinsky and Shapiro, 1997). Hence first, cuIJ and crIJ are

calculated according to equations given in appendix C.2 and combined to equate

ψ0
IJ . Then, the normalised relaxation is calculated by

F{ψ̇n}(ω) =
H̃(ω)/Hu − 1

Hr/Hu − 1
. (5.21)

Finally, the complex stiffness tensor is computed according to

c̃IJ(ω) = cuIJ

(

1 + F{ψ̇n}ψ0
IJ

)

. (5.22)

In appendix C.2, this procedure is explained in more detail and it is shown how

angle-dependent attenuation can be derived theoretically for the layered model.

The relaxation in the 3-D case differs from the 1-D case insofar as relation 5.20

does not apply exactly. Instead, the normalised relaxation is slightly different
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Figure 5.8: Maximum wave attenuation as a function of incidence angle

θ for two double porosity relaxation experiments. Results are given for the

1-D layered model (a) and the 3-D model (b). An angle θ = 0◦ corresponds

to normal incident wave while θ = 90◦ corresponds to grazing incidence.

for the different relaxation functions, as seen in Figure 5.7. In particular, the

relaxation due to pure horizontal shearing, ψn
66 deviates significantly from the

other relaxation functions. The dispersion and attenuation characteristics of the

3-D model must therefore be computed directly from the full stiffness tensor c̃IJ .

This is done by inserting the complex modulus into equations C.23–C.25 given in

appendix C.2 yielding three complex velocities ṽqP , ṽqSV and ṽSH as a function

of angle of incidence θ. From the complex velocities, dispersion and attenuation

are derived as

v(ω, θ) =
[

Re (ṽ−1)
]−1

(5.23)

Q−1(ω, θ) = 2vIm (ṽ−1) (5.24)

Results for the maximum attenuation of compressional and shear waves are

given as a function of incidence angle in Figure 5.8. In the 1-D case, only qP - and

qSV -waves are attenuated, while the attenuation of the pure shear wave mode

is zero, independent of the incidence angle. P -wave attenuation attains zero at

approximately 55◦ and qSV -wave attenuation is are zero at θ = 0◦ and at θ = 90◦.

In the 3-D case, the qP - and qSV behave qualitatively like in the 1-D case.

However, there is neither for the qP - nor for the qSV -wave an angle of incidence

where no attenuation occurs. In addition to that, a smaller amount of attenuation

is also observed for the horizontally polarised SH-wave. For a further discussion

and explanation of the results, it is referred to section 5.6.
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5.3 Elastic scattering in random media

Earth materials are often described by random fields, where the heterogeneity

of the material parameters is characterised by global mean values, variance and

correlation properties. If the wave frequencies are much lower than the Biot

frequency ωB and the wavelengths are comparable to the correlation length of

the medium, the attenuation and dispersion behaviour is dominated by purely

elastic scattering. Therefore, in this limit, it is not necessary to take into account

the effects of wave-induced flow and for wave propagation experiments, an elastic

formulation is sufficient to describe the scattered wavefield.

As already introduced in section 1.2, in random heterogeneous media, wave

field energy is transferred from the vicinity of the first arrival to later arriving

signals, i. e. from the primary to the seismic coda. This effect is related to the

randomness of wave field attributes and causes scattering attenuation. Using

numerical experiments in 2-D elastic, anisotropic, random media, the amplitude

fluctuation of plane waves are analysed in order to quantify the attenuation be-

haviour. The results are then interpreted on the basis of theoretical scattering

estimates.

Scattering theory

For a simplified analytical treatment of scattering problems in random media

consider the stochastic wave equation

ü(x, t) =
c20

1 + 2n(x)
∇2u(x, t) (5.25)

with a heterogeneous, random field of propagation velocity c that has a mean part

c0 and a fluctuating part n. The mean of n is zero, its variance is σ2
nn, spatial

correlation is described by the correlation function B(r).

The solution of 5.25 is a random wavefield that is characterised by on its part

by statistical properties, i. e. mean and variance. For theoretical estimation of

wave scattering the relative, logarithmic wavefield amplitude χ is used

χ = ln

∣

∣

∣

∣

A

A0

∣

∣

∣

∣

. (5.26)

Scattering coefficients and quality factor can then directly be related to the mean

and the variance of χ as (Müller and Shapiro, 2004)

α =
σ2

χ

L
, (5.27)

Q−1 =
2α

k
(5.28)
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Figure 5.9: Backscattering and random diffraction in layered and in 2-D

random media. How do anisotropic heterogeneities behave? How large is

the (anisotropic) scattering attenuation?

with the propagation distance L and the wavenumber k. Consequently, know-

ing the wavefield log-amplitude fluctuations, the scattering attenuation can be

inferred directly.

There are various theoretical approaches that describe amplitude fluctuations

of seismic waves in random media. Shapiro and Hubral (1999) found that in

layered media, propagating waves are subjected exclusively to multiple backscat-

tering and stratigraphic filtering. They propose a model to quantify these effects

based on the O’Doherty Anstey formalism. Influential parameters are the char-

acteristic layer period a, the wave number k and the angle of incidence φ, shown

in Figure 5.9. According to their model, the amplitude variance σ2
χ of backscat-

tered waves in 1-D media rises linearly with propagation distance L and can be

estimated as

σ2
χ,1D = σ2

nn

√
π

2
ax Lk

2 exp
(

−k2a2
x cos2φ

)

, (5.29)

where σ2
nn is the variance of the medium heterogeneities and ax is correlation

length and φ is the angle of incidence.

Wave scattering in media with isotropic correlation function differs signifi-

cantly from the case of layered media. Instead of dominant backscattering, the

wavefield is diffracted and refracted around the medium heterogeneities and the

product of wavenumber and correlation length ka mainly governs the dominant

scattering direction. For high frequencies or ka≫ 1, the wavefield is mainly scat-

tered in forward direction as depicted in the right figure of 5.9. Using the Rytov

transformation, the amplitude variance due to diffraction and refraction can be

estimated in the case of weak scattering in 2-D media (Müller and Shapiro, 2001,

2004). It rises faster than linear with propagation distance

σ2
χ,diff = σ2

n

√
π

4

aξ

aη

k3 a3
η D

(

1 − 1√
2D

√√
1 + 4D2 − 1

)

(5.30)
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with the wave parameter

D =
2L

ka2
η

(5.31)

serving as a dimensionless length of the propagation path. Note that the model of

Müller and Shapiro considers only the case of isotropic heterogeneities described

by one single correlation length a, while in equation 5.30, two correlation lengths

aξ and aη are used to describe the effects of anisotropic correlation on the scattered

wave field scatistics. These effective longitudinal and lateral correlation lengths

are given as a function of incidence angle φ and the axes of the heterogeneity ax

and ay

aξ = axay

(

cos2φ a2
x + sin2φ a2

y

)−1/2
, (5.32)

aη =
(

sin2φ a2
x + cos2φ a2

y

)1/2
. (5.33)

The ratio of correlation lengths γ = ax/ay provides an estimate of the degree

of anisotropy. If the anisotropy is very strong, diffraction for small angles is

negligible and backscattering dominates. For weak anisotropy the relationship is

vice versa.

Therefore, by combining the theories for backscattering in layered media with

diffraction and refraction in 2-D random media, a hybrid model is obtained, see

Figure 5.9. If the medium heterogeneities are not isotropic, the scattering depends

considerably on the angle of incidence.

Numerical experiments

In order to verify the theoretical estimates of wavefield scattering, numerical

experiments of elastic wave propagation in random media are applied. For this

purpose, random media realisations are created with a small fluctuation in P -

wave velocity σ2
nn = 5%. The background velocities are 3000m/s for the P -waves

and 1800m/s for the shear waves. Two examples of the considered random media

realisations are given in Figure 5.10. They show a lower homogeneous margin

where a plane wave excited that propagates in upward direction. The size of the

models is 8194×1100m with spatial sampling of ∆x =1m.

The wavefields are modelled using a higher-order FD solver (Bohlen, 2002;

Cohen, 2002) and in order to fulfil the stability requirement, a time step of ∆t =

2ms is applied. Synthetic seismic signals are recorded at 21 geophone lines along

the propagation path at every 50m. Each geophone line is equipped with 156

geophones. Examples of recorded synthetic wavefields in the case of γ = 40m :

120m = 1 : 3 are given in Figure 5.11. From the seismic signals it is clearly
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Figure 5.10: Examples of isotropic and anisotropic velocity models used

for numerical scattering experiments.
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Figure 5.11: Synthetic seismograms of plane compressional waves after

passing a heterogeneous effectively anisotropic medium. With increasing

angle of incidence φ diffraction is becoming dominant.

observed that at normal incidence (φ = 0◦, the wave vector is perpendicular

to the long correlation axis), small diffraction occurs. However, the effect is

considerably stronger in the case of larger angles of incidence where different

diffraction hyperbolas are visible.

The quantitative analysis of the random wavefields contains three steps:

1. The signals are tapered in order to seperate the amplitude information of

the seismic primary from that of the seismic coda.

2. Remnant seismograms seismograms are transformed into the frequency do-

main in order to evaluate the amplitude fluctuation along each geophone

line, i. e. for different propagation distances. Figure 5.12 shows an example

of calculated amplitude spectra from a scattering experiment in isotropic

media. In the first plot, corresponding to a propagation distance L = 0m,

the plane wave is coherent and the amplitude spectrum appears as one line.

