92 research outputs found

    A Novel Approach for Management Zone Delineation by Classifying Spatial Multivariate Data and Analyzing Maps of Crop Yield

    Get PDF
    Precision farming has been playing a distinguished role over last few years. It encompasses the techniques of Data Mining and Information Technology into agricultural process. The acute task in classic agriculture is fertilization, which makes minerals available for crops. Site specific methods result in imbalanced management within fields which affects the crop yield. Treating the whole field as uniform area is merely heedless as it forces the farmers to use costly resources like fertilizers, pesticides etc., at greater expenses. As the field is heterogeneous, the critical task is to identify which part of the field should be considered and the percentage of fertilizer or pesticide required. In order to increase the yield productivity, concept of Management Zone Delineation (MZD) has to be adopted, which divides the agricultural field into homogeneous subfields, or zones based on the soil parameters. Precision Agriculture focuses on the utilization of Management zones (MZs). In this paper, we have collected huge data of Davanagere agricultural jurisdiction during standard farming operations which reflects the heterogeneity of agricultural field. We base our work on a new Data Mining technique called Kriging, which interpolates soil sample values for the specific region, which in turn helps in converting heterogeneous zones to homogeneous subfields

    A site-specific and dynamic modeling system for zoning and optimizing variable rate irrigation in cotton

    Get PDF
    Cotton irrigation has been rapidly expanding in west Tennessee during the past decade. Variable rate irrigation is expected to enhance water use efficiency and crop yield in this region due to the significant field-scale soil spatial heterogeneity. A detailed understanding of the soil available water content within the effective root zone is needed to optimally schedule irrigation. In addition, site-specific crop-yield mathematical relationships should be established to identify optimum irrigation management. This study aimed to design and evaluate a site-specific modeling system for zoning and optimizing variable rate irrigation in cotton. The specific objectives of this study were to investigate (i) the spatial variability of soil attributes at the field-scale, (ii) site-specific cotton lint yieldwater relationships across all soil types, and (iii) multiple zoning strategies for variable rate irrigation scenarios. The field (73 ha) was sampled and apparent soil electrical conductivity (ECa) was measured. Landsat 8 satellite data was acquired, processed, and transformed to compare indicators of vegetation and soil response to cotton lint yields, variable irrigation rates, and the spatial variability of soil attributes. Multiple modeling scenarios were developed and examined. Although experiments were performed during two wet years, supplemental irrigation enhanced cotton yield across all soil types in comparison with rain-fed conditions. However, length of cropping season and rainfall distribution remarkably affected cotton response to supplemental irrigation. Geostatistical analysis showed spatial variability in soil textural components and water content was significant and correlated to yield patterns. There was as high as four-fold difference between available water content between coarse-textured and fine-textured soils on the study site. A good agreement was observed (RMSE = 0.052 cm3 cm-3 [cubic centimeter per cubic centimeter] and r = 0.88) between predicted and observed water contents. ECa and space images were useful proximal data to investigate soil spatial variability. The site-specific water production functions performed well at predicting cotton lint yield with RMSE equal to 0.131 Mg ha-1 [megagram per hectare] and 0.194 Mg ha-1 in 2013 and 2014, respectively. The findings revealed that variable rate irrigation with pie shape zones could enhance cotton lint yield under supplemental irrigation in west Tennessee

    Delineation of site‐specific management zones using estimation of distribution algorithms

    Get PDF
    In this paper, we present a novel methodology to solve the problem of delineating homogeneous site-specific management zones (SSMZ) in agricultural fields. This problem consists of dividing the field into small regions for which a specific rate of inputs is required. The objec- tive is to minimize the number of management zones, which must be homogeneous according to a specific soil property: physical or chem- ical. Furthermore, as opposed to oval zones, SSMZ with rectangular shapes are preferable since they are more practical for agricultural technologies. The methodology we propose is based on evolutionary computation, specifically on a class of the estimation of distribution algorithms (EDAs). One of the strongest contributions of this study is the representation used to model the management zones, which gener- ates zones with orthogonal shapes, e.g., L or T shapes, and minimizes the number of zones required to delineate the field. The experimental results show that our method is efficient to solve real-field and ran- domly generated instances. The average improvement of our method consists in reducing the number of management zones in the agricul- tural fields concerning other operations research methods presented in the literature. The improvement depends on the size of the field and the level of homogeneity established for the resulting management zones.IT1244-19 TIN2016-78365-R PID2019-104966GB-I0

