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ABSTRACT 

Cotton irrigation has been rapidly expanding in west Tennessee during the past decade. Variable rate irrigation is 

expected to enhance water use efficiency and crop yield in this region due to the significant field-scale soil spatial 

heterogeneity. A detailed understanding of the soil available water content within the effective root zone is needed 

to optimally schedule irrigation. In addition, site-specific crop-yield mathematical relationships should be 

established to identify optimum irrigation management. This study aimed to design and evaluate a site-specific 

modeling system for zoning and optimizing variable rate irrigation in cotton. The specific objectives of this study 

were to investigate (i) the spatial variability of soil attributes at the field-scale, (ii) site-specific cotton lint yield-

water relationships across all soil types, and (iii) multiple zoning strategies for variable rate irrigation scenarios. The 

field (73 ha) was sampled and apparent soil electrical conductivity (ECa) was measured. Landsat 8 satellite data was 

acquired, processed, and transformed to compare indicators of vegetation and soil response to cotton lint yields, 

variable irrigation rates, and the spatial variability of soil attributes. Multiple modeling scenarios were developed 

and examined. Although experiments were performed during two wet years, supplemental irrigation enhanced 

cotton yield across all soil types in comparison with rain-fed conditions. However, length of cropping season and 

rainfall distribution remarkably affected cotton response to supplemental irrigation. Geostatistical analysis showed 

spatial variability in soil textural components and water content was significant and correlated to yield patterns. 

There was as high as four-fold difference between available water content between coarse-textured and fine-textured 

soils on the study site. A good agreement was observed (RMSE = 0.052 cm3 cm-3 [cubic centimeter per cubic 

centimeter] and r = 0.88) between predicted and observed water contents. ECa and space images were useful 

proximal data to investigate soil spatial variability. The site-specific water production functions performed well at 

predicting cotton lint yield with RMSE equal to 0.131 Mg ha-1 [megagram per hectare] and 0.194 Mg ha-1 in 2013 

and 2014, respectively. The findings revealed that variable rate irrigation with pie shape zones could enhance cotton 

lint yield under supplemental irrigation in west Tennessee.  
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Part 1: Introduction and Literature Review 

 

1. Introduction 

1.1 Irrigation in west Tennessee  

The growing demand for food and fiber production along with the intrinsic uncertainty in rainfall patterns, due to 

climate variability, has focused great attention on irrigation. World agricultural production over the last fifty years 

has grown between two and four percent per year on average while irrigation has doubled in the same time period. 

Irrigated agriculture has the highest rate of consumption of the fresh water resources (about 70%) and produces 

more than 40% of the food supply while using 17% of the agricultural land area (FAO, 2013; Fereres and Connor, 

2004). In arid and semiarid climates, irrigation is essential for crop production where a crop failure or a significant 

reduction in the amount of yield would most likely occur without irrigation. The growing demand for water and 

intense water scarcity creates a philosophy of “more crop per drop” making deficit irrigation a common practice that 

by definition means to deliberately apply water below the evapotranspiration (ET) requirement. Overall, irrigation 

optimization has been a key area of research for a long time in arid and semiarid regions. 

Irrigation management in moderately-humid and humid regions is a different concept where optimized water 

allocation is not the prime concern and “more crop per drop” does not define the irrigation approach. Supplemental 

irrigation is the relevant practice in such areas (irrigate if needed), which is an irrigation strategy that attempts to 

stabilize maximum yield production by irrigating whenever the rainfall is not sufficient to fulfill the crop water 

requirement. Crops in humid regions produce some yield without supplemental irrigation, since precipitation is the 

prime source of moisture rather than irrigation. Irrigation management for optimizing yield in a humid region is 

more complicated than that in an arid region for several reasons. Excess water content in the root zone could occur 

due to overlapping irrigation events with rainfall. This may cause yield reduction either because of lack of aeration 

or by unnecessarily increasing crop biomass but not yield. On the other hand, severe in season drought conditions 

for a short period of time are likely to occur in a humid region when lack of irrigation can significantly reduce yield. 

Stabilizing yields and the recent high commodity prices are the reason that row crop irrigation is rapidly expanding 

in humid regions.  
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In west Tennessee, irrigation has been increasing exponentially during the last 2 decades such that there was 

approximately 2000 acres per year increase from 1992 to 1999 while this number was doubled by a rate 

approximately equal to 4000 acres per year from 2002 to 2007 (NASS, 2010). Informal statistics shows the growth 

rate increased to 60,000 acres per year in 2013. Although more producers recently utilized some irrigation systems 

in west Tennessee, there are still lots of potential users who have not yet established an irrigation system. There are 

some studies available focusing on irrigation management in west Tennessee, while more information is needed to 

help producers optimize their irrigation management.  

 

1.2 Cotton response to supplemental irrigation 

Cotton is one of the major crops in west Tennessee and it is also vital to the economy of the United States since it is 

an essential export-oriented product. Cotton supplemental irrigation is growing fast in west Tennessee. The temporal 

pattern of rainfall changes from year to year with unexpected drought periods likely to occur each growing season. 

Consequently, producers are more willing to invest in irrigation systems to prevent any yield loss. Gwathmey et al. 

(2011) investigated the cotton responses to supplemental irrigation in Jackson TN in a 4-year study. They observed 

irrigation treatment significantly improved lint yield (i.e. 38 % in average at the 2.54 cm wk-1 irrigation rate) in 

comparison with the rainfed treatment in 3 of the 4 years. Several factors such as heat unit accumulation, nutrient 

level, and determinacy of varieties affect cotton growth and yield and also influence the cotton response to 

irrigation.  

Full irrigation, which is an irrigation strategy to fulfill ET demand, is expected to produce the highest amount 

of yield in most agricultural crops. Cotton irrigation in humid regions with a short season environment is one of a 

few exceptions to this rule. Unlike dry regions, the response of cotton to irrigation in humid regions is not consistent 

due to several reasons. Applying enough water to satisfy cotton ET demand causes an excessive vegetative growth 

but most likely reduces yield since there is not usually enough time for all of the bolls to open by harvesting time 

(Morrow and Krieg, 1990). Bajwa and Vories (2007) demonstrated that excessive irrigation in wet weather 

conditions decreased cotton lint yield in Arkansas. That is why, the quantity of optimum ET (to maximize cotton lint 

yield) is directly proportional to length of cropping seasons; in longer seasons higher irrigation is expected to 

produce the highest cotton lint yield (Orgez et al., 1992). Therefore, deficit irrigation is the suggested irrigation 

discipline for cotton in a humid short season environment to maximize lint yield, yet there might be some minor 
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issues due to irrigation as opposed to rainfed agriculture. For example, an increase in insect control problems may 

occur due to cotton irrigation and also irrigation may cause plants to lodge. Moreover, irrigated cotton needs higher 

levels of management than non-irrigated cotton (Parks et al., 1978). 

Magnitude and timing of irrigation affect cotton yield, maturity and fiber quality. High water stress reduces 

cotton lint yield mainly by decreasing the number of bolls per unit growth area. Pettigrew (2004) observed more 

bolls produced in irrigated cotton at higher plant nodes than dryland cotton. In general, irrigation delays maturity 

while water stress improves earliness. Pettigrew (2004) observed 20% taller plants as well as a delayed cutout due to 

irrigation in relation to dryland plots. Pettigrew (2004) showed that irrigation can cause a longer vegetative growth 

period after initiation of reproductive growth compared to dryland. The effect of water stress and irrigation on fiber 

quality components is inconsistent in the literature. Pettigrew (2004) stated that irrigation had no substantial 

consistent effect on fiber quality relative to dryland plots but in most of the years produced slightly longer fiber. 

Snowden et al. (2013) also observed both increase and decrease in micronaire due to irrigation in different cropping 

seasons.  

The optimum cotton ET to maximize lint yield varies by the different cultivars. Orgez et al. (1992) found 

cotton crop water production functions were curvilinear in shape for most of the cultivars. They found a linear 

function for a cultivar with early maturity that is most likely due to less immature bolls by harvesting. Long season 

cultivars may end up with a big portion of the bolls immature by harvest time. This difference was smaller for longer 

seasons. Pettigrew (2004) reported different lint yield across cultivars, yet the general response to moisture deficit 

was similar among them. They observed inconsistent early flower production in dryland plots. Snowden et al. (2013) 

found a strong irrigation by cultivar interaction for micronaire by studying six cotton cultivars under four irrigation 

levels within two years on the Texas High Plains. 

In most of the crops, it is expected to see biomass reduction and relatively constant harvest index for small to 

medium water deficits while reduction in both (harvest index and biomass) is anticipated for greater water deficits 

(Fereres et al., 2007). Cotton is one of a few crops that does not follow this general relationship between biomass 

and harvest index. It was reported that applying small to medium water deficits reduces cotton biomass, while 

varying by variety either increases the harvest index or does not affect it (Orgaz et al., 1992, Carmona et al., 2007). 

This is because a small to medium water deficit predominantly reduces vegetative parts of the cotton biomass but 

does not affect or only slightly decreases lint yield.  
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When water is adequate, the available heat-units is the prime factor limiting cotton yield. Gwathmey et al. 

(2011) showed that the failure to accumulate adequate heat-unit, may significantly affect cotton lint yield and the 

applied water relationships in west Tennessee with short season humid environments. On the other hand, water 

stress can significantly decrease heat unit-lint yield correlation (Peng et al., 1989). Determinacy of varieties as well 

as distribution of heat units across growth stages affect the heat unit-lint yield relationship. The impact of collected 

heat units is not uniform at all cotton growth stages. Peng et al. (1989) found a linear relationship between heat unit 

accumulation and lint yield for indeterminate and moderate determine cultivars but a curvilinear relationship for 

determinate cultivar. As a result, under cool conditions more determinate cultivars may produce higher lint yield 

while the inverse is correct under dry conditions. The evidence in literature points toward flowering and yield 

formation as the most sensitive growth stages to heat unit accumulation. The early reproductive development period 

highly affects the number of fruiting sites hence lint yield. Peng et al. (1989) reported early fruiting as the most 

sensitive growth stage to accumulated heat-unit. In another study, Kerby (1986) showed that heat unit accumulation 

at the beginning of flowering is highly correlated with the amount of lint yield per boll. Morrow and Krieg (1990) 

found a positive correlation between lint yield and heat unit accumulation before flowering while the opposite was 

true after flowering. They mentioned that considering the data of a large number of dryland plots was the reason for 

getting the negative correlation after flowering. 

 

1.3 Site-specific cotton irrigation management 

Precision agriculture (PA) is moving forward in line with the significant achievements in instrumentation, 

measurements and data-processing. This revolution is changing the concept of an agricultural unit from farm to sub-

field by providing precision management opportunities for farmers. The National Research Council definition of PA 

comprises three components: gathering data, analyzing data and subsequently managing the farm, based on the 

results at an appropriate scale and time (Oliver, 2010). 

With PA technology, farmers have the means to collect the information needed to optimize site-specific 

variable-rate irrigation. In fact, they have the facilities to conduct customized research that has traditionally been 

reserved for research farms with small plots. The parameters that are needed for site-specific irrigation are related to 

components in the soil-water-crop-atmosphere continuum. Most farmers in west Tennessee have access to precision 

farming equipment. Precision farming provides a unique opportunity to continuously produce valuable sources of 
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information. An enormous amount of data is obtained with extremely valuable information about temporal and 

spatial changes in each field. Yield maps are the most readily available information, while other data such as soil 

apparent electrical conductivity (ECa) maps and elevation maps are also, to a great extent, available. If not, they can 

be collected without spending a considerable amount of time and money. 

Conventional irrigation management tries to answer when and how much to irrigate. Given field soil variation, 

variable rate irrigation management should address where to irrigate as well. It has been proven in various studies 

that soil characteristics such as soil water holding capacity (WHC) and depth of soil significantly affect crop yield, 

thus irrigation strategies should be adjusted in regard to the soil type. Soil variation is common in west Tennessee 

with respect to soil hydraulic and physical properties. Duncan (2012) illustrated that a single irrigation decision 

cannot optimize the cotton lint yield for soils with significantly different WHC in this region. Given soil spatial 

variation under irrigation systems in this region, Duncan (2012) concluded variable rate irrigation may be the 

optimum irrigation scenario to enhance cotton lint production. Hedley and Yule (2009b) compared variable rate 

irrigation and conventional uniform irrigation and illustrated that 9–19 % of irrigation water was saved which in turn 

reduced nitrogen leaching. Precision irrigation center pivots that pulse banks of sprinklers creating variable flow 

have been commercially available for a while. In addition, most of the available center pivots in west Tennessee are 

able to vary irrigation across a field by changing their travel speed and creating limited pie shape zones.  

Overall, optimizing irrigation has received less attention in practice than other PA applications such as 

precision fertilization. This fact is revealed by a rapid assessment of abstract titles from a recent PA conference 

(http://www.ecpa2013.udl.cat/) in Spain (July 7th-11th 2013). One possible reason is the inherent complexity of 

irrigation management compared with the more straightforward nature of the other precision applications. Another 

practical challenge is to provide all of the necessary information from the soil-water-crop-atmosphere continuum for 

managing variable rate irrigation. An example is the spatial and temporal changes in soils. Spatial variation is 

inherent to soil and will most likely be different in any region and at various scales. Less pronounced temporal soil 

variation also can be caused by human activities, such as agriculture and soil management, or natural phenomena 

like soil shrinkage-swelling and soil crusting (Wösten et al., 2001). 

Soil moisture is the most widely used indicator for irrigation scheduling (Leib et al., 2012; Leib et al., 2003). 

Recent advances in wireless communication makes it more feasible to monitor soil water status in multiple locations 

within a field which is required for scheduling variable rate irrigation systems. Pan et al. (2013) established a 
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framework to manage irrigation in a field with soil spatial variation by means of information available in PA (i.e. 

field elevation and ECa), wireless sensing technology, and site-specific derived equations. In another study, Hedley 

and Yule (2009a) produced soil hydraulic maps using regression equations from high resolution ECa maps. They 

added a daily time step to the generated map to spatially estimate soil water status across the field by means of a 

network of wireless soil moisture sensors. Hedley and Yule (2009b) found that daily soil water content mapping 

could be utilized to manage a variable rate irrigation system. 

 

2. Root zone soil hydrology 

2.1 Pedotransfer functions 

The most widely accepted method to fulfill the need for soil water retention information is called a pedotransfer 

function (PTF). PTF concept was introduced by Bouma and van Lanen (1987) as a mathematical relationship 

between easy collected soil data and hard to measure characteristics. In fact, PTF allows us to transfer the data we 

have to data we need. The majority of the established PTFs target either saturated hydraulic conductivity or the 

water retention curve (WRC) as desired output. Similar to most of the empirical models, PTFs were developed using 

regression techniques during the 1980s while the data mining (DM) procedures became more prevalent in the 90s. 

Artificial neural networks (ANNs) were the first DM method that was utilized by Schaap and Bouten (1996) for 

developing a PTF. ANNs became standard tools to model complex systems in the 1990s. ANNs are able to capture 

the behavior of a system by adjusting their parallel components which provide them with very flexible structures. 

ANNs are often called “universal function approximators” because they can estimate any continuous function to any 

desired degree of accuracy. This characteristic makes ANNs very appropriate for establishing PTFs (Pachepsky and 

Rawls, 2004; Haghverdi et al., 2010, 2011). The successful use of ANN-PTF encouraged researchers to examine 

other DM algorithms. Group Method of Data Handling (Pachepsky and Rawls, 1999), k-nearest neighbor techniques 

(Nemes et al., 2006a, 2006b) and support vector machines (Lamorski et al., 2008; Twarakavi et al., 2009) are among 

the most recent data mining methods which were applied to derive PTFs.  

Traditionally there are two types of PTFs for estimating water retention data: point and parametric PTFs. A 

point PTF predicts the water retention data at some predefined water retention points on the curve (such as water 

retention at field capacity and permanent wilting point) while a parametric PTF is able to predict the whole WRC. A 

parametric PTF, in fact, estimates the parameters of a soil hydraulic equation, mostly the one by van Genuchten 
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(1980), and those parameters are then used to predict the WRC through the chosen equation. Tomasella et al. (2003) 

showed that point PTFs are more accurate than parametric PTFs based on the van Genuchten equation. The desire to 

be able to predict the entire WRC encouraged researchers to establish parametric PTFs, yet there are some 

drawbacks associated with this type of PTF. Parametric PTFs predetermine which equation the user ought to use, 

which is for most PTFs the van Genuchten model. There is no guarantee that the real shape of the WRC is similar to 

the shape of the chosen equation for all soils. Furthermore, Minasny and McBratney, (2002) mentioned 

overparametization as a potential problem resulting from van Genuchten-based-parametric PTFs. Recently, a new 

type of ANN- PTF has been introduced by Haghverdi et al. (2012, 2014b) which is able to predict the entire WRC 

without the need for a predetermined soil hydraulic model. Haghverdi et al (2012) showed that this model was able 

to perform as well as classical PTFs and sometimes outperform them. One of the highlighted features of this applied 

model is its unique structure which makes it able to establish a PTF for soils that have uneven available water 

retention data.  

In summary, well-known PTFs (e.g. Rosetta by Schaap et al., (2001) and kNearest by Nemes et al., (2008)) are 

useful tools to convert basic soil information to soil hydraulic data with a reasonable degree of accuracy. However, 

there are two major concerns hampering their application for providing enough data for variable rate irrigation: (i) 

PTFs are not spatial tools and therefore cannot generate a map and (ii) the routine input predictors of PTFs, e.g. 

detailed soil texture information, bulk density and sometimes organic matter content, cannot be classified as easily 

collected data needed for management of variable rate irrigation. 

 

2.2 Soil spatial prediction  

Grid sampling and subsequently using geostatistical methods is the most accepted way to map the soil hydraulic 

properties. In this process, PTF would convert the basic soil properties to soil hydraulic properties in a grid format 

while an interpolation technique will be used to convert discrete points to a map. Kriging is one of the most 

acceptable interpolating techniques to determine the possible spatial correlation among the data. A remarkable 

advantage of kriging over other interpolation techniques is that the former provides the semivariogram of the target 

attribute(s) as well as associated uncertainty. An alternative option is to use DM procedures to model the spatial 

correlation among the data. Behrens et al. (2005) found ANNs a notable tool for digital soil mapping. Fu et al. 

(2011) clarified the precise spatial prediction of dissolved organic carbon using ANNs comparing with spatial 
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regression kriging. In another study, Motaghian and Mohammadi (2011) found kriging combined with ANNs 

performed best for spatial estimation of saturated hydraulic conductivity from terrain attributes.  

The density and distribution of the grid samples would significantly affect the performance of all interpolation 

techniques. A relatively large number of samples are needed to establish accurate high-resolution soil maps (Zhao et 

al., 2009) which is costly and time consuming (Saey et al., 2009). In practice, however, it is not feasible to take lots 

of samples. Including extra input variables is a possible solution to obtain high accuracy and to minimize the field 

work. Recently, Levi (2012) tried to estimate high resolution physical soil properties using a raster approach via 

digital soil mapping. He utilized remotely sensed auxiliary data and a variety of geostatistical techniques. 

Afterwards, a PTF was used to predict water retention at the landscape scale. Sharma et al. (2006) utilized 

topography and vegetation attributes for developing PTFs. They found some improvement with certain input 

combinations of basic soil properties along with the topography and vegetation attributes. In another study, Leij et 

al. (2004) added the topographical attributes to the basic input predictors of PTF for predicting water retention along 

a hillslope transect. They observed up to 26% improvement in modeling results due to additional input variables. 

 

2.3 On-the-go sensors 

Readily available dense data can be collected via on-the-go sensors which are able to gather the information while 

traversing a field. Ground penetrating radar and soil Veris machines are the most widely used means to map the soil 

variability in PA applications. Yield maps also can be utilized to distinguish spatial soil differences. Available 

means to collect ground penetrating radar are more suitable to collect data in small scale projects. ECa maps through 

Veris machines and yield data are easily collected and dense enough to be used to generate high resolution maps, 

including large scale maps, and hence in theory can help to minimize or even to avoid the soil sampling work. The 

practical challenge is how to convert these data to soil hydraulic maps.  

Yield maps are affected by lots of temporal and spatial attributes so it is not easy to specifically quantify the 

role of soil hydraulic properties on them. Florin et al. (2011) examined an inverse meta modeling approach to 

estimate water retention via yield maps. They found that having a number of yield maps together with a crop growth 

model can aid estimation of high resolution soil hydraulic properties maps. EC is an indicator showing salinity in 

arid regions. However, in humid region, for which salinity is not a major factor, EC may provide some useful 

information about clay percentage, cation exchange capacity (CEC) and water content (Sudduth et al. 2005). 
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Nevertheless, the reported relationships between ECa data and soil hydraulic properties are not consistent. Duncan 

(2012) showed that the depth to sand layer and soil available water in an irrigated cotton field in west TN was 

strongly related to EC data. Sudduth et al. (2005) tried to relate ECa to soil properties across the north-central USA. 

They showed a relatively high correlation between ECa with clay and CEC across all study fields but this correlation 

was only available in a limited number of fields between soil moisture and ECa. McCutcheon et al. (2006) reported 

a weak temporal uniformity in ECa data when mapped in a dryland field over time. They found volumetric soil 

water content was the dominant factor which affects the ECa variability in both spatial and temporal manners. Some 

studies showed that it is better to conduct ECa mapping under wet conditions because the relationship between ECa 

and texture is more pronounced near field capacity (Auerswald et al., 2001; Taylor et al., 2003).  

There are few studies relating spatial ECa data to soil hydraulic properties. Saey et al. (2009) developed a 

simple regression-based-PTF to convert ECa data to clay percentage under a non saline condition. They found a 

good correlation (R2=0.81) for their PTF. Abdu et al. (2008) predicted soil texture and WHC in the subsurface soil 

of a 38 ha watershed using ECa data by deriving a simple regression equation. The input predictors were normalized 

ECa and the latitude (northing). Their model performed well having an R2 = 0.86 and a root mean square error 

(RMSE) = 4.4 % for predicting clay percentage and an R2 = 0.75 and a RMSE = 0.01 m3 m-3 for predicting WHC. 

The predicted values of soil WHC ranged from 0.07 cm3 cm-3 to 0.22 cm3 cm-3 across the watershed, while only a 

uniform value of 0.13 m3 m-3 could be estimated by means of soil survey maps. Abdu et al. (2008) emphasized the 

need for additional studies to appropriately relate ECa data into hydrological attributes.  

There are many approaches for developing PTFs yet the options are more limited when the goal is to produce a 

high resolution soil hydraulic property map. The evidence in the literature seems to point toward dense data sets 

(such as on-the-go sensing of ECa, yield maps and topography) with calibration and verification from limited soil 

core data. Therefore, a next generation of PTFs should be developed as site-specific models capable of using easily 

obtainable data to predict soil hydraulic properties. 

 

3- Management zones delineation  

In conventional agriculture, each field is considered as a uniform unit, by purposely ignoring the heterogeneity 

across the field. Thus, decision-making is based on an estimation of average conditions. The motivation for site-

specific farming was first addressed by researchers during late the 80s and early 90s (Arslan and Colvin, 2002). As 
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such, PA methodology is a way to look at field management by taking the within field variation into account and 

involving that variability into management decisions. There are different definitions of the PA available in literature. 

The definition of PA used in this study is a farming system which uses information technology to do site-specific 

crop management in which decisions on resource application are modified in regard to within field variation of 

components such as soil, water and crop (Whelan and Taylor, 2013). Variable-rate application is required where the 

within-field heterogeneity is caused by both temporal and spatial variation of a variety of factors such as climatic, 

topographic and biological (Córdoba et al., 2013). Map-based and sensor-based approaches are two major methods 

to practice variable-rate application. In the map-based method, application maps are prepared using site-specific 

information such as yield data and soil data prior to implementation. In the sensor-based method, a real time 

decision on application rate is made using data collected via sensors and pre-developed application algorithms 

(Thöle et al., 2013).  

One of the steps in PA is to delineate management areas within fields where it is expected that applying 

identical treatments will cause significant yield differences. Management zones in precision farming are field areas 

with similar soil-landscape attributes (Schepers et al., 2004). A corollary expectation is that varying the treatment of 

management zones will facilitate optimizing yield. Other goals such as protecting the environment, saving resources, 

and keeping agriculture sustainable may also be achievable through precision farming. Moral et al. (2010) used 

regression kriging, principle component analysis (PCA) and fuzzy cluster classification to delineate management 

zones using soil texture information and electrical conductivity as ancillary data. There are several methods to 

delineate management zones. Applying unsupervised clustering techniques and user-defined zoning are the main 

procedures. Clustering techniques group similar data points (cells) into distinct classes. Methods such as k-means 

and fuzzy k-means have been widely used to identify management zones (Córdoba et al., 2013). 

A field can be zoned based on a single soil-crop variable or multiple attributes which are expected to affect 

yield (Khosla et al., 2010). Yield maps, topography, aerial photographs, canopy images and ECa are among 

suggested attributes to delineate management zones. Yield maps are useful sources of information reflecting within-

field variation. However, some difficulties have been reported to delineate zones solely by yield maps (Khosla et al., 

2010). Temporal inconsistency among yield maps from year to year is probably the main cause of this problem. 

Schepers et al. (2004) reported that temporal climate variability in an irrigated cornfield significantly affected yield 

spatial variability from year to year. Combining yield data with other ancillary information or averaging yield data 
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over years help better explain spatial variation and in turn can provide more trustable zones. Promising results have 

been reported by the studies that have utilized several years of yield data to create management zones. However, 

stability of such zones has to be tested in each individual field (Khosla et al., 2010). Calculating temporal variance 

can be helpful to verify zone stability (Basso et al., 2012). There are some methods to screen potential attributes 

regarding their importance. Hornung et al. (2006) suggested assigning different weights to individual layers based 

on their importance to the variation in crop yield. PCA can be utilized to linearly transfer original variables to new, 

independent variables. Researchers apply PCA to understand the characteristics of a data set along with the relative 

importance of each individual variable (Fraisse et al., 2001). Finally, the most important PCs will be used to 

delineate management zones. 

Necessary information to analyze spatial soil variability and in turn to delineate management zones can be 

obtained via multiple methods: using soil survey maps, sampling and interpolation, on-the-go sensors and remote 

sensing techniques. Application of remote sensing is especially attractive because it is noninvasive and relatively 

inexpensive (Schepers et al., 2004). ECa data are relatively easy and inexpensive to collect, and have thus become 

one of the most widely studied attributes to zone fields. However, reported results in the literature on efficiency of 

ECa for zoning are not consistent because of several factors affecting ECa, though these factors do not necessarily 

influence crop productivity. ECa alone may not be suitable under all cropping systems but there is a potential for 

using it combined with other soil and crop attributes (Khosla et al., 2010). 

The software MZA was developed by Fridgen et al. (2004) for delineating management zones. The MZA uses 

a fuzzy c-means unsupervised clustering algorithm for dividing a field into management zones and tests the result to 

evaluate how many zones to create in a given field. The optimum number of the zones and their shape is dependent 

on the target input and available equipment. For instance, there is more freedom to precisely apply fertilizer even in 

very small regions in a field but this is not the case with variable rate irrigation. Zhang et al. (2010) developed a 

web-based decision support system for zoning using satellite imagery and field data. More recently, Cid-Garcia et al. 

(2013) proposed an integer linear programming management zone delineation method to make rectangular shaped 

zones which facilitates the work and operation of machinery. 

Delineating irrigation management zones is challenging because there are many parameters that 

simultaneously affect crop available water and crop water requirement. There are only a few studies on deriving 

management zones for variable rate irrigation. For instance, Jiang et al. (2011) used the physical properties of soil as 
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the data source to delineate irrigation zones. They utilized management zone analysis software which uses a 

fuzziness performance index and normalized classification entropy for identifying the least number of subzones. In 

another study, Bereuter (2011) studied zoning techniques on irrigated corn in Nebraska. Nine soil and landscape 

attributes were chosen as potential factors for zoning. Results showed that different combinations of selected 

attributes were suitable for zoning at different sites. 