With increasing L, the coherence is lost and the variance of the amplitude
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Figure 5.12: Amplitude spectra of scattered wavefields in isotropic me-

dia. The signals are recorded at 12 receiver lines with increasing prop-

agation distance L (100 m per line). While for small L (subplot 1), the

wavefield is coherent, coherence is lost as L increases, the variance increases

and the mean amplitude diminishes

spectra increases. At the same time, one clearly observes a decrease in mean

wave amplitude around the central frequency.

3. From the amplitude spectra, the relative log-amplitude variance χ is cal-

culated, where only the contribution from the dominant frequency is con-

sidered. The procedure finally yields mean and variance of χ for every

geophone line or propagation distance, respectively.

Results of the numerical experiments are shown in Figure 5.13. For varying

angle of incidence and for two different degrees of anisotropy, the log-amplitude

mean and variance are plotted as a function of propagation distance. In this

2-D anisotropic case and for small angles of incidence, the amount of amplitude

variance can be quite well described by a combination of theoretical models for
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Figure 5.13: Log-amplitude variance of different angles of incidence φ and

different degrees of anisotropy γ. Black lines are theoretical estimations,

red lines show the contribution due to backscattering, blue dashed lines

show the sum of both effects. The dots are mean values −〈χ〉 obtained

from numerical computations and crosses are the corresponding variances.
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Figure 5.14: Behaviour of the log-amplitude variance for large propaga-

tion distances. Symbols and lines as in figure 5.13 but the red dashed line

shows the theoretical saturation value that is attained in the long range

limit.

backscattering and scattering attenuation due to diffraction. If the angle becomes

larger, the initially plane wavefront is strongly perturbed and it becomes more

and more difficult to extract the seismic primary from the whole wavefield. Hence,

an evaluation of amplitude variance is not possible for large angles of incidence.

Furthermore, the application of the scattering theory is restricted to the

regime of weak scattering, i. e. to short propagation distances. This condition is

fulfilled if

σ2
n

aξ

aη

(kaη)
2 L

aη

< 1. (5.34)

The evolution of the wavefield fluctuations at larger propagation distances is

shown in Figure 5.14. While at small propagation distances, a strong increase of

σ2
nn is observed that can be well described by the theoretical estimate, the nu-

merically obtained values deviate from the theoretical prediction at larger propa-

gation distances. Although there is a strong uncertainty in the numerical results,

it seems that the amplitude variances saturate around a finite value.

Conclusions

Random poroelastic media are well-described by equivalent random elastic media

if the frequency of the propagating fast wavemode is much below the critical

relaxation frequency of wave-induced flow. In this case, the medium is unrelaxed

and the elastic parameters are obtained by fluid substitution.

Attenuation effects in elastic random media with an anisotropic correlation

function are governed by random diffraction and backscattering of the seismic

wavefield. The theoretical description of scattering attenuation is based on esti-
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mating the log-amplitude variance of the random wavefield.

In the case of strong anisotropy and for layered media, the effect of backscat-

tering dominates for small angles of incidence or in other words if the wave hits

the heterogeneities perpendicular to the long correlation axis. Diffraction and

refraction occur dominantly in isotropic media and in anisotropic media at large

angles of incidence, i. e. if the wave propagates along the long axis of the hetero-

geneity. Backscattering does not occur in isotropic and weak anisotropic media.

Using a superposition of theoretical estimates for diffraction and backscatter-

ing, the scattering attenuation in random media can be estimated for arbitrary

angles of incidence. The theoretical estimates are, however, restricted to the weak

fluctuation regime.

5.4 Wave-induced flow in random media

In the previous sections, wave-induced flow effects around poroelastic inclusions

and elastic scattering in random media have been presented. The aim in this

section to investigate both effects in a partially-saturated porous medium with

fractal distribution of the fluid phases. The correlation function and correlation

spectrum of fractal media is given in equations 2.103 and 2.106. A continuous

random medium (CRM) realisation with dimension L × L = 256 × 256cm, cor-

relation length a = 10cm and Hurst exponent ν = 0.3 is shown in Figure 5.15b.

The water saturation is this model varies between 0 and 100% with a mean sat-

uration of 50%. Since the poroelastic FD solver does not explicitly include local

saturation as a model parameter, the saturation maps are used to obtain a locally

averaged effective fluid by arithmetic averaging the fluid density and viscosity as

well as by geometrical Wood averaging of the fluid bulk modulus. This approach

assumes that at scales not resolved by the FD grid, the pore pressure is locally

equilibrated. By applying a threshold value at 0.5 to the continuous model, the

binary medium (BRM) depicted in Figure 5.15a is obtained. This binary medium

has piecewise 100% water or 100% gas saturation with a total saturation of 50%,

like the continuous model. Material parameters for the fluids are given in Table

5.1 together with the parameters of the rock matrix that is assumed as a consoli-

dated sandstone. Spatial resolution is ∆x = 1cm, implying a minimum time step

of 2µs in order to ensure numerical stability.

For both models, two numerical FD experiments are carried out that are

subsequently referred to as dynamic and quasistatic. While for the dynamic

experiments, the source excitation is a short pulse with a wavelength λ smaller

than the size of the model domain L, in the quasistatic experiments, a wavelength

considerably larger than the model domain is chosen.

Therefore, the dynamic experiment is a plane wave propagation experiment,
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Figure 5.15: Synthetic saturation maps with fractal pore fluid distribu-

tions. (a) is a discrete distribution with white indicating water and grey

indicating gas. It is derived from (b), showing water saturation with a

continuous fractal distribution (ν = 0.3).

similar to the scattering experiments presented in section 5.3. The applied source

is a pure pressure pulse with source distribution parameter qp = 0 and source time

ts = 100µs. As a source time function, a cubed sine is applied given by

ϕs(t, ts) =

{

0 if t < 0 ∨ t > ts
sin3(π t/ts) if 0 < t < ts

. (5.35)

Assuming a P -wave propagation velocity of approximately c =3000 m/s, the

dominant wavelength of the pulse is λ = c/f = cts = 30cm, which approximately

equals the size of the medium heterogeneities.

Three snapshots of the pulse propagation are given Figure 5.17 for the binary

random model and in Figure 5.16 for the continuous random model. Pore pressure

is chosen to visualise the wave excitation. In the plots, white colour indicates

negative pore pressure, while positive pressures appear in black. The lowermost

subfigures show pore pressure profiles (grey lines) together with a stacked profile

(solid black line) corresponding to the snapshot at 70µs. From the snapshots, it

is observed that the plane wave is scattered where the scattering is considerably

stronger in the case of the binary medium if compared to the continuous medium.

In contrast to the dynamic wave propagation experiment, the quasistatic ex-

periment uses a source excitation with a frequency content lower than the model

resonance frequency ωR = 2πc/L. The setup is therefore comparable to the ex-

periments presented in section 5.2. However, in order to avoid resonance effects

included in the dynamic FD solution, a smoothed step load is applied at the

model edge. In the quasistatic experiments presented here, a loading time of
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sure snapshots of dynamic

wave propagation in the BRM

model.

Figure 5.17: Same as 5.16

but for the CRM model.

(Clipping also as in 5.16)
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ts = 10ms is chosen with a source time function

ϕqs
s (t, ts) = ϕs(t, ts) ∗H(t) =







0 if t < 0
∫ t

0
sin3(π τ/ts) dτ if 0 < t < ts

1 if t > ts

. (5.36)

In Figure 5.19 and 5.18, two snapshots of pore pressure distributions are shown

for the binary random medium and the continuous random medium, respectively.

For comparison, the pore pressure distributions of the unrelaxed states are given

in the uppermost plot of each figure. Such an unrelaxed state is obtained by

carrying out the same experiment under locally unrelaxed conditions, or in other

words by setting the matrix permeability κ to zero such that no fluid flow may

occur and the model behaves effectively elastic. The lowermost plots show profiles

of the pore pressure distribution (grey lines) as well as a mean pore pressure profile

(black line).

It is clearly observed that at the end of the loading stage (t = ts = 10ms),

internal pore pressure differences appear throughout the model. In regions with

high water saturation, the pore pressure is high, while in areas with low water

saturation, only little pore pressure is built up. The pore pressure distribution

at t = 10ms appears smoother than in the totally unrelaxed reference state,

indicating that during the loading stage, a significant amount of fluid flow occurs,

leading to a partial relaxation. During the equilibration stage (t > ts) pore

pressure differences decay with increasing time and eventually an equilibrium is

attained. Characteristic for the pore pressure relaxation process is that small

structures disappear quickly while larger structures persist longer. In order to

incorporate the whole equilibration process, a simulation time of 100ts = 1s is

chosen. A comparison of the binary and the continuous modelling results reveals

that in the latter case, the pore pressure distribution is qualitatively similar but

the local differences in pore pressure are less pronounced. As the effective local

bulk modulus of the CRM model is obtained by Wood averaging, this has to be

expected. One should consider the CRM model to be partly relaxed from the

very beginning of process, which is why the CRM model and the corresponding

pore pressure distributions appear smoother.