    Statistical Geocomputing: Spatial Outlier Detection in Precision Agriculture

    Get PDF
    The collection of crop yield data has become much easier with the introduction of technologies such as the Global Positioning System (GPS), ground-based yield sensors, and Geographic Information Systems (GIS). This explosive growth and widespread use of spatial data has challenged the ability to derive useful spatial knowledge. In addition, outlier detection as one important pre-processing step remains a challenge because the technique and the definition of spatial neighbourhood remain non-trivial, and the quantitative assessments of false positives, false negatives, and the concept of region outlier remain unexplored. The overall aim of this study is to evaluate different spatial outlier detection techniques in terms of their accuracy and computational efficiency, and examine the performance of these outlier removal techniques in a site-specific management context. In a simulation study, unconditional sequential Gaussian simulation is performed to generate crop yield as the response variable along with two explanatory variables. Point and region spatial outliers are added to the simulated datasets by randomly selecting observations and adding or subtracting a Gaussian error term. With simulated data which contains known spatial outliers in advance, the assessment of spatial outlier techniques can be conducted as a binary classification exercise, treating each spatial outlier detection technique as a classifier. Algorithm performance is evaluated with the area and partial area under the ROC curve up to different true positive and false positive rates. Outlier effects in on-farm research are assessed in terms of the influence of each spatial outlier technique on coefficient estimates from a spatial regression model that accounts for autocorrelation. Results indicate that for point outliers, spatial outlier techniques that account for spatial autocorrelation tend to be better than standard spatial outlier techniques in terms of higher sensitivity, lower false positive detection rate, and consistency in performance. They are also more resistant to changes in the neighbourhood definition. In terms of region outliers, standard techniques tend to be better than spatial autocorrelation techniques in all performance aspects because they are less affected by masking and swamping effects. In particular, one spatial autocorrelation technique, Averaged Difference, is superior to all other techniques in terms of both point and region outlier scenario because of its ability to incorporate spatial autocorrelation while at the same time, revealing the variation between nearest neighbours. In terms of decision-making, all algorithms led to slightly different coefficient estimates, and therefore, may result in distinct decisions for site-specific management. The results outlined here will allow an improved removal of crop yield data points that are potentially problematic. What has been determined here is the recommendation of using Averaged Difference algorithm for cleaning spatial outliers in yield dataset. Identifying the optimal nearest neighbour parameter for the neighbourhood aggregation function is still non-trivial. The recommendation is to specify a large number of nearest neighbours, large enough to capture the region size. Lastly, the unbiased coefficient estimates obtained with Average Difference suggest it is the better method for pre-processing spatial outliers in crop yield data, which underlines its suitability for detecting spatial outlier in the context of on-farm research

    Erosional Drainage Network: Development and Analysis Under Simulated Rainfall

    Get PDF
    Agricultural Engineerin

    Flood Prediction and Mitigation in Data-Sparse Environments

    Get PDF
    In the last three decades many sophisticated tools have been developed that can accurately predict the dynamics of flooding. However, due to the paucity of adequate infrastructure, this technological advancement did not benefit ungauged flood-prone regions in the developing countries in a major way. The overall research theme of this dissertation is to explore the improvement in methodology that is essential for utilising recently developed flood prediction and management tools in the developing world, where ideal model inputs and validation datasets do not exist. This research addresses important issues related to undertaking inundation modelling at different scales, particularly in data-sparse environments. The results indicate that in order to predict dynamics of high magnitude stream flow in data-sparse regions, special attention is required on the choice of the model in relation to the available data and hydraulic characteristics of the event. Adaptations are necessary to create inputs for the models that have been primarily designed for areas with better availability of data. Freely available geospatial information of moderate resolution can often meet the minimum data requirements of hydrological and hydrodynamic models if they are supplemented carefully with limited surveyed/measured information. This thesis also explores the issue of flood mitigation through rainfall-runoff modelling. The purpose of this investigation is to assess the impact of land-use changes at the sub-catchment scale on the overall downstream flood risk. A key component of this study is also quantifying predictive uncertainty in hydrodynamic models based on the Generalised Likelihood Uncertainty Estimation (GLUE) framework. Detailed uncertainty assessment of the model outputs indicates that, in spite of using sparse inputs, the model outputs perform at reasonably low levels of uncertainty both spatially and temporally. These findings have the potential to encourage the flood managers and hydrologists in the developing world to use similar data sets for flood management

    Application of geostatistics to expedited site characterization

    Get PDF
    This thesis develops geostatistical methods for use in the USDOE Expedited Site Characterization (ESC) process with focus on application to sites with contaminated soil and groundwater. Statistical methods for on-site sample location selection for geological and environmental sampling, characterizing uncertainty in the geologic and contaminant models, modeling the spatial distribution of contamination in the presence of non-detect data, determining when sufficient data have been collected, and post investigation analysis of geological and environmental data are given. These statistical methods are applied to data from an ESC demonstration at a former manufactured gas plant where soils were contaminated with polynuclear aromatic hydrocarbons and an ESC project at the Savannah River Site in South Carolina to characterize metal, pesticide, and volatile organic contamination in groundwater. A recommended approach to the use of geophysical methods and direct push technologies, in conjunction with geostatistical methods, for the characterization of the geologic environment and contaminant spatial distribution is developed. A summary of the USEPA Data Quality Objectives process, the USDOE Streamlined Approach for Environmental Restoration, and the USEPA Site Accelerated Cleanup Model is given, with focus on how ESC fits into the environmental restoration process
    • 

    corecore