47,705 research outputs found

    An improved parametric level set method for structural frequency response optimization problems

    Full text link
    © 2018 Elsevier Ltd In conventional parametric level set methods, the compactly supported radial basis functions (CSRBF) are used to approximate the level set function due to their unique properties, such as the sparsity of the interpolation matrix. The CSRBFs only consider the contributions of knots within a narrow sub-region, which sacrifices accuracy for efficiency in the interpolation. However, the accuracy loss in the CSRBF-based method may prolong the iteration and gradually lead the topology optimization towards a worse local optimum or even an unfeasible design, especially when the allowable material usage in the design domain is relatively low. This will significantly affect the performance of the optimization method. This paper proposes an improved parametric level set method (iPLSM), which is more efficient and effective in topology optimization designs. In this method, the Gaussian radial basis function with global support is used to parameterize the level set surface, to ensure a high numerical accuracy due to the consideration of all interpolation knots in the global domain. Then, a discrete wavelet transform scheme is incorporated into the parametric form to compress the full interpolation matrix and save the computational cost. The proposed method is applied to both the global and local frequency response optimization problems under wide excitation frequency ranges, to validate its efficiency and effectiveness

    Correlating low energy impact damage with changes in modal parameters: diagnosis tools and FE validation

    Get PDF
    This paper presents a basic experimental technique and simplified FE based models for the detection, localization and quantification of impact damage in composite beams around the BVID level. Detection of damage is carried out by shift in modal parameters. Localization of damage is done by a topology optimization tool which showed that correct damage locations can be found rather efficiently for low-level damage. The novelty of this paper is that we develop an All In One (AIO) package dedicated to impact identification by modal analysis. The damaged zones in the FE models are updated by reducing the most sensitive material property in order to improve the experimental/numerical correlation of the frequency response functions. These approximate damage models(in term of equivalent rigidity) give us a simple degradation factor that can serve as a warning regarding structure safety

    Aeroservoelasticity

    Get PDF
    Accomplishments and current research projects along four main thrusts in aeroservoelasticity at the NASA Langley Research Center are described. One activity focuses on enhancing the modelling and the analysis procedures to accurately predict aeroservoelastic interactions. In the area of modelling, improvements to the minimum-state method of approximating unsteady aerodynamics are shown to provide precise, low-order models for design and simulation tasks. Recent extensions in aerodynamic correction factor methodology are also described. With respect to analysis procedures, the paper reviews novel enhancements to Matched Filter Theory and Random Process Theory for predicting the critical gust profile and the associated time-correlated gust loads for structural design considerations. In another activity, two research projects leading towards improved design capability are summarized. The first program involves the development of an integrated structure/control design capability; the second provides procedures for obtaining low-order, robust digital control laws for aeroelastic applications. Experimental validation of new theoretical developments is the third activity. As such, a short description of the Active Flexible Wing Project is presented, and recent wind-tunnel test accomplishments are summarized. Finally within the area of application, a study performed to assess the state-of-the-art of aeroelastic and aeroservoelastic analysis and design technology with respect to hot, hypersonic flight vehicles is reviewed

    Integration of dynamic, aerodynamic, and structural optimization of helicopter rotor blades

    Get PDF
    Summarized here is the first six years of research into the integration of structural, dynamic, and aerodynamic considerations in the design-optimization process for rotor blades. Specifically discussed here is the application of design optimization techniques for helicopter rotor blades. The reduction of vibratory shears and moments at the blade root, aeroelastic stability of the rotor, optimum airframe design, and an efficient procedure for calculating system sensitivities with respect to the design variables used are discussed

    Integrated multidisciplinary optimization of rotorcraft: A plan for development

    Get PDF
    This paper describes a joint NASA/Army initiative at the Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for important interactions among the disciplines. The paper describes the optimization formulation in terms of the objective function, design variables, and constraints. Additionally, some of the analysis aspects are discussed, validation strategies are described, and an initial attempt at defining the interdisciplinary couplings is summarized. At this writing, significant progress has been made, principally in the areas of single discipline optimization. Accomplishments are described in areas of rotor aerodynamic performance optimization for minimum hover horsepower, rotor dynamic optimization for vibration reduction, and rotor structural optimization for minimum weight

    Efficient method for aeroelastic tailoring of composite wing to minimize gust response

    Get PDF
    Aeroelastic tailoring of laminated composite structure demands relatively high computational time especially for dynamic problem. This paper presents an efficient method for aeroelastic dynamic response analysis with significantly reduced computational time. In this method, a relationship is established between the maximum aeroelastic response and quasi-steady deflection of a wing subject to a dynamic loading. Based on this relationship, the time consuming dynamic response can be approximated by a quasi-steady deflection analysis in a large proportion of the optimization process. This method has been applied to the aeroelastic tailoring of a composite wing of a tailless aircraft for minimum gust response. The results have shown that 20%–36% gust response reduction has been achieved for this case. The computational time of the optimization process has been reduced by 90% at the cost of accuracy reduction of 2~4% comparing with the traditional dynamic response analysis
    corecore