In order to numerically quantify the effect of dynamic wave scattering and

local flow on P -wave dispersion and attenuation, dynamic and quasistatic exper-

iments are analysed by two different methods. Results are given in Figures 5.20

for the binary random medium and in Figure 5.21 for the continuous model.

First, from the seismograms of the dynamic wave propagation experiments,

traveltimes are picked and mean wave amplitudes are assessed as a function of

propagation distance. An attenuation estimate is obtained by linear regression of

the relative log-amplitude decay (spectral ratio method). For this purpose, the

confining pressure is chosen as the field parameter, since it shows less variance
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Figure 5.18: Quasistatic

pore pressure relaxation in the

BRM model.

Figure 5.19: Same as 5.18

but for the CRM model.

(Clipping also as in 5.18)
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Figure 5.20: P -wave disper-

sion and attenuation in frac-

tal media derived from qua-

sistatic and dynamic FD ex-

periments (BRM model). Nu-

merical results – poroelastic

and corresponding elastic –

are compared to the theoret-

ical model of fractal partial

saturation. Dynamic scatter-

ing attenuation estimates are
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Figure 5.21: Same as 5.20

but for the CRM model.

Note the different scaling of

the vertical axis in (a). The

horizontal lines in (a) show

the Gassmann-Wood and

Gassmann-Hill limits, vertical

lines show the characteristic

freqencies for resonance (ωR),

scattering (ωs) and Biot

global flow (ωB).
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due to saturation variations if compared to fluid pressure or particle velocities.

Dispersion and attenuation values derived such are shown in Figures 5.20 and

5.21 as filled circles. Filled squares show dispersion and attenuation for the

same dynamic experiment, but under unrelaxed conditions (κ = 0m2). This

corresponds to a wave propagation experiment in an equivalent elastic medium.

For all scattering attenuation values, errorbars indicate variance of the numerical

estimates.

Second, from mean stress and strain evolution during the quasistatic creep

experiments, effective elastic properties are inferred that allow to quantify dis-

persion and attenuation at sub-resonant frequencies. For this purpose, stress and

strain are averaged throughout the model domain. Following Masson and Pride

(2007), effective shear, bulk and P -wave moduli are calculated from the complex

Fourier spectra of stress and strain rates as

K2D(ω) =
1

2

〈τ̇xx〉 + 〈τ̇zz〉
〈ε̇xx〉 + 〈ε̇zz〉

, (5.37)

G3D(ω) =
1

2

〈τ̇xx〉 − 〈τ̇zz〉
〈ε̇xx〉 − 〈ε̇zz〉

, (5.38)

K3D(ω) = K2D − 1

3
G3D , (5.39)

H3D(ω) = K3D +
4

3
G3D , (5.40)

where for the calculation of 3-D moduli from 2-D fields, plane strain conditions

are assumed. From the effective P -wave modulus H3D, velocity dispersion and

attenuation are derived according to equations 5.6 and 5.7. In Figures 5.20 and

5.21 they are denoted by unfilled circles. The unfilled squares in the dispersion

subfigure correspond to the quasistatic response under unrelaxed conditions (see

Figures 5.18a and 5.19a). Vertical lines show the frequencies corresponding to

model resonance ωR, characteristic scattering at medium heterogeneities ωs and

to the Biot frequency of the fully water-saturated rock ωB. These frequencies are

given by

ωR =
2πc

L
, (5.41)

ωs =
2πc

a
, (5.42)

ωB =
b

ρm
. (5.43)

Eventually, the estimates of dynamic and quasistatic FD experiments are

compared to an analytical solution for wave-induced flow in partially-saturated

rock with fractal distribution of the pore fluids (Müller et al., 2008), as presented
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in section 2.8. The predicted P -wave velocity varies between the theoretical limits

of Gassmann-Wood and Gassmann-Hill that are shown as horizontal grey lines

in the dispersion plots.

In Figure 5.20a, the dispersion behaviour obtained from the quasistatic ex-

periment in the BRM is reasonably well described by the theoretical model of

Müller et al. (2008). The Gassmann-Wood limit is obtained at low frequencies

corresponding to the state of fully equilibrated pore pressure. As should be ex-

pected, for the unrelaxed elastic P -wave velocity, denoted by unfilled squares,

the Gassmann-Hill limit is recovered. The velocities obtained from the dynamic

experiments both are higher than the predicted effective velocity as indicated by

the theoretical model and the velocity is highest for the equivalent elastic (unre-

laxed) experiment. The bias in heterogeneous media towards higher propagation

velocities is known as the fast path effect or velocity shift (e. g. Samuelides, 1998).

As seen in Figure 5.20b, the quasistatic FD results for the BRM model also pro-

vide attenuation estimates that are comparable to that predicted by the theory.

The characteristic frequency of maximum attenuation is approximately the same

as well as the asymptotical behaviour at low frequencies. The quasistatic ex-

periment of the corresponding elastic model does not show any attenuation. A

possible explanation for the deviations of the numerically obtained attenuation

values from the theoretical predictions may be the insufficient total size of the

random medium realisation so that it may not be fully statistically representative.

The snapshots of the dynamic FD experiment shown in Figure 5.17 indicate

that a considerable amount of scattering attenuation should be expected at these

high frequencies. This is indeed observed, since the attenuation estimates derived

from the poroelastic experiments are higher than the predicted attenuation due

to wave-induced flow. The efficiency of scattering effects are also indicated by the

observation that the scattering in the equivalent elastic BRM is stronger than in

the poroelastic case.

Comparing the velocities and attenuation estimates of the CRM and the BRM

model, one finds qualitatively similar behaviour but the amplitude of dispersion

and attenuation are one order of magnitude smaller, see Figure 5.21. The reason

for this is the usage of a locally averaged fluid bulk modulus as a model param-

eter. Consequently, in the unrelaxed state, the velocity is not in agreement with

the Gassmann-Hill limit. The low-frequency Gassmann-Wood limit, however, is

recovered by the quasistatic FD experiment. In addition to that, the medium het-

erogeneities appear much smoother in the CRM model and scattering attenuation

is therefore reduced if compared to the BRM model.

The main purpose of the examples presented in this section is to show, how

dispersion and attenuation are assessed over a large range of frequencies. Depend-

ing on the frequency range, the dominant loss effects in random porous media
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Figure 5.22: CT images of the Casino Otway Basin sandstone showing

the evolution of fluid patches during a slow saturation experiment. The

scans are taken at the same position for the dried sample (1), the sample

at t = 1h (2), at t = 1d (3) up to 3d (4).

are wave-induced flow (at low frequencies with ω ≪ ωs) while at higher frequen-

cies (ω ≈ ωs), classical scattering attenuation may also occur. The dynamic FD

model does not only describe the quasistatic behaviour of heterogeneous porous

rocks but allows also to simultaneously estimate scattering attenuation. If the

frequencies are as high as the critical Biot frequency ωB, inertial effects on the

pore fluid flow are automatically included.

5.5 Simulation of ultrasonic laboratory experi-

ments

The final application of poroelastic FD modelling presented in this thesis is con-

cerned with an ultrasonic laboratory experiment carried out at CSIRO Petroleum,

Perth, Australia. The scope of the experiment is to measure the development of

fluid patches during water injection into an initially dry Casino Otway sandstone

sample. Using 3-D computer tomography (CT) images of the fluid distribution

are obtained and allow to experimentally study the parameters influencing the

fluid distribution. Figure 5.22 shows an example of the evolution of transmissivity

during a slow saturation experiment.

One experimental observation is that the characteristic scale of the fluid

patches depends on the saturation level and on the fluid injection rate. This

has a significant impact on the measured ultrasonic velocities, as shown in Figure

1.11 on page 13. In particular, the velocity-saturation relation shows a transi-

tion from the lower Gassmann-Wood bound to the upper Gassmann-Hill bound.

Lebedev et al. (2009) interpreted the transition by the process of wave-induced

fluid flow, i. e. by the interplay of slow P -wave creation at internal fluid-gas

interfaces and the characteristic size of the fluid patches.

The interpretation of the laboratory results is further validated by FD simu-

lation of quasistatic creep, similar to the example given in the preceding section
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Table 5.2: Petrophysical properties of the dry Casino Otway sandstone

sample used in the laboratory.

Bulk density ρb (g/cm3) 2.2

Grain density ρg (g/cm3) 2.65

Porosity φ 0.167

Permeability (mD) 7.26

Figure 5.23: Velocity-saturation relation for partially saturated rock with

random distribution of the fluid patches. Dispersion and attenuation in

partially saturated rock.

5.4. Material properties in the simulation were chosen in accordance with the

rock properties of the sandstone sample measured in the laboratory. Some of the

properties are given in Table 5.2. The fluid geometry is represented by a random

distribution of spherical water patches, where the saturation level is changed by

increasing the diameter of the single patches. Eight different models are shown

in Figure 5.23. While at low saturation, the fluid phase forms isolated pock-

ets, the fluid patches start to cluster at higher saturation. This behaviour was

chosen so that it resembles the saturation maps observed by CT scans. Numeri-

cally obtained propagation velocities are also given in Figure 5.23 together with

the experimental results and the theoretical Gassmann-Wood and Gassmann-Hill

bounds. Interestingly, although the simplified simulations are carried out in 2-D

and although the fluid patch distribution was not derived directly from the CT

scans, the numerical results show the same overall transitional behaviour from low
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to high water saturations as the laboratory measurements. This indicates that

ultrasonic velocities in partially-saturated rocks are governed by poroelastic ef-

fects as described by Biot theory. More precisely, transitional behaviour observed

in the laboratory experiments is caused by the mechanism of wave-induced fluid

flow.

