144,259 research outputs found

    Particle-level pileup subtraction for jets and jet shapes

    Get PDF
    We present an extension to the jet area-based pileup subtraction for both jet kinematics and jet shapes. A particle-level approach is explored whereby the jet constituents are corrected or removed using an extension of the methods currently being employed by the LHC experiments. Several jet shapes and nominal jet radii are used to assess the performance in simulated events with pileup levels equivalent to approximately 30 and 100 interactions per bunch crossing, which are characteristic of both the LHC Run I and Run II conditions. An improved performance in removing the pileup contributions is found when using the new subtraction method. The performance of the new procedure is also compared to other existing methods

    Improved microscopic-macroscopic approach incorporating the effects of continuum states

    Full text link
    The Woods-Saxon-Strutinsky method (the microscopic-macroscopic method) combined with Kruppa's prescription for positive energy levels, which is necessary to treat neutron rich nuclei, is studied to clarify the reason for its success and to propose improvements for its shortcomings. The reason why the plateau condition is met for the Nilsson model but not for the Woods-Saxon model is understood in a new interpretation of the Strutinsky smoothing procedure as a low-pass filter. Essential features of Kruppa's level density is extracted in terms of the Thomas-Fermi approximation modified to describe spectra obtained from diagonalization in truncated oscillator bases. A method is proposed which weakens the dependence on the smoothing width by applying the Strutinsky smoothing only to the deviations from a reference level density. The BCS equations are modified for the Kruppa's spectrum, which is necessary to treat the pairing correlation properly in the presence of continuum. The potential depth is adjusted for the consistency between the microscopic and macroscopic Fermi energies. It is shown, with these improvements, that the microscopic-macroscopic method is now capable to reliably calculate binding energies of nuclei far from stability.Comment: 66 pages, 29 figures, 1 tabl

    Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. II: Role of the effective mass

    Full text link
    We have constructed four new complete mass tables, referred to as HFB-4 to HFB-7, each one including all the 9200 nuclei lying between the two drip lines over the range of Z and N>8 and Z<120. HFB-4 and HFB-5 have the isoscalar effective mass M*_s$ constrained to the value 0.92 M, with the former having a density-independent pairing, and the latter a density-dependent pairing. HFB-6 and HFB-7 are similar, except that M*_s is constrained to 0.8 M. The rms errors of the mass-data fits are 0.680, 0.675, 0.686, and 0.676 MeV, respectively, almost as good as for the HFB-2 mass formula, for which M*_s was unconstrained. However, as usual, the single-particle spectra depend significantly on M*_s. This decoupling of the mass fits from the fits to the single-particle spectra has been achieved only by making the cutoff parameter of the delta-function pairing force a free parameter. An improved treatment of the center-of-mass correction was adopted, but although this makes a difference to individual nuclei it does not reduce the overall rms error of the fit. The extrapolations of all four new mass formulas out to the drip lines are essentially the same as for the original HFB-2 mass formula.Comment: 12 pages revtex, 9 eps figures, accepted for publication in Phys. Rev.

    Nuclear Ground-State Masses and Deformations

    Full text link
    We tabulate the atomic mass excesses and nuclear ground-state deformations of 8979 nuclei ranging from 16^{16}O to A=339A=339. The calculations are based on the finite-range droplet macroscopic model and the folded-Yukawa single-particle microscopic model. Relative to our 1981 mass table the current results are obtained with an improved macroscopic model, an improved pairing model with a new form for the effective-interaction pairing gap, and minimization of the ground-state energy with respect to additional shape degrees of freedom. The values of only 9 constants are determined directly from a least-squares adjustment to the ground-state masses of 1654 nuclei ranging from 16^{16}O to 263^{263}106 and to 28 fission-barrier heights. The error of the mass model is 0.669~MeV for the entire region of nuclei considered, but is only 0.448~MeV for the region above N=65N=65.Comment: 50 pages plus 20 PostScript figures and 160-page table obtainable by anonymous ftp from t2.lanl.gov in directory masses, LA-UR-93-308

    Assimilating SAR-derived water level data into a hydraulic model: a case study

    Get PDF
    Satellite-based active microwave sensors not only provide synoptic overviews of flooded areas, but also offer an effective way to estimate spatially distributed river water levels. If rapidly produced and processed, these data can be used for updating hydraulic models in near real-time. The usefulness of such approaches with real event data sets provided by currently existing sensors has yet to be demonstrated. In this case study, a Particle Filter-based assimilation scheme is used to integrate ERS-2 SAR and ENVISAT ASAR-derived water level data into a one-dimensional (1-D) hydraulic model of the Alzette River. Two variants of the Particle Filter assimilation scheme are proposed with a global and local particle weighting procedure. The first option finds the best water stage line across all cross sections, while the second option finds the best solution at individual cross sections. The variant that is to be preferred depends on the level of confidence that is attributed to the observations or to the model. The results show that the Particle Filter-based assimilation of remote sensing-derived water elevation data provides a significant reduction in the uncertainty at the analysis step. Moreover, it is shown that the periodical updating of hydraulic models through the proposed assimilation scheme leads to an improvement of model predictions over several time steps. However, the performance of the assimilation depends on the skill of the hydraulic model and the quality of the observation data

    SoftKiller, a particle-level pileup removal method

    Get PDF
    Existing widely-used pileup removal approaches correct the momenta of individual jets. In this article we introduce an event-level, particle-based pileup correction procedure, SoftKiller. It removes the softest particles in an event, up to a transverse momentum threshold that is determined dynamically on an event-by-event basis. In simulations, this simple procedure appears to be reasonably robust and brings superior jet resolution performance compared to existing jet-based approaches. It is also nearly two orders of magnitude faster than methods based on jet areas.Comment: 26 pages, 16 figures (2 appendices with further checks added

    LDA+Gutzwiller Method for Correlated Electron Systems: Formalism and Its Applications

    Full text link
    We introduce in detail our newly developed \textit{ab initio} LDA+Gutzwiller method, in which the Gutzwiller variational approach is naturally incorporated with the density functional theory (DFT) through the "Gutzwiller density functional theory (GDFT)" (which is a generalization of original Kohn-Sham formalism). This method can be used for ground state determination of electron systems ranging from weakly correlated metal to strongly correlated insulators with long-range ordering. We will show that its quality for ground state is as high as that by dynamic mean field theory (DMFT), and yet it is computationally much cheaper. In additions, the method is fully variational, the charge-density self-consistency can be naturally achieved, and the quantities, such as total energy, linear response, can be accurately obtained similar to LDA-type calculations. Applications on several typical systems are presented, and the characteristic aspects of this new method are clarified. The obtained results using LDA+Gutzwiller are in better agreement with existing experiments, suggesting significant improvements over LDA or LDA+U.Comment: 20 pages, 11 figure
    • …
    corecore