In a simplified conceptual framework, the right amount of water within the root zone would maximize the 

yield. However, applying deficit or excess irrigation may cause either drought stress or aeration problems and both 

can reduce the yield potential. As such, both the soil and the crop are crucial parameters to consider. Different types 

of soils hold varying amounts of water with only a portion of that water being readily available for the crop. Some 

crops may tolerate more severe drought stress and/or poorer soil aeration than the others and some may use excess 

water to grow vegetatively rather than producing more yields from reproductive parts of the plant. Therefore, the 

following knowledge is required to delineate variable rate irrigation zones: (i) the spatial variation of soil hydraulic 

properties as well as (ii) the response of a target crop to different irrigation regimes for each soil type.  

 

4. Water production functions  

Modeling crop production based on water availability is an important step toward optimizing irrigation and therefore 

is a critical issue for farmers, governmental agencies and consulting companies. Unfortunately, it is not easy to 

obtain a precise estimation of yield at the beginning of a cropping season because a variety of factors, such as water 

usage, weather and rainfall variation, seed quality, topographic attributes, soil properties and pest control, 

simultaneously affect crop yield in a very complex manner. That is why, in most studies researchers only focus on 

understanding the effect of one or a few attributes on yield while trying to keep other parameters unchanged in both 

spatial and temporal manners. However, this concept of yield modeling has been changing over time as practices 

move from conventional farming to PA. In conventional agriculture, one predicts average yield across the field and 

ignores yield variation within the field. In PA, however, the goal is to consider and to manage within-field yield 

variation. As a result, understanding and modeling the effect of different parameters on crop yield in a 

spatiotemporal scheme becomes a crucial research topic in PA.  
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4.1 Yield prediction in conventional agriculture 

Yield prediction in conventional agriculture is a prevailing subject of interest. In a majority of studies yield variation 

is simulated either by crop growth models or empirical equations. These are useful methods to quantify the irrigation 

effect on crop yield while there are inherent advantages and disadvantages associated with each of them.  

There are lots of crop models available, mathematically relating yield to some parameters such as soil, water, 

weather and fertilizer. The crop models are divided to three branches with regard to the resources used for 

estimating the crop growth rate. The resources are water, solar radiation and carbon dioxide. Aquacrop (Steduto et 

al., 2009; Raes et al., 2009) and CropSyst (Stöckle et al., 2003) are two well-known water driven models. There are 

some studies on cotton yield prediction using these models. Sommer et al. (2008) evaluated the performance of the 

CropSyst model to simulate cotton yield. García-Vila et al. (2009) utilized AquaCrop to optimize deficit irrigation of 

cotton. They concluded that AquaCrop is a useful model to help managers identifying the optimum irrigation 

decisions. Farahani et al. (2009) also studied full and deficit irrigation of cotton by means of AquaCrop model. 

These models were shown to be precise yet they need lots of input data. In practice, running these models is time 

consuming because of all the necessary input parameters; therefore, their application is mostly limited to research 

projects rather than practical situations.  

The regression-based empirical equations are alternative options for identifying crop yield responses to 

environmental and management parameters. The term production function (PF) may be assigned to any 

mathematical relationship between crop yield and input components such as water, fertilizers and energy (De Juan, 

1996). Almost all of the available PFs require crop water use as an independent variable. The PFs predict total dry 

matter (or marketable product of each crop as dependent variable while the independent variables are transpiration 

(T), evapotranspiration (ET) or amount of applied water during irrigation (IW). These functions are distinguished 

into two groups based on independent variable: (i) crop water production functions (CWPFs) which use ET and (ii) 

water production functions (WPFs) which use IW. IW may consist of different components such as crop water 

requirement, pre-plant irrigation, leaching requirement, and rainfall (Igbadun et al., 2007). From a temporal point of 

view, PFs are divided into seasonal and dated PFs. Seasonal PFs consider the total in season IW or ET as 

independent variable but dated PFs divide the growing seasons into different stages and consider an individual 

independent variable for each of the stages. In dated PFs (Rao et al., 1988) the role of water at different growth 

stages varies but are related to the others. The well-known dated PFs connect the independent variables either by 
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adding them up or multiplying them. A multiplicative PF would predict yield failure if lack of ET or IW occurred 

even at a single growth stage but an additive PF is formulated differently. Recently, some studies have aimed to 

revisit and rebuild the concept of PF. Some examples are: a WPF for water logging stress on corn (Kuang et al., 

2012) and rice water – fertilizer PF (Ai-hua et al., 2012). Tong and Guo (2013) also tried to involve an estimation of 

uncertainty in CWPF along with the optimal allocation of water resources in an irrigation area. There are some 

studies on cotton yield prediction by means of PFs. Wang et al., (2007) derived cotton and wheat water-salinity PFs. 

Dinar et al. (1986) derived cotton CWPF under saline conditions in California. They stated that PFs were good 

models to improve irrigation management.  

Classical PFs are useful tools for irrigation management and economic analysis of yield reduction due to 

deficit irrigation, but there are some shortcomings associated with them. PFs, like other regression-based equations, 

are relatively easy to build but are mostly linear and not powerful enough to model complex ecological systems (Dai 

et al. 2011). Recent studies (e.g. Fortin et al., 2010; Haghverdi et al., 2014a) are looking for more robust and non-

linear techniques to predict yield. In most of agricultural related studies, machine learning methods became the 

favorable tools because they are powerful empirical tools for modeling complex systems. Data mining could be 

defined as the process of capturing important and useful information from large data sets (Mucherino et al., 2009). 

An extensive review on data mining methods and their application in agricultural related studies was gathered by 

Huang et al. (2010). Machine learning algorithms were employed to some extent to predict yield of different crops. 

Fortin et al (2010) used ANNs for predicting potato tuber growth as well as its in-field variations in Canada. They 

reported that with an ANN model using enough data they can precisely model site-specific tuber growth. Dai et al. 

(2011) adopted ANN and multi-linear regression models to simulate the response of sunflower yield to soil moisture 

and salinity. ANNs appeared to be the model with higher precision than regression. They concluded that ANN is a 

useful tool for modeling relationship between crop yield and soil moisture and salinity at different crop growth 

periods. Haghverdi et al. (2014a) derived some novel WPFs by comparing data mining-based methods with 

traditional regression procedures. They utilized ANN and decision tree as modeling algorithms for deriving water 

salinity PF for spring wheat. Haghverdi et al. (2014a) suggested data mining methods to derive WPFs since they are 

accurate and flexible in their structure.  

In summary the balance between simplicity and accuracy of the models should be considered as a critical issue 

when applying them in broad practice (Farahani et al., 2009). Empirical PFs are only valid for a single crop at a 
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specific location. Using a previously derived PF is not recommended for a new condition because there are 

significant temporal and spatial differences among crops and climatic zones (Al-Jamal et al., 2000). The 

performance of PFs for different crops and different locations should be tested carefully in advance to use them for 

irrigation planning and establishment of water management plans (Igbadun et al., 2007). On the other hand, 

sophisticated crop growth models are reliable tools only if the massive input variables are available at a reasonable 

level of accuracy. However, in practice, poorly calibrated crop growth models are not a better option than empirical 

tools. 

 

4.2 Yield prediction in precision agriculture 

Yield mapping using yield monitors is one of the most widely implemented PA technologies. The first  

commercialized yield monitor was released in 1992 for a grain combine while after 6 more years the first cotton 

yield monitor became commercially available. Yield monitoring systems generate spatially dense data during 

harvesting as a combine harvester moves through a field. The data is simultaneously geo-referenced by means of an 

appropriate GPS device and can be displayed and post-processed via a suitable GIS system. Producers utilize yield 

monitoring systems mostly for grains, oilseeds and cotton. In the US, 28% of maize areas in 2005 and 22% of 

soybean areas in 2002 were harvested using yield monitoring systems (Griffin, 2010). However, there are lots of 

potential users who have not adopted yield monitor technology because the methods for making use of these 

extensive data sets are not yet adequate. Yield monitoring and mapping is not only output from the production 

system but a trustable source of information for understanding spatial and temporal variability (Guo et al., 2012). 

Yet interpreting it is challenging because yield variability is caused by a variety of factors. Both crop growth models 

and site-specific empirical equations are adoptable from conventional farming to predict yield in PA and their 

application will be reviewed in the following segment.  

There are several studies on applying crop growth models in PA. For example, Florin et al. (2011) employed 

an inverse-modeling step to estimate the soil physical properties over a grain farm in Australia using yield map data. 

They then used soil data in a meta-modeling process to predict spatially- and temporally-dense yield. They found 

implicit information, during modeling, about the interaction of climate with soil, crop and landscape which they 

stated needs to be identified. In another study, Basso et al. (2007) used crop growth models to analyze 

spatiotemporal stability of maize, soybean and wheat yield. They utilized 5 years of yield monitor data to form some 
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management zones. Afterwards, 14 years of simulation data were generated to analyze the effects of climate on the 

spatial and temporal variation. Basso et al. (2007) stated that combination of crop growth models and GIS could be 

useful to identify the temporally stable zones. Link et al. (2006) also applied the CERES-Maize crop growth 

simulation model along with a decision support system to study groundwater nitrate concentration. They separated 

the field of study into 30 grid cells and ran the model at each point. They were able to explain approximately 60% of 

spatial and temporal yield variability by their method.  

Some site-specific empirical models also were developed for yield prediction at a high spatial resolution. 

Wong and Asseng (2006) tried to predict wheat yield by means of available soil water which was estimated from 

ECa data. They derived different equations based on the quantity of the other related factors such as rainfall, initial 

soil moisture and nitrogen application. The promising result of their study revealing the dominant factors causing 

spatiotemporal yield variation were interactions of seasonal rainfall, plant available soil water storage capacity and 

N fertilizer applications. There are also some studies on spatial prediction of cotton yield. Guo et al. (2012) tried to 

mathematically explain spatial and temporal variation of cotton yield on the Southern High Plains of Texas by 

means of ECa, soil brightness, and topography data. They observed that a combination of the above attributes could 

explain up to 70.1 % of cotton yield variability. Guo et al. (2012) mentioned the soil texture as one of the greatest 

factors affecting cotton yield. They found a relatively stable spatial pattern of yield over time, although yield and 

soil properties had a stronger relationship in dry years than wet seasons. There are some studies proving the positive 

correlation of yield with topographic attributes (Jigang and Thelan, 2004; Kaspar et al., 2004; Andales et al., 2007; 

Green et al., 2007). The modeling attempts to relate those attributes to yields varied from regression analysis (Jigang 

and Thelan, 2004; Andales et al, 2007) to more complex machine learning models (Green et al. 2007; Ruß and 

Brenning, 2010, Jiang et al., 2009).  

Despite all of the advancements, it is difficult to find a yield modeling study in PA that focuses on irrigation 

effect on yield variation. Crop growth models are robust to deal with temporal changes but they are point-based and 

unable to cover spatial variation in their calculations. Dividing the field into homogenous sub-units, using 

interpolation techniques and model parameterization at a high spatial resolution are possible methods to solve this 

issue (Florin, 2008). However, all of these methods are time-consuming and costly and not practical in a majority of 

situations. Empirical PFs are easier to establish which make it more feasible to derive them.  
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As previously discussed, the primary problem with PFs in conventional farming is that as empirical models 

they are difficult to reuse in new places or even at the same place over time. This is a significant issue in 

conventional farming because producing enough data to derive site-specific PFs is not feasible. In fact, producing 

data is limited to classical irrigation research studies in which different irrigation treatments are applied, most likely 

in a multiple year experiment within a research station, following design of experiment (DOE) principles. This lack 

of data is automatically solved by yield monitoring systems where each producer can produce enough data to derive 

an empirical PF each year for a specific field. Furthermore, since the derived PFs are site-specific, transferring them 

to a new location is not an issue. Under these circumstances, PFs can become a practical tool to investigate site-

specific irrigation-yield relationships. However there are new challenges that need to be adequately addressed. First, 

there is the question of how to incorporate spatial soil variation into the PF. The second is how to deal with 

significant temporal changes in weather patterns that obviously affect irrigation scheduling from year to year and 

require a dynamic modeling framework to update and incorporate each year’s data. Thirdly, if the PF is going to be 

derived for each cropping season separately, how will the PF be used after the fact to improve irrigation 

management in upcoming years? Obviously, restructuring of the classical PFs is required to incorporate new site-

specific input variables covering not only variation in ET/IW but variations in all of the other major parameters 

which spatially affect the yield such as soil hydraulic properties.  

This dissertation consists of three parts; part 1: “studying effective root zone soil hydrology for site-specific 

irrigation”, part 2: “perspectives on cotton supplemental irrigation in west Tennessee”, and part 3: “toward site-

specific irrigation management in west Tennessee”. The objective of part one was to study soil physical and 

hydraulic properties within the effective root zone and to generate a high resolution field-scale soil available water 

map. The objective of part two was to investigate cotton response to varying irrigation regimes across different soil 

types. The objective of part three was to delineate irrigation management zones and quantify and investigate 

different variable rate irrigation scenarios.  
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Abstract 

Irrigation has been rapidly growing in west Tennessee during the recent decade. Farmers tend to invest in center 

pivot systems to avoid crop yield loss due to unpredictable dry periods. The spatiotemporal variation in soil and 

weather conditions needs to be studied for irrigation scheduling. If spatial soil variation is significant, variable rate 

irrigation may be the optimum option. A detailed spatial understanding of soil available water content within the 

effective root zone is needed to optimally schedule irrigation in this region. However, it is impractical to directly 

measure soil basic physical/hydraulic properties at field-scale because of the time consuming and expensive nature 

of lab/in situ techniques. This study was carried out to investigate the field-scale variation of soil available water 

content and its effect on yield patterns. The field (73 ha) was sampled (100 samples) and apparent soil electrical 

conductivity data was collected. Soil basic information including sand, silt and clay percentages and bulk density as 

well as soil water content were measured at four different depths (i.e. 0-25 cm, 25-50 cm, 50-75 cm and 75-100 cm) 

across the field. Multiple modeling scenarios were examined to indirectly predict high resolution soil available water 

content maps within the effective root zone with the aid of soil apparent electrical conductivity as proximal data. 

Geostatistical analysis showed spatial variability in soil textural components and water content was significant and 

moderately correlated to the yield patterns. There was as high as four-fold difference between available water 

content of coarse-textured and that of fine-textured soils on the study site. The result indicated that ECa was a useful 

proximal data to investigate soil spatial variability in the field of study. There was a good agreement (RMSE = 0.052 

cm3 cm-3 and r = 0.88) between predicted and observed water contents.  
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Abstract 

Irrigation has been rapidly growing in west Tennessee during the recent decade. Farmers tend to invest in center 

pivot systems to avoid yield loss due to unpredictable dry periods. The spatiotemporal variation in soil and weather 

conditions needs to be studied for irrigation scheduling. If spatial soil variation is significant, variable rate irrigation 

may be the optimum option. This study aimed to investigate field-scale soil spatial variation for a typical agricultural 

field in West Tennessee. The field (73 ha) was sampled and apparent soil electrical conductivity data was collected. 

Soil basic information including sand, silt and clay percentages and bulk density as well as soil water content were 

measured at four different depths across the field. Geostatistical analysis showed spatial variability in soil textural 

components and water content was significant and correlated to yield patterns. The result showed ECa was a useful 

proximal data to investigate soil spatial variability in the field of study.  

Keywords: apparent electrical conductivity, variable rate irrigation, water holding capacity 

 

1. Introduction 

It is vital to understand the distribution of soil physical and hydraulic properties at the field-scale in order to enhance 

water use efficiency and evaluate the effects of different irrigation strategies on environmental quality. The soil 

physical and hydraulic properties inherently differ within or among fields in nature. In addition, the management 

practices may induce the spatial heterogeneity. Soil usually exhibits structured variation in space, meaning it is 
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likely to find closer samples more similar to one another than those further apart. Classical statistical methods are 

not suitable to study spatial attributes because they require the data to be independent. Geostatistical techniques have 

become standard tools to study soil spatial dependency and distribution and to predict soil properties at unsampled 

locations (Khosla et al., 2010).   

The spatial heterogeneity of soil attributes in West Tennessee is likely substantial with one responsible factor 

being parent material where for example, alluvial soils and windblown loess deposits can be found across much of 

the region. The soil specifically varies in its physical properties governing the soil water holding capacity and 

readily available water for crops, which in turn affects yield patterns. The vertical arrangement and thickness of 

deposited sediments also may vary; it is not unusual to see in a single field a sandy layer deposited over silt loam 

and clay sediments on top of a sandy layer. This vertical variation may be due to several factors including parent 

material, internal drainage, physiographic location and magnitude of erosion (Graveel et al., 1989). The long term 

historical use of conventional tillage together with steep slopes has further increased the soil spatial heterogeneity 

(Duncan, 2012). Iqbal et al. (2005) stressed the importance of studying differences among the distribution of 

surface, subsurface and deep soil horizons where in depth soil variation is significant. 

The need to avoid yield loss from drought stress along with increased commodity prices have caused a 

significant conversion of rainfed agriculture to irrigated production in the last decade in moderately humid west 

Tennessee (Duncan, 2012). Irrigation management in this region is challenging due to significant season to season 

variability in rainfall patterns. It is likely to find numerous soil types and thus drastic spatial changes in soil physical 

attributes under a single irrigation system. The vertical soil variation even further changes the pattern of crop 

available water within the root zone at different growth stages. Duncan, (2012) showed that there was no single 

optimum irrigation decision for all of the soil types in this region and suggested variable rate irrigation as a desired 

strategy to enhance water use efficiency and optimize yield. The first step towards this goal is to study field scale 

soil spatial variation and find practical methods to derive a high resolution map of soil physical and hydraulic 

properties within the effective root zone.  

Crop yield has been proven to be strongly related to soil physical properties. For example, Wong and Asseng 

(2006) considered available soil water as an input predictor of wheat yield. They reported plant available soil water 

storage capacity as one of the dominant factors governing spatiotemporal yield variation. In another study, Guo et al. 

(2012) mentioned the soil texture as one of the greatest factor affecting cotton yield. They found a relatively stable 
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spatial pattern of yield over time although yield and soil properties had stronger relationship in dry years than wet 

seasons. Graveel et al. (1989) studied the response of corn to soil variation in west Tennessee. They observed a large 

yield difference between soils with different erosion levels emphasizing a need to distinguish between soil profiles 

with sandy versus silty texture layers.  

Soil survey maps, soil sampling, on-the-go sensors and remote sensing from field, airborne, and satellite 

sensors are the most widely used methods to obtain information on the spatial distribution of soil attributes (Khosla 

et al., 2010). Soil sampling at field-scale provides valuable information on the spatial variation of soil attributes, but 

to collect this data has become laborious and expensive. Soil apparent electrical conductivity (ECa) is a proximal 

attribute which has created substantial interest for soil mapping and management zone delineation in precision 

agriculture. The ECa is measured in a simple and in-expensive way by inducing an electrical current into the soil 

while traversing a field. ECa may provide useful information on soil physical and hydraulic properties (Gooley et 

al., 2013) including soil texture and soil water content where salinity is not an issue as the main factor influencing it. 

However, there are some inconsistency in the literature on factors affecting ECa variation for non-saline fields 

(McCutcheon et al., 2006). This suggests the need to investigate the practical utility of using ECa for site-specific 

management in different regions.   

Consequently, this study was carried out to investigate the degree of spatial heterogeneity of soil properties 

including soil texture, bulk density, ECa, and AWC at the landscape spatial scale of an irrigated cotton field in 

western Tennessee. The objectives were (i) to determine the degree of spatial variability of soil physical properties 

at different layers using geo-statistical techniques, (ii) to evaluate the usefulness of ECa as a proximal attribute to 

map soil variability and (iii) to assess the relationship of the spatial distribution of soil attributes to yield patterns.   

 

2. Material and Methods 

2.1 Study area 

The study area (about 73 ha) was an irrigated agriculture field located in west Tennessee along the Mississippi river. 

There were two center pivot systems available for irrigation. The field has been planted in cotton, soybeans and corn 

during the past years. Figure 1-1 illustrates the long term variation in regional weather data. Rainfall is relatively 

high even in dry years. Temperature changes are less pronounced and to some extent inversely proportional to 
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rainfall. Farmers practice supplemental irrigation in this region since rainfall events usually are not temporally well-

scattered to fulfill crop water requirement over the entire growing season.  

 

2.2 Soil data collection and lab analysis 

Two rules of thumb were considered based on Kerry et al. (2010) (i.e. sampling at half the semivariogram range and 

collecting at least 100 samples) to calculate the number of samples and to design the sampling scheme. To obtain a 

rough estimation of spatial dependency of soil properties, semivariogram of available proximal attributes, including 

space image of the bare soil and elevation information, was analyzed. A total of 86 samples were gathered on a grid 

sampling scheme where samples were about 100 m apart (i.e. half the mean semivariogram range of proximal 

attributes). The rest of the samples (=14) were randomly collected from underneath the center pivot circles. Field 

sampling occurred after rainfall events when soil water status was assumed to be close to the field capacity. One 

hundred undisturbed samples (100 cm deep) were collected by a truck mounted soil sampler between March 21 and 

22, 2014. Figure 1-2 shows the locations of samples within the field of study. 

During sampling, each core was visually assessed and divided into four sub samples. The depth of subsamples 

(diameter = 67 mm) was set to 25 cm increments (i.e. 0-25 cm, 25-50 cm, 50-75 cm and 75-100 cm) yet was 

adjusted in respect to the available horizons if needed. The soil texture was measured by the hydrometer method 

(Blake et al., 1986). Water content of subsamples were calculated by subtracting after-sampling from oven-dried 

weights. The soil dry bulk density (BD) was estimated as the oven dry weight to volume of each subsample. The 

ECa data were collected using a Veris 3100 (Veris Technologies, Salina, KS) instrument on March 20, 2014 with 

about 10 m and 20 m distance between adjacent points in a same row and adjacent rows, respectively. This 

instrument had six rolling coulters for electrodes and collected two simultaneous ECa measurements from shallow 

and deep layers. 

 

2.3 Descriptive and spatial analysis of soil properties 

The Microsoft Excel 2013 was used to descriptively analyze soil data. The soil texture triangle was plotted for each 

layer. The relationship between volumetric water content at the time of sampling and soil basic properties, i.e. sand, 

silt and clay percentages and bulk density, was investigated. The average depth across samples after adjustment 

were fairly close to 25 cm for all the layers (i.e. 24.45 cm, 22.84 cm, 24.92 cm and 24.88 cm from first to the last 



30 

increment, respectively). All of the analysis was done individually for four different layers (each approximately 25 

cm thick) to explore within root zone soil variation where the word layer was used to distinguish among subsamples 

rather than the real soil horizons. The relationship between ECa data and soil physical information, obtained from 

soil samples, was studied. To match ECa and soil basic data, the ECa data were interpolated to each sample using 

ordinary kriging approach.  

The spatial analysis was done using the ARCGIS 10.2.2 (ESRI, Redlands, California). To examine the spatial 

autocorrelation of the attributes, the semivariogram (equation 1) and Global Moran’s I statistic (equation 2) were 

obtained as follow: 
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where z is the deviation of an attribute from its mean, wi,j is the spatial weight between ith and jth point and n is 

equal to the number of points. 

The ordinary kriging was applied to generate maps using sampling and ECa data. Finally, the maps were 

visually assessed against each other.  

 

2.4 Yield data collection and cleaning 

Soybean and cotton yield data were available from 2009 and 2012 cropping seasons, respectively. The raw yield 

data were cleaned prior to drawing yield maps. First, a thematic map was generated using raw data to investigate the 

GPS tracks and yield pattern across the field. Then, the swath width, distance between the points, speed of harvester 

and change in speed were carefully monitored. The data greater/smaller than 3 times the standard deviation from the 

mean were assumed statistically unexpected and removed unless there was a scientific evidence acting against this 

assumption. The yield data was converted to maps by the ordinary kriging approach. The location of yield data did 
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not exactly match to the ECa and sampling locations thus the interpolated maps were used to obtain the expected 

yield values at the given locations.  

 

3. Results and Discussion 

3.1 Variation among soil layers  

Table 1-1 contains descriptive statistics for selected soil properties. The BD had its highest mean value at the 

deepest layer while the mean value was almost identical among other layers. The compaction of fine particles due to 

movement of heavy machinery along with available macroporosities by root channels may affect vertical 

distribution of BD. The mean volumetric water content (VWC) decreased with depth while its standard deviation 

(SD) slightly increased. Higher water content in surface layer could be due to textural differences among layers and 

also rainfall events prior to sampling which built the moisture level up within top layers but perhaps did not 

penetrate to deeper layers. The mean sand percentage increased with depth which was inversely proportional to 

decline in silt and clay. The mean and SD of the deep ECa readings was greater than those of shallow readings. 

Standard deviation among deep ECa reading was almost twice as that of shallow readings. The same result was 

reported by Sudduth et al. (2005) on differences between SD and distribution of shallow versus deep ECa readings. 

Deep ECa readings were positively skewed hence was log transformed.   

The soil texture drastically varied across the field such that almost the entire triangle was covered by the 

collected samples except silt and clay textures (Figure 1-4). There was a shift from fine to coarse textures by depth 

with sand as the primary particle increased. The sand had the highest absolute correlation with VWC (Figure 1-3). 

There was a weak negative correlation between BD and VWC showing soil texture was the prime attribute 

governing water content. There was a clear pattern in clay and silt percentage plots versus VWC; the majority of the 

samples with lower clay and silt content belonged to deeper layers (a cluster of black dots) while samples from 

shallower layers were more likely to have higher clay and silt content. The opposite was seen in sand versus VWC 

plot.  

 

3.2 Spatial analysis of soil properties 

Table 1-2 presents the semivariogram and Global Moran’s Index parameters for selected attributes for each soil 

layer. The nugget effect, sill and range are the basic parameters of a semivariogram to describe spatial structure. The 
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nugget effect mostly represents sampling/measurement error and variation at scales smaller than sampling interval. 

The total variance is called sill and the range is the maximum distance at which variables are spatially dependent. A 

higher positive Moran’s Index for an attribute indicates stronger spatial structure. The z-score changes in line with 

the Moran’s Index. A z- score from -1.65 to 1.65 shows spatial pattern does not significantly differ than random. A 

z- score, less than -1.65 is an indicator of a dispersed process while a Z score greater than 1.65 displays a spatially 

clustered attribute.  

The highest range did not belong to the same layer across soil properties. The average range varied from 200 m 

to 300 m among attributes, 2 to 3 times greater than sampling intervals. The percent of nugget ranged from 18 to 50 

% among soil properties in the study of Iqbal et al. (2005) who investigated spatial variability of soil physical 

properties of alluvial soils in a 162 ha cotton field at the Mississippi. This was somewhat similar to what was found 

for all of the attributes except BD which reached a nugget percent as high as 73 percent. The z-scores revealed all of 

the attributes except BD within different layers had clustered patterns. BD only showed a clustered pattern at the 

third layer and had a random pattern at other layers.  

Figure 1-5 shows maps interpolated by kriging. The white strip expanding from northwest to southeast of the 

field is a surface drainage pathway. There were three major sandy regions within the field of study at surface layer 

located at: (i) center of the center pivot at eastern part of the field, (ii) south of the field mostly outside of the 

irrigated zones and (iii) northwest part of the field. The sequence of sand maps from first to fourth layers illustrated 

how these coarse soil regions expanded across the field by depth such that sand covered the majority of the field in 

deeper layers. The sandy regions could be either river flood-induced sand boils or earthquake-induced sand blows.  

The vertical arrangement of soil textures was not consistent across the field. The clay had its highest influence 

from 0-50 cm yet sand was the dominant particle from 50-100 cm. This depth to sand across field ranged from 15-75 

cm with average depth of 40 cm for almost 40 % of the sampling spots. For the rest of the samples (60%) either 

there was not a clear immediate change from fine to coarse texture or sand appeared at the surface soil. The silt 

contributed highly in subsurface layers (25-75 cm) where it reached its highest quantity and SD (Table 1-1). The 

majority of the samples from subsurface layers (50-75 cm) with high silt content were compacted to some extent. 