5.6 Discussion

In this section, various numerical examples have been given that allow the quanti-

tative description of wave-induced fluid flow and wave scattering in heterogeneous

poroelastic media. For this purpose, a dynamic FD solver and a quasistatic FE

tool have been applied for elastic and poroelastic rheologies. Here, the computa-

tional effort of the different experiments is briefly discussed. In addition to that,

an explanation is given for the difference in the quasistatic relaxation behaviour

of the 1-D and 3-D double porosity media presented in section 5.2.

In the seismic frequency range, the Biot slow wave degenerates to a purely

diffuse wave mode. A numerical configuration to quantitatively estimate corre-

sponding mesoscopic flow effects on velocity dispersion and attenuation has been

presented in section 5.2 using a poroelastic FE solver. The approach is based

on the relaxation of a heterogeneous rock sample and the results confirm that

this modelling strategy is suitable for determining effective material properties.

In order to obtain accurate results, it is necessary to resolve steep gradients of

the pore pressure and stress fields occuring in the vicinity of internal boundaries.

The gradients are strongest at the beginning of the relaxation experiment, and

therefore the relaxation is also fastest at the beginning of the simulation and

a small initial time step is required to ensure a sufficient temporal resolution.

During the relaxation process, the time step can be increased. For a 3-D model

where approximately 135000 linear tetrahedral elements are needed to discretise

the elliptical inclusion, the CPU time for one simulation (60 time steps) is 14

hours on 10 nodes of the SGI Altix 350 located at the Geophysical Institute of

Karlsruhe University. The model demands 8.9GB main memory.

The quasistatic experiment for estimating the effective properties of a random

medium (section 5.4) was carried out on a regular 256×256 grid and took 2 hours

on a four-way node of the HP-XC6000 Linux cluster of the Scientific Supercom-

puting Center Karlsruhe. Due to stability requirements a total of 500000 time

steps is required, showing the problem of numerical stiffness as already discussed

in sections 3.1.5 and 4.6. A corresponding FD experiment in a 3-D domain is

not feasible and therefore, if the main interest is to quantify the induced diffu-

sion process associated with compression and dilatation, numerical implementa-

tions of the quasistatic Biot equations are advantageous over explicit schemes
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solving the fully dynamic equations. However, additional aspects such as wave

scattering and inertial pore pressure effects are not modelled by a quasistatic

solver. In summary, dynamic FD simulation tools are valuable for estimating

high-frequency poroelastic scattering and diffusion. At low frequencies where

diffusive pore pressure relaxation effects govern the dispersion and attenuation

behaviour of poroelastic materials, the quasistatic FE solver should be applied.

In the elastic scattering experiments (section 5.3) the wavelengths are smaller

than the medium correlation length and for one wavelength, 12 gridpoints are

applied in order to prevent numerical dispersion. Furthermore, a sufficiently high

number of heterogeneities is required for the statistical evaluation to be represen-

tative. This results into model sizes of about 2150× 8192 = 17.6 Mio. gridpoints

and with a time step size of 0.2ms a calculation of about 5000 timesteps is needed.

On four two-way nodes of the HP-XC6000 Linux cluster, the computing time for

one simulation is about 45 minutes. The computational effort of poroelastic wave

propagation if compared to the elastic case is larger by a factor of about two,

while the memory requirements are four times higher due to the larger number

of field variables and material constants.

In section 5.2, a unidimensional layered double-porosity model and a 3-D

model with an elliptical inclusion have been presented. One fundamental obser-

vation is that in the case of the layered medium, the normalised relaxation tensor

ψn
IJ is isotropic. This can be explained by considering the possible paths of pore

pressure equilibration. In the 1-D case, equilibration can only occur vertically be-

tween internal layers within the model, independent of what kind of deformation

has been causing the pore pressure disequilibrium in the unrelaxed state. Conse-

quently, there exists only one characteristic timescale of pore pressure relaxation,

scaling with the characteristic layer period.

The situation is different in the case of a 3-D inclusion, which can be seen from

the unrelaxed pore pressure distributions corresponding to the different applied

deformation states. In Figure 5.24, these distributions are given for uniaxial com-

pression and pure shear deformation such as associated with qP - and SH-waves

under normal and grazing angles of incidence. The 〈ε12〉 deformation state was

obtained as the difference between the two horizontal uniaxial compression states

as p〈ε12〉 = p〈ε11〉 − p〈ε22〉 . While in the case of uniaxial compression, pore pres-

sure gradients appear mainly across the interface between the inclusion and the

surrounding matrix, in the case of shear deformation, double couple distributions

of pore pressure appear and fluid flow is induced mainly between different poles

within the rock matrix. In addition to that, the spatial scale of pore pressure

distribution under horizontal shear is larger than in the case of vertical shear,

thus explaining the greater characteristic relaxation time of the corresponding

relaxation function ψ66, shown in Figure 5.7b.
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(a) 〈ε33〉 (b) 〈ε11〉

(c) 〈ε13〉 (d) 〈ε12〉

Figure 5.24: Unrelaxed pore pressure distributions in the 3-D FE model

for different deformation states. The figures show profile cuts through

the symmetry planes of the ellipsoidal inclusion, projected to the edges of

modelling domain. Pore pressure response due to uniaxial compression in

vertical (a) and horizontal (b) direction are shown as well as pure shear

within the vertical (c) and horizontal (d) plane. The pore pressure distri-

bution correspond to qP 0-, qP 90-, SH0- and SH90-waves, respectively.



Chapter 6

Conclusions and outlook

Wave scattering and mesoscopic flow of pore fluids are the main seismic attenua-

tion mechanisms within geological reservoirs. Both mechanisms are described by

the Biot equations of dynamic poroelasticity, i. e. by a set of two coupled, linear

wave equations.

A new theoretical contribution to the rock physical description of porous rocks

is made in the field of wave-induced flow in continuous random media (CRM).

The CRM model has been extended such that it is now possible to estimate

effective phase velocities and attenuation due to wave-induced flow in partially

saturated media with a random fractal distribution of the pore fluids. This fractal

distribution is described by the von-Kármán correlation function. If compared

to CRM models with exponential or Gaussian correlation function, the fractal

CRM model uses the Hurst exponent ν in addition to the medium variance and

correlation length. It can be considered as an extension of the exponential CRM

model.

The main achievement of this thesis is the development and implementation

of a new velocity-stress finite-difference scheme for simulating wave propagation

in heterogeneous, poroelastic structures. It solves Biot’s equations of poroelas-

ticity for a wide range of frequencies. The scheme is second order in time and

includes higher-order spatial differentiation operators both on standard and ro-

tated staggered grids. The scheme provides stable and accurate solutions even

for strongly heterogeneous media. A poroelastic stability condition ν/φ < ρf/ρb

needs to be fulfilled in addition to the condition in elastic models. It has been

shown that this condition is only critical when highly-porous inclusions such as

cracks are modeled as free fluids.

In order to obtain accurate results, small-scale diffusion processes must be

resolved, since the Biot equations behave numerically stiff at frequencies much

below the critical Biot frequency ωB. An appropriate estimate of the smallest

process is given by the diffusion length λD, which has been introduced in the

101
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context of numerical accuracy for the first time in this work. Insufficient resolution

of internal diffusion processes results in a bias of the material behaviour towards

the equivalent elastic response. The accuracy of the scheme is demonstrated by

a series of numerical benchmark examples that show poroelastic effects occurring

especially on the scale of several centimetres. The effects are thus mesoscale

within the seismic frequency range.

It has been proved that the scalability of a poroelastic wave simulation is

approximately linear. A test series revealed that the efficiency of the poroelastic

wave simulation decreases with increasing parallelisation. However, an efficiency

of 91% was obtained for a simulation involving 64 processes.

In the numerical investigation of purely mesoscopic phenomena such as wave-

induced local flow, I found that a quasistatic FE solver that excludes intertial

effects is usually advantageous if compared to a fully dynamic FD code. The

problem of numerical stiffness, inherent in the dynamic description, can be cir-

cumvented this way. Effective, frequency-dependent elastic properties of het-

erogeneous poroelastic media can be efficiently and accurately determined from

quasistatic relaxation or creep experiments. This has been successfully demon-

strated in the case of partial saturation and for double porosity media, where

the full, complex, frequency-dependent VTI stiffness tensor could be obtained. A

fundamental observation for a layered double porosity medium is that the nor-

malised relaxation tensor ψn
IJ is isotropic. This result has been used to generalise

the theory of wave-induced fluid flow in layered porous structures at seismic fre-

quencies. The suggested approach, however, allows to consider more general cases

of arbitrary 3-D geometries.

Finite-difference modelling of the dynamic Biot equations contributes essen-

tially to investigating the combined effects of macroscopic scattering and coupled

fluid flow within heterogeneous reservoir rocks. This is particularly important

at sonic frequencies used in acoustic borehole measurements and at ultrasonic

frequencies such as applied for laboratory measurements. Finite-difference mod-

elling has been indeed successfully applied for simulating a velocity-saturation

relation measured in the laboratory, thus contributing to the interpretation of

the measured data. Macroscopic scattering in the seismic frequency range is

mainly due to purely elastic effects. Therefore, in this regime, an elastic FD

solver can be applied for studying the scattering attenuation.

In summary, the results confirm that finite-difference and finite-element mod-

elling are valuable tools to simulate wave propagation and coupled diffusion pro-

cesses in heterogeneous poroelastic media, provided that all relevant temporal

and spatial scales, in particular the scales of the diffusion process, are resolved

properly. The applied numerical method should be chosen after careful analysing

the characteristic frequency range of the investigated process.
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In the near future, the most promising direction of poroelastic modelling is

the direct numerical simulation of wave response within heterogeneous rock sam-

ples measured in the laboratory, of which an example was already presented in

section 5.5. Recent developments show that x-ray tomography and digital core

technology are increasingly used to characterise real rocks. Depending on the ap-

plied technology, the spatial resolution of these techniques varies between the pore

scale to the scale of complete core samples. Obviously, 3-D images of real rock

structures might be used as an input model for numerical tools such that prop-

agation velocities, effective elastic parameters and hydraulic properties can be

predicted by numerically solving the governing equations of poroelasticity. This

represents a step beyond the synthetic heterogeneous rock samples constructed

using random medium realisations with defined statistical properties. An im-

portant requirement for simulation of rock samples is the implementation of the

presented poroelastic FD scheme in 3-D. This work is currently in progress.

Numerical experiments may furthermore allow to study combined effects of

wave scattering and fluid flow in random porous media. The combination of

quasistatic and dynamic experiments has a potential to separate the intrinsic

and scattering attenuation. Another objective in current rock physics research

is the quantification the interplay between elastic or hydraulic anisotropy and

wave-induced flow. From a numerical point of view this requires additional work.

Guided borehole waves or tube waves in the context of poroelasticity are increas-

ingly used to characterise the permeability of fracture zones. Numerical tools

may contribute to this field as well.

Finally, the simulation of poroelastic waves within double porosity structures

surely deserves further consideration in the future, in particular for models with

multiscale heterogeneities. One may even include poroelastic effects on the pore

scale (Saenger et al., 2007), requiring the full resolution of the pore space. Al-

though due the fine discretisation, pore scale modelling is restricted to very small

domains on the millimetre scale, it may contribute to quantifying effects of grain

scattering, pore space tortuosity and squirt flow or other effects that are beyond

the description of Biot theory.
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Appendix A

Viscoelasticity and quality factor

A material is called linear elastic, if stress and strain are proportional as described

by Hooke’s law τ = Mε and if deformation is fully reversible. Usually, in the case

of wave propagation, the deformations are usually very small and the assumption

of linearity is applicable. However, there is always a small amount of energy

dissipated, resulting in a decay of wave amplitude. Such a behaviour can be

macroscopically described by the concept of linear viscoelasticity. A constitutive

law for this case is written (Aki and Richards, 1980)

τ(t) = ṙ(t) ∗ ε(t) , (A.1)

where r is the relaxation function and the asterix denotes time convolution. A

fundamental property of ṙ is causality (ṙ = 0∀ t < 0) to ensure that future

deformation states may not affect the present stress state. In addition to that,

the more recent a deformation states is the larger is the impact on the stress and

therefore |ṙ| is a monotonically decreasing function of time. Finally, the principle

of limited memory states that ṙ → 0 for t→ ∞.

Using the convolution theorem F{a ∗ b} = F{a} · F{b}, one writes in the

frequency domain

τ(ω) = M̃(ω) ε(ω) . (A.2)

A linear, viscoelastic material is therefore described by its relaxation function r or

a complex, frequency-dependent modulus M̃ being the spectrum of the relaxation

rate ṙ. An elastic material is a special case of a viscoelastic material and it is

characterised by instantaneous relaxation with ṙ(t) = M0δ(t). Since δ(t) ∗ ε = ε

Hooke’s law τ = M0 ε is recovered.

From time-domain numerical modelling, the effective complex modulus M̃ of

a heterogeneous sample can be obtained by a so-called relaxation experiment.

For this purpose, a deformation ε = H(t) is imposed on the sample, where H(t)

is the Heaviside step function. Inserting this into the constitutive relation A.1
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and recalling that a ∗H =
∫

a dt yields

τ = ṙ ∗H =

∫ t

0

ṙ dt = r , (A.3)

i. e. the relaxation function is nothing but the stress response to a relaxation

test! Therefore, the complex modulus M̃ can be obtained by time differentiation

of the stress response followed by a Fourier transform. This strategy is depicted

in Figure A.1, showing strain, stress and rate-of-change of stress as a function of

time. The counterpart of the relaxation test – the creep test – is also depicted

in the same figure: Applying instantaneously a constant load τ = H(t) results

in a strain response that equals the creep function f . Note that the numerical

evaluation of ṙ at t = 0 requires special care due to the step change in the

stress response. It is convenient to write the relaxation function r as a sum of

instantaneous (elastic) and delayed (viscoelastic) relaxation such that

r(t) = Mu[H(t) + ψ(t)] , (A.4)

ṙ(t) = Mu[ δ(t) + ψ̇(t)] . (A.5)

Mu is the so-called unrelaxed modulus, while the relaxed modulus is Mr, see

Figure A.1. Applying the Fourier transform to equation A.5 provides the modulus

M̃ as

M̃(ω) = F{ṙ(t)} = Mu[1 + F{ψ̇(t)}] . (A.6)

In order to quantify the energy dissipation associated with linear viscoelastic-

ity, the time-harmonic deformation ε = ε0 exp(ıωt) is inserted into equation A.2.

Writing Re M̃ = M̃R and Im M̃ = M̃I , the energy dissipated in one cycle is

∆W =

∫ 2π

ωt=0

τ dε = πM̃I ε
2
0 , (A.7)

while the maximum stored energy is

W =

∫ π/2

ωt=0

τ dε =
M̃R

2
ε2
0 . (A.8)

The relative dissipated energy per one cycle is therefore

∆W

W
= 2π

M̃I

M̃R

(A.9)

and the fraction of imaginary and real part of the complex modulus is used as a

definition for the inverse quality factor

Q−1 = − M̃I

M̃R

. (A.10)
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Figure A.1: Relaxation and creep test for the evaluation of the complex

modulus M̃(ω). The curves show the applied stress and strain, as well

as stress and strain rates, respectively. In the relaxation test, the stress

response is identified as the relaxation function r and its derivative can be

presented according to equation A.4. In the creep test, the strain response

is called creep function f . The complex modulus is obtained alternatively

from the creep rate ḟ or relaxation rate ṙ by Fourier transform.
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For non-dissipative media, M̃I is zero and the dimensionless quality factor van-

ishes.

As already mentioned, the absorbing behaviour of viscoelastic materials leads

to attenuation of seismic waves. This is easily exemplified by considering the

viscoacoustic wave equation

ρü = ṙ ∗ ∇2u (A.11)

that can be solved by the inserting the plane wave ansatz

u = u0 exp[ı(k̃x− ωt)] . (A.12)

Here, k̃ is the complex wavenumber with real part k and imaginary part α. The

quantity α is referred to as attenuation coefficient since substituting k̃ = κ + ıα

into equation A.12 yields

u = u0 exp[−αx] exp[ı(κx− ωt)] , (A.13)

revealing that α describes an exponential decay of wave amplitude with propaga-

tion distance x. By inserting A.13 into the wave equation A.11 it can be shown

that the relation between real and imaginary part of the wavenumber k̃ is related

to the real and imaginary parts of the complex modulus M̃ (and therefore Q−1)

as

Q−1 = − M̃I

M̃R

= −Im k̃−2

Re k̃−2
=

Im k̃2

Re k̃2
=

2ακ

κ2 − α2

α≪κ≈ 2α

κ
= 2

Im k̃

Re k̃
. (A.14)

The quality factor Q is either calculated from the complex modulus M̃ or from

the complex wavenumber k̃.

A final remark is now made on the relation between wave attenuation and

velocity dispersion. The causality of ṙ implies that its spectrum is hermitian,

such that the real and imaginary parts of M̃ form a Hilbert transform pair. Ab-

breviating M̃0 = M̃R(0), one obtains the Kramers-Kronig relations (Mavko et al.,

1998)

M̃R(ω) − M̃0 = −ω
π

∫ ∞

−∞

M̃I(ω
′)

ω′

dω′

ω′ − ω
, (A.15)

M̃I(ω) =
ω

π

∫ ∞

−∞

M̃R(ω′) − M̃0

ω′

dω′

ω′ − ω
. (A.16)

The meaning of the Kramers-Kronig relations is that real and imaginary parts

of the relaxation spectrum are not independent. Since in the context of wave

propagation, M̃I is related to wave attenuation and M̃R to wave dispersion, the

important implication is that attenuation is always accompanied by velocity dis-

persion. In many theoretical models, the causality principle is used to constrain

the solution for the complex wavenumber.
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Statistical characterisation of

random media

In several parts of this work, elastic and poroelastic parameters as well as scat-

tered waves have been considered as random fields. E. g. in section 2.8.2, the

complex wavenumber of compressional waves in random porous media may de-

pend on the statistical properties of the underlying medium. In this appendix, a

short summary of the applied statistical notation is given.