This compaction was also projected in relatively higher BD values from the same layers (Table 1-1). The BD map of 

the third layer corresponded well to the textural pattern where higher BD matching coarse samples. However, it was 
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difficult to pick up a trend from the rest of the BD maps as was expected from the result of the spatial analysis 

(Table 1-2).  

The VWC map of the surface soil clearly showed the sandy spots as regions with lower water content. Moving 

to the deeper layers, VWC maps almost exactly matched the pattern of sand maps. It occurred because coarse soils 

tend to dry out faster and also hold less water than fine texture soils. The soil water content is a dynamic property of 

soil with time. However, it is expected that one time measurement of water content across a field provides a useful 

insight to relative spatial pattern of soil hydraulic properties (Corwin et al., 2003). This suggests measured VWC 

may be mathematically transformable to soil water holding capacity and in turn into crop available water. Overall, 

VWC map for the entire profile (0-100 cm) was similar to those of individual layers. From variable rate irrigation 

point of view, however, minor differences may matter. It might be required to practice a dynamic zoning strategy 

considering available water for crop within its effective root zone during the growing seasons.  

 

3.3 Effectiveness of ECa as a proximal attribute 

The ECa maps tended to follow the same general spatial patterns as for soil basic properties and VWC (Figure 1-5). 

Table 1-3 illustrates the correlation coefficient between ECa values and soil basic data. The ECa data were 

moderately correlated to soil texture and VWC information. The lowest correlation was obtained between BD and 

ECa data. The correlation between shallow ECa and other attributes declined from layer 1 to 4 as expected while the 

opposite was true for ECa deep readings. Sudduth et al. (2005) showed that 90 % of the shallow and deep readings 

responses in Veris machines were obtained from the soil above the 30 cm and 100 cm depth, respectively. The sand 

increased with depth hence regions with high conductivity became less pronounced in deep ECa map as opposed to 

the shallow ECa map.  

These result show that ECa was a useful surrogate map of both soil texture and water content for the field of 

study hence its application is suggested for fields with similar conditions in west Tennessee. Sudduth et al. (2005) 

studied ECa readings on 12 fields in 6 states of the north-central United States. They found a good relationship 

between ECa data and soil cation exchange capacity as well as clay content at different times and locations hence 

introducing the possibility of establishing a general calibration to relate cation exchange capacity and clay content to 

ECa readings. They found the most variation in ECa values in the Iowa fields, which had the widest range in soil 

texture, from loam to clay loam. In contrast, McCutcheon et al. (2006) reported water content as the main factor 
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influencing ECa readings in a dry land field but they did not find textural parameters as significant predictors of 

ECa. They found a weak correlation between VWC and clay content and introduced other factors such as elevation 

and organic matter as parameters that may govern water content. In theory, multiple factors including the relative 

fractions occupied by soil, water and air, geometry and distribution of particles, and soil solution attributes affect 

ECa (Friedman, 2005). The introduced current to measure the ECa of a soil, in fact, travels through liquid, soil-

liquid and solid pathways (Rhoades et al., 1999). In this study site, variation in soil texture was the main factor 

governing spatial distribution of volumetric water content. This might be the main reason ECa performed well in the 

study site. 

The result of this study demonstrated that ECa can guide the sampling schemes and help to minimize field 

works. It may even be feasible to make use of ECa information in modeling soil hydraulic properties through 

pedotransfer functions and co-kriging techniques. However, an accurate understanding of soil texture distribution 

and water content is crucial to interpret ECa maps. Brevik et al. (2006) studied temporal stability of ECa data with 

respect to soil water content. They observed a strong influence of water content on ECa readings and found that 

ECa’s power to differentiate soils was proportional to soil moisture. They mentioned that soil water content should 

be reported as an essential part of ECa studies. In-depth monitoring and modeling of soil spatiotemporal water status 

in west Tennessee is recommended for future studies. 

 

3.4 Soil heterogeneity and yield patterns 

Figure 1-6 illustrates the interpolated yield maps. Table 1-4 shows the correlation coefficient between soil properties 

at different layers with yield data. The spatial pattern of yield maps was fairly similar to that of soil properties; 

generally, fine textured soils tended to be more productive than coarse textured soil due to their higher water holding 

capacity. The ECa data had a moderate correlation with both cotton and soybean yield. Guo et al. (2012) 

investigated the relationship between cotton yield and ECa in the Southern High Plains of Texas. They reported a 

consistent positive correlation, up to 0.29 for shallow and 0.44 for deep ECa readings, between yield and ECa across 

years. In another study, Crowin et al. (2003) found ECa to be a useful indicator of cotton yield in the San Joaquin 

Valley in central California. They also observed a positive correlation between clay content (0.36), water content 

(0.42) and yield and a less pronounced negative correlation for soil BD (-0.29). The results of this study supports 

their findings.  
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The available drastic variation in soil physical and hydraulic properties was an influential factor in spatial yield 

variation across the field. However, it is known that other attributes related to management, water, crop and climate 

affect crop yield in a complex manner. The crop yield maps per se only provide limited information about the 

influence of each attribute, so are not sufficient for recommending variable rate applications (Corwin et al., 2003). 

The simple correlation analysis and visual assessment of maps provides a general understanding of the importance 

of different soil properties on its productivity. However, the establishment of a mathematical relationship between 

yield and soil related parameters without adjusting for spatial autocorrelation is not suggested. Yield modeling and 

prediction in respect to crop, weather, soil and management conditions can provide useful insight to evaluate 

different variable rate scenarios for the field of study. 

 

4. Conclusion 

The purpose of this study was to explore soil physical and hydraulic variation in one field with typical soil types for 

west Tennessee. Analyzing yield against soil maps revealed that soil physical and hydraulic properties to a great 

extent influenced yield patterns. This is expected because plant available water is a function of soil water holding 

capacity. This suggests that variable rate irrigation is the appropriate irrigation scenario for this mixture of soils 

within a typical west Tennessee field. There is evidence in the literature showing ECa may not be as effective for 

some conditions. The findings of this study showed ECa was a good proximal attribute to understand spatial 

variation of alluvial soils in that region. There is another type of agricultural field in west Tennessee with totally 

different conditions where soil textural differences are minor yet slope and elevation differences affect infiltration 

and redistribution of water within root zone hence available water for plants. The findings of this study may not be 

transferable to this type of fields.  
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Appendix 1: Chapter 1 Figures and Tables 

 

Figure 1-1. Long term variation in rainfall (dash line) and temperature (column) data in west Tennessee close to the 

area of study. Columns show average monthly mean minimum and average monthly mean maximum temperature 

data.  

  

0

10

20

30

40

50

60

70

80

0

200

400

600

800

1000

1200

1400

1600

1800

1948 1958 1968 1978 1988 1998 2008

Year

R
a

in
fa

ll
(m

m
)

T
e

m
p

e
ra

tu
re

(o
C

)



38 

 

Figure 1-2. Sampling scheme in the field of study located in west Tennessee. 
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Figure 1-3. Scattering of basic soil properties against volumetric water content where the darker colors corresponds 

to the deeper layers. 
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Figure 1-4. Soil textural distribution of samples at different layers where the darker colors corresponds to the deeper 

layers. 
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Figure 1-5. Interpolated maps by kriging method. Values underneath maps show the range of variation for each 

property. In all maps darker colors represent greater values. Silt (%), sand (%), clay (%); BD: soil bulk density (g 

cm-3), VWC: volumetric water content (cm3 cm-3), ECS: apparent electrical conductivity shallow (mS m-1), ECD: 

apparent electrical conductivity deep (mS m-1).  
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Figure 1-6. Cotton and soybean yield maps where green and red represent high and low yield, respectively. 
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Table 1-1. Descriptive statistics for selected soil properties from different soil sampling layers. 

Variable Layer Min. Max. Mean SD 

BD, g cm-3 1th 1.12 1.66 1.36 0.10 

 2nd 1.11 1.70 1.35 0.12 

 3rd 1.06 1.86 1.34 0.12 

 4th 1.17 1.78 1.40 0.13 

 total 1.06 1.86 1.36 0.12 

VWC, cm3 cm-3 1th 10.75 59.74 28.35 7.43 

 2nd 7.27 43.12 26.02 10.78 

 3rd 5.98 42.38 21.64 11.08 

 4th 5.67 45.32 20.18 11.15 

 total 3.94 47.61 17.94 8.49 

Sand, % 1th 8.77 88.25 38.07 20.11 

 2nd 0.00 94.98 46.39 31.57 

 3rd 2.50 95.70 61.38 31.10 

 4th 5.46 96.86 69.90 26.09 

Clay, % 1th 7.37 47.56 27.55 9.04 

 2nd 2.50 56.60 22.18 14.17 

 3rd 1.26 47.72 14.27 11.44 

 4th 0.34 37.10 11.00 7.80 

Silt, % 1th 4.38 54.06 34.38 12.75 

 2nd 0.00 66.51 31.43 19.85 

 3rd 0.00 72.81 24.35 21.76 

 4th 0.00 69.23 19.10 19.83 

ECa, mS m-1 shallow 1.60 48.70 24.64 10.66 

ECa, mS m-1 deep 1.70 162.20 27.52 18.73 
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Table 1-2. Semivariogram and Moran’s I parameters of soil properties for different soil layers. 

Variable Layer Nugget Sill Range (m) Moran's I z-score 

BD, g cm-3 1th 0.008 0.011 526 0.087 1.181 

 2nd 0.01 0.015 95 -0.086 -0.929 

 3rd 0.011 0.016 280 0.137 1.802 

 4th 0 0.017 100 0.091 1.221 

 total 0 0.007 95 -0.007 0.038 

VWC, cm3 cm-3 1th 0 44 100 0.175 2.266 

 2nd 12 129 332 0.327 4.063 

 3rd 0 131 206 0.284 3.545 

 4th 56 125 212 0.284 3.556 

 total 0 88 316 0.326 4.049 

Sand, % 1th 115 446 360 0.421 5.213 

 2nd 440 1119 300 0.365 4.510 

 3rd 401 1037 219 0.320 3.978 

 4th 413 717 260 0.300 3.747 

Clay, % 1th 19 92 389 0.392 4.861 

 2nd 123 215 428 0.239 3.016 

 3rd 68 138 177 0.321 4.034 

 4th 35 63 216 0.335 4.227 

Silt, % 1th 39 174 334 0.382 4.740 

 2nd 165 453 279 0.396 4.887 

 3rd 211 484 200 0.270 3.366 

 4th 6 10 341 0.266 3.332 

ECa, mS m-1 shallow 38 133 253 0.816 65.436 

ECa, mS m-1 deep 126 388 223 0.846 67.899 
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Table 1-3. Correlation coefficient between ECa (mS m-1) data and soil basic information.  

 Clay (%)   Sand (%)   Silt (%)   

layer 1 2 3 4 1 2 3 4 1 2 3 4 

ECa, shallow 0.75 0.55 0.35 0.40 -0.75 -0.63 -0.45 -0.39 0.65 0.60 0.46 0.36 

ECa, deep 0.59 0.61 0.52 0.57 -0.62 -0.73 -0.63 -0.63 0.56 0.72 0.63 0.60 

             

 BD (g cm-3)   VWC (cm3 cm-3)      

layer 1 2 3 4 1 2 3 4     

ECa, shallow -0.01 -0.15 -0.31 -0.02 0.66 0.61 0.47 0.47     

ECa, deep 0.06 -0.20 -0.45 -0.13 0.63 0.71 0.64 0.65     
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Table 1-4. Correlation coefficient between cotton / soybean yield data and soil information.  

   Cotton     Soybean    

Layer  1 2 3 4 total 1 2 3 4 total 

BD, g cm-3 -0.01 -0.25 -0.45 -0.12 -0.30 -0.12 -0.27 -0.33 -0.12 -0.29 

VWC, cm3 cm-3 0.42 0.54 0.51 0.47 0.56 0.48 0.39 0.36 0.42 0.47 

Sand, % -0.43 -0.55 -0.50 -0.48  -0.52 -0.39 -0.35 -0.42  

Clay, % 0.35 0.39 0.39 0.37  0.46 0.25 0.23 0.31  

Silt, % 0.43 0.60 0.51 0.49  0.50 0.44 0.37 0.43  

ECS, mS m-1     0.53     0.57 

ECD, mS m-1     0.66     0.50 

* ECS: ECa shallow readings; ECD: ECa deep readings. 
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Abstract 

A detailed spatial understanding of soil available water content within the effective root zone is needed to optimally 

schedule irrigation where field-scale spatial soil variation is significant. However, it is impractical to directly 

measure soil basic physical/hydraulic properties at field-scale because of the time consuming and expensive nature 

of lab/in situ techniques. In this study, multiple modeling scenarios were developed and evaluated to indirectly 

predict high resolution soil available water content maps within the effective root zone. The modeling techniques 

included kriging, co-kriging, regressing kriging, artificial neural networks (NN) and geographically weighted 

regression (GWR). The efficiency of soil apparent electrical conductivity (ECa) as proximal data in the modeling 

process was assessed. There was a good agreement (root mean square error (RMSE) = 0.052 cm3 cm-3 and r = 0.88) 

between observed and point prediction of water contents using pseudo continuous pedotransfer function. GWR 

(mean RMSE = 0.062 cm3 cm-3) and regression kriging / co-kriging (mean RMSE = 0.063 cm3 cm-3) showed 

promising results and had higher accuracy than other methods for spatial prediction of water content maps. Up to 16 

% improvement in the prediction accuracy was achieved by considering ECa as an ancillary attribute in the 

interpolation process. There was as high as a four-fold difference in available water content between coarse-textured 

and fine-textured soils on the study site. Further investigation is needed to evaluate the efficiency of variable rate 

irrigation scenarios to manage the spatial soil heterogeneity.    

Keywords: apparent electrical conductivity, available water content, pseudo continuous pedotransfer function, 

water retention curve.  
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1. Introduction 

The growing demand for the food and fiber production along with the uncertainty in rainfall patterns has focused a 

great attention on irrigation. If field-scale spatial soil variation is significant, variable rate irrigation becomes a 

desirable method to apply an optimum amount of water to each soil type in order to maximize yield. Duncan (2012) 

conducted a two-year cotton irrigation study and showed the optimum cotton supplemental irrigation strategy was 

different among plots with high, moderate and low water holding capacity (WHC). He emphasized that in the long 

term it is not possible to maximize yield by a uniform supplemental irrigation decision in a field with significant 

degrees of soil variability.  

Soil hydraulic information is required for irrigation scheduling but is hard-to-obtain. Soil water retention and 

soil hydraulic conductivity are the prime factors governing water flow in the vadose zone. Irrigation management is 

highly dependent on soil available water content (AWC) within the root zone. Furthermore, soil hydraulic properties 

are essential inputs for most of the models linked with irrigation, drainage and hydrology. Obtaining soil hydraulic 

information is challenging due to the time-consuming and labor-intensive nature of the laboratory and in situ 

methods. When it comes to variable rate irrigation management, an additional difficulty is to provide a high 

resolution AWC map which precisely represents soil spatial distribution under each irrigation system.  

Pedotransfer functions (PTFs) are a widely-used method to indirectly obtain soil hydraulic properties. The 

initial PTFs were derived using multiple regression technique while machine learning algorithms have become 

dominant in recent years (Vereecken et al., 2010). Traditionally soil basic data such as soil texture, soil bulk density 

and organic matter content are used as input predictors since they are often well correlated to soil hydraulic 

properties yet are easier to collect. However, obtaining high resolution soil basic data at field-scale is also time 

consuming and expensive thus impractical.  

A combination of PTFs and interpolation techniques is usually required to generate a map of soil hydraulic 

properties. Ferrer Julià et al. (2004) generated a saturated hydraulic conductivity map of Spain, 1 km2 resolution, 

using PTFs and subsequently kriging as an interpolation technique. They reported soil textural component as the 

most important input predictors while organic matter content showed a low influence on saturated soils. In recent 

years, alternative techniques have been introduced and evaluated to map spatial variability such as regression 

kriging, geographically weighted regression and machine learning-based spatial models (Eldeiry and Garcia, 2010; 

Li et al., 2011; Sharma et al., 2011). Herbst et al. (2006) examined different interpolation techniques to predict soil 
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hydraulic properties in a micro-scale catchment using terrain attributes. The result of their work indicated regression 

kriging as the most appropriate method with smallest average prediction error. They also reported up to 15% 

improvement in spatial predictions due to using terrain attributes as co-variables in comparison with ordinary 

kriging without co-variables.  

Traditionally two modeling approaches were implemented to predict soil physical and hydraulic properties in a 

spatial manner. One can first run PTF at individual spots throughout the area of interest and then interpolate the PTF 

outputs to generate a map (i.e. ‘calculate first, interpolate later’, CI). An alternative way is to first interpolate the soil 

basic information (i.e. inputs for PTF such as bulk density, texture and organic matter content) across the study area 

and then convert soil basic maps to soil hydraulic properties map (s) by PTF (i.e. ‘interpolate first, calculate later’, 

IC). Many researchers (e.g. Sinowski et al. (1997), Heuvelink, and Pebesma (1999), Bechini et al. (2003)) compared 

different IC procedures against CI techniques, yet the reported results are different and do not indicate the 

supremacy of either of the methods.  

The evidence in the literature points toward on-the-go sensing (e.g. Hedley and Yule, 2009a, 2009b; Hedley et 

al., 2013) and remote sensing (e.g. Jana and Mohanty, 2011) as suitable techniques to enhance the spatial prediction 

of soil hydraulic properties at field scale and beyond. Readily available dense data can be collected via on-the-go 

sensors which are able to gather the information while traversing a field. Apparent electrical conductivity (ECa) is a 

good example of such sensors which has been heavily used in precision agriculture. ECa may provide some useful 

information about physical and hydraulic properties of soil (Sudduth et al., 2005) when soil salinity is not a major 

factor. Duncan (2012) found a strong correlation between ECa data and depth to sand layer in an irrigated cotton 

field in a moderately humid region. Saey et al. (2009) tried to convert ECa data to clay percentage under non-saline 

conditions and found a good correlation for their model. In another study, Abdu et al. (2008) predicted soil texture 

and WHC in the subsurface soil of a small watershed using ECa data. Their model performed well with coefficient 

of determination equal to 0.86 and 0.75 for predicting clay percentage and WHC, respectively. Abdu et al. (2008) 

emphasized the need for additional studies to appropriately relate ECa data into hydrological attributes. The 

objectives of this study were (i) to predict AWC at field scale within the effective crop root zone using multiple 

modeling scenarios and (ii) to investigate the advantage of ECa data to improve spatial prediction of water retention. 
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2. Material and Methods 

2.1 Study area & data collection 

The field of study, approximately 73 ha, is located in west Tennessee close to the Mississippi River where two 

center pivot irrigation systems were available for supplemental irrigation (Figure 2-1). The field was planted to no-

till cotton during recent cropping seasons. The field-work was scheduled after some rainfall events when soil was 

assumed to be close to its field capacity.  

The shallow (approximately 0-30 cm) and deep (approximately 0-90 cm) ECa data (Sudduth et al., 2005) were 

collected (about 4,700 data points covering the entire field) by a Veris 3100 machine (Veris Technologies, Salina, 

KS) from the field of study on March 20, 2014. The Veris machine measures ECa using the principles of electrical 

resistivity. A small electrical current is introduced into the soil and the drop in voltage in two depths is measured. 

ECa is a function of the electrical conductivity of porous media solution, the porosity of soil and the cementation 

exponent. The current flowing through three different conductance pathways (i.e. liquid, soil-liquid and solid) 

affects ECa (Corwin and Lesch, 2005; Sudduth et al., 2005). The shallow ECa data exhibited a normal distribution 

but deep ECa data were skewed thus log transformed. 

Then, soil sampling was done on March 21 and 22, 2014. Figure 2-1 shows the sampling scheme; one hundred 

undisturbed samples (0-100 cm) were collected using a truck mounted hydraulic probe. Each sample was divided 

into four segments. Hereafter, the word “layer” is used to distinguish among subsamples rather than the real soil 

horizons. The default length of subsamples was 25 cm though adjustment was made considering soil horizons. For 

instance, if there was a clear change between horizons at 20 cm we had the first layer from 0-20 cm but second layer 

started at 25 cm to keep the depth of samples as consistent as possible within each layer throughout the field. In the 

lab, soil texture, soil bulk density (BD) and gravimetric water content at the time of sampling were measured.  

 

2.2 Pseudo continuous pedotransfer function PC-PTF 

To predict water retention curves (WRCs) for the collected soil samples, NN network pseudo continuous PTF (PC-

PTF) was developed (Figure 2-2). The concept of PC-PTF was first introduced by Haghverdi et al. (2012) as an 

alternative approach to point and parametric PTFs (respectively Type 2 and Type 3 PTFs in Wösten et al., 2001). 

Later, Haghverdi et al. (2014) investigated the impact of data mining procedure and data quality on the continuous 

performance of PC-PTF. Point PTFs only predict water retention at limited water retention points. Parametric PTFs 
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provide a prediction of parameters of a soil hydraulic equation (usually the one developed by van Genuchten, 1980) 

which then can be used to predict the whole WRC. PC-PTF relies on the power of machine learning algorithms to 

predict the WRC from a limited measured water retention points without using any soil hydraulic equation. It 

requires the logarithm of matric potential (e.g. for PWP the input equals to Log (15296 cm) = 4.18) as an input 

parameter, on top of soil basic information, where the output of the model is the corresponding volumetric water 

content. By using a wide range of soil matric potentials as input, a corresponding range of water contents will be 

predicted, and a (pseudo) continuous curve is generated (Haghverdi et al., 2014).  

A subset (n=554) of UNSODA database (Nemes et al., 2001) was selected to establish PC-PTF. The UNSODA 

is a database of unsaturated soil hydraulic properties which contains a variety of information such as water retention 

and hydraulic conductivity as well as basic soil properties including particle-size distribution, bulk density and 

organic matter content. To derive a reliable PTF it is essential to have soils similar in their basic properties in 

training and prediction sets. Table 2-1 and Figure 2-3 illustrate the descriptive statistics and the textural distribution 

of the selected UNSODA samples along with samples collected from the field of study, respectively. The samples 

from UNSODA adequately covered most of the coarse textures of the textural triangle, meaning they were similar to 

the target soils from study area. The soil textural information, i.e. sand, silt and clay percentages, soil BD and 

logarithm of matric potential were considered as input predictors (Figure 2-2).  

The NN was proven to be an appropriate model to derive PC-PTF (Haghverdi et al., 2012; 2014). A three layer feed 

forward back propagation NN was selected with sigmoid tangent hyperbolic and linear as the activation functions in 

hidden and output layers, respectively. Training was done by the Levenberg-Marquardt algorithm (Demuth and 

Beale, 2000). The UNSODA samples were divided into 10 almost equal subsets. Each subset was once assigned to 

the testing phase while the other 9 subsets were used to PTF development. The number of neurons in the hidden 

layer was changed from 1 to 20 when a cross-validation procedure was performed to identify the best structure. A 

sampling with replacement technique (Efron and Tibshirani, 1993) was applied on development data to create 50 

statistically similar subsets of the same size for training. It was expected that each subset had about 63% of the 

parent data set (Schaap et al., 2001). The rest of the samples (i.e. 37%) were assigned to cross-validation. The 

training process was terminated by an increase in prediction error on cross-validation set. An average of the 50 

bootstraps was considered as the output of the PTF. The Matlab R2014a environment (MathWorks, Inc., Natick, 
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Mass.) was used to build models. Once the PC-PTF was derived, a continuous prediction of water retentions over a 

wide range of matric potentials were obtained for the field of study soils.   

 

2.3 Spatial modeling of soil available water content 

The soil AWC is obtained as the difference between water content at the field capacity (FC) and permanent wilting 

point (PWP). The FC and PWP are the widely used thresholds for irrigation management. The FC is rather a 

qualitative parameter yet is a practical and understandable indicator of soil WHC (Romano and Santini, 2002). 

Water retentions at -10 and -33 kPa could be considered as FC for coarse and fine texture soils, respectively (Rivers 

and Shipp, 1972) while water content at -1500 kPa is usually chosen as the PWP for all the textures. For the sake of 

simplicity and convenience, in this study we considered identical matric potential (-10 ka) for the entire field 

whenever we made a spatial prediction of the water content at FC. However, three high resolution maps were 

predicted for water content at -10, -33 and -1500 kPa across the study site providing the opportunity to consider two 

matric potentials for water content at FC in further studies if it is needed.  

Multiple spatial modeling scenarios, using kriging, co-kriging, regression kriging, GWR and NNs were 

examined (Figure 2-4). The objective was to convert point water retention data to continuous maps and to evaluate 

the efficiency of the ECa as a proximal attribute in this process. To evaluate the performance of the models, a cross-

validation procedure was designed. First, soil samples were randomly divided into 5 groups (the groups were 

identical among soil layers). Soil water retention maps were then derived using 4 groups out of five and the left-over 

group was used to validate the performance of models. This task was repeated 5 times in order to involve all the 

samples in cross-validation process.  

 

2.3.1 Kriging, co-kriging and regression kriging 

Kriging is an advanced interpolation procedure which relies on the spatial autocorrelation information to model 

natural attributes. It assumes that spatial correlation is a function of the distance/direction between sample points. 

This technique provides predictions at unsampled locations, considering distance between points and overall spatial 

arrangement of data, and also evaluates the prediction uncertainty (Oliver, 2010). Cokriging is an extension of 

kriging technique which uses information on several attributes. It requires the semivariogram of the main attribute 
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plus its cross-semivariogram with proximal attribute(s) to improve predictions (Goovaerts and Kerry, 2010). The 

semivariogram and cross-semivariogram is estimated as follows: 
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where γuv is the cross-semivariance when u ≠ v and is the semivariance when u = v; u is the main attribute; v is the 

proximal attribute; h is the interval class; N(h) is the number of pairs separated by lag distance; and Z(xi) and Z(xi + 

h) are measured attributes at spatial locations i and i+h, respectively. The general form of kriging (equation 2) and 

cokriging (equation 3) estimators are as follows: 
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where z*(xp) is the kriging prediction at the target location xp; λi and z (xi) are weight of the attribute and the 

attribute value at ith location, respectively; and I is the number of measured values. 
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where i and j indicate the main and proximal attributes, respectively, and J is the number of measured values for 

proximal attribute; and other parameters as previously defined.  

Regression kriging is a hybrid interpolation technique. It uses regression on proximal data and then kriging to 

interpolate residuals from the regression as follows (Hengl et al., 2007): 
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where y is the response predicted at target location x0, βk is coefficient for the kth variable of regression model (drift 

model) and qk(x0) is the value of proximal attribute at location x0, n is the number of proximal attributes, λi and e(xi) 

are weight of the residual and the residual value at location xi, respectively and m is the number of measured values. 

Ordinary kriging, co-kriging and regression kriging were used in the models 1 to 6 (Figure 2-4). The ArcGIS 

10.2.2 (ESRI Inc., Redlands, California) and Rstudio 0.98.1103 (RStudio, Inc., Boston, Ma, USA) were used to 

derive models. The Model 1 and Model 2 required PC-PTF for calculation and kriging to interpolate. Kriging was 

altered with co-kriging to establish the models 3 and 4 where shallow and deep ECa were considered as the proximal 

attributes for layers one and two/three/four, respectively. Regression kriging was used in models 5 and 6. The CI 
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sequence (i.e. calculating using PC-PTF followed by interpolating) was performed in the models 1, 3 and 5 as 

opposed to IC sequence (i.e. interpolating followed by calculating using PC-PTF) in the models 2, 4 and 6. If an 

attribute showed distribution very far from normal, the data were transformed to follow an approximate normal 

distribution. Then empirical semivariogram was calculated by Geostatistical Analyst toolbox in ArcGIS 10.2.2 

(ESRI Inc., Redlands, California) considering 12 lags and omnidirectional stable model.  