Consider a random field X(x). By defining the averaging operator as in

equation 2.82, one obtains the mean value of X as

〈X〉 =
1

V

∫

REV

X(x) dV . (B.1)

The integration volume V in this case must be sufficiently large so that it can

be considered as representative for the whole medium. It is then referred to as

representative elementary volume (REV). Averaging is a linear operation, such

that cummutative and associative laws apply. The variance of X are defined as

σ̃2
XX =

〈

(X − 〈X〉)2〉 =
〈

X2
〉

− 〈X〉2 . (B.2)

It is usually presented in normalised form as

σ2
XX =

σ̃2
XX

〈X〉2
=

〈X2〉
〈X〉2

− 1 (B.3)

and is used as a measure of the strength of fluctuation of the random field X.

The variance can also be written in terms of the normalised square fluctuation

n =
X

〈X〉 − 1 (B.4)

as

σ2
XX =

〈

n2
〉

. (B.5)
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The autocorrelation function (or simply correlation function) characterises the

spatial distribution of X and is calculated as

B(r) = 〈n(x)n(x + r) 〉 . (B.6)

A random medium is called isotropic (sometimes isomeric to avoid confusion with

the material isotropy) if B only depends on the absolute value of r = r. Otherwise

the medium is anisotropic or more precisely it is anisotropically correlated. It has

the property B(0) = σ2
XX and usually B(r) → 0 for large values of r. Examples

of typical correlation functions are the Gaussian bell or exponential function as

depicted with associated random media realisations in Figure 2.9 on page 37. The

Gaussian correlation function is given by

Bgauss(r) = σ2
XX exp

(

−r
2

a2

)

(B.7)

where a is the so-called correlation length. It is the characteristic lengthscale of

the medium, since the two points are correlated if r = |x1 − x2| ≈ a, but for

r ≫ a the two points are uncorrelated.

Obviously, in anisotropic random media as applied in section 5.3, two or more

correlation parameters are required to describe the degree of anisotropy. In this

case, B also depends on the orientation of the main axes of the correlation function

with respect to the global coordinate system In 2-D, the anisotropic Gaussian

correlation function is

Bgauss(rx, ry, φ) = σ2
XX exp

(

−
r2
ξ

a2
ξ

−
r2
η

a2
η

)

. (B.8)

with
(

Xξ

Xη

)

=

(

cosφ sinφ

− sinφ cosφ

)(

Xx

Xy

)

. (B.9)

For exponentially or fractal correlated media, the anisotropic formulation is done

accordingly. More details on the characterisation of random media in the context

of wave field scattering are found in the textbooks of Uscinski (1977), Ishimaru

(1978), Rytov et al. (1989) or Sato and Fehler (1998).



111

(a) (b)

(c) (d)

Figure B.1: Procedure of creating random media realisations. Beginning

with a random medium with uncorrelated properties (a), a continuous ran-

dom medium with defined correlation properties (c) is obtained by con-

volution of the uncorrelated medium with the spatial correlation function

(b). A binary random medium (d) is obtained from the CRM by applying

a threshold value, in this case the mean of the CRM.
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Appendix C

Supplementary rock physics

formulas

Mathematical models describing waves in porous media have been presented in

chapter 2. In this appendix, some additional rock physics formulas are given

without derivation or extensive discussion. This includes the high-frequency Biot

theory, poroelastic Backus averaging and further remarks on models for wave-

induced fluid flow.

C.1 High frequency correction for the Biot equa-

tions

At frequencies higher than the Biot frequency ωB, the evolution of boundary

layers on the scale of the pore diameter. For completeness, an expression for the

viscodynamic operator as derived by Biot (1956b) is provided here. It reads

Ỹ (ı ω) = ρm ı ω + bF (ξ), (C.1)

where the operator F (ξ) incorporates the frequency dependence of viscous drag

in the pore channels. It is defined as (Mavko et al., 1998)

F (ξ) =
1

4

ξT (ξ)

1 + 2 ı T (ξ)/ξ
(C.2)

T (ξ) =
ber′(ξ) + ı bei′(ξ)

ber(ξ) + ı bei(ξ)
= exp(ıπ 3/4)

J1(ξ exp(−ı π/4))

J0(ξ exp(−ı π/4))
(C.3)

ξ =

(

ωa2ρf

η

)1/2

(C.4)

Here, bei and ber denote the imaginary and the real parts of the Kelvin func-

tion and Jn denotes the Bessel function of order n. The quantity a is the pore

113



114 Supplementary rock physics formulas

size parameter that depends on dimensions and the shape of the pore space. At

frequencies below ωc, the operator F approaches 1 and the low-frequency approx-

imation of the viscodynamic operator Ỹ is recovered.

C.2 Poroelastic Backus average

Due to their genesis, sedimentary rocks are often found to have strong variations

in vertical direction while they are laterally more or less homogeneous. Therefore,

it is reasonable to describe such rocks as a stack of layers and the effective elastic

properties of a layered rock are calculated by using the Backus average (Backus,

1962). In the case of poroelastic layering, Backus-type formulas have been given

by Gelinsky and Shapiro (1997). The authors provide averaging formulas for the

two limiting cases of unrelaxed and relaxed effective material response, where the

unrelaxed response is identical with the elastic Backus average. They refer to

these limits as no-flow and quasistatic, respectively. In this section, the presenta-

tion is restricted to the case of isotropic layers that result in overall VTI material

behaviour.

Such a VTI medium is characterised by five independent elastic moduli that

determine the stiffness effective tensor cijkl or in compact notation

cIJ =

















A B F 0 0 0

B A F 0 0 0

F F C 0 0 0

0 0 0 D 0 0

0 0 0 0 D 0

0 0 0 0 0 J

















(C.5)

with J = 1/2(A−B). In the no-flow limit or unrelaxed limit, the elastic moduli

are calculated as

Au =

〈

4µ(λ+ µ)

λ+ 2µ

〉

+

〈

1

λ+ 2µ

〉−1〈
λ

λ+ 2µ

〉2

, (C.6)

Bu =

〈

2µλ

λ+ 2µ

〉

+

〈

1

λ+ 2µ

〉−1〈
λ

λ+ 2µ

〉2

, (C.7)

Cu =

〈

1

λ+ 2µ

〉−1

, (C.8)

Fu =

〈

1

λ+ 2µ

〉−1〈
λ

λ+ 2µ

〉

, (C.9)

Du =

〈

1

µ

〉−1

. (C.10)
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Here, λ and µ are the undrained Lamé parameters

λ = λu = Kd +
2

3
G+ α2M (C.11)

µ = G . (C.12)

A different set of equations is used to calculate the moduli in the relaxed case

with equilibrated pore pressure. Then, one has

Ar =

〈

4µ(λ+ µ)

λ+ 2µ

〉

+

〈

1

λ+ 2µ

〉−1〈
λ

λ+ 2µ

〉2

+
X2

Z
, (C.13)

Br =

〈

2µλ

λ+ 2µ

〉

+

〈

1

λ+ 2µ

〉−1〈
λ

λ+ 2µ

〉2

+
X2

Z
, (C.14)

Cr =

〈

1

λ+ 2µ

〉−1

+
XY

Z
, (C.15)

Fr =

〈

1

λ+ 2µ

〉−1〈
λ

λ+ 2µ

〉

+
XY

Z
, (C.16)

Dr =

〈

1

µ

〉−1

, (C.17)

but now, the drained Lamé parameters are used

λ = λd = Kd +
2

3
G . (C.18)

X, Y and Z are calculated as

X = −Z
(

〈

2αµ

λ+ 2µ

〉

+

〈

α

λ+ 2µ

〉〈

λ

λ+ 2µ

〉〈

1

λ+ 2µ

〉−1
)

, (C.19)

Y = −Z
〈

α

λ+ 2µ

〉〈

1

λ+ 2µ

〉−1

, (C.20)

Z =

〈

1

M

〉

+

〈

α2

λ+ 2µ

〉

−
〈

α

λ+ 2µ

〉〈

λ

λ+ 2µ

〉〈

1

λ+ 2µ

〉−1

. (C.21)

Once the coefficients A, B, C, F and D are known, phase velocities are deter-

mined straightforward. The three possible modes of propagation in anisotropic

media are called quasi-longitudinal (qP), quasi-shear (qSV) and pure shear (SH),

respectively. In VTI media, the velocities are a function of angle of incidence θ.

Abbreviating

Q =
[

(A−D) sin2 θ − (C −D) cos2 θ
]2

+ (F +D)2 sin2 θ (C.22)
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they are given by (Mavko et al., 1998)

vqP =

√

A sin2 θ + C cos2 θ +D +
√
Q

2ρb
, (C.23)

vqSV =

√

A sin2 θ + C cos2 θ +D −√
Q

2ρb
, (C.24)

vSH =

√

J sin2 θ +D cos2 θ

ρb
. (C.25)

In the case of zero angle of incidence θ = 0◦, i. e. if the wave vector and the

symmetry axis are collinear, the expressions simplify to

v0
qP =

√

C

ρb
, (C.26)

v0
qSV = v0

SH =

√

D

ρb
(C.27)

and for θ = 90◦ one obtains

v90
qP =

√

A

ρb
, (C.28)

v90
qSV =

√

D

ρb
, (C.29)

v90
SH =

√

J

ρb
. (C.30)

A convenient notation for weak anisotropy was suggested by Thomsen (1986).

According to his work, the angle-dependent phase velocities are written as a

product of the qP - and qSV -wave velocities at zero incidence, with combinations

of the Thomsen parameters ε, γ and δ (Mavko et al., 1998)

vqP ≈ v0
qP

(

1 + δ sin2 θ cos2 θ + ε sin4 θ
)

, (C.31)

vqSV ≈ v0
qSV

(

1 +
α2

β2
(ε− δ) sin2 θ cos2 θ

)

, (C.32)

vSH ≈ v0
qSV

(

1 + γ sin2 θ
)

. (C.33)
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with

ε =
A− C

2C
, (C.34)

γ =
J −D

2D
, (C.35)

δ =
(F +D)2 + (C −D)2

2C(C −D)
. (C.36)

Note that the approximation using the Thomson notation is only valid for small

anisotropy, i. e. for ε, γ, δ ≪ 1.

C.3 Extended theory of wave-induced flow in

layered porous media

In section 5.2, it was shown that in layered porous media, the relaxation tensor

can be presented as a product of its low-frequency limit ψ0
IJ and the normalised

relaxation function ψn(t) such that

c̃IJ(ω) = cuIJ(1 + F{ψ̇n(t)}ψ0
IJ) (C.37)

Here, the ψ0
IJ = cr(IJ)/c

u
(IJ) − 1 is obtained from the poroelastic Backus average

as explained in the preceding section (Gelinsky and Shapiro, 1997) and ψn(t)

can be calculated from the frequency-dependent solution for the effective P -wave

modulus (e. g. Gurevich and Lopatnikov, 1995; Brajanovski et al., 2006). From

a practical point of view, this result can be used to derive an estimate of the

attenuation of P -SV -waves in layered porous media. Consider the layered double

porosity model presented in section 5.2. Limits of compressional and shear wave

velocity are shown in Figure C.1a and C.1b, respectively. The shaded areas

denote velocity dispersion and this is exactly proportional to attenuation. This

is a special case of the more general Kramers-Kronig relations. Consequently,

knowing the maximum attenuation of normal incident P -waves, one can calculate

frequency-dependent qP - and qSV -wave attenuation as a function of incidence

angle according to

∆P (θ) =
vu

qP (θ) − vr
qP (θ)

vu
qP (θ)

, (C.38)

∆S(θ) =
vu

qSV (θ) − vr
qSV (θ)

vu
qSV (θ)

, (C.39)

Q−1
qP (ω, θ) =

Q−1
qP (ω, 0◦)

∆P (0◦)
∆P (θ) , (C.40)

Q−1
qSV (ω, θ) =

Q−1
qP (ω, 0◦)

∆P (0◦)
∆S(θ) . (C.41)
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Figure C.1: Velocity limits derived obtained from Backus averaging and

corresponding maximum attenuation. The medium consists of thin un-

consolidated sanstone layers embedded within a consolidated sandstone,

material parameters given in Table 5.1.

The maximum attenuation calculated such is shown in Figure C.1c with a small

circle indicating the known reference attenuation Q−1
qP (0◦). The theoretical re-

sults are in perfect agreement with the attenuation estimates obtained from the

numerical FE experiments shown in Figure 5.8a.

C.4 White’s model for partial saturation

The model of (White, 1975) describes the effective elastic properties of a porous

medium with partial gas saturation. The medium is considered as saturated by a

liquid with spherical gas inclusions, such that the inner sphere radius a is smaller

than radius of the outer shell b. The dry frame moduli are assumed isotropic and

interaction between the different inclusions is excluded. Formulas incorporate a

correction from Dutta and Seriff (1979) and are taken from Mavko et al. (1998).

The effective P -wave modulus of partially saturated porous rock is given by

Heff(ω) =
K∞

1 −K∞W (ω)
+

4

3
G , (C.42)

where K∞ is the unrelaxed (high-frequency) limit of the bulk modulus, G is the

rock shear modulus and the frequency-dependence is contained in the parameter

W . Both parameters depend on the gas saturation

S =
a3

b3
. (C.43)

Denoting by Kd the bulk modulus of the drained rock frame, by Kg the grain

bulk modulus, by Kf that of the fluid, as well as by K1 and K2 the undrained
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bulk moduli of the gas- and water-saturated phases as obtained from Gassmann’s

equations, K∞ is given by

K∞ =
K2(3K1 + 4G) + 4G(K1 −K2)S

(3K1 + 4G) − 3(K1 −K2)S
. (C.44)

The parameter W is calculated as

W =
3a2(R1 −R2)(−Q1 +Q2)

b3ı ω(Z1 + Z2)
, (C.45)

R1 =
K1 −Kd

1 −Kd/Kg

3K2 + 4G

K2(3K1 + 4G) + 4G(K1 −K2)S
, (C.46)

R2 =
K2 −Kd

1 −Kd/Kg

3K1 + 4G

K2(3K1 + 4G) + 4G(K1 −K2)S
, (C.47)

Z1 =
η1a

κ

1 − e−2α1a

(α1a− 1) + (α1a+ 1)e−2α1a
, (C.48)

Z2 =
η2a

κ

(α2b+ 1) + (α2b− 1)e2α2(b−a)

(α2b+ 1)(α2a− 1) + (α2b− 1)(α2a+ 1)e2α2(b−a)
, (C.49)

αj =

√

ı ωηj

κKEj

, (C.50)

KEj =

[

1 − Kfj(1 −Kj/Kg)(1 −Kd/Kg)

φKj(1 −Kfj/Kg)

]

KAj , (C.51)

KAj =

(

φ

Kfj

+
1 − φ

Kg

− Kd

K2
g

)−1

, (C.52)

Qj =
(1 −Kd/Kg)KAj

Kj

. (C.53)

As in the whole thesis, φ, η and κ refer to porosity, viscosity and permeability,

respectively.

For the same spherical geometry, Dutta and Odé (1979) give a rigorous solu-

tion for the effective bulk modulus by solving a boundary value problem based

directly on the Biot equations. Both formulations, that of White as well as that

of Dutta and Odé can be applied to calculate the effective bulk modulus of a par-

tially saturated rock, from which velocity dispersion and attenuation of P -waves

are derived.
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C.5 Complement on the random fractal media

model

The CRM model (Toms et al., 2007; Müller et al., 2008) has been elaborately

presented in section 2.8.2. It is complemented here by a summary of the spectra

of the von Kármán correlation 1-D, 2-D and 3-D media, a definition of the hyper-

geometric function and a figure showing the influence of the Hurst coefficient on

the dispersion and attenuation signatures in porous media with random fractal

saturation.

The von Kármán correlation function was already given in section 2.8 as

Bfractal(r) = σ2
MM

21−ν

Γ(ν)

(r

a

)ν

Kν

(r

a

)

, (C.54)

where Γ is the Gamma function and Kν is the modified Bessel function of the

second kind (Macdonald function). The paramter ν is called Hurst exponent.

For ν = 1/2, Bfractal is identical with the exponential correlation function. It 3-D

spectrum is given by

Φfractal
3D (k) = σ2

MM

a3Γ(ν + 3/2)

π3/2Γ(ν)(1 + k2a2)ν+3/2
(C.55)

and for large values of ka the spectrum decays as (ka)−2ν+3. If ν = 1/3, Φfractal

is referred to as the Kolmogorov energy spectrum that describes turbulent flows

(Pope, 2000). A distribution with ν = 0 and a → ∞ is called self-similar,

since over the total wavenumber domain,the spectrum follows a power-law. Note

that the right hand side of C.55 goes to infinity in this case, due to the pole

of the Gamma function. This pole at argument zero can be removed, however,

by rescaling Φfractal with the factor 1/2 Γ(ν) (Klimeš, 2002). The 1-D and 2-D

spectra of the von Kármán correlation function are given by (Sato and Fehler,

1998; Tittgemeyer, 1999)

Φfractal
1D (k) = σ2

MM

aΓ(ν + 1/2)√
π Γ(ν) (1 + k2a2)ν+1/2

, (C.56)

Φfractal
2D (k) = σ2

MM

a2Γ(ν + 1)

π Γ(ν) (1 + k2a2)ν+1
. (C.57)

According to Becken and Schmelcher (2000), the definition of the Gaussian

hypergeometric function (GHF) is

2F1([a, b], c, z) ≡
∞
∑

n=0

(a, n)(b, n)

(c, n)(1, n)
zn , (C.58)
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Figure C.2: Abso-

lute values as well as

real and imaginary

parts of the Gaussian

hypergeometric func-

tion 2F1(a, b; c; x).