 

2.3.2 Geographically weighted regression 

The ordinary least squares regression provides a global model to explore the overall data relationships in a desired 

area of study. However, it is probable to see different forms of dependency among variables and responses in 

different parts of the study area. In this case, the global model would not be reliable because it only represents an 

average of the non-stationary relationships. The geographically weighted regression (GWR) is a spatial regression 

technique which models local relationships among variables and responses. This technique defines a bandwidth for 

each data point, then establishes a regression equation using those data falling within the bandwidth (Fotheringham 

et al., 2002). The coefficients in GWR form a continuous surface representing the spatial variation: 

( ) ( )∑ ++=
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Where yi is the response predicted at point i; β0 is the intercept and βk is the coefficient for the kth variable; εi is the 

error associated with the point i; and (ui,vi) are the coordinates of the ith point in space.  

In model 7, the GWR was used to predict soil texture components which subsequently were considered as 

input predictors in PC-PTF to predict water retention at FC and PWP. In model 8, the GWR was required to directly 

predict water retention at FC and PWP. Both shallow and deep (log transformed) ECa readings were considered as 

input predictors for all soil layers. To perform each local regression analysis, the optimum distance (fixed kernel) 

was automatically obtained using the Akaike information Criterion (AICc). The ArcGIS 10.2.2 (ESRI Inc., 

Redlands, California), was used to derive models. 

 

2.3.3 Artificial neural network 

The models 9 and 10 were similar to models 7 and 8, respectively, except that GWR was replaced with NN. Both 

shallow and deep (log transformed) ECa readings were considered as input predictors for all soil layers. The 

coordinates of samples were considered as extra input predictors, enabling the NN to learn the dependency of the 
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sampling locations hence working as a spatial model. The SPSS Modeler 15 (SPSS Inc., Chicago, IL, USA) was 

used to derive models. The best number of neurons in the hidden layer was automatically computed. The Bootstrap 

aggregating technique was implemented to enhance model stability and the number of ensembles was equal to 50. 

Thirty percent of the training data were assigned to cross-validation to avoid over-fitting. 

 

2.4 Yield data collection and cleaning 

The correlation between soil AWC throughout the effective root zone, ECa data and crop yield was obtained. Two 

available yield data sets (collected and stored by the farmer) were selected: soybean from 2009 and cotton from 

2012. The majority of the field is covered by the two center pivots. The rainfall is usually high during cropping 

season yet farmer practices uniform supplemental irrigation whenever unpredicted dry periods occur. The raw yield 

data were pre-processed to remove outliers and bad data. The data greater/smaller than 3 times the standard 

deviation from the mean were assumed statistically unexpected and removed unless there was scientific evidence 

acting against this assumption. To calculate the correlation, the cleaned yield data first were converted to maps by 

the ordinary kriging method. Then, the expected yield values at the sampling locations were obtained. Same 

procedure was implemented to calculated ECa data at sampling locations. 

 

2.5 Performance evaluation 

The performance of the models was evaluated by three statistics: the root mean square error (RMSE), the mean bias 

error (MBE) and the correlation coefficient (r): 
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where Ei, and Mi are the predicted (i.e. the output of the spatial modeling process) and the actual water content (i.e. 

the outputs of the PC-PTF prior to performing the spatial modeling process) for the ith observation (cm3 cm-3), 
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respectively; n is the number of actual water content points in test/validation set; Em and Mm are the mean of 

predicted and the mean of actual water content (cm3 cm-3), respectively.  

 

3. Results  

3.1 Pseudo continuous pedotransfer function 

Figure 2-5 shows how PC-PTF performed in predicting water retention of UNSODA data set. At first the error 

sharply decreased as more neurons were added to the hidden layer, but leveled off after about 7-10 neurons. The 

model with 17 processing elements had the minimum RMSE (0.056 cm3 cm-3), so was selected for the prediction. 

Figure 2-6 illustrates the WRCs predicted for the collected samples (n= 400) from the field of study. The shape of 

the curves followed the expected pattern: a steep slope at low and intermediate absolute matric potentials for more 

coarse-textured soils, as opposed to a constant decrease over a wider range of matric potentials for more fine-

textured soils.   

The field seemed to be close to its field capacity during sampling. We took advantage of this status to evaluate 

the performance of PC-PTF against measured soil water content data from the field of study. The water retention at 

matric potentials 10 kPa and 33 kPa was predicted and plotted against volumetric water content at the time of 

sampling (Figure 2-7). The points were color coded to distinguish among soil layers where darker circles correspond 

to samples from deeper layers. There was a very good agreement among predicted and observed water contents with 

a correlation coefficient (RMSE) equal to 0.87 (0.051 cm3 cm-3) and 0.88 (0.052 cm3 cm-3) at 10 kPa and 33 kPa, 

respectively. There were soils with low and high WHC at each layer. A cloud of dark circles at low water content, 

i.e. from 10 to 20 %, corresponds well to the presence of some sandy spots across the field of study. There was no 

evidence of over/under estimation since points were well scattered around 1:1 line. There was only one point with 

volumetric water content more than 60 % which was located very close to drainage path. The surface of the drainage 

path was still wet at the time of sampling, so at a higher water content than the FC.   

 

3.2 Spatial prediction of soil available water content 

Up to now, the WRCs were predicted using PC-PTF for the collected soil samples. Figure 2-8 depicts the spatial 

structure of the water content at FC and PWP along with AWC for different layers. The resulting semivariograms 

indicated mostly moderate to strong spatial structures. This strong soil spatial variability has likely been created by 



57 

depositional events, river flood-induced sand boils and/or earthquake-induced sand blows. The average range varied 

from 250 m to 279 m among layers, 2 to 3 times greater than sampling intervals. This shows the presence of spatial 

structure beyond sampling distance. With regard to FC, in general, the value for range decreased with depth. This 

trend was reversed, however, with regard to PWP while subsurface layer (25-50 cm) had the highest range. The 

nugget to sill ratio varied from 23 % to 60 % for water retention data at FC and PWP, except for the water content at 

PWP at the first layer which was 0. This could be an artifact of the variogram fitting and calculation since PWP at 

the first layer represented a weak spatial structure. On average, the subsurface layer (i.e. 25-50 cm) had the highest 

nugget to sill ratio. The AWC data exhibited some randomness and inconsistency in their spatial structure for the 

first and second layers. Therefore, AWC maps were produced for individual layers by subtracting interpolated FC 

maps (i.e. 10 kPa) from PWP maps.  

Table 2-2 and 2-3 summarize performance of the models for each individual soil layer in terms of RMSE and 

MBE, respectively. The model 1, 3 and 5 almost always had a better performance and lower bias than model 2, 4 

and 6, respectively. Therefore, applying PC-PTF to predict water retention on discrete sampling locations and 

subsequently interpolating those predictions to generate a map is suggested (i.e. CI). Co-kriging using ECa as 

ancillary attribute enhanced the accuracy of interpolation in comparison with ordinary kriging for both CI (i.e. 16 % 

lower mean RMSE for model 3 comparing to model 1) and IC (i.e. 16 % lower mean RMSE for model 4 comparing 

to model 2) approaches. The regression kriging showed higher accuracy (16 % lower mean RMSE) than ordinary-

kriging for CI approach (model 5 versus model 1) for all layers and matric potentials except for predicting water 

content at 1500 kPa to deep layer, but this improvement was not consistent for IC approach across layers and matric 

potentials. In 11 cases out of 12, GWR based models worked more accurately than NN based models but the 

differences were minor such that average RMSE for models 7, 8, 9 and 10 were 0.063 cm3 cm-3, 0.062 cm3 cm-3, 

0.064 cm3 cm-3 and 0.066 cm3 cm-3, respectively. There is no best model for all the matric potentials and layers. 

Overall, models 8 (RMSE = 0.062 cm3 cm-3) following by models 7, 5 and 3 (RMSE = 0.063 cm3 cm-3) showed the 

highest potential for mapping AWC. On average the MBE values were close to zero indicating systematic 

over/under estimation was not an issue.  

Figure 2-9 shows the maps of AWC predicted for different layers and for the entire effective root zone (i.e. 1 

m). The AWC maps of individual layers were produced using the model 8, considering water content at 10 kPa as 

FC for the entire field. To generate the AWC map for the entire effective root zone, AWC for each sampling 
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location was calculated then interpolated. Finally, the Natural Breaks (Jenks) method was employed to classify 

AWC map. In general, there were three regions within the field with low AWC: a region in the southern portion of 

the field somewhat outside of the both pivots circles, (ii) a triangular shaped region in the eastern of the field 

covering the pivot point of the east irrigation system and expanding to the eastern boarder of the field, and (iii) a 

region in the northwestern part of the field almost covering top one-third of the west irrigation system. The mean 

AWC was almost the same at first and second layers but dropped up to 20% at third and fourth layers. The standard 

deviation of the AWC was 0.54, 2.32, 3.62 and 3.28 % for the layers 1, 2, 3 and 4, respectively. The range of 

variation of AWC for the entire effective root zone was 5.34 to 20.95 % (mean = 11.45 % and SD = 3.28 %) 

showing a difference as great as almost fourfold between soil with low and high AWC across the field. 

 

3.3 Soil water retention, yield and ECa variation 

Table 2-4 summarizes the correlation of ECa and yield data with water retention at FC and PWP among different 

layers. Note, that the correlation information was only obtained for cores, hence water retention information was 

predicted by PC-PTF for cores (n= 100 (points) × 4 (depths) = 400) without interpolation. The ECa showed a 

moderate correlation, from 0.39 to 0.75, with water retention and AWC. As it was expected, the ECa-shallow had a 

greater correlation with water retention at first layer while ECa-deep indicated a higher correlation with water 

retention at second, third and fourth layers. On average, there was no difference between the correlations of ECa 

with water content at different matric potentials but yield showed higher correlation with water content at FC than 

with water content at PWP. Both cotton and Soybean had low to moderate correlation with water retention and 

AWC ranging from 0.35 to 0.65 and from 0.34 to 0.56, respectively. The highest correlation (r = 0.75) was observed 

between AWC in the entire effective root zone (considering water content at 10 kPa as the FC) and ECa-deep 

readings. The same was true for yield data such that the highest correlation (0.62 and 0.56 for cotton and soybean, 

respectively) occurred for AWC within the entire effective root zone. This is because ECa deep readings integrates 

the soil at more than one layer and yield is also affected more by the available water within the entire effective root 

zone in comparison with the water status at individual layers throughout growing season. 

 



59 

4. Discussion 

4.1 Model performance analysis 

The performance of PC-PTF was satisfactory; it had RMSE as low as 0.056 cm3 cm-3 over a relatively large number 

of samples from UNSODA data set and even more importantly exhibited a high correlation (r= 0.89 and RMSE = 

0.052 cm3 cm-3) with observed data from the field of study. Nebel et al. (2010) evaluated the performance of some 

published PTFs in respect to their ability to explain the spatial variability of water retention at FC and PWP. The 

reported correlation coefficient by them varied from 0.35 to 0.69 across PTFs. Our findings corroborated the result 

acquired by previous studies by Haghverdi et al. (2012, 2014) on the accuracy and reliability of the PC-PTFs. 

Haghverdi et al. (2014) reported 0.040 and 0.047 cm3 cm-3 as RMSE of their PC-PTF that was applied to two data 

sets from Belgium and Turkey, respectively. The PC-PTF even showed a higher performance, RMSE = 0.028 cm3 

cm-3, on a small data set from Iran (Haghverdi et al., 2012). The variation in PC-PTF performance among studies is 

related to the characteristics of the data sets. In previous studies, training and test soil samples belonged to small 

local data sets but we used UNSODA data set which included samples from different regions around the world. 

Deriving PTFs via large data sets comprising soils from different origins creates higher error than establishing a PTF 

by a local/regional dataset. For instance, Rosetta PTF and a support vector machine based PTF, when derived and 

tested on a big dataset, had RMSE equal to 0.053 cm3 cm-3 and 0.067 cm3 cm-3, respectively (Twarakavi et al., 

2009). Haghverdi et al. (2015) used the same subset of samples from UNSODA as we did to establish and test the 

accuracy of a novel non-parametric PTF which predicts the WRC using k nearest neighbor technique and van 

Genuchten soil hydraulic equation (Van Genuchten, 1980). Their PTF performed very similar (i.e. RMSE = 0.057 

cm3 cm-3) to PC-PTF in our study. In another study, Schaap et al. (2001) reported RMSE equal to 0.068 cm3 cm-3 for 

Rosetta PTF established and tested over a large number of soil hydraulic data.  

The spatial arrangement of zones with low and high AWC matched our observation during sampling on soil 

texture and volumetric water content spatial heterogeneity. It suggests a combination of PC-PTF and interpolation as 

a useful method to produce high resolution maps of soil AWC. The error of the regionalization process comes from 

both calculation and interpolation steps, yet according to Sinowski et al., (1997) different error components, i.e. PTF 

and interpolation, may compensate each other. Herbst et al. (2006) used different interpolation techniques to predict 

some hydraulic properties of soil in a micro-scale catchment and found the error of different methods to be roughly 

in the same range. No method in our study consistently performed best for all layers and matric potentials. Zhang 
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and Srinivasan (2009) reported an increase in the precipitation spatial prediction accuracy when elevation and spatial 

coordinate were considered as ancillary data through interpolation process while no interpolation method 

consistently outperformed other approaches. On the other hand, Eldeiry and Garcia, (2010) used remotely sensed 

space images using Landsat satellite to estimate soil salinity using multiple techniques. They found ordinary kriging 

to perform better than regression kriging and co-kriging. They stated better auto correlation among soil salinity data 

comparing to cross-correlation between salinity data and remotely sensed data as a potential reason for the better 

results of the ordinary kriging. There was a considerable spatial agreement between ECa data and soil water content 

in our study. We collected the ECa data only one day before sampling when field was believed to be close to its field 

capacity. That is why ECa data provided useful information on spatial heterogeneity of soil water retention 

throughout the field of study. This confirms the efficiency of ECa as a proximal data in our study and in turn 

explains better performance of methods that made use of ECa in predication process such as GWR, co-kriging and 

regression kriging over ordinary kriging procedure. We observed up to 16 % improvement due to incorporating ECa 

data in our models which was in agreement with the reported result by Herbst et al. (2006) who observed up to 15% 

improvement by considering terrain attributes as ancillary data in the spatial prediction process.  

In general, CI (i.e. calculation – interpolation) was a more accurate procedure than IC (i.e. interpolation – 

calculation) in this study. This is because for the former, water retention was the only variable interpolated, while for 

the latter each input variable had to be interpolated which increased the error in model application (Bechini et al., 

2003), especially when one or some of the variables do not show a spatial structure. Moreover, some inconsistency 

of the spatial prediction of single fractions of the particle size distribution may occur (Herbst et al., 2006). In the 

study site, there was a weak spatial dependency among BD of the samples. Since BD was an input of the PC-PTF, 

associated error with interpolated BD likely contributed in higher error of IC procedure. However, CI may not be as 

efficient if a continuous realization of WRC over a wide range of matric potentials is needed. Saito et al. (2009) 

compared some fitting-interpolation scenarios in order to get a spatial interpolation of WRC. They reported lower 

prediction error for interpolation-fitting method. According to Heuvelink and. Pebesma (1999) in CI, the 

interpolation step does not fully utilize available information on spatial structure of inputs. Therefore, if many inputs 

are available with different spatial structures, IC might be a more accurate option. 
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4.2 Practical challenges and findings 

The sampling density and scheme would affect the error associated with the spatial prediction process (Herbst et al., 

2006). Sampling is time-consuming and expensive. Therefore, in practice, it is desired to minimize sampling 

density. Given the promising results achieved by incorporating ECa data in spatial modeling process along with the 

high degree of spatial agreement observed between ECa and soil physical data, it may be feasible to reduce the need 

for more difficult data collection (such as soil texture and BD) through sampling while maintaining the target level 

of accuracy. Debaene et al. (2014) studied the relationship between density of samples and prediction of several soil 

properties at the farm-scale using visible and near infrared spectroscopy method. They showed 1.5 samples per ha is 

adequate to predict soil organic matter and texture. Our sampling density (=1.42 samples per ha) was close to their 

recommendation. Taking a sample per ha is usually considered as the greatest sampling density that farmer can 

afford (Kerry et al., 2010). However, the extra difficulty for variable rate irrigation management is to collect deep 

samples to adequately cover effective crop root zone. Analyzing the effect of the density of collected soil samples on 

the performance of the spatial modeling techniques was out of the scope of the current study. Iqbal et al. (2005) 

recommended sampling interval at less than 100 m in order to detect boundaries of soil hydraulic properties in 

alluvial floodplain soil of Mississippi Delta. Further investigation is needed to determine the optimum number of 

samples to compromise between practical limitations and knowledge of the soil variability. 

The soil texture distribution was the prime factor influencing AWC among different layers. We found a 

reduction in AWC with depth which was in line with an increase in sand percentage with depth. Moreover, a strong 

positional similarity was observed among AWC maps with our understanding of soil textural heterogeneity for the 

field of study which was somewhat expected since texture was the main driver of the PC-PTF. Iqbal et al. (2005) 

also found a great match among spatial distribution of water retention properties with that of clay and sand. ECa 

showed a good correlation with soil physical properties and soil hydraulic properties for the field of study. It also 

turned out to be a useful proximal attribute to map AWC; the accuracy of soil water retention maps enhanced when 

ECa was incorporated in the models as a proximal data. Abdu et al. (2008) showed that ECa can be useful to map 

soil textural patterns of the watershed. Using proximal data such as ECa also can be helpful to minimize the number 

of samples and in turn the associated cost with the mapping process.  

Spatial variation in soil AWC was strong, i.e. up to fourfold among fine-textured and coarse-textured soils, 

across the field of study and also had a moderate influence on yield. Using a multi-year study with surface drip 
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irrigation system, Duncan (2012) showed that optimized cotton supplemental irrigation management is not identical 

across soils with low and high AWCs. Currently, most farmers practice uniform irrigation application rate regardless 

of the soil spatial variation across their fields. This management at least causes partial over / under irrigation, 

depending which soil they follow, and consequently yield reduction. Over irrigation in soils with high AWC causes 

cotton to increase its vegetative growth but was observed to decrease the yield. On the other hand, severe deficit 

irrigation in soils with lower AWC decreases the yield by influencing the boll number and retention (Gwathmey et 

al., 2011). The high spatial resolution maps of AWC could be used to delineate irrigation management zones for 

variable rate irrigation. Given the observed in depth variation of AWC, the spatial arrangement of management 

zones may even vary throughout growing season as roots penetrate into deeper layers. Therefore, a temporally 

dynamic zoning system may be needed to fulfill crop water requirement. The available center pivots at the field, like 

most of the typical center pivot irrigation systems, are capable of varying irrigation across field to some extent by 

changing their travel speed. Developing a variable rate irrigation strategy for this field is expected to increase the 

yield as well as water use efficiency. This, in turn, would reduce other potential problems including leaching, runoff 

and erosion. Further studies are needed to precisely investigate different irrigation managements and to 

economically compare the profitability of variable rate systems as opposed to an optimized management using 

available pivots with limited speed control ability.  

 

5. Conclusion 

Information on field-scale spatial heterogeneity of soil available water content within effective root zone could be 

used for irrigation zone delineation and variable rate irrigation scheduling. There are many methods in literature 

providing non-spatial point estimation of soil water retention, yet the options are more limited when the goal is to 

produce a high resolution soil hydraulic property map at the field-scale. The PC-PTF performed well for predicting 

WRC of soils with different textures. We found incorporating ECa data to be beneficial for interpolation of point 

predictions of WRC using methods such as regression kriging and co-kriging. ECa also showed promising 

performance as an input predictor in GWR models indicating the highest mean accuracy among models tested in our 

study. However, a firm understanding of soil characteristics affecting soil ECa is needed for each site prior to 

applying ECa in a modeling process. We leave this for future investigation to figure out how ECa could help to 

minimize number of samples yet maintaining the desired level of accuracy. We showed that drastic soil spatial 
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variable could affect yield distribution. Site-specific spatial models are required to investigate the optimum 

application of agricultural inputs such as irrigation and fertilizer in presence of field-scale soil spatial heterogeneity. 

The predicted information about soil spatial heterogeneity in this study could then be used as an input for deriving 

such models.  



64 

References 

Abdu, H., Robinson, D. A., Seyfried, M., Jones, S. B., 2008. Geophysical imaging of watershed subsurface patterns and 

prediction of soil texture and water holding capacity. Water Resour. Res. 44(4). 

Bechini, L., Bocchi, S., Maggiore, T., 2003. Spatial interpolation of soil physical properties for irrigation planning. A simulation 

study in northern Italy. Eur. J. Agron. 19(1), 1-14. 

Corwin, D. L., Lesch, S. M., 2005. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 

46(1), 11-43. 

Debaene, G., Niedźwiecki, J., Pecio, A., śurek, A., 2014. Effect of the number of calibration samples on the prediction of several 

soil properties at the farm-scale. Geoderma, 214, 114-125. 

Demuth, H., Beale, M., 2000. Neural Network Toolbox. Mathworks, Inc. 

Duncan, H. A., 2012. Locating the variability of soil water holding capacity and understanding its effects on deficit irrigation and 

cotton lint yield. Master’s Thesis, University of Tennessee. http://trace.tennessee.edu/utk_gradthes/1286. 

Efron, B., R.J. Tibshirani., 1993. An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability. Chapman 

and Hall, New York. 

Eldeiry, A. A., Garcia, L. A., 2010. Comparison of ordinary kriging, regression kriging, and cokriging techniques to estimate soil 

salinity using LANDSAT images. J. Irrig. Drain. Eng. 136(6), 355-364. 

Fotheringham, A. S., Brunsdon, C., Charlton, M., 2002. Geographically weighted regression: the analysis of spatially varying 

relationships. John Wiley & Sons. 269 p. 

Ferrer Julià, M., Estrela Monreal, T., Sánchez del Corral Jiménez, A., Garcı$a Meléndez, E., 2004. Constructing a saturated 

hydraulic conductivity map of Spain using pedotransfer functions and spatial prediction. Geoderma 123(3), 257-277. 

Goovaerts, P., Kerry, R., 2010. Using ancillary data to improve prediction of soil and crop attributes in precision agriculture. In: 

Geostatistical Applications for Precision Agriculture (pp. 167-194). Springer Netherlands. 

Gwathmey, C. O., Leib, B. G., Main, C. L., 2011. Lint yield and crop maturity responses to irrigation in a short-season 

environment. J. of Cotton Sci. 15, 1-10. 

Haghverdi, A., Cornelis, W. M., Ghahraman, B., 2012. A pseudo-continuous neural network approach for developing water 

retention pedotransfer functions with limited data. J. Hydrol. 442, 46-54. 

Haghverdi, A., Öztürk, H. S., Cornelis, W. M., 2014. Revisiting the pseudo continuous pedotransfer function concept: Impact of 

data quality and data mining method. Geoderma. 226, 31-38. 

Haghverdi, A., Leib, B. G., Cornelis W. M., 2015. A simple nearest-neighbor technique to predict the soil water retention curve. 

Transaction of the ASABE. 58(3). 

Hedley, C. B., Yule, I. J., 2009a. A method for spatial prediction of daily soil water status for precise irrigation scheduling. Agric. 

Water Manag. 96(12), 1737-1745. 

Hedley, C. B., Yule, I. J., 2009b. Soil water status mapping and two variable-rate irrigation scenarios. Precis. Agric. 10(4), 342-

355. 

Hedley, C. B., Roudier, P., Yule, I. J., Ekanayake, J., Bradbury, S., 2013. Soil water status and water table depth modelling using 

electromagnetic surveys for precision irrigation scheduling. Geoderma. 199, 22-29. 

Hengl, T., Heuvelink, G. B., Rossiter, D. G., 2007. About regression-kriging: from equations to case studies. Comput. Geosci. 

33(10), 1301-1315. 

Herbst, M., Diekkrüger, B., Vereecken, H., 2006. Geostatistical co-regionalization of soil hydraulic properties in a micro-scale 

catchment using terrain attributes. Geoderma. 132(1), 206-221. 

Heuvelink, G. B., Pebesma, E. J., 1999. Spatial aggregation and soil process modelling. Geoderma. 89(1), 47-65. 



65 

Iqbal, J., Thomasson, J. A., Jenkins, J. N., Owens, P. R., Whisler, F. D., 2005. Spatial variability analysis of soil physical 

properties of alluvial soils. Soil Sci. Soc. Am. J. 69(4), 1338-1350. 

Jana, R. B., Mohanty, B. P., 2011. Enhancing PTFs with remotely sensed data for multi-scale soil water retention estimation. J. 

hydrol. 399(3), 201-211. 

Kerry, R., Oliver, M. A., Frogbrook, Z. L., 2010. Sampling in precision agriculture. In Geostatistical applications for precision 

agriculture (pp. 35-63). Springer Netherlands. 

Li, J., Heap, A. D., Potter, A., Daniell, J. J., 2011. Application of machine learning methods to spatial interpolation of 

environmental variables. Environ. Model. Softw. 26(12), 1647-1659. 

Nebel, Á. L. C., Timm, L. C., Cornelis, W., Gabriels, D., Reichardt, K., Aquino, L. S., Pauletto, E. A., Reinert, D. J., 2010. 

Pedotransfer functions related to spatial variability of water retention attributes for lowland soils. Revista Brasileira de 

Ciência do Solo, 34(3), 669-680. 

Nemes, A., Schaap, M.G., Leij, F.J., Wösten, J.H.M., 2001. Description of the unsaturated soil hydraulic database UNSODA 

version 2.0. J. Hydrol. 251(3), 151-162. 

Oliver, M. A., 2010. An overview of geostatistics and precision agriculture. In: Geostatistical Applications for Precision 

Agriculture (pp. 1-34). Springer Netherlands.  

Rivers, E.D., and R.F. Shipp. 1972. Available water capacity of sandy and gravelly North Dakota soil. Soil Sci. 113:74–80. 

Romano, N., Santini, A., 2002. Field, In: Methods of Soil Analysis. Part 4, Physical Methods, Soil Sci. Soc. Am. Book Ser., vol. 

5, edited by J. H. Dane and G. C. Topp, pp. 721– 738, Soil Sci. Soc. of Am., Madison, Wis. 

Saey, T., Van Meirvenne, M., Vermeersch, H., Ameloot, N., Cockx, L., 2009. A pedotransfer function to evaluate the soil profile 

textural heterogeneity using proximally sensed apparent electrical conductivity. Geoderma. 150(3), 389-395. 

Saito, H., Seki, K., Šimůnek, J., 2009. An alternative deterministic method for the spatial interpolation of water retention 

parameters. Hydrol. Earth Syst. Sci. 13(4), 453-465. 

Schaap, M.G., Leij, F.J., van Genuchten, M. Th., 2001. ROSETTA: A computer program for estimating soil hydraulic parameters 

with hierarchical pedotransfer functions. J. Hydrol. 251, 163–176. 

Sharma, V., Kilic, A., Kabenge, I., Irmak, S., 2011. Application of GIS and Geographically Weighted Regression to Evaluate the 

Spatial Non‐Stationarity Relationships between Precipitation vs. Irrigated and Rainfed Maize and Soybean Yields. Trans. 

ASABE. 54(3), 953-972. 

Sinowski, W., Scheinost, A. C., Auerswald, K., 1997. Regionalization of soil water retention curves in a highly variable 

soilscape, II. Comparison of regionalization procedures using a pedotransfer function. Geoderma. 78(3), 145-159. 

Sudduth, K.A., Kitchen, N.R., Wiebold, W.J., Batchelor, W.D., Bollero, G.A., Bullock, D.G., Clay, D.E., Palm, H.L., Pierce, 

F.J., Schuler, R.T., Thelen, K.D., 2005. Relating apparent electrical conductivity to soil properties across the north-central 

USA. Comput. Electron. Agric. 46(1), 263-283. 

Twarakavi, N. K., Šimůnek, J., Schaap, M. G., 2009. Development of pedotransfer functions for estimation of soil hydraulic 

parameters using support vector machines. Soil Sci. Soc. Am. J. 73(5), 1443-1452. 

Van Genuchten, M.Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated. Soil Sci. Soc. 

Am. J. 43, 892–898. 

Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M. G., van Genuchten, M. Th., 2010. Using pedotransfer 

functions to estimate the van Genuchten–Mualem soil hydraulic properties: A review. Vadose Zone J. 9(4), 795-820. 