The values chosen

are a = 1, b = 1.8,

c = 0.5 and x = ı z.

where (a, n) is the Pochhammer symbol defined using the Gamma function Γ by

(a, n) ≡ Γ(a+ n)

Γ(a)
. (C.59)

Note that the GHF has convergence radius 1 such that for |z| ≤ 1 the sum

in equation C.58 diverges. The domain of convergence can be extended to

the whole complex plane except of two single points by analytic continuation

(Becken and Schmelcher, 2000). A plot of the GHF for purely imaginary argu-

ment is shown in Figure C.2. The parameters chosen are a = 1, b = 1.8 and

c = 0.5.

The functions 2F1 and Φfractal are used to describe the effective behaviour of

porous rocks with random partial saturation and a fractal distribution of the fluid

phases. Examples of velocity dispersion and attenuation of such a medium are

shown in Figure C.4 for varying Hurst exponent ν. Realisations and correspond-

ing correlation functions are shown in Figure C.3. Material parameters are that

of a consolidated sandstone with 50% gas and 50% water saturation, see Table

5.1 on page 70. The depicted solutions are for Hurst coefficients 0.9, 0.3 and 0.1.

The velocity dispersion shown in Figure C.4a shows a transition from the low-

frequency to the high-frequency limit that is the smoother the lower ν is. The

smoother velocity dispersion corresponds to a broader peak in the attenuation

behaviour as shown in Figure C.4b. In particular, the high-frequency content

of the attenuation spectrum is stronger for smaller ν. Analysing the asymptotic

scaling of attenuation reveals that at high frequencies

Q−1 ∝ ω−ν , (C.60)

i. e. the slope of the high-frequency asymptote is is the steeper the higher the

Hurst exponent ν is. This result is consistent with the observation made by

Pride and Masson (2006) using numerical simulation.
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(a) ν = 0.9 (b) ν = 0.3 (c) ν = 0.1

Figure C.3: Fractal CRM realisations and corresponding correlation

function for Hurst exponents varying between 0.1 and 0.9.
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Figure C.4: CRM model for partial saturation with fractal pore fluid

distribution. Velocity dispersion and attenuation are given as a function

of frequency for three models with different Hurst exponents.



Appendix D

Abaqus porous elastic model

In section 3.2, the finite-element (FE) method for the solution of elastic and

poroelastic problems was briefly introduced. This is the basis of the commercial

Abaqus package that among other things allows to solve the quasistatic Biot

equations in complex 3-D domains (Abaqus, Inc., 1998). Here some properties of

the Abaqus “porous elastic” model are presented, focussing not on the technical

implementation but on the particularities of the user interface.

First of all, the poroelastic implementation is based on a non-linear rheology.

A linear material behaviour is therefore only obtained for small strains. In the

small-strain limit, the non-linear models parameters can be converted into their

linear asymptotes by neglecting higher-order terms of the constitutive relations.

This is shown subsequently.

Instead of the porosity φ, the void ratio e is used. It is defined as the ratio of

pore volume to solid volume

e =
Vφ

V − Vφ

=
φ

1 − φ
⇔ φ =

e

1 + e
. (D.1)

During compression, the void ratio decreases. This behaviour is expressed by the

logarithmic bulk modulus

κ = − de

d[ln(ps + pt)]
, (D.2)

where ps = σii/3 is the confining pressure and its lower limit is referred to as ten-

sile strength pt. Note that the Abaqus model is parameterised with the effective

stress

σij = τij + p , (D.3)

such that in order to obtain the total stress τij the pore pressure p has to be

subtracted (The plus sign arises from different sign conventions). From equation

123
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Figure D.1: Stress-strain relation of the Abaqus FE model. Confining

pressure is given as a function of volumetric strain. The non-linear be-

haviour D.4 can be approximated by the linear expansion around zero, as

expressed by equation D.5.

D.2, the constitutive relation for isotropic deformation is derived as

ps = −pt + (p0 + pt) exp

[

1 + e0

κ
(1 − exp ε)

]

, (D.4)

where e0 and p0 are the initial void ratio and confining pressure, respectively, and

ε is the total volumetric strain. This relation is depicted in Figure D.1.

By setting the initial pressure to zero and by using the Taylor expansion for

the exponential function expx ≈ 1 + x+ O(x2) the relation simplifies to

ps ≈ −pt(1 + e0)

κ
ε = −Kdε . (D.5)

The proportionality coefficient is easily identified with the linear bulk modulus of

the drained rock Kd that describes the linear material behaviour at small strains.

Again, note the sign convention for the confining pressure. If one wants to model

a particular value of Kd, then the tensile strength pt and the logarithmic bulk

modulus must be chosen such that

κ =
pt(1 + e0)

Kd

. (D.6)

A further difference between the notation used in this thesis and the Abaqus

model is the parameterisation of Darcy’s law. This is expressed in terms of the

piezometric head

φ ≡ z +
p

gρf
, (D.7)
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Figure D.2: Triangular, quadrangular and tetrahedral linear elements.

While 3-node-triangular and 4-node-tetrahedral elements use only one in-

tegration point, the 4-node-quadrangular elements use 4.

where z is vertical position, p is pore pressure, g is gravitational acceleration and

ρf is fluid density. According to Darcy’s law the filtration velocity qi is then given

by

ẇi = −k ∂iφ . (D.8)

Comparing equations 2.70 and D.8 and neglecting the potential part z in the

piezometric head, the fluid conductivity k (units of m/s) and the friction coeffi-

cient b (units of Pa s/m2) are related as

1

b
=
κ

η
=

k

gρf
. (D.9)

As in the previous sections, hydraulic permeability is denoted by κ and should not

be confused with the logarithmic bulk modulus, η is the dynamic fluid viscosity.

Fluid flow, as implemented in the Abaqus package may be modelled as anisotropic

and pressure-dependent which is beyond the scope of this work. These features,

however, deserve consideration in the future, in particular in the context of non-

linear fluid-induced seismicity (Hummel, 2008).

Finally, the output of Abaqus field variables are by default given at different

positions. Stresses are usually stored at the integration points, while displace-

ments and pore pressure are stored on the grid nodes, as depicted in Figure D.2.

In order to perform an averaging of the stress and pressure fields as required in the

quasistatic experiments (see section 5.2), it is therefore necessary to interpolate

the stresses to the nodal values during the postprocessing step.
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Éditions Technip, Paris.

Brajanovski, M., Gurevich, B., and Schoenberg, M. (2005). A model for P-wave

attenuation and dispersion in a porous medium permeated by aligned fractures.

Geophysical Journal International, 163:372–384.

Brajanovski, M., Müller, T. M., and Gurevich, B. (2006). Characteristic frequen-

cies of seismic attenuation due to wave-induced fluid flow in fractured porous

media. Geophysical Journal International, 166:574–578.

Brown, R. J. S. and Korringa, J. (1975). On the dependence of the elastic prop-

erties of a porous rock on the compressibility of the pore fluid. Geophysics,

40(4):608–616.

Burridge, R. and Keller, J. B. (1981). Poroelasticity equations derived from

microstructure. Journal of the Acoustical Society of America, 70(4):1140–1046.

Cadoret, T., Marion, D., and Zinszner, B. (1995). Influence of frequency and

fluid distribution on elastic wave velocities in partially saturated limestones.

Journal of Geophysical Research, 100(B6):9789–9803.

Carcione, J. M. (2001). Wave Fields in Real Media. Pergamon, New York.



BIBLIOGRAPHY 129

Carcione, J. M., Helle, H. B., and Pham, N. H. (2003). White’s model for wave

propagation in partially saturated rocks: Comparison with poroelastic numer-

ical experiments. Geophysics, 68:1389–1398.

Carcione, J. M. and Quiroga-Goode, G. (1995). Some aspects of the physics and

numerical modeling of Biot compressional waves. Journal of Computational

Acoustics, 4:261–280.

Cohen, G. C. (2002). Higher-Order Numerical Methods for Transient Wave Equa-

tions. Springer, Berlin, Heidelberg, New York.
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Lévy (1979), 15

Masson and Pride (2007), 13, 42, 73,

94

Masson et al. (2006), 50, 51

Mavko and Jizba (1991), 6, 38

Mavko et al. (1998), 7, 8, 34, 108,

113, 116, 118

Monsen and Johnstad (2005), 11

Murphy (1982), 9, 11

Müller and Gurevich (2004), 34, 36

Müller and Gurevich (2005a), 34, 35

Müller and Gurevich (2005b), 6, 33,

35

Müller and Shapiro (2001), 9, 82, 83

Müller and Shapiro (2004), 81, 82

Müller et al. (2008), 12, 34, 36, 38,

94, 95, 120

Norris (1985), 59–61

Norris (1992), 5

Norris (1993), 30, 33, 34, 77, 79

O’Doherty and Anstey (1971), 8

Picotti et al. (2007), 13

Plona (1980), 9, 10

Pope (2000), 120

Pride and Masson (2006), 121

Pride et al. (1992), 15

Pride et al. (2003), 5, 6

Quiroga-Goode and Carcione (1997),

65

Reiner (1964), 52

Rubino et al. (2007), 73

Rudnicki (1986), 27

Rytov et al. (1989), 110

Saenger et al. (2000), 13, 46, 48, 58

Saenger et al. (2007), 103

Sams et al. (1997), 5

Samuelides (1998), 95

Sato and Fehler (1998), 8, 37, 110,

120

Shapiro and Hubral (1999), 9, 82

Sheen et al. (2006), 42

Smith (1975), 41
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