Wösten, J.H.M., Pachepsky, Y.A., Rawls, W.J., 2001. Pedotransfer functions: bridging the gap between available basic soil data 

and missing soil hydraulic characteristics. J. Hydrol. 251, 123–150. 

Zhang, X., & Srinivasan, R. 2009. GIS‐Based spatial precipitation estimation: a comparison of geostatistical approaches. Am. 

Water Resour. Assoc. 45(4), 894-906.  



66 

Appendix 2: Chapter 2 Figures and Tables 

 

Figure 2-1. Soil sampling scheme within the field of study located in Dyer County, Tennessee. 
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Figure 2-2. Illustration of topology of point, pseudo continuous and parametric neural network pedotransfer 

functions (adapted from Haghverdi et al., 2012). The point PTF predicts the water content at three different matric 

potentials (i.e. h1, h2 and h3). The parametric PTF predicts the inputs of van Genuchten equation (1980). The 

pseudo continuous PTF considers the soil matric potential as an extra input (i.e. Log (h)) and predicts the 

corresponding water content (i.e. θ(h)). 
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Figure 2-3. Soil texture distribution; samples from the field of study (panel 1), selected samples from UNSODA 

(panel 2). 
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Figure 2-4. Spatial models to predict the soil water retention. SSC: sand, silt and clay (%), BD: bulk density (Mg m-

3), θ-FC: water content at field capacity (cm3 cm-3), θ-PWP: water content at permanent wilting point (cm3 cm-3), 

ECa: apparent electrical conductivity (mS m-1), PC-PTF: pseudo continuous pedotransfer function, KG: kriging, Co-

KG: co-kriging, RKG: regression kriging, GWR: geographically weighted regression, NN: neural network. 
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Figure 2-5. Performance of pseudo continuous PTFs in predicting the WRC of UNSODA samples. Thick dash line: 

mean RMSE; thin dash lines: min / max RMSE; error bars: standard deviation of RMSE values over the 10 subsets. 
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Figure 2-6. The WRCs at different soil textures predicted by PC-PTF for the soil samples (n= 400) collected from 

field of study.  
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Figure 2-7. Scattering of water content at 10 kPa and 33 kPa predicted by PC-PTF against water content at the time 

of sampling. The darker dots represent deeper layers.   
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Figure 2-8. The semivariograms for water retention data. AWCa: available water content at layer a; WCa-b: water 

content at matric potential a (kPa) and layer b.   
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Figure 2-9. AWC maps for different layers (i.e. AWC1, AWC2, AWC3, and AWC4) and for the entire effective 

root zone (i.e. AWCT) generated using the model 8 (Figure 4). 
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Table 2-1. Properties of the soils selected from the UNSODA data set and collected from the field of study. 

  UNSODA (n=554)    The field (n=400)  

 Min Max SD Average  Min Max SD Average 

Sand (%) 0.1 99.6 31.2 53.8  0.0 96.9 30.2 53.9 

Silt (%) 0.2 87.1 22.9 29.7  0.0 72.8 19.7 27.3 

Clay (%) 0.0 63.0 13.6 16.6  0.3 56.6 12.7 18.8 

BD (Mg m-3) 0.46 1.97 0.22 1.46  1.06 1.86 0.12 1.36 

BD: bulk density, SD: standard deviation.  
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Table 2-2. The RMSE (cm3 cm-3) for the models (Figure 4) predicting water content at FC and PWP at different 

layers. 

      Model     

(cm) h (kPa) 1 2 3 4 5 6 7 8 9 10 

0-25  10 0.049 0.050 0.042 0.046 0.041 0.076 0.042 0.042 0.044 0.043 

 33 0.052 0.055 0.044 0.049 0.042 0.071 0.043 0.044 0.045 0.048 

 1500 0.039 0.040 0.029 0.034 0.033 0.055 0.029 0.030 0.030 0.031 

25-50  10 0.098 0.099 0.079 0.091 0.078 0.099 0.081 0.079 0.081 0.084 

 33 0.101 0.103 0.082 0.094 0.084 0.097 0.083 0.082 0.083 0.088 

 1500 0.069 0.070 0.058 0.063 0.058 0.070 0.058 0.058 0.059 0.061 

50-75  10 0.103 0.112 0.085 0.100 0.084 0.092 0.090 0.084 0.095 0.088 

 33 0.102 0.109 0.085 0.099 0.084 0.090 0.088 0.084 0.091 0.088 

 1500 0.059 0.061 0.051 0.059 0.052 0.053 0.051 0.051 0.052 0.053 

75-100  10 0.091 0.096 0.078 0.090 0.075 0.089 0.076 0.075 0.077 0.074 

 33 0.090 0.093 0.077 0.089 0.074 0.087 0.073 0.073 0.074 0.077 

 1500 0.047 0.048 0.040 0.047 0.050 0.059 0.041 0.040 0.041 0.052 

RMSE- mean 0.075 0.078 0.063 0.072 0.063 0.078 0.063 0.062 0.064 0.066 
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Table 2-3. The MBE (cm3 cm-3) for the models (Figure 4) predicting water content at FC and PWP at different 

layers. 

      Model     

(cm) h (kPa) 1 2 3 4 5 6 7 8 9 10 

0-25  10 0.002 0.005 -0.004 0.000 0.000 -0.012 0.004 0.000 -0.003 -0.006 

 33 0.001 0.009 -0.004 0.000 0.001 0.000 0.005 0.000 0.000 0.001 

 1500 0.003 0.009 0.000 0.003 -0.005 0.023 0.005 0.000 0.005 -0.002 

25-50  10 0.005 0.020 0.001 0.007 0.000 -0.013 0.005 0.001 0.005 0.000 

 33 0.004 0.025 0.001 0.009 0.000 0.002 0.008 0.000 0.006 -0.004 

 1500 0.003 0.016 0.000 0.007 -0.001 0.020 0.006 0.000 0.004 -0.002 

50-75  10 0.005 0.039 -0.001 0.019 0.001 0.011 0.019 -0.002 0.024 0.001 

 33 0.005 0.034 -0.001 0.016 0.001 0.012 0.019 -0.002 0.021 0.000 

 1500 0.003 0.012 0.000 0.006 0.009 0.008 0.009 -0.001 0.009 -0.001 

75-100  10 0.000 0.027 -0.004 0.013 0.000 0.016 0.019 0.001 0.012 -0.003 

 33 -0.002 0.019 -0.005 0.008 -0.001 0.017 0.015 0.000 0.009 -0.008 

 1500 -0.001 0.005 -0.002 0.003 0.011 0.012 0.005 0.000 0.000 0.014 
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Table 2-4. Correlation coefficients between ECa and yield data with water retention data at different layers, 

predicted by PC-PTF for samples (n= 100 (points) × 4 (depths) = 400). 

 layer Matric potential, 

(kPa) 

ECa -shallow 

(mS m-1) 

ECa- deep 

(mS m-1) 

Cotton 2012 

(Mg ha-1) 

Soybean 2009 

(Mg ha-1) 

1st 10 0.68 0.50 0.35 0.42 

 33 0.72 0.54 0.36 0.44 

 1500 0.75 0.58 0.36 0.45 

2nd 10 0.59 0.67 0.50 0.40 

 33 0.59 0.68 0.50 0.39 

 1500 0.56 0.64 0.44 0.34 

3rd 10 0.45 0.65 0.57 0.42 

 33 0.45 0.65 0.55 0.40 

 1500 0.42 0.61 0.51 0.34 

4th 10 0.39 0.61 0.51 0.46 

 33 0.40 0.62 0.50 0.44 

 1500 0.39 0.59 0.44 0.38 

AWCT* 10 0.58 0.75 0.64 0.55 

AWCT 33 0.52 0.69 0.65 0.56 

* AWCT: available water content throughout the effective root zone (=1 m). 
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Part 3: Perspectives on cotton supplemental irrigation in west 

Tennessee 
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Abstract 

While irrigated acreage is shrinking in some arid regions due to increasing competition for water, supplemental 

irrigation is expanding in humid regions as a means to avoid sporadic periods of water stress and thus maintain high 

crop yields. The complexity of the interaction between the temporal variability of precipitation within a cropping 

season and the spatial heterogeneity of soil properties poses a problem for supplemental irrigation management. A 2-

year (2013-2014) on-farm experiment on a 73-ha farm in humid West Tennessee was conducted with the goal of 

understanding cotton yield spatial patterns in relation to the heterogeneity of soil physical properties and 

supplemental irrigation regimes. We used a wireless network of soil moisture sensors and an annual time series of 

satellite remotely sensed indices including tasseled cap transformation (TCT) and normalized difference vegetation 

index (NDVI). In addition, we analyzed temporal stability of yield spatial patterns using 5 years of available 

historical yield data (corn, soybean and cotton) that had been collected by the farmer prior to our study. 

Supplemental irrigation increased cotton yields by 32% in 2013 and 41 % in the 2014 across all soil types when 

compared to rain-fed conditions. However, cotton lint yield had a 42% difference between 2013 and 2014, a result 

attributed to different planting dates in 2013 and 2014 that in turn affected crop growth and yield. Cotton lint yield 

maps correlated the highest with NDVI (r = 0.82) 93 days after planting. We showed, if appropriate space images 

are available, yield spatial patterns and pattern of soil spatial heterogeneity (in respect to soil available water 

content) is distinguishable by TCT. In addition, with TCT we successfully separated data points underneath an 

irrigation system using a space image taken shortly after an irrigation event. The analysis of yield data for several 

years for multiple crops indicated that the soil physical and hydraulic properties influenced crop growth and yield, 

hence variable rate supplemental irrigation is suggested for the field of study. 
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Abstract 

While irrigated acreage is shrinking in some arid regions due to increasing competition for water, supplemental 

irrigation is expanding in humid regions as a means to avoid sporadic periods of water stress and thus maintain high 

crop yields. The complexity of the interaction between the temporal variability of precipitation within a cropping 

season and the spatial heterogeneity of soil properties poses a problem for supplemental irrigation management. A 2-

year (2013-2014) on-farm experiment on a 73-ha farm in humid west Tennessee was conducted with the goal of 

understanding cotton yield spatial patterns in relation to the heterogeneity of soil physical properties and 

supplemental irrigation regimes. We used a wireless network of soil moisture sensors and an annual time series of 

satellite remotely sensed indices including tasseled cap transformation (TCT) and normalized difference vegetation 

index (NDVI). In addition, we analyzed temporal stability of yield spatial patterns using 5 years of available 

historical yield data (corn, soybean and cotton) that had been collected by the farmer prior to our study. 

Supplemental irrigation increased cotton yields by 32% in 2013 and 41 % in the 2014 across all soil types when 

compared to rain-fed conditions. However, cotton lint yield had a 42% difference between 2013 and 2014, a result 

attributed to different planting dates in 2013 and 2014 that in turn affected crop growth and yield. Cotton lint yield 
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maps correlated the highest with NDVI (r = 0.82) 93 days after planting. We showed, if appropriate space images 

are available, yield spatial patterns and pattern of soil spatial heterogeneity (in respect to soil available water 

content) is distinguishable by TCT. In addition, with TCT we successfully separated data points underneath an 

irrigation system using a space image taken shortly after an irrigation event. The analysis of yield data for several 

years for multiple crops indicated that the soil physical and hydraulic properties influenced crop growth and yield, 

hence variable rate supplemental irrigation is suggested for the field of study. 

Keywords: apparent electrical conductivity, remote sensing, wireless soil moisture monitoring, yield map.  

 

1. Introduction  

Irrigated agriculture has been playing a globally significant role in providing nearly 30 percent of the total food and 

fiber supply [Food & Agriculture Organization (FAO), 2013]. While irrigated acreage is shrinking in some arid 

regions due to increasing competition for water, supplemental irrigation is expanding in humid regions as a means to 

avoid unpredicted periods of water stress and maintain high yields (National Agricultural Statistics Service (NASS), 

2010). For example, in west Tennessee, row crop irrigation has expanded rapidly from twenty-five center pivot 

irrigation systems installed in 2007 to 270 systems installed in 2012. This represents an expansion of 16,000 ha of 

cropland per year under supplemental irrigation (Tennessee Farm Bureau Federation, 2013 which necessitates an 

essential demand to study supplemental irrigation management of different crops in this region.  

Precipitation is the prime source of moisture in west Tennessee. However, severe in-season drought conditions 

for short periods are likely to occur which could substantially reduce yields under rainfed agricultural practices. 

Supplemental irrigation is an irrigation strategy that attempts to maintain maximum yield production by irrigating 

during periods of insufficient rainfall to fulfill the crop water requirements. The application of supplemental 

irrigation management is a spatially and temporally complex problem in west Tennessee where precipitation 

patterns are temporally variable within and across cropping seasons and interacts with the spatial mosaic of the 

physical and hydraulic attributes of alluvial and windblown loess deposited soils. Soil properties, such as texture and 

bulk density, greatly affect soil water retention and movement and govern readily available soil water for crop and 

irrigation management. Excess water content within the root zone could occur if irrigation events overlap with 

unpredicted rainfall. This may cause lack of sufficient aeration and consequently yield reduction. Moreover, soil 
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erosion and nutrient leaching are also prone to happen, which in turn increase the risk of contaminating nearby 

surface or ground waters.  

Cotton is a major crop in west Tennessee that is grown in more than 15 states and is vital to the US economy 

because it is a critical export-oriented product. Currently, some 40% of US cotton is under irrigation with the area 

expanding throughout the mid to southern US. Given the limited water resources in many cotton-growing areas, a 

considerable amount of research has recently been performed on cotton irrigation to improve water use efficiency 

(Vellidis et al., 2014). However, inconsistent cotton yield have been observed in response to irrigation in the humid 

portion of the US (Pettigrew, 2004). Suleiman et al. (2007) studied the use of cotton deficit irrigation in a humid 

climate using FAO’s 56-crop coefficient method in Georgia and suggested establishing a 90 % irrigation threshold 

for full irrigation of cotton in humid climates. Bajwa and Vories (2007) evaluated cotton canopy response to 

irrigation in a moderately humid area in Arkansas and found that under wet conditions excessive irrigation 

decreased the yield of cotton lint. A similar result was reported by Bronson et al. (2006), who also found excessive 

rainfall limited the yields from irrigation. Gwathmey et al. (2011) conducted a 4-year supplemental irrigation study 

in Jackson, Tennessee and found significantly improved lint yield by a mean of 38 % at the 2.54 cm wk-1 irrigation 

rate in comparison with 3 of 4 years rainfall. Duncan (2012) used surface drip irrigation system to investigate cotton 

yield response to irrigation across soil types with different water holding capacities (WHC). This study illustrated 

that uniform irrigation is not the optimum management decision for the cotton wherever field-scale soil 

heterogeneity affects spatial distribution of soil available water content (AWC).  

Traditionally, irrigation studies were limited to small plots at research stations, mostly due to economical and 

computational limitations. Additionally, contemporary constraints to irrigation studies include the personnel time 

and expense for data collection as well as the limitations of conventional computational infrastructure and statistical 

methods to analyze the increasingly larger spatiotemporal datasets with inherent noise and uncertainty. In west 

Tennessee, the inherent heterogeneity and the spatiotemporal changes in soil and weather-related attributes of the 

region make it hard to extrapolate the results of design-based experiments on small plots to real field conditions. 

Supplemental irrigation scheduling is a site-specific irrigation management system where each field has its own 

irrigation management challenge that requires unique solution(s). On-farm experimentation is an alternative for 

design-based experiments since collecting site-specific information is becoming more and more common and 

affordable in US agriculture. 
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In contemporary agriculture, precision farming enables farmers to locally collect various site-specific 

information such as yield and soil apparent electrical conductivity data (ECa). Crop yield maps provide valuable 

quantitative information on crop production, change in production, and the response of crop production to different 

agricultural inputs, including irrigation and fertilizer. In addition, topographic maps of edaphic features including 

elevation, slope, and aspect, are usually freely available. If not, these site-specific attributes can be measured and 

mapped without spending a considerable amount of time and money. Recently new wireless technology has enabled 

progressive farmers to remotely and continuously monitor soil properties over time including soil temperature, 

AWC, and soil matric potential. Additionally, 40 years of historical archives of medium-resolution (30-m X 30-m 

pixel resolutions) satellite remote sensing data, specifically Landsat satellite imagery, are freely available to conduct 

annual and interannual time series analyses of the status of crop yields over a number of growing seasons. 

Consequently, the goal of this study is to understand the interactions of supplementary irrigation and the spatial 

variability of soil attributes such as AWC to crop (particularly cotton) growth and yield in west Tennessee. This 

study’s objectives are to conduct an on-farm experiment to: (i) compare cotton lint yield under different 

supplemental irrigation regimes across different soil types, (ii) use a wireless network of soil moisture sensors and 

an annual time series of satellite remotely sensed indices to interpret cotton lint yield spatial patterns in relation to 

the heterogeneity of soil physical properties and supplemental irrigation and (iii) determine the temporal stability of 

spatial yield patterns using 7 years of yield data for different crops.   

 

2. Material and Methods 

2.1 Study area 

We conducted the on-farm experiment on a 73-ha property in Dyer County, west Tennessee that is located on the 

flood plains of the Mississippi river (Figure 3-1). This field contains Robinsonville loam and fine sandy loam, 

Commerce silty clay loam, and Crevasse sandy loam soils that were formed in the loamy and sandy alluvium of the 

Mississippi river terraces (Soil Survey Staff, 2015). The study area’s elevation ranges from 77 m to 80 m and is in 

the short season semi-humid region of west Tennessee where long term weather records indicate 97 mm monthly 

mean precipitation and 21 oC temperature throughout the May to November growing season (National Climate Data 

Center, 2015). 
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2.2 Irrigation experiment 

The on-farm experiment was conducted for 2-years and designed to study the supplemental irrigation-cotton lint 

yield relationship across different soil types. The farmer no-tillage planted the field to ‘PHY375’ cotton variety on  

May 30, 2013 and to ‘Stoneville 4946’ on  May 5, 2014. The farmer practiced variable rate potassium and 

phosphorus application, in accordance with soil test recommendations. However, nitrogen was applied uniformly. 

Crop pest management was implemented following state extension recommendations and the field was harvested 

between December, 2 and 3 2013 and in the 2nd year between October 18-20 2014.  

One of the goals of this study was to engage the farmer in the irrigation decision making process, thus 

enhancing the producer’s knowledge and expertise over the course of the study. Indeed, the producer was the prime 

decision maker on how much and when to irrigate using two center pivots for crop irrigation (Figure 3-1). At the 

same time, we wanted to make sure that the farmer was provided sufficient information to irrigate appropriately 

while maintaining statistical variability of the supplemental irrigation water applied (IW) across the field to fulfill 

our research purpose.  

In 2013, the farmer adopted The Management of Irrigation Systems in Tennessee (MOIST) program 

(http://bioengr.ag.utk.edu/weather/) and installed a soil sensor network to schedule irrigation throughout the growing 

season. MOIST is an irrigation decision support tool that delivers irrigation recommendations by simultaneously 

measuring and monitoring soil water status and calculating water balance through a deployed wireless soil sensor 

network. We used MOIST to discuss the efficiency of irrigation management with the farmer. Additionally, we 

installed and provided online access to the farmer to another network of sensors from AgSpy 

(http://www.aquaspy.com/AgSpyAnalytics) and Decagon (http://www.decagon.com/). This network allowed us to 

monitor weather conditions, soil water status, and the performance of the irrigation systems throughout the irrigation 

season. In 2014, we started sending out a weekly MOIST report to the farmer.  

Two different methods were used to vary supplemental IW across the field: 1) programming the two pivots and 

2) partially swapping the sprinkler nozzles. Figure 3-2 shows the irrigation experimental design over the course of 

the study. Table 3-1 summarizes the information on irrigation programs at each pivot. The control panels of each 

pivot were Valley Select2 (Valmont Industries, Inc) that were programmable up to 9 different pie shape zones (e.g., 

Figure 3-2). The program changes the irrigation rate by adjusting the pivot’s travel speed, where speeding up the 

pivot causes less irrigation and slowing it down applies additional irrigation. Two adjacent spans of each pivot were 
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renozzled to apply approximately 50 percent more and less water than the farmer’s decision. The center pivots can 

be operated both clockwise and counter clockwise, but were programmed only in the clockwise direction (Table 3-

1). Routine irrigations by the farmer were equal to 15.50 mm and 9.91 mm per revolution for the east and west 

pivots, respectively. The east (west) pivot panel was programmed to apply ±5.08 (±2.54) mm variation in irrigation 

per revolution on some pie shape zones (Figure 3-2a). The spans for renozzling were selected based on the pivots 

characteristics and soil spatial variation. For the east pivot, the high-irrigation (23.25 mm per revolution) ring was 

located between the second and third towers while the low-irrigation (7.75 mm per revolution) ring was located 

between the third and fourth towers. For the west pivot the low-irrigation ring (14.87 mm per revolution) was 

selected to be between the first and second towers while the high-irrigation (4.96 mm per revolution) ring was 

located between the second and third towers. 

Table 3-2 summaries irrigation and weather data for the 2013 and 2014 cropping seasons. The growing degree 

days (GDD) were assumed to be the mean of the daily minimum and maximum temperature minus the base 

temperature of 15.6o C (Suleiman et al., 2007). The sensors were installed a couple of weeks after planting and were 

removed prior to the harvest period. Consequently, in situ data was not available for the whole cropping seasons. 

However, temperature and precipitation data from the closest weather station was obtained from National Climate 

Data Center to fill these gaps. 

 

2.3 Instrumentation and measurements  

We measured the following physical variables. Figure 3-2 illustrates the spatial arrangement of monitoring stations 

installed within the field of study. AgSpy soil moisture capacitance probes (3 posts in 2013, 4 posts in 2014) were 1-

m in length and obtained measurements at 10 depths (from 10 cm to 100 cm with 10 cm increment). The sensor 

output is a dimensionless number in the range 0 to 100 called scaled frequency (SF) which is defined as:  

 (1) 

where Fa is the frequency of oscillation in air (air count), Fs is the frequency of oscillation in soil (soil count) and 

Fw is the frequency of oscillation in water (water count). The Fa and Fw are calculated during the manufacturing of 

each sensor. The frequency of oscillation is related to capacitance between sensor plates that is in turn influenced by 
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the relative permittivity of the soil media. The relative permittivity of water is significantly larger than air and soil, 

thereby changes in soil water content will be accurately detected by the AgSpy (Agrilink, 2006). 

An on-farm weather and soil monitoring station that contained an EM50G remote data logger, a vp-3 

temperature and relative humidity sensor, an ECRN-100 high-resolution rain gauge and a pyranometer solar 

radiation sensor (Decagon Devices Inc., Pullman, WA) was installed in 2013 and run through 2014 using the 

MOIST program. The data was recorded once per hour, stored in the logger, and then transmitted to an on-line 

interface. The station also had two Mps-2 soil matric potential and temperature sensors installed approximately at 10 

and 46 cm depths to monitor soil water status (Decagon Devices, Inc., 2014). A weekly report on soil water status 

and irrigation scheduling then was sent to the farmer based on soil sensors and water balance calculations using 

MOIST. MOIST calculated the daily evapotranspiration (ET) using Turc’s 1961 equation (developed for regions 

with relative humidity > 50 %) as follows (Lu et al., 2005): 

 (2) 

where ETP is the daily potential evapotranspiration (mm d-1); Rs is the daily solar radiation (cal cm-2 d-1) and T is the 

daily mean air temperature (°C).  

Three additional Decagon posts were added in the second year, to monitor soil water status and center pivots 

performace, each had an EM50G remote data logger, an ECRN-100 high resolution rain gauge and two Mps-2 soil 

matric potential and temperature sensors (installed approximately at 10 and 46 cm).  

 

2.4 Satellite data processing and transformation 

The reflectance of a crop canopy and the bare soil background will change throughout a cropping season as plants 

go through different growth stages and soil water status is changed. Proxy indicators of crop phenological and yield 

dynamics can be derived from moderate spatial resolution (900-m2 pixels) Landsat 8 satellite data. In this study, 18 

cloud-free Landsat 8 Operational Land Imager (OLI) scenes for 2013 (7 scenes from April to December) and 2014 

(11 scenes from February to September) of the study area were acquired (Table 3-3), subset to the study site, 

standardized to reflectance, corrected for atmospheric effects, and transformed to three different vegetation indices 

to track the growing season relationship of these proxies to contemporaneous field-measured yields of cotton lint. 

These remotely sensed vegetation or crop indices have been found to be proxies for vegetation biomass, canopy 
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cover, and productivity and include the simple ratio (SR, Birth and McVey 1968), the normalized difference 

vegetation index (NDVI, Rouse et al., 1974), and the green NDVI (GNDVI, Gitelson et al., 1996). These indices are 

calculated as: 

 (3) 

 (4) 

 (5) 

where NIR, R, and G represent reflectance values of the near-infrared, red and green bands or channels, 

respectively. 

This annual time series was also transformed to the newly developed Tasseled Cap Transformation (TCT) for 

Landsat 8 (Kauth and Thomas, 1976, Baig et al., 2015) in order to characterize and evaluate the spatiotemporal 

pattern in soil moisture and crop phenology. The TCT helps understand crop phenology and soil moisture dynamics 

over the cropping season by reducing the dimensionality or degree of correlation between the spectral bands of the 

original Landsat 8 data by consolidating the highly correlated bands with each other and increasing the degree of 

decorrelation between the new bands (Baig et al., 2015). Three primary new bands have been historically identified 

to provide site information on soils: the Soil Brightness (SBI) or Brightness index (BI), soil and vegetation moisture 

content: the Wetness index (WI), and vegetation cover or biomass: the Greenness index (GI). Plotting these indices 

in three-dimensional (3D) Cartesian space versus each other shows the “tassel cap space” or the plane of soils (i.e. 

Brightness versus Wetness), transition zone (i.e. Greenness versus Wetness) and plane of vegetation (i.e. Brightness 

versus Greenness). Plotting a time series of the Tassel Cap in 3D Cartesian space tracks the phenological dynamics 

of a crop (Kauth and Thomas, 1976, Baig et al., 2015). These remote sensing-based proxies can then be used to track 

crop dynamics within a growing season (Kauth and Thomas 1976). The yield data points for the 2013 and 2014 

cropping seasons were averaged within each cell (i.e. 900-m2 pixels) using ArcGIS 10.2.2 (ESRI Inc., Redlands, 

California) and then were correlated to crop indices values.  

The field of study was subset from the 18 full scenes and its border cells and cells within the drainage 

pathways were removed. The image’s digital numbers were converted to top-of-atmosphere reflectance using the 
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calculations described in the online USGS Landsat 8 User’s Handbook 

(http://landsat.usgs.gov/Landsat8_Using_Product.php). The standardized reflectance time series was then 

atmospherically corrected using an automated procedure developed by Washington-Allen et al. (2006, 

http://www.gis.usu.edu/~doug/serdp/tutorial/PIF/index.html) that was based on concepts developed by Hall et al. 

(1991).  

A secondary analysis was performed to examine the power of TCT planes for recognizing the spatial yield 

patterns and spatial heterogeneity of soil surface WHCs throughout the study site. Three zones of low, medium and 

high yields were delineated based on the statistical distribution of yield data using natural break (Jenks) 

classification method. Then, TCT planes were color coded for visual pattern recognition. The same zoning and color 

coding approach were implemented to divide the surface soil depth (i.e. 0-25 cm) into three zones with low, medium 

and high WHCs. We were also interested in finding any patterns in TCT planes illustrating usage of the irrigation 

system. We hypothesized that the TCT plane of soils, i.e., the SBI versus Wetness, should be useful to back-track 

irrigation practices if the satellite image had been taken immediately after an irrigation event by either of the pivots. 

To accomplish this goal, cells underneath the eastern and western pivots and the rainfed areas were color coded and 

analyzed within the TCT plane of soils. Finally, we performed a visual comparison between TCT planes of two 

images (also color coded to show soil and yield zones) in 2013 and 2014 cropping seasons to see if the TCT planes 

could help us explain differences in expected yield across years.  

 

2.5 Temporal stability of yield patterns 

Our main focus for this research was on cotton yield in two years, however, to better understand spatiotemporal 

dynamics of changes in yield, several years with different crops should be considered (Joernsgaard and Halmore, 

2003). Except for 2011, yield data from 2007 to 2012 (i.e. corn 2007, corn 2008, soybean 2009, cotton 2010, cotton 

2012) had been collected by the farmer using appropriate yield-monitor-equipped harvesters. We combined these 

data with the 2013 and 2014 yield data to analyze yield relative difference and temporal variance.   

A multistep filtering process was designed and implemented in Microsoft Excel and ArcGIS 10.2.2 to process 

the data and produce yield maps. First, yield maps were visually assessed. A thematic map was generated to 

investigate the GPS tracks .The spatial yield pattern across the field was cross validated against the farmer 

knowledge and our experience on field situation. Second, multiple filters were designed (e.g. using swath width, 
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distance, speed of harvester, change in speed) to remove outliers and erroneous data points. Yield data that was 

within ± 3 standard deviations of the mean were assumed to be outliers and removed from the analysis. Then the 

field was divided into 100 m2 cells, and relative yield difference (equation 6) and yield temporal variance (equation 

7) across years were calculated as follows (Basso et al., 2007): 

 (6) 

where n is the number of years with yield data available,  is the average percentage yield difference at cell i,  

is the average yield (Mg ha-1) across cells at year k, and  is the yield value (Mg ha-1) at cell i at year k.  

 (7) 

where  is the temporal variance at cell i,  is the average yield across the n years and rest of the variables are 

as previously defined.  

 

3. Result and Discussion 

3.1 Cotton lint yield  

Figure 3-3 shows cotton lint yield across different soil types and irrigation regimes in 2013 and 2014. The data for 

Figure 3-3 belongs to selected pie sections underneath both pivots and corners of the field that were rainfed. ECa 

information had a high correlation with soil hydraulic properties across the field of study, i.e. higher ECa 

corresponded to higher WHC and AWC (chapters 1 and 2), hence the selected regions were categorized into 

different groups. Table 3-4 summarizes the correlation coefficients between yield data and some soil properties 

across the field of study. To evaluate the effect of variable rate fertilizer application by the farmer on yield spatial 

variation, we also obtained correlation information for p and k. In general, there was an increase in yield from soils 

with lower AWC to soils with higher AWC, and one exception was the yield decline for regions with high AWC 

underneath west pivot at 2013. This is in line with a moderate correlation between water content and soil texture 

with the yield data in 2014. For coarse-textured soils, there was an overall positive response to supplemental 

irrigation which was more consistent at the east pivot. There was no consistent pattern for intermediate soil, but a 
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yield reduction for soils with higher AWC under higher irrigation regimes. In general, correlation coefficients were 

higher for 2014 data than for that of 2013. The correlations between p, k and yield data were negligible.  

 

3.2 Soil water status  

Figures 3-4 and 3-5 depict the dynamic of soil moisture at different depths and locations over the 2013 and 2014 

growing seasons, respectively. There were some missing data and bad readings mostly in 2014. In 2013, posts a, b 

and c (Figure3-2a) received 163 mm, 36 mm and 133 mm seasonal IW, respectively. The average soil WHC 

throughout the effective root zone (i.e. 1 m) was 28 %, 22 % and 30 % for posts a, b and c, respectively. The pattern 

of soil moisture was dynamic and varied among sensors at different locations and depths. At post a, soil moisture 

depletion and replenishment occurred for sensors up to 40 cm deep during the monitoring period (i.e. DAP: 42-133). 

Soil water status stayed almost unchanged for deeper sensor for about 100 DAP, then gradually exhibited a 

reduction indicating roots started to pull out water from deeper layers as ET demand increased. At post b, rainfall 

plus irrigation kept the soil moisture at a fairly constant level up to about 80 DAP for all sensors, while fluctuation 

decreased by depth as expected. After that, there was a great depletion in soil moisture for sensors up to 50 cm, 

which even expanded to deeper sensors about 95 DAP. At post c, the overall trend was similar to that of post a. 

Toward end of the season, a big rainfall at DAP equal to 112 mm occurred that refilled the shallow layers for all 

posts and also penetrated to deeper layers such that there was an increase in soil moisture sensors at 30 and 40 cm 

and no decrease for deeper sensors up to the end of the monitoring period.  

Posts a, b, c and d (Figure 3-2a) received 42 mm, 74 mm, 142, and 50 mm of IW, respectively during 2014 

cropping season (Figure 3-5). Within the effective root zone (i.e. 1m) the average WHC for posts a, b, c and d were 

33 %, 28 %, 19 %, and 23 %, respectively. Unlike 2013, most of deep sensors in 2014 showed some fluctuation 

starting about 70 DAP meaning crop started to use water from deeper layers as crop water requirement increased. 

We attribute this to bigger crop hence higher ET demand, lower irrigation in 2014 comparing to 2013 and lower 

irrigation under the west pivot (where we had sensors installed in 2014) comparing to east pivot (where we had 

sensors installed in 2013). Trends in posts a, b and d were similar except that some sensors (at 50 cm and 100 cm) in 

post b showed lower readings than expected. There was more fluctuation in shallow sensors in post c, since this 

sensor was irrigated by both pivots and was located on coarse-textured soil with lower AWC. In both years, heavy 

rainfall events were responsible for big changes in soil water status within soil profile and considering sensors 
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fluctuation they usually penetrated down to 50 cm. Irrigation events, however, mostly refilled shallow layer up to 20 

cm and barley influenced sensors deeper than 30 cm.   

 

3.3 Tasseled cap transformation and vegetation indices 

Figures 3-6 and 3-7 depict the TCT (at-satellite reflectance) for 2013 and 2014, respectively, derived from Landsat 8 

reflectance; the scatter plot of red against NIR band together with scatter plots of brightness, greenness and wetness 

are illustrated. Of the 7 scenes analyzed in 2013 (Table 3-3); 3 were taken before planting (i.e. April 13, April 29, 

May 15), 3 throughout the growing season (i.e. October 6, October 22 and November 7) and one after harvesting 

(i.e. December 25). In 2013, among images from bare soil the May 15 image had minimum average greenness and a 

relatively wide range of brightness which was somewhat close to what is called line of zero vegetation for bare soil. 

Other images from bare soil taken on April 13 and April 29, however, exhibited a different pattern with a higher 

range of variation for greenness. In fact, their pattern was somewhat similar to that of the first two images acquired 

throughout the growing season (on Oct 6 and Oct 22) with some slight differences; the images from cotton (on Oct 6 

and Oct 22) had narrower red band but greater values for IR band which corresponded to a higher magnitudes of 

greenness in the plane of vegetation. Analysis of rainfall data revealed that bare soil images (on April 13 and April 

29) were taken 2-3 days after moderate rainfall events when soil (at least partially across the field) was expected to 

be close to its field capacity in respect to its moisture status. Greenness was substantially reduced for last image over 

the growing season (November 7, DAP = 161) that is believed to be taken after defoliation, the application of 

chemicals to force cotton leaves to drop. After harvesting image (On December 25) had greenness close to zero and 

a narrow range of brightness.  

There were 11 images for 2014 (Table 3-3) from which four images were taken from bare soil (i.e. February 

27, March 31, April 15, May 2) and the rest of them were captured throughout the growing season (i.e. May 18, June 

19, July 5, July 21, August 6, August 22 and September 23). In red against NIR scatter plot an inclined line (i.e. the 

line of zero vegetation for bare soil) was formed by data points belonged to images taken prior to planting (February 

27, March 31, April 15, and May 2) and a few days after planting (May 18). As images progressed throughout the 

cropping season, data clusters exhibited a clear departure from the bare soil line in an orthogonal direction such that 

at the same time there was a gradual reduction and increase in red and NIR bands reflectance values, respectively. 
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There was a substantial reduction in NIR reflectance values from image taken on August 22 (DAP 109) to image 

taken on September 23 (DAP 141) that is believed to be taken after defoliation.  

In 2014, as the growing season advanced, the plane of vegetation clearly indicated the growth of crop and 

canopy size when greenness gradually increased along with a reduction in range and magnitude of brightness. The 

greenness reached its highest value in images taken on Aug 6 (DAP = 93) and Aug 22 (DAP = 109) when cotton 

was close to its full canopy. The data cluster for full canopy (almost in parallel with y axis (greenness axis) with a 

narrow brightness range) was perpendicular to the soil line (which was in parallel with brightness axis with a narrow 

range on greenness). The data points belonged to the last three images (taken on August 6, August 22 and September 

23) formed a line on the transition zone, while last image (taken after defoliation) exhibited a substantial reduction 

in both greenness and wetness level. On the plane of vegetation, it was even easier to distinguish the after defoliation 

image from the other images when data points were located approximately with a 45 degree angle difference in 

counter clockwise order from full canopy image (taken on August 22). 

Figure 3-7 illustrates the results of our secondary analysis on application of TCT to recognize patterns and 

extract extra information on irrigation systems usage, spatial distributions of soil WHC and yield. No distinct pattern 

was found using TCT planes by available space images for 2013 yield data. We were able to visually distinguish 

among yield classes for 2014 yield data using the 3D plot of TCT planes and the space image taken on August 6 

(Figure 3-7a). There was a continuous increase in both GI and WI from low yield to high yield classes while the 

range of brightness stayed the same among yield classes. Among available bare soil images the one taken on April 

13, 2013 showed the highest separation among soil WHC classes (Figure 3-7b). Moving from soils with low WHC 

to soil with high WHC a continuous increase in WI and a less pronounced but continuous decline in BI were 

observed.  

Considering DAP as criterion, we chose images taken on October 22, 2013 (DAP=145) and on September 23, 

2014 (DAP=141) for point by pint comparison (Figure 3-7c and d). The data points of the images scattered 

significantly different on the plane of vegetation comparing to one another. As explained earlier, the pattern of data-

points for 2013 image on October 22 (i.e. relatively lower brightness range and a broad greenness range) was 

associated with full canopy while the pattern of data-points for 2014 September 23 image (i.e. relatively wider range 

of BI and a decline in GI) was attributed to crop after defoliation. Despite the differences in patterns of data-points 

across these two images, it was possible to visually distinguish among soil classes in both of the images such that 
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higher greenness was associated with higher WHC (Figure 3-7c). Ta a great extent it was possible to visually 

distinguish between yield classes in 2014 image on September 23 but three yield classes were mixed and not 

separable for 2013 image on October 22.  

Our records showed that the space image on July 21, 2014 had been taken after an irrigation event at eastern 

pivot. For this image, in the plane of soils (i.e. brightness against wetness scatter plot) data points formed a fork with 

two different clusters such that the cells underneath eastern pivot had lower brightness values than those for cells 

underneath western pivot and rainfed portions of the field (Figure 3-7e).   

Correlation coefficient between yield data and crop indices are summarized in Table 3-5. Figure 3-8 depicts 

maps of NDVI from available space images throughout cropping seasons, 2013 and 2014. Overall, the differences 

among crop indices were negligible in terms of their correlation with yield data. In 2013, photos taken on October 6 

and October 22 had higher max NDVI value equal to 0.68 and 0.67, respectively. In 2014, highest NDVI values 

belonged to photos taken on August 6 and 22 (=0.73). The lowest NDVI ranged from 0.07 to 0.49 and the minimum 

value belonged to a photo taken on June 19, 2014. The NDVI maps for 2013 showed spatial patterns similar to that 

of soil hydraulic properties, yet there was a weak correlation between crop indices and yield for 2013. We attribute 

this to delayed planting in 2013 (due to cold and wet condition) which in turn affected heat unit accumulation and 

distribution throughout growing season, hence effecting crop growth and yield. The farmer delayed harvesting, yet 

there were still some bolls unopened mostly located on region with soil with higher AWC. In 2014, there was a 

moderate to high correlation between crop indices and yield data for a handful of images. In 2014, as the cropping 

season progressed, correlation coefficients increased but diminished for the last image (on September 23) which was 

taken after defoliation. This is in line with the spatial arrangements in NDVI maps that better discriminated areas 

within the field as cropping season progressed. The highest correlation coefficient (r = 0.82) was obtained between 

yield data and crop indices derived from space image acquired on August 6 2014 (DAP = 93) which almost 

coincided with full canopy and cutout. In 2014, higher NDVI values belonged to regions with higher yield mostly 

located over soils with higher AWC.  

 

3.4 Temporal stability of yield patterns 

Figure3-9 illustrates the cotton yield maps for 2012, 2013 and 2014, long term mean yield map (from Eq. 6) and 

standard deviation yield maps (from Eq. 7). Table 3-6 summarizes the descriptive statistics about yield data 
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collected for different crops. We included 2012 yield map, a year before this experiment when uniform irrigation 

had been applied by the famer, to better represent the effect of soil spatial variation on cotton yield. Thematic cotton 

yield maps for 2012 and 2014 cropping seasons followed the same spatial distribution as soil hydraulic properties 

map (Figure 3-1b), but the 2013 yield map showed a different pattern. This finding agrees with low correlation 

between cotton yield data in 2013 and soil properties (Table 3-4). The spatial analysis of the long term mean yield 

map (ranged from -79 to -98) showed substantial similarity to soil AWC map (Figure 3-1b) developed for the field 

of study (chapter 2). There were three regions, in southern, eastern and north western parts of the field, with lower 

yield and all on coarse-textured soils with lower AWC. Highest temporal stability also belonged to part of those low 

yield regions with low WHC, (i) in the southern part of the field outside pivot coverage and (ii) in an area 

surrounding east pivot point. The temporal stability was lower for other parts of the field, but it was hard to pick up 

any cluster of cells with a similar temporal variance. We attribute this to different rainfall patterns and irrigation 

regimes across years, and their effect on yield across soil types. That is why mean yield varied substantially across 

years (Table 3-6). For instance, for cotton and corn there was as much as 43 % and 110 % temporal difference 

between mean yield across years, respectively. In 2012 and 2014, mean yield and standard deviation was higher than 

that of 2013 indicating a decline in yield on soil with higher AWC in 2013. 

 

4. Discussion 

4.1 Yield patterns, soil heterogeneity and supplemental irrigation 

Cotton lint response to supplemental irrigation differed across soil types. For soil with low WHC there was a 

positive response to irrigation in comparison to rainfed where soil moisture deficit is expected to reduce the boll 

number and yield (Pettigrew 2004). The cotton response to irrigation was not consistent for soil with high WHC 

except that a yield reduction was occurred underneath both pivots for high irrigation rates in both cropping season. 

This is in line with reported results in literature indicating under wet conditions excessive irrigation decreased the 

yield of cotton lint (Bajwa and Vories,(2007; Bronson et al., 2006). In fact, availability of water within root zone did 

not guarantee cotton yield improvement for soils with medium to high WHCs from irrigation. For example, in 2013 

cotton lint yield was only 12 % higher where we placed post a (IW= 163 mm and AWC = 28 %) in comparison to 

yield at post b (IW = 36 mm and AWC = 22 %), even though there was a remarkable difference in soil water status 

throughout growing season between the two spots (Figure 3-4). On the other hand, in 2014 the yield difference 
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between the exact same points with similar relative difference in irrigation raised by 44 %.We attribute this to wet 

season and delayed planting in 2013 which significantly affected cotton response to irrigation. Delayed planting 

influences heat unit accumulation and distribution which was underscored as an important factor for short season 

cotton response to supplemental irrigation by Gwathmey et al. (2011). Moreover, irrigation is expected to increase 

the number of bolls but delays cutout (cessation of flowering) since irrigation continues the vegetative growth for a 

longer period. We believe rapid canopy expansion occurred on soil with higher AWC in 2013 due to excessive water 

within effective root zone.  

 

4.2 Application of space images and soil moisture sensors 

Recent advances in modern instrumentation and measurement techniques such as on-the-go sensing, remote sensing 

and wireless network of sensors made site-specific on-farm experimentation possible for farmers. This is essential 

for cotton irrigation management in humid areas as a complex problem due to spatiotemporal variation in soil and 

weather. In this study we used a variety of information, mostly available for farmers as easy-collected data, to 

investigate cotton response to supplemental irrigation. We focused mainly on TCT to analyze the available space 

images. 

In red-NIR space, especially for 2014 that we had more images available, it was possible to recognize the 

shape of a ‘tassselled cap’, a useful concept that was first introduced by Kauth and Thomas. We showed that TCT 

was not only useful to investigate spatial differences within a space image, but to temporally compare among images 

acquired at different times before, throughout and after growing seasons. Every point within red-NIR space was 

confined by the bare soil line (flat side of the cap) and the point of high vegetation (directly opposite to the soil line). 

Within this cloud of points each image had a distinct pattern mostly influenced by crop growth stage and soil water 

status. TCT showed a great potential for field-scale pattern recognition of soil moisture changes and cotton yield 

classes during irrigation events. It also revealed useful information on yield analysis across years by point by point 

comparison of two images that had been taken at a similar time after planting in 2013 and 2014. In 2014 both soil 

and yield classes were differentiable through plane of vegetation indicating that higher soil AWC improved yield on 

fine-textured soils with higher WHCs. On the other hand, in 2013 only soil classes were differentiable through plane 

of vegetation. This indicated that higher soil AWC on fine-textured soils in 2013 did not boost the yield and only 

resulted excessive vegetative growth and/or unopened bolls by the time of harvesting. For those images taken from 
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bare soil, soil water status clearly influenced reflectance values. When soil water status was close to FC, space 

images provided useful insight to relative spatial pattern of soil physical and hydraulic properties. Further 

investigation is needed to clarify if such space images could be used to predict maps of soil hydraulic properties.  

Yield and NDVI maps from space images provided good information on field-scale spatiotemporal changes 

affecting cotton growth and yield. The highest agreement observed between yield map and the space image taken on 

93 DAP. This was, from cotton growth stages point of view, somewhat similar to the result by Leon et al. (2003) 

who reported first bloom to first open boll as the optimum time window to explain cotton spatial variability using 

aerial photos. Vellidis et al. (2004) obtained 8-14 weeks after planting (9.9 weeks as the average time) as the 

optimum range when there was the best agreement between yield and aerial photos. They used visible bands for 

clustering. As season progressed closed canopy masked the spatial patterns, hence the yield pattern got less evident 

according to them.  

Both 2013 and 2014 were wet years. In fact, the rainfall was always above the long term average except for 

July 2014. There were some heavy rainfall events during the growing seasons which caused significant increase in 

soil moisture content. This is a typical situation in west Tennessee, with unexpected rainfall events, where temporal 

changes in rainfall patterns significantly affect yield response to supplemental irrigation across years. Bajwa et al. 

(2007) reported the same complexity on cotton irrigation scheduling in a moderately humid area in Arkansas when 

rainfall was plentiful and caused yield reduction for high irrigated crops. Monitoring soil water status revealed that 

rainfall events refilled the top soil and penetrated into deeper layers while supplemental irrigation mostly influenced 

the shallow layer up to 20 cm. Therefore, any sustainable irrigation management in this region should take rainfall 

into account for irrigation scheduling. Sensors indicated fast depletion for soils with lower WHCs. This caused the 

crop to start using water from deeper layer as cropping season advanced and ET demand increased. The sensor 

located on overlap region of two pivots showed more frequent irrigation could prevent shallow soil layer from 

substantial depletion and possible yield reduction due to water stress and thus should be considered as a potential 

irrigation strategy for coarse-textured soils with low WHCs throughout the study site. This could be beneficial for 

soil with high WHCs since cotton usually responds favorably to periods of water stress adequate to reduce 

vegetation expansion. 
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5. Conclusion 

Irrigation has been expanding across the humid areas of the Cotton Belt in the US for the last 20 years (Perry and 

Barnes, 2012). Stabilizing yields and the recent high commodity prices are the prime reasons for this growth in 

irrigation investment. In west Tennessee, irrigation management is significantly affected by spatial soil distribution 

and temporal weather variation. Overall, irrigation improved yield in comparison to rainfed throughout this study. 

However, we showed that the effect of cropping season length, rainfall pattern and heat unit accumulation 

/distribution on both cotton growth and development may change or even reverse the expected lint yield from an 

irrigation treatment for a specific soil type. While soil variation is inherent and not controlled by farmers, irrigation, 

if well scheduled, could be the key factor to orchestrate the whole cropping system toward optimum condition. 

Within this study we demonstrated how site-specific information collected by on-the-go sensing, remote sensing and 

wireless network of sensors could help farmers in irrigation management. In addition, analysis of such information 

throughout growing season provides insight to potential yield pattern, thus helps the farmer to modify other inputs 

allocation. Cotton responded differently to irrigation across soil types suggesting that variable rate irrigation (i.e. 

precision irrigation systems or speed control panels) would probably be beneficial for the field of study. More 

research, however, is required to precisely quantify the response of yield to different irrigation scenarios across soil 

types and to find the optimum zoning strategy for the study site.  
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Appendix 3: Chapter 3 Figures and Tables 

 

Figure 3-1. The 73-ha study farm and its 2 center pivots in the Dyer County humid region of west Tennessee. 
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Figure 3-2. The supplemental irrigation experimental design (a) and its orientation in relation to the spatial 

distribution of soil available water content (AWC) (b). Within Panel a: IW+ and IW- are the regions with more and 

less irrigated water, respectively than the irrigation applied by the farmer (IW). The light blue (2013) and dark blue 

(2014) dots and light red (2013) and dark red (2014) diamonds show the Agspy and Decagon sensor installations. 

The letters assigned to the Agspy sensors locate that sensor’s response over the two years. Within Panel b: red and 

green dots show the Agspy sensors installed during the 2013 and 2014 growing seasons, respectively. 
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Figure 3-3. Irrigation and soil type effect on cotton lint yield for selected regions across the field.  Panel a: East 

pivot in 2013, panel b: west pivot in 2013, panel c: East pivot in 2014; panel d: west pivot in 2014. Dash line: yield, 

bars: irrigation, R: rainfed, ECD: ECa deep readings (0-90 cm). ECD increased from zone 1 to zone 4. 
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Figure 3-4. Temporal changes [days after planting (DAP)] in soil water status (SF) throughout the 2013 growing 

season. SF was measured using Agspy soil sensor probes at different locations (designated by letter, e.g., a) and 

depths (designated by number, e.g., a2: -10 cm and 20-cm). 
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Figure 3-5. Temporal changes [days after planting (DAP)] in soil water status (SF) throughout the 2014 growing 

season. SF was measured using Agspy soil sensor probes at different locations (designated by letter, e.g., a) and 

depths (designated by number, e.g., a2: -10 cm and 20-cm). 
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Figure 3-6. The growing season dynamics of Landsat 8 near infrared (NIR) versus red reflectance scenes (a) and 

combinations of Tasseled Cap Transformation (TCT) planes for Greenness, Soil Brightness, & Wetness (b - d) for 

seven periods between April 13th to December 25, 2013 
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Figure 3-7. The growing season dynamics of Landsat 8 near infrared (NIR) versus red reflectance scenes (a) and 

combinations of Tasseled Cap Transformation (TCT) planes for Greenness, Soil Brightness, & Wetness (b - d) for 

eleven periods between February 27th to September 23, 2013. 
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Figure 3-8. The October to November of 2013 and May to September of 2014 growing season’s normalized 

difference vegetation index (NDVI).  
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Figure 3-9. The cotton lint yield map time series from 2012 to 2014 (a - c) and the mean (d, using Eq. 6) and 

standard deviation yield maps (e, using Eq. 7). 
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Table 3-1. Detailed information on the irrigation programs for two center pivots in the study area for one revolution. 

  East Pivot   West Pivot  

Program 

sector # 

Start angle* 

(degree) 

Stop angle 

(degree) 

Depth of 

water (mm) 

Start angle 

(degree) 

Stop angle 

(degree) 

Depth of 

water (mm) 

1 90 110 10.41 275 315 9.91 

2 110 0 15.49 315 335 11.68 

3 0 20 20.57 335 355 8.38 

4 20 40 10.41 355 235 9.91 

5 40 70 15.49 235 255 11.68 

6 70 90 20.57 255 275 8.38 

* The zero degree was at north and pivot traveled clockwise. 

  



111 

Table 3-2. Growing season summary of weather and supplemental irrigation data in the study area in 2013 and 

2014, in comparison to the 30-year mean for these variables.

 Year Variable    Month    

  May June July August September October November 

2013 Rain, mm 23 150 190 95 79 112 63 

 IW-East, mm   40 31 62   

 IW-West, mm   15 20 30   

 GDD, oC 10 300 308 360 292 123 12 

 ETP, mm day-1   4.33 4.43 3.92 2.49 1.28 

         

2014 Rain, mm 143 172 56 124 120 18  

 IW-East, mm   62 31    

 IW-West, mm   20 30    

 GDD, oC 170 289 254 308 175 58  

 ETP, mm day-1 4.15 4.42 4.86 4.51 3.47 2.94  

         

30 year Rain, mm 120 101 102 74 82 82 117 

 Tmean, oC 21 25 27 26 22 16 10 

* GDD: growing degree days with 15.6 oC base, ETP: potential evapotranspiration data that were calculated using 

Turc equation (equation 2) from 19 July 2013 (7 May 2014) to 30 November 2013 (5 October 2014), IW: irrigation 

water applied by the farmer. The 30-year mean data collected from the closest weather station (National Climate 

Data Center, 2015). 
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Table 3-3. Summary of satellite images collected for this study from Landsat 8.  

**date of acquisition DAP* Sun Azimuth Sun elevation 

4/13/13  139.84 57.49 

4/29/13  135.09 62.39 

5/15/13  129.23 65.93 

10/6/13 129 154.71 45.64 

10/22/13 145 158.47 40.34 

11/7/13 161 160.57 35.42 

12/25/13  158.58 27.63 

2/27/14  148.12 40.52 

3/31/14  142.28 52.54 

4/16/14  138.33 58.15 

5/2/14  133.18 62.77 

5/18/14 13 127.15 65.99 

6/19/14 45 118.16 67.77 

7/5/14 61 118.34 66.77 

7/21/14 77 122.04 64.93 

8/6/14 93 128.27 62.30 

8/22/14 109 135.73 58.90 

9/23/14 141 149.77 49.84 

* DAP: days after planting, SD: standard deviation.  

** For all images the path and row were 23 and 35, respectively. 

  



113 

Table 3-4. Correlation coefficient between cotton lint yield data (2013 and 2014 cropping seasons), soil properties 

at 4 depths, and fertilizer application.  

  2013     2014    

Layer 1 2 3 4 total 1 2 3 4 total 

*BD, g cm-3 -0.16 -0.04 -0.09 -0.07  0.00 -0.23 -0.49 -0.18  

VWC, cm3 cm-3 0.22 0.08 0.03 0.12  0.47 0.51 0.46 0.51  

Sand, % -0.12 -0.03 -0.03 -0.08  -0.44 -0.52 -0.50 -0.53  

Clay, % 0.16 0.03 -0.03 0.01  0.40 0.44 0.42 0.47  

Silt, % 0.07 0.03 0.06 0.10  0.42 0.53 0.51 0.53  

θ33 0.18 0.06 0.05 0.12  0.40 0.50 0.52 0.51  

θ1500 0.19 0.05 0.01 0.11  0.40 0.48 0.48 0.50  

ECa (shallow), mS m-1     0.12     0.49 

ECa (deep), mS m-1     0.08     0.58 

P, Mg ha-1     -0.02     0.07 

k, Mg ha-1     -0.11     -0.23 

* θ33 and θ1500: volumetric water content at matric potential -33 and -1500 kPa, respectively (predicted as explained in chapter 

2); VWC: volumetric water content at the time of sampling. Layer 1, 2, 3 and 4 were from 0-25 cm, 25-50cm, 50-75 cm and 75-

100cm, respectively. ECa shallow and deep readings represented approximately 0-30 and 0-90 cm of soil profile, respectively. 
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Table 3-5. The correlation coefficients between field-measured cotton lint yield maps and remotely sensed maps of 

crop indices.  

Year Date *DAP GNDVI NDVI SR 

2013 6-Oct 129 0.30 0.30 0.26 

 22-Oct 145 0.21 0.21 0.19 

 7-Nov 161 0.03 0.02 0.01 

2014 18-May 13 0.28 0.29 0.30 

 19-Jun 45 0.05 0.11 0.09 

 5-Jul 61 0.40 0.45 0.44 

 21-Jul 77 0.63 0.67 0.68 

 6-Aug 93 0.82 0.82 0.81 

 22-Aug 109 0.74 0.74 0.73 

* DAP: days after planting; NDVI, GNDVI and SR from Equations 3, 4 and 5, respectively. 
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Table 3-6. Descriptive statistics on yield data (Mg ha-1) at the field of study. 

Year Crop Mean SD 

2007 Corn 7.137 4.158 

2008 Corn 3.420 0.903 

2009 Soybean 3.221 0.860 

2010 Cotton 0.947 0.306 

2012 Cotton 0.913 0.494 

2013 Cotton 0.871 0.329 

2014 Cotton 1.244 0.493 
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Part 4: Toward site-specific irrigation management in west 

Tennessee 
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Abstract 

Irrigation management has evolved into a top priority issue since demand for water is growing while available fresh 

water resources are limited. Collecting site-specific data has become feasible through precision farming equipment. 

Robust data mining approaches are needed in order to convert raw data to useful information which then could be 

used by farmers to enhance irrigation management and improve water use efficiency. This study consists of two 

parts aiming at delineating irrigation management zones and evaluating different uniform and variable rate cotton 

irrigation strategies. In the first part different clustering methods, including k-means, ISODATA and Gaussian 

Mixture, were selected to delineate irrigation management zones. In addition, a new zoning method, based on 

integer linear programming, was designed and evaluated for center pivot irrigation systems with limited speed 

control capability (i.e. pie shape zoning). The soil available water content (from second chapter) was used as the 

main attribute for zoning while soil apparent electrical conductivity (ECa), space-borne satellite images and yield 

data were required as ancillary data. A good agreement was observed among delineated zones by different clustering 

methods. The new zoning method based on integer linear programming explained up to 40 % of available water 

content variance underneath center pivot irrigation systems. The ECa achieved the highest Kappa coefficient (=0.79) 

among ancillary attributes, hence exhibited a considerable potential for irrigation zoning. Within the second part of 

this study, some novel water production functions (WPFs) were established and evaluated. WPFs (i.e. mathematical 

relationships between applied water and crop yield) are useful tools for irrigation management and economic 

analysis of yield reduction due to deficit irrigation. A two-year cotton irrigation experiment (2013-2014) was 

implemented and k nearest neighbors (k-NN), multiple linear regression, and neural networks were selected to derive 

site-specific WPFs. The site-specific k-NN WPFs showed the highest performance with root mean square error 

equal to 0.131 Mg ha-1 and 0.194 Mg ha-1 in 2013 and 2014 cropping seasons, respectively. The result showed that 

variable rate irrigation with pie shape zones could enhance cotton lint yield under supplemental irrigation when 

field-scale spatial soil variation is significant. The temporal changes in climate and rainfall patterns, however, had a 

great impact on cotton response to irrigation in west Tennessee, a moderately humid region with short season 

environment.  
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Abstract 

This study aimed at investigating the performance of multiple irrigation zoning scenarios on a 73 ha irrigated field 

located in west Tennessee along the Mississippi river. Different clustering methods, including k-means, ISODATA 

and Gaussian Mixture, were selected. In addition, a new zoning method, based on integer linear programming, was 

designed and evaluated for center pivot irrigation systems with limited speed control capability. The soil available 

water content was used as the main attribute for zoning while soil apparent electrical conductivity (ECa), space-

borne satellite images and yield data were required as ancillary data. A good agreement was observed among 

delineated zones by different clustering methods. The new zoning method explained up to 40 % of available water 

content variance underneath center pivot irrigation systems. The ECa achieved the highest Kappa coefficient (=0.79) 

among ancillary attributes, hence exhibited a considerable potential for irrigation zoning.  

Keywords: apparent electrical conductivity, integer linear programming, remote sensing, soil water retention, 

unsupervised clustering. 
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1. Introduction  

1.1 Precision farming and management zone delineation 

In conventional agriculture each field is considered as a uniform unit, by purposely ignoring the heterogeneity across 

the field, thereby decision-making is based on an estimation of average conditions. The motivation for site-specific 

farming was first addressed by researchers during the late 80s and early 90s (Arslan and Colvin, 2002). As such, 

precision agriculture (PA) methodology is a way to look at field management by taking the within field variation 

into account and incorporating that variability into management decisions. Within-field heterogeneity is caused by 

both temporal and spatial variation of a variety of factors such as climate, topography and biologic activity (Córdoba 

et al., 2013). 

A management zone (MZ) is a sub-region of a field that is relatively homogeneous with respect to soil-

landscape attributes. It is expected that variable rate application across MZs will help by saving the resources and 

optimizing yield (Schepers et al., 2004). Protecting the environment and keeping agriculture sustainable may also be 

achievable through precision farming. Sensor-based and map-based approaches are two major methods to practice 

variable-rate application. In the sensor-based method, a real time decision on application rate is made using data 

collected via sensors and a pre-developed application algorithms. In the map-based method, application maps are 

prepared using site-specific information such as yield data and soil data prior to implementation. It is critical to 

select appropriate attribute(s) and method to delineate robust zones (Thöle et al., 2013). 

A field can be zoned based on a single soil-crop variable or multiple attributes which are expected to affect 

yield (Khosla et al., 2010). Yield maps, topography, satellite photographs, canopy images and soil apparent 

electrical conductivity (ECa) are among suggested attributes to delineate MZs. Application of remote sensing is 

especially attractive because it is noninvasive and relatively inexpensive (Schepers et al., 2004). Yield maps are 

useful sources of information reflecting within-field variation. However, some difficulties have been reported to 

delineate zones solely by yield maps (Khosla et al., 2010). Temporal inconsistency among yield maps from year to 

year is probably the main reason causing this problem. Schepers et al. (2004) reported that temporal climate 

variability in an irrigated cornfield significantly affects yield spatial variability from year to year. Combining yield 

data with other ancillary information or averaging yield data over years can help explain spatial variation better and 

in turn can provide more trustable zones. Promising results have been reported by the studies that have utilized 
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several years of yield data to create MZs. However, stability of such zones has to be tested for each individual field 

(Khosla et al., 2010). Calculating temporal variance can be helpful to verify zone stability (Basso et al., 2012).  

There are some methods to screen potential attributes regarding their importance. Hornung et al. (2006) 

suggested assigning different weights to individual layers based on their importance to the variation in crop yield. 

Principal component analysis (PCA) can be utilized to linearly transfer original variables to new independent ones. 

Researchers apply this technique to understand the characteristics of a data set along with relative importance of 

each individual variable (Fraisse et al., 2001). Finally, the most important principal components will be used to 

delineate MZs.  

There are several methods to delineate MZs. Applying unsupervised clustering techniques and zoning via user-

defined thresholds are the main procedures. Clustering techniques group similar data points (cells), based on their 

inherent structure, into distinct classes. Methods such as k-means and fuzzy k-means have been widely used to 

identify MZs (Córdoba et al., 2013). These methods usually produce separated oval shape zones across a field. The 

software MZA was developed by Fridgen et al. (2004) for delineating MZs. The MZA uses fuzzy k-means for 

zoning and tests the result to evaluate how many zones to create in a given field. More recently, Zhang et al. (2010) 

developed a web-based decision support system for zoning using satellite imagery and field data. Moral et al. (2010) 

used regression kriging, PCA and fuzzy cluster classification to delineate MZs using soil texture information and 

electrical conductivity as ancillary data. Recently Cid-Garcia et al. (2013) proposed an integer linear programming 

MZ delineation method to make rectangular shaped zones which facilitates the work and operation of machinery. 

 

 

1.2 Irrigation management zones delineation 

Water has become the most valuable input for agriculture across the world. There has been a significant conversion 

from rainfed to irrigated production in humid regions as a safe guard against unpredictable severe drought periods 

within a cropping season which can cause yield reduction in such regions. At the same time, agriculture is under a 

great pressure to enhance its water use efficiency as other sectors such as industry and urban areas are demanding 

more water (Evans et al., 2013; Daccache et al., 2015). When within field soil spatial variation is significant, 

variable rate irrigation (VRI) comes into play as an engineering solution to manage spatial allocation of applied 

water through irrigation. Evidence exists in literature showing VRI could enhance water use efficiency and/or yield. 
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Hedley et al. (2009) mentioned up to 26 % annual water saving by VRI comparing to conventional uniform 

irrigation. King et al. (2006) reported 4% higher potato tuber yield (statistically not significant) under VRI in 

comparison to uniform irrigation.  

Precision irrigation center pivots have been commercially available for a while yet their adoption by farmers 

has been slow to develop. The prime drawbacks of VRI systems are high capital costs of implementation and 

management which is hard to rationalize considering energy and water saving at current price (Evans et al., 2013). 

Most of the available center pivots, however, have control panels with speed control module, meaning farmers can 

vary the irrigation across their fields to some extent at no extra cost, if it is needed. Changing the pivot travel speed 

enables putting some pie shape zones where speeding the system up provides less time to irrigation and slowing the 

system down increases the quantity of applied irrigation at the selected pies. 

There is a critical need to dynamically develop irrigation MZs in an accurate and inexpensive manner (Evans et 

al., 2013). Delineating zones for irrigation management is challenging. Soil physical and hydraulic properties govern 

plant available water and thereby directly affect irrigation scheduling. Unfortunately hydraulic properties of soil are 

not readily available at a field-scale to be used for delineating irrigation MZs. There is evidence in the literature that 

easily collected ancillary data may be spatially correlated to soil physical and hydraulic properties, thus be useful for 

irrigation zone delineation. In irrigation scheduling, plant available water is calculated within the effective root zone 

which expands to deeper soil layers as the cropping season progresses. If in depth soil variation is significant at the 

field-scale, theoretically, the spatial arrangement of irrigation MZs may change during the growing season. This is 

not, however, in agreement with the usual practice of static MZs sometimes for years. Given the limitation in 

number, size and location of speed control pie shape zones, an optimization procedure is needed to find the best 

combination of pies across a field.  

The objectives of this study were: (i) to evaluate the performance of some zoning algorithms on an irrigated 

field with significant spatial soil variation located in west Tennessee (ii), to investigate the usefulness of proximal 

data, including ECa and space-born satellite images, to delineate irrigation MZs, (iii) to analyze stability of irrigation 

MZs within growing season in respect to soil available water content, and (iv) to develop and evaluate an irrigation 

zoning method for center pivot systems with speed control capability using integer linear programing technique.  
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2. Material and Methods 

2.1 Field of study 

An irrigated agriculture field, approximately 73 ha located in west Tennessee along the Mississippi river, was 

selected (Figure 4-1). The field was located in a short season, semi-humid region with high rainfall potential during 

a cropping season but some dry periods when supplemental irrigation is used to fulfill the crop water requirement. 

There were two center pivot systems for irrigation covering majority of the field with some overlap in their 

coverage. Cotton was planted in 2012, 2013 and 2014 cropping seasons in that field. The spatial variation in soil 

physical and hydraulic properties was significant (Table4-1 and Figure 4-2) which made this field a perfect case for 

the purpose of our study. 

A total of 400 undisturbed samples were collected from 100 sampling locations at 4 different depths, 0-25 cm, 

25-50 cm, 50-75 cm and 75-100 cm. The soil texture components as well as soil bulk density and volumetric water 

content were measured in lab. More details on sampling procedure and lab analysis is provided in chapter 1. The soil 

water retention curve for samples and high resolution soil available water content (AWC) maps were predicted by 

using pseudo continuous pedotransfer function (Haghverdi et al, 2012, 2014) and co-kriging (chapter 2). There was 

a decline in soil water holding capacity (i.e. water content at matric potential -33 kPa, θ33) by depth (Table 4-1) 

which is in agreement with the expansion of the sandy regions across the field moving from surface to deeper layers.    

 

2.2 Proximal data 

It is appealing to delineate MZs by proximal data because they are low in cost, easy to collect and usually 

noninvasive. In this study soil ECa and space-borne satellite photos were considered as proximal information for 

zone delineation. The soil ECa measurements from shallow (i.e. ECS, 0-30 cm) and deep (i.e. ECD, 0-90 cm) layers 

were collected using a Veris 3100 (Veris Technologies, Salina, KS) instrument on March 20, 2014 (chapter 1). The 

ECS data showed a normal distribution but ECD information were log transferred to have a roughly Gaussian 

distribution. Then, the ECS and ECD data were interpolated using kriging to cover the entire field (with 2 m spatial 

resolution) with the exception of a drainage pathway starting from west of the field and ending to the southeastern 

corner of the field.  

The satellite images were obtained from Landsat 8 Operational Land Imager (OLI) sensor during 2013 and 

2014 (through http://earthexplorer.usgs.gov/). A total of 19 cloud-free images were selected for statistical analysis. 
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The selected images contain the reflectance at multiple bands (i.e. quantized and calibrated scaled Digital Numbers 

(DN)). The reflectance of a canopy and bare soil will change during a cropping season as a plant goes through 

different growth stages and soil water status is changed. The band 8, panchromatic band, with wavelengths ranged 

from 0.50- 0.68 µm for Landsat 8 has the highest spatial resolution (i.e. 15 m ×15 m spatial resolution) within 

available bands, thus was selected for this study. The field of study contained a total of 2320 cells. 

The cotton yield data were available from 2010 to 2012 cropping seasons. First, the raw yield data were 

cleaned. More information on cleaning process could be find in chapter 1. Then, kriging was required to interpolate 

yield data (with 2 m spatial resolution) across the field with the exception of the drainage path. Finally, the yield 

data were standardized for each year and averaged across years to make a single yield map. 

 

2.3 Management zone delineation 

Multiple zoning strategies were required and evaluated through two phases (Table 4-2). In phase one, the entire field 

was zoned. The ECa and reflectance data (i.e. DN) were tuned to have a range between 0 and 1 by dividing each cell 

value by the overall maximum values across the field from all data points/cells. The ECa data were chosen as the 

prime attribute for zoning because they showed a good correlation with soil physical and hydraulic properties of the 

soil within the field of study (chapters 1 and 2). Three unsupervised clustering techniques, i.e. k-means, ISODATA- 

maximum likelihood and Gaussian mixtures, with different combination of ECa data were examined. Unsupervised 

clustering techniques group the data based on their inherent structure as opposed to supervised clustering methods 

which require a priori knowledge on data for training. More information on each clustering technique is provided 

later in this paper. Given the performance of the zoning strategies and distribution of the digital reflectance data, 

only k-means was required for zoning using satellite images.  

The within-season temporal stability of MZs was also investigated in phase one through a user-defined zoning 

strategy considering AWC as input. The effective root zone (0-100 cm) was defined as a depth in which crop 

absorbs most of its water requirement. To mimic the dynamic of effective root growth, four crop available water 

maps were created for 0-25, 0-50, 0-75 and 0-100 cm. Each map, then, was divided into user-defined MZs and the 

spatial arrangement of zones were compared against each other.  

In phase two, we focused on the area underneath the center pivot irrigation systems for which we developed 

and evaluated a new zoning approach using integer linear programing (ILP). The yield data were also included to 
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test how efficient this variable was in the zone delineation process. Most center pivot irrigators prefer to have less 

than 10 MZs in a field (Evans et al., 2013). Moreover, a majority of available center pivots at west Tennessee cannot 

put more than 10 pies underneath a center pivot system. Therefore, clustering procedures were repeated to delineate 

from 2 to up to 10 MZs.  

Two software products were used for clustering: Matlab R2015a (MathWorks, Inc., Natick, Mass.) and ArcGIS 

10.2.2 (ESRI Inc., Redlands, California). 

 

2.3.1 K-means 

The k-means is one of the most widely used methods for clustering due to its simplicity and efficiency. The k-means, 

in an iterative process, tries to partition data into k groups so that the differences among the features in a group, over 

all groups, is minimized. It moves the observations between clusters and monitors the sum of distances from each 

observation to the center of its cluster until group membership stabilizes. The k-means++ algorithm was used to 

assign initial centers to the clusters. This algorithm chooses the cluster centers in a random manner yet favors 

spreading them out by a distance-based weighting process (Jain, 2010; Jain et al., 1999; ESRI, 2014). The Euclidean 

metric was used to obtain distances. No spatial constraint was considered.  

 

2.3.2 ISODATA - Maximum Likelihood 

A well-known extension of k-means is called Iterative Self-Organizing Data Analysis Technique (ISODATA). The 

ISODATA starts with randomly assigning data into different classes. Then, over the course of an iterative process, 

the algorithm changes the membership of data points and tries to find the optimum clusters where the Euclidian 

distance between data points to cluster center is minimized. ISODATA applies some heuristics to adjust the number 

of clusters; clusters could be removed, divided or merged at the end of each iteration based on similarities between 

neighboring clusters and specified minimum class size (Jain, 2010; Jain et al., 1999; ESRI, 2014). In this study, 

functionality of ISODATA was combined with Maximum Likelihood which assigns cells to classes using Bayes' 

theorem. This method assumes that the distribution of a class sample is normal, hence uses mean vector and the 

covariance matrix to assign each cell to a class based on statistical probability.  
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2.3.3 Gaussian Mixture Model 

A Gaussian Mixture (GM) model is a parametric probability density function which is often used for soft data 

clustering. If clusters have different sizes and correlation within them, GM may be more appropriate option for 

clustering than k-means. This method assumes data belong to a mixture of normal density components with 

unknown parameters. The GM parameters are estimated using an expectation maximization algorithm by assigning 

posterior probabilities to each component density. Each cluster corresponds to one of the Gaussian components, 

hence data are assigned to clusters such that posterior probability is maximized (Reynolds, 2009; Mathworks, 2014). 

 

2.3.4 Integer linear programing 

A linear programming (LP) problem is an optimization (maximization or minimization) problem of a linear 

objective function, subject to linear equality and/or inequality constraints. If some or all of the variables are limited 

to be integers, it is called an integer linear programing (ILP) problem. The LP has been a very popular technique to 

irrigation management and water resources system analysis and planning (Singh, 2012). Recently, the ILP has been 

successfully used for rectangular shape MZ delineation and crop planning optimization problems by Cid-Garcia et 

al. (2013; 2014).  

The area underneath each center pivot irrigation system was divided into 360 pies each 1 degree wide. Then, a 

spatial join process was implemented to identify data points (cells) within each pie for each attribute. A total of 

129,241 zones was created by combining 1 degree pies (Table 4-3). The standard deviation was calculated for data 

points within each zone with respect to the target attribute.  

An integer linear programming model was designed to find the optimum spatial arrangement of pie-shape 

zones underneath each pivot. The general mathematical model was as follows: 
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minLlx ≥  (4) 

{ }1,0∈ix   

where xi is the decision variable for zone i, σ is the standard deviation for attribute k within zone i, ak is a user-

defined weighting factor based on the relative importance of an attribute in zoning process, m is the total number of 

attributes, n is the total number of the zones, l is the length of each zone in degrees, cij is a coefficient equal to 1 if 

angle j is covered by zone i otherwise equal to 0, Pmax is the maximum number of desired zones.  

Objective function (1) minimizes a weighted average of standard deviations across the zones. In this study we 

did not use more than one variable at each optimization attempt, thus k and ak were set to one. Restriction (2) 

ensures that each degree is covered by only one zone and selected zones cover the entire area underneath the 

irrigation system. Constraint (3) ensures that total number of the pies is less than the maximum desired number 

which was set to 10 in this study. Constraint (4) ensures that the length of the pies is greater than the minimum 

desired value which was chosen to be 5 degree. For a pie, the decision variable of the model, xi, was 1 if the pie was 

selected and 0 otherwise. 

 

2.4 Performance Evaluation 

The overall within-zone variance of AWC was calculated to assess zoning strategies and find the optimum number 

of zones. The AWC variances for each zone were weighted considering the zone-area (Fraisse et al., 2001): 
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where S2
z is weighted variance for zone z, AWC is the soil available water content for cell i, m is mean of soil 

available water values in zone z, nZ and nT are number of cells in zone z and total number of cells across field, 

respectively.  

Total within-zone AWC variance across field (ST
2) was obtained as the sum of weighted within-zone AWC 

variances: 
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The better zoning scenario was selected as the one with minimum total AWC standard deviation. For the ILP 

method, the kappa coefficient (Cohen, 1960) was also calculated to measure inter-classification agreement of 
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different zoning strategies by ancillary data against optimum zones using AWC data. The kappa coefficient equals 0 

and 1 when the agreement is due to chance alone or when there is perfect agreement, respectively. A positive 

coefficient indicates agreement exceeds chance and the magnitude of coefficient reflects the strength of agreement. 

 

3. Results   

3.1 Zoning using ECa and satellite images 

Figure 4-3 depicts the variance of AWC as well as average yield within zones for a different number of MZs and 

multiple clustering methods. The AWC variance across the field, not divided into zones, was chosen as a reference 

(i.e. one MZ with 100 % variance). For k-means, up to 11 %, 19 % and 16 % of variance was explained considering 

ECS, ECD and ECS plus ECD as input, respectively. Considering more than 4 zones only reduced the variance by 

an additional 1% (ECS input), 1% (ECD input) and 2% (ECS+ECD inputs). For ISODATA-ML, variance was 

reduced by 11%, 19% and 17 % considering ECS, ECD and ECS plus ECD as input, respectively.  Given more than 

4 zones, the variance decreased by an additional 1% (ECS input), 1% (ECD input) and 4% (ECS+ECD inputs). For 

GM method, 10% (ECS input), 17% (ECD input) and 16% (ECS+ECD inputs) of the variance reduction occurred 

by dividing the field into 4 zones while further division to up to 10 zones only decreased the total variance by an 

additional 1% (ECS input), 2% (ECD input) and 5% (ECS+ECD inputs). 

Adding more than 4-5 zones only slightly improved the clustering results. In fact, most of the AWC variance 

was explained by dividing the field into two MZs. This is in line with changes observed in within-zone yield 

average; when the number of zones increased to more than 4-5, one starts to see more zones with similar 

productivity.  The clustering methods performed similar. The highest reduction in variance was observed for GM 

with 10 zones and ECS plus ECD as inputs. However, considering 4 as the optimum number of zones, k-mean and 

ISODAT-ML performed slightly better than GM. Noting this similarity among results of clustering methods and 

given the simplicity and ease of use of k-means method, it was decided to only use it for the rest of the unsupervised 

clustering tasks during this study. Aggregating ECS and ECD did not decrease the within-zone variance of AWC for 

k-means and ISODATA-ML procedures. For an optimum number of zones (n= 4), the lowest variance was observed 

when ECD was used as an input. Therefore, the ECD was considered an attribute of high importance for explaining 

the variability found in AWC for the field of study.  
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Figure 4-4 illustrates the gray-scale panchromatic images taken by Landsat 8 during 2013 and 2014. Initial 

assessment of satellite images revealed the reflectance value of cells adjacent to the boundaries of the field were 

affected by the roads (located at north and west parts of the field) and trees (located at south and east parts of the 

field) and in turn influenced the spatial distribution of the entire field. Therefore, the border cells were filtered out 

from satellite images prior to running clustering analysis. The cells within drainage pathways were also removed 

from satellite images since they were missing from other attributes too. Moreover, they caused the same problem as 

border cells. The field was planted (harvested) in cotton on May 30, 2013 (December 2-3, 2013) and on May 5, 

2014 (October 18-20, 2014), meaning some of the satellite images had been taken from bare soil but some from the 

cotton canopy in different growth stages. There were moderate temporal changes in spatial patterns of satellite 

photos. However, it was possible to visually associate brightness level to AWC spatial variation in a good number of 

images (i.e. photos taken on April 13, 2013; April 29, 2013; October 22, 2013; August 6, 2014; August 22, 2014; 

and September 23, 2014).  

The coarse-textured soils with low AWC were mostly located over three spots across the field: close to the 

southern border of the field mostly outside of the outer pivot circles, (ii) underneath the eastern pivot approximately 

from the pivot point up to the right edge of the field, and (iii) a region in the northwestern part of the field above the 

drainage path adjacent to the northern border (chapters 1 and 2). In general, very bright cells (i.e. cells with high 

reflectance value/ digital number) were mostly associated with coarse-textured soils with low AWC values while 

darker-colored cells (i.e. cells with low reflectance value/digital number) were associated with higher AWC soils. 

The photo acquired in August 6, 2014 revealed considerable spatial agreement with our understanding of AWC 

patterns. Factors such as ponding water due to rainfall (i.e. photos taken on May 15, 2013; December 25, 2013; 

February 7, 2014; March 31, 2014; April 16, 2014, May 2, 2014; May 18, 2014; October 25, 2014 and December 

12, 2014) and wet soil due to an irrigation event (i.e. photo taken on July 21, 2014) affected the spatial arrangement 

of satellite photos.  

To understand temporal changes, the distribution of standardized brightness values for the satellite photos are 

illustrated in Figure 4-5 where similar distributions were roughly grouped by visual assessment. Coarse textured 

soils appeared as a long right tail in satellite photos grouped in panel A and D, while spots with ponding water 

formed a long left tail for images in panel C and caused negative skewness. The satellite images with less clear 

spatial pattern formed panel B. Images with no vivid spatial pattern showed high positive Kurtosis (panel E). The 
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image taken April 16, 2014 did not follow the distributions observed with the other images; with negative kurtosis it 

depicted both ponding water and coarse soils but did not well represent the entire spatial arrangement of AWC 

across the field. The better satellite images seemed to follow a log normal distribution (panel D) which was the 

distribution of raw ECD data as well. 

Figure 4-6 shows the clustering results in terms of average within-zone AWC variance using satellite images as 

input. In 2014, images taken August 6 and September 23 showed the highest performance with 21 % and 14 % 

reduction in AWC variance, respectively. In 2013, images taken November 7 and April 29 exhibited the better result 

by explaining 12% and 10% of AWC variance, respectively. Identical to what we observed for ECa data, adding 

more than 4-5 zones only slightly improved explaining AWC variance. On average, the abovementioned satellite 

images with acceptable performance, considering more than 4 zones only helped to explain an additional 2% of 

AWC variance. The zones delineated from rest of the images explained less than 10 % of the AWC variance. The 

lowest performance belonged to images taken 19 July and 12 December 2014 which explained only 1 % of the 

AWC variance. In 2013, images taken on 22 October and 25 December exhibited the lowest efficiency by 

explaining 4 % and 3 % of AWC variance, respectively. With a few exceptions, our visual assessment of reflectance 

distribution (Figure 4-4) turned out to match the efficiency of images in zone delineation (Figure 4-5). Overall, the 

highest performance was observed for images in groups D and A with an average 11% and 10% reduction in 

variance, respectively. In contrast, images in groups E and C showed the lowest potential for clustering by only 

explaining 3 and 4 percent of AWC variance, respectively. The higher number of cloud free images available 

contributed in better zoning results in 2014 compare with 2013. We also attribute this to difference in field 

conditions; in 2013 planting was delayed due to cold weather and wet soil which affected cotton growth and 

maturity and also diminished the yield contrast across the field which is usually expected to occur between soils 

with high and low water holding capacities.  

Figure 4-7 shows the optimum MZs (n= 4) using different clustering methods. Figure 4-8 depicts the average 

standardized yield for optimum number of zones (n= 4) for k-means approach. There was a good similarity among 

MZs delineated by different algorithms which also matched the spatial arrangement of soil physical and hydraulic 

properties (chapters 1 and 2). The delineated zones by k-means and ISODATA-ML were similar which was 

expected due to similarity between these clustering methods. The dark blue (zone 4) and yellow (zone 1) colors 

represent soils with low and high AWC, respectively and the other two zones illustrates the transient between these 
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extremes. The trend in average yield data across MZs matched the spatial arrangement of soil physical and hydraulic 

properties. For instance, higher yield belonged to soils with higher AWC and somewhat to the strip surrounded the 

drainage path which had good drainage condition hence did not suffer from excessive water content after heavy 

rainfall events which is likely to happen in west Tennessee. The yield on coarse-textured soil was 20 % below 

average while soils with higher AWC produced 10 % above average yield. In practice, small spots within clusters 

could easily be removed (for example by using a moving average window) to have more homogenous zones for 

variable rate applications. 

 

3.2 Spatiotemporal changes in soil available water content  

Temporal changes in spatial arrangement of user-defined irrigation MZs is shown in Figure 4-9. The selection of 

breaking levels between zones was arbitrary. We chose 2 cm water within effective root zone as the target range. 

The highest spatial change took place from first thematic map (0-25 cm) to second one (0-50 cm). After that, there 

was a good agreement among thematic maps up to 100 cm. This trend suggests the possibility of having different 

irrigation zones early in the cropping season when the crop is only using the available water from surface soil. 

 

3.3 Management zone delineation, phase two 

Figure 4-10 depicts the performance of ILP and k-means methods to delineate MZs underneath center pivots using 

different input attributes. The AWC variance for each pivot was considered as reference (100% level) which was 

equal to one MZ or uniform irrigation. Given AWC as input and k-means as clustering method, for both pivots 

within zone uniformity increased by adding more zones yet changes were minor as the number of zones became 

more than 4-5. The same trend was observed when ancillary data (i.e. ECa, reflectance value, and yield) were used 

for clustering but was less pronounced. This is in line with the observed trend when the entire field was clustered to 

MZs (i.e. phase one). Most of the reduction in AWC variance was obtained by dividing the pivot into two MZs. 

Given ECD and reflectance values as input, up to 30 % and 15 % of AWC variance was explained underneath the 

east and west pivots, respectively. Considering average yield as an input for clustering only helped to explain less 

than 10 % of AWC variance. Given AWC as input and ILP as the zoning method, up to 30 and 40 % of AWC 

variance was explained at the east and west pivots, respectively. In reality, this is the improvement expected to occur 

from uniform irrigation to VRI with limited speed control. Considering ILP as zoning method, both ECD and 
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reflectance values were able to efficiently zone both pivots. The average yield, however, performed weaker than 

other inputs for clustering at the east pivot but was as effective for the west pivot. The difference between ILP and k-

means for optimum number of zones (n=4) was about 35 % for both pivots in respect to reduction in AWC variance. 

This represents difference expected between VRI with limited speed control and a hypothetical VRI with ability to 

irrigate each 4 m2 cell individually. The ability of a real precision irrigation system in reducing AWC variance is 

expected to be somewhere in between. 

Figure 4-11 represents the optimum irrigation MZs (n =4) for both pivots considering different inputs and 

clustering methods. The user-defined MZs using AWC data were considered as the reference to evaluate the 

performance of other zoning strategies using k-means. The same was true for zoning by ILP model when zones 

delineated using AWC were considered to show the optimum arrangement of pies and other zoning configurations 

were compared against it. For ILP with AWC as input, (i) zones 1-4 and zones 3-4 covered mostly coarse soils with 

low AWC underneath east and west pivots, respectively; (ii) zones 3 and 2 underneath east and west pivots, 

respectively, mostly consisted of fine-textured soils with high AWC; (iii) other zones (zone 2 and 1 underneath east 

and west pivots, respectively) contained a mixture of soils with high and low AWC.  

The spatial arrangement of optimum zones provided by ILP techniques was not identical among models with 

different ancillary data as input (Figure 4-10). By visual assessment, there is a good and moderate agreement 

between pie zones using ECD and Band 8, respectively and that of AWC but using yield for zoning resulted 

somewhat different zones. The same trend occurred for the west pivot. The Kappa coefficient (Figure 4-12) 

confirmed our visual assessment. In the case of the east pivot ECD and yield data showed the highest and lowest 

kappa coefficient, respectively. The same trend was observed in the case of west pivot, but there was a consistent 

reduction in Kappa coefficient for all attributes in comparison with that of east pivot. It is clear that ECD and 

satellite images were good candidates for irrigation zone delineation as opposed to yield which exhibited less 

potential. This difference could be related to the spatial resolution of different soil attributes. The ECa data were the 

most exhaustive data, so carried information on soil spatial variation at a very fine scale. The satellite images were 

not point measurements but an integration of reflectance over 15 by 15 m cells. The AWC data were interpolated 

from soil cores.  
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4. Discussion 

Recent research in precision agriculture has greatly focused on variable rate application and MZ as a method to 

enhance the efficiency of crop inputs usage. However, the phrase “management zones” remains uncertain unless 

additional information is included to clarify the goal in sub-dividing the field (Kitchen et al., 2005) which affects our 

choice of clustering technique and information used for zoning. The MZ delineation for variable rate application of 

fertilizer and seeding has extensively been studied in recent years. In contrast, there are only a handful of studies on 

zoning for variable rate irrigation. Given the ever increasing demand for fresh water, moving toward precise 

application of water for irrigation is unavoidable. The resulting zones should be simple, stable, accurate and 

inexpensive to identify, and enable within-field spatial variation to be managed (Khosla et al., 2010). 

 

4.1 Management zones delineation methods 

Guastaferro et al. (2010) compared different algorithms for the delineation of management zones and mentioned 

different pros and cons for each method. We observed a good agreement among delineated zones using k-means, 

Gaussian mixture and ISO-ML methods. It seems for a field with high spatial structure, all well-known clustering 

methods are able to recognize an accurate pattern for irrigation MZs in a substantial way. The ILP zoning strategy, 

introduced in this study, also showed promising results. This method was designed to delineate pie shape zones for 

center pivots with limited speed control ability. There are several benefits associated with this zoning method. First, 

most of the available center pivots located in west Tennessee and other irrigated areas across US have suitable 

control panels to create pie shape zones, so there is no need to upgrade available pivots in order to make use of this 

method. Second, applying ILP showed a significant decline in within-zone AWC variance, meaning it will help 

make better site-specific irrigation decisions, and improve the choice of timing and amount of irrigation, which in 

turn enhances WUE. In addition, it could promote VRI and act as a bridge to adopt more advanced precision 

irrigation systems if needed.  

 

4.2 Optimum number of zones 

It is extremely important to find the optimum number of irrigation MZs. We found 4-5 MZs to be sufficient to 

explain within field variability of AWC. By changing the number of zones from 1 to 10, the total within-zone 

variance drastically decreased but approached an asymptotic value slowly as the number of zones continued to 
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increase. A similar trend for variance reduction was found by Zhang et al. (2010). Fraisse et al. (2001) delineated 2 

to 6 MZs for two fields located near Centralia, Missouri, and monitored the within zone variance of yield to identify 

the optimum number of zones. They observed a minimum variance for 5 zones when up to 32% of the yield variance 

was explained.  

Delineating irrigation zones is the first step toward site-specific irrigation management. Then, an irrigation 

prescription map needs to be developed before each irrigation event throughout the cropping season. One may only 

use zones as a guide to adjust the timing of supplemental irrigation in west Tennessee, i.e. to delay starting irrigation 

or terminate irrigation earlier in a specific zone(s). A more sophisticated scenario is to calculate the irrigation for 

each zone independently by sensing soil/crop water usage/status. Therefore, over estimating the optimum number of 

MZs would make irrigation scheduling more complicated, time-consuming and costly. On the other hand, under 

estimation of management zones diminishes the irrigating efficiency and may cause yield reduction. There is less 

freedom to explain variability with pie shape zones. It is most likely to have some zones consisting a mixture of soils 

with low and high AWCs. This is an unavoidable problem which is due to the inherent limitation of center pivots 

with limited speed control ability. The critical question is how to manage this variation or which soil to follow 

during irrigation. Answering this question needs quantitative information on crop-soil-water interaction which was 

outside of the scope of this study but is suggested for further investigation. 

 

4.3 Application of proximal data 

The AWC is a logical basis to delineate irrigation MZs since it directly affects both plant growth and yield, and 

irrigation scheduling. According to Fraisse et al. (2001) crop production potential is strongly related to plant 

available water so its productivity can be approximately determined on the basis of soil physical properties and 

topographic characteristics, when topography changes significantly in the field. In the field of study more than 50 % 

of cotton and soybean yield variability was explained by soil physical and hydraulic properties (chapters 1 and 2). In 

practice, however, more easily obtained data should act as a surrogate for AWC information that is more difficult, 

time-consuming or expensive to obtain. 

The ECa data exhibited a considerable potential for irrigation zoning. Moral et al. (2010) also found ECa to be 

a good proximal attribute for high resolution zone delineation. They reported ECD and percent of clay to be 

dominant factors explaining soil spatial variability based on PCA. Kitchen et al. (2005) found ECa a reliable 
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attribute for allocating productivity zones on claypan soil fields. Though less pronounced than ECa, the satellite 

images exhibited a good potential to be used for characterizing spatial variation in field-scale AWC. Our findings 

support the result reported by Guo et al. (2012) who observed a strong relationship between bare soil brightness and 

ECa with soil texture where low ECa and high brightness were associated with lower clay content. In another study, 

Song et al. (2009) used Quickbird commercial satellite data with 2.4 m resolution for MZ delineation and found it to 

be a reliable procedure. The main drawback of proximal sensor measurements is that they are complex and affected 

by multiple soil-crop properties (Corwin and Lesch, 2010). Therefore, they should show similar spatial distributions 

to those of soil physical and hydraulic characteristics, governing soil available water for crop, in order to be 

considered as an effective input to delineate irrigation zones. In addition, timing of capturing photos by satellite 

turned out to affect the practical application of satellite images for field-scale zone delineation. In fact, our results 

demonstrated that temporal variability alters the spatial pattern expressed by Landsat 8 panchromatic band and in 

turn its usefulness as an input to delineate MZs. 

There were some similarities between zones delineated by ECa, satellite images and yield data, but yield data 

indicated less potential for zoning and exhibited some inconsistency. The reason is that different factors affect yield 

in a complex manner. In fact, it is not possible to distinguish between the variety of factors affecting crop growth 

and yield, such as physical and chemical properties of soil, irrigation regimes, pests and diseases and climate, using 

yield maps alone (Corwin and Lesch, 2010). We realized that even when visual assessment of yield maps indicates 

similar spatial arrangement as soil related maps the clustering result may be different. Moreover, for fields with no 

available yield map, using ECa and/or space-borne satellite images represents a great time saving. Averaging yield 

maps across years, as we did in our study, could be a safe guard against temporal changes and an attempt to find 

more stable scheme of yield distribution. On the other hand, if high temporal variance in yield spatial distribution 

exists, averaging yield data across years may mask information and cause misleading interpretation. We averaged 

cotton yield data from 2012 to 2014. In 2012, the field was uniformly irrigated by the farmer but an irrigation study 

was performed in 2013 and 2014. Visual assessment of maps against each other suggested that spatial soil 

differences strongly affected yield patterns during those years, yet this impact was less pronounced for 2013 

cropping season where delayed planting and temperature distribution over the growing season depressed yield and 

influenced its spatial distribution to some extent.   
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4.4 Temporal variability and role of crop 

We examined the necessity of having multiple zoning schemes within a cropping season in our study site. The result 

revealed if in depth soil variation is significant, the spatial arrangement of optimum irrigation MZs may vary within 

a cropping season. There is evidence in literature showing the effect of season to season climate variability in spatial 

arrangement of MZs, hence supporting the idea of dynamic zoning. For instance, Schepers et al. (2004) showed that 

temporal climate variability even under irrigation may change the yield spatial variation. Temporal changes may 

affect the spatial patterns of yield such that no consistent high/low yield zones were observed (Guastaferro et al., 

2010). Rainfall patterns and available heat unit are the prime factors affecting cotton growth and yield in west 

Tennessee with a short season humid environment. For instance, if dry periods at sensitive growth stages occur, soil 

with higher water holding capacity provides better conditions for crop to avoid undergoing water stress, hence 

higher yield is expected for such soil. In contrast, a wet year with unexpected early heavy rainfall may delay 

planting hence reducing the chance for the crop to accumulate enough heat units. In such scenario, soils with high 

AWC may suffer from excessive vegetative growth and unopened bolls by the time of harvesting. Fraisse et al. 

(2001) found that number of MZs for precision farming declined when either enough water was provided throughout 

the growing season or a drought tolerant variety was planned. The optimum number of MZs is also influenced by 

the crop planted (Fraisse et al., 2001). Further study is required to investigate the crop response to water level across 

different soil types as a means to provide crop-specific irrigation MZs. 

 

5. Conclusion 

Precision agriculture is a farming system which uses information technology to do site-specific crop management in 

which decisions on resource application are modified with regard to within field variation of components such as 

soil, water and crop (Whelan and Taylor, 2013). Field-scale spatiotemporal variation is significant in west 

Tennessee, thus variable rate irrigation may enhance water use efficiency and crop yield. Conventional irrigation 

management tries to answer when and how much to irrigate. Given within field soil variation, variable rate irrigation 

management ought to address where to irrigate as well. Delineating management areas within fields is an important 

part of a precision farming system where it is expected that applying identical treatment will cause significant yield 

differences. Methods for delineating MZs vary widely in the information used as well as the techniques for creating 
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the zone boundaries. Use of on-the-go sensors and remote sensing technologies is appealing because it is easy to 

collect these data on a field-scale. 

We evaluated the performance of several clustering methods for zone delineation. We also designed a new 

zoning strategy based on integer linear programming for center pivots with limited speed control ability. We used 

high resolution soil available water maps as standard input to zone the field. We also assessed the effectiveness of 

ECa, space-borne satellite images and yield data for zone delineation. The clustering methods performed similar in 

efficiently dividing the field into relatively homogenies zones in respect to soil hydraulic properties. The introduced 

integer linear programming method offers the optimum zoning strategy for center pivots with limited speed control 

ability to match water input to soil spatial patterns. However, further research is essential to investigate the optimum 

irrigation strategy over pies with a mixture of soils. The results of this study suggested that ECa and satellite images 

may be used to determine site-specific irrigation MZs in west Tennessee if a high spatial similarity is observed 

between these ancillary data with soil hydraulic properties. The spatial and temporal resolution and precision varies 

among different types of ancillary data and affect their efficiency for zone delineation. Temporal variability in soil 

moisture altered expression of spatial variability in space-born satellite images. Yield data did not show a high 

potential for zone delineation. We attribute this to various factors that affect yield in a complex manner and also 

temporal differences in yield data. In practice, farmer knowledge on field conditions could be extremely useful to 

choose the most appropriate data set for zone delineation.  
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Appendix 4: Chapter 4 Figures and Tables 

 

Figure 4-1. Field of study within the state of Tennessee.  
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Figure 4-2. Soil texture distribution for the samples (n= 400) collected from the field of study. 
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Figure 4-3. Performance of clustering methods based on percent reduction in AWC variance and within-zone 

average yield. kM: k-means; GM: Gaussian mixture; ISO: ISODATA-maximum likelihood; 1, 2, and 3: ECS, ECD 

and ECS plus ECD were used for clustering.   
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Figure 4-4. Gray-scale maps of panchromatic spectral band during 2013-2014 from the field of study. 
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Figure 4-5. Distribution of standardized brightness values for panchromatic spectral band during 2013-2014. 
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Figure 4-6. AWC variance against number of zones using different satellite images. Band 8: reflectance value for 

panchromatic band from images taken by Landsat 8.  
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Figure 4-7. Spatial arrangement of MZs. kM2: k-means with ECD as input; ISO2: ISO-ML with ECD as input; 

GM3: Gaussian mixture with ECS and ECD as inputs, kM4: k-means with satellite image (Landsat 8 panchromatic 

band) as input.   
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Figure 4-8. Percent of average yield within MZs clustered with k-means considering ECD as input (bar colors are 

related to the zones in Figure 4-7). 
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Figure 4-9. Within-season temporal variation in user defined MZs considering available water content as input. 
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Figure 4-10. Performance of irrigation MZ delineation methods based on AWC standard deviation reduction. ECD: 

ECa deep; AWC: available water content; Band 8: reflectance value from satellite images taken by Landsat 8. 
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Figure 4-11. Irrigation MZs for center pivot systems located at east and west parts of the field. ILP: integer linear 

programming, Band 8: reflectance values from panchromatic band taken by Landsat 8 satellite; ECD: deep ECa. 
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Figure 4-12. Kappa coefficient for the zones delineated by the integer linear programming (ILP) method. Band 8: 

reflectance values from panchromatic band taken by Landsat 8 satellite; ECD: deep ECa.  
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Table 4-1. Descriptive statistics for soil water content from different soil layers (from chapters 1 and 2). 

Variable* Depth Min. Max. Mean SD** 

VWC, cm m-1 0-25 cm 10.75 59.74 28.35 7.43 

 25-50 cm 7.27 43.12 26.02 10.78 

 50-75 cm 5.98 42.38 21.64 11.08 

 75-100 cm 5.67 45.32 20.18 11.15 

 0-100 cm 3.94 47.61 17.94 8.49 

θ33, cm m-1 0-25 cm 9.86 43.57 29.43 5.83 

 25-50 cm 5.26 47.20 26.03 10.75 

 50-75 cm 4.93 43.54 20.55 11.26 

 75-100 cm 5.38 38.95 17.31 9.71 

θ1500, cm m-1 0-25 cm 7.72 29.61 19.69 4.28 

 25-50 cm 5.23 35.49 16.98 7.22 

 50-75 cm 4.57 29.32 13.14 6.47 

 75-100 cm 4.75 24.52 11.13 5.09 

* VWC: volumetric water content at the time of sampling, θ33: water content at field capacity (-33 kPa); θ1500: water 

content at permanent wilting point (-1500 kPa). 

** SD: standard deviation.  



152 

Table 4-2. Summary of zoning algorithms and attributes. 

 Clustering procedure Attributes 

Phase 1 k-means, ISODATA-ML, GM ECS 

 k-means, ISODATA-ML, GM ECD 

 k-means, ISODATA-ML, GM ECS, ECD 

 k-means Satellite image 

 User defined zones AWC 

Phase 2 ILP, k-means ECD 

 ILP, k-means Satellite image 

 ILP, k-means AWC 

 ILP, k-means Yield 

* GM: Gaussian Mixtures, ISO-ML: Iterative Self-Organizing Data Analysis Technique - Maximum Likelihood, 

ILP: Integer linear programing, AWC: available water content, ECS: shallow ECa, ECD: deep ECa. 
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Table 4-3. All of the pie shape zones underneath a center pivot irrigation system.  

   Pie length  

Start angle 1 2 … 360 

0 0-1* 0-2 … 0-0 

1 1-2 1-3 … 1-1 

2 2-3 2-4 … 2-2 

. . . … . 

. . . … . 

. . . … . 

359 359-0 359-1 … 359-359 

* X-Y: start angle-end angle. 
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Chapter 5: Studying uniform and variable rate center pivot 

irrigation strategies with the aid of site-specific water production 

function 
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Abstract 

Water production functions (WPFs), mathematical relationships between applied water and crop yield, are useful 

tools for irrigation management and economic analysis of yield reduction due to deficit irrigation. This study aimed 

at (i) designing and evaluating site-specific WPFs (using k nearest neighbors, multiple linear regression, and neural 

networks) and (ii) using the best WPF to investigate different cotton irrigation and zoning strategies using integer 

linear programming. A two-year cotton irrigation experiment (2013-2014) was implemented to study irrigation-

cotton lint yield relationship across different soil types. The site-specific k nearest neighbors WPFs showed the 

highest performance with root mean square error equal to 0.131 Mg ha-1 and 0.194 Mg ha-1 in 2013 and 2014, 

respectively. The result indicated that variable rate irrigation with pie shape zones could enhance cotton lint yield 

under supplemental irrigation when field-scale spatial soil variation is significant. The temporal changes in climate 

and rainfall patterns, however, had a great impact on cotton response to irrigation in west Tennessee, a moderately 

humid region with short season environment. The result indicated that site-specific WPFs were useful empirical 

tools for on-farm irrigation research. 

Keywords: cotton, precision agriculture, principle component analysis, variable rate irrigation.   
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1. Introduction  

1.1 Precision farming and variable rate irrigation  

The demand for food and fiber is increasing as the world population grows. Irrigation management has evolved into 

a top priority issue since available fresh water resources are limited. Stabilizing yields and the recent high 

commodity prices are the prime reasons that row crop irrigation is rapidly expanding in west Tennessee, a 

moderately humid region. Given the field-scale spatial soil variation in this region, variable rate irrigation (VRI) was 

suggested as the appropriate irrigation scenario (Duncan, 2012). Conventional irrigation management tries to answer 

when and how much to irrigate. Given within field soil variation, VRI management should address where to irrigate 

as well. VRI is expected to improve water-use efficiency, increase productivity, save fuel and decrease nutrient 

leaching (Pan et al., 2013). It has been shown in a variety of studies that soil characteristics such as soil water 

holding capacity and depth of soil significantly affects crop yield, hence irrigation strategies should be adjusted in 

regard to the soil type (Duncan, 2012). Hedley et al. (2009) compared VRI and conventional uniform irrigation and 

illustrated that 9–19 % of irrigation water was saved which in turn reduced nitrogen leaching. VRI related research 

projects have mainly focused on (i) designing sprinklers to spatially vary irrigation rates and (ii) software/hardware 

for guiding the system (Pan et al., 2013). Precision irrigation center pivots that pulse banks of sprinklers to create 

variable flow have been commercially available for a while. Another option is to program the control panels to 

change travel speed of center pivot systems, thus creating some pie shape irrigation zones. This is a more affordable 

form of VRI that producers in west Tennessee and other places can easily practice with available center pivot 

irrigation systems.  

One of the prime steps towards precision farming is to delineate management areas within fields where it is 

expected that applying identical treatment will cause significant yield differences. A corollary expectation is that 

varying the treatment of these areas will facilitate optimizing yield. In practice, the number of zones depends on the 

target input, available equipment and crop planted. For instance, there is more freedom to precisely apply fertilizer 

even in very small regions in a field, but this is not the case with VRI. Pan et al. (2013) analyzed soil water status 

through spatial and temporal data and suggested this method as a means to assess the potential of VRI and to 

schedule irrigation. In chapter 4 integer linear programing (ILP) was used to find the optimum number and spatial 

arrangement of pie shape zones for center pivots with limited speed control capability. Some soil properties were 
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required to delineate management zones, yet it is important to investigate crop response to water level amount across 

different soil types as a means to provide crop-specific irrigation management zones. 

Traditional irrigation/agronomic work tries to address the irrigation related questions by means of small plot 

trials over multiple sites and across several years. This is probably the best way to collect the necessary data in 

controlled environment following statistical principles behind design of experiments. However, there are some 

shortcomings. Given the time consuming and labor intensive nature of a field experiment, this approach becomes 

unrealistic for the near future (Drummond et al., 2003). In addition, this method relies on transformation of the 

research findings from small plots to farmers’ fields. In reality, each field has its own complexity and needs a site-

specific irrigation management plan. An alternative option is to make use of mechanistic crop growth models. The 

drawback of these models is that they are time-consuming and expensive to develop because of numerous inputs that 

need to be collected to run these models (Drummond et al., 2003).  

Precision agriculture (PA) enables farmers to collect numerous site-specific data. Empirical analysis of such 

data may be the key to help farmers learn from their occupational practice. PA is successful if accurate and detailed 

information about crop response to specific conditions is provided (Drummond et al., 2003). Quantifying crop 

response to water is the first step toward optimizing irrigation, therefore a critical issue for farmers, governmental 

agencies and consulting companies. Given the time consuming and expensive nature of irrigation studies, 

developing computer tools and models are very helpful to get a comprehensive understanding of irrigation-yield 

relationship for different crops across soil types. Robust algorithms are needed for identifying site-specific crop 

yield responses to environmental and management parameters and helping to find optimum practices.  

 

1.2 Site-specific water production functions 

Cropping systems are complex in their nature. A variety of factors, such as crop available water, weather and rainfall 

variation, seed quality, topographic attributes, soil properties and pest control, simultaneously affect crop growth 

and yield in a spatiotemporal manner. Traditional farming is based on average field condition which makes decision 

making and field operation easier yet usually demands more input and produces less income. Moving from 

conventional farming to PA, the goal has become to deal with within field variations. As a result, understanding and 

modeling the effect of different parameters on crop yield in a spatiotemporal scheme becomes a crucial research 

topic in PA.  
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The term production function (PF) may be assigned to any mathematical relationship between crop yield and 

input components such as water, fertilizers and energy (De Juan, 1996). In practice, almost all the derived PFs 

require crop water use as an independent variable. PFs predict total dry matter (or marketable product of each crop) 

as dependent variable while the independent variables are transpiration, evapotranspiration (ET) or amount of 

applied water during irrigation (IW). These functions are divided into two groups based on the independent variable: 

(i) crop water production functions (CWPFs) which use ET and (ii) water production functions (WPFs) which use 

IW. The IW may consist of different components such as crop water requirement, pre-plant irrigation, leaching 

requirement, and rainfall (Igbadun et al., 2007).  

Recently, some studies have aimed to revisit and rebuild the concept of PF. Some examples are: a WPF for 

water logging stress on corn (Kuang et al., 2012) and rice water – fertilizer PF (Ai-hua et al., 2012). Tong and Guo 

(2013) also tried to involve an estimation of uncertainty in CWPF along with the optimal allocation of water 

resources in an irrigation area. Saseendran et al. (2014) established location-specific CWPFs using long term 

averaged data for corn in Colorado. They used the RZWQM2 model and historical weather data to develop average 

corn CWPFs across years and locations. There are some studies on cotton yield prediction by means of PFs. Wang et 

al., (2007) derived cotton and wheat water-salinity PFs. Dinar et al. (1986) derived cotton CWPF under saline 

condition in California. They stated that PFs were good models to improve irrigation management.  

Classical PFs are useful tools for irrigation management and economic analysis of yield reduction due to 

deficit irrigation, but there are some shortcomings associated with them. PFs, like other regression-based equations, 

are relatively easy to build but are mostly linear and not powerful enough to model complex ecological systems (Dai 

et al., 2011; Haghverdi et al., 2014). That is why recent studies (e.g. Fortin et al., 2010; Haghverdi et al., 2014) are 

looking for more robust and non-linear techniques to predict yield. In fact, in most of agricultural related studies, 

machine learning methods became the favorable data mining tools because they are powerful empirical algorithms 

for modeling complex systems.  

Data mining could be defined as the process of capturing important and useful information from large data sets 

(Mucherino et al., 2009). An extensive review on data mining methods and their application in agricultural related 

studies was gathered by Huang et al. (2010). Machine learning algorithms were employed to some extent for 

predicting yield of different crops. Fortin et al. (2010) used artificial neural networks (ANNs) for predicting potato 

tuber growth as well as its in-field variations in Canada. They reported that with an ANN model using enough data 
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one can precisely model site-specific tuber growth. Dai et al. (2011) adopted ANN and multi-linear regression 

models to simulate the response of sunflower yield to soil moisture and salinity; ANNs appeared to be the model 

with higher precision than regression. They concluded that ANN is a useful tool for modeling relationship between 

crop yield and soil moisture and salinity at different crop growth periods. Haghverdi et al. (2014) derived some 

novel WPFs and compared data mining-based methods with traditional regression procedure. They utilized ANN 

and decision tree as modeling algorithms for deriving water salinity PFs for spring wheat and reported promising 

result for ANN. This study aimed to (i) design and evaluate site-specific cotton WPFs and (ii) use the best WPF to 

investigate different cotton irrigation and zoning strategies.  

 

2. Material and Methods 

2.1 Field of study 

The study site (approximately 73 ha) was located in west Tennessee, a short season semi-humid region, along the 

Mississippi river (Figure 5-1). The rainfall is usually high during cropping season, yet supplemental irrigation is 

practiced to fulfill crop water requirement when dry periods occur. There were two center pivot systems for 

irrigation covering majority of the field with some overlap in their coverage. Given the significant spatial soil 

variation, this field was an ideal site for VRI study.  

 

2.2 Irrigation experiment 

A two-year experiment (2013-2014) was implemented to study the irrigation-cotton lint yield relationship across 

different soil types. The goal was to conduct applied research by engaging farmer in irrigation decision making 

process, therefore both using and enhancing his knowledge and expertise over the course of the experiment. Two 

different methods were required to vary the irrigation throughout the field including programing the pivots and 

partially swapping the sprinkler nozzles. The pivot’s control panels were Valley Select2 module (Valmont 

Industries, Inc) programmable to up to 9 sectors to vary the irrigation across the field. The program changed the 

irrigation rate by adjusting the pivot’s travel speed where speeding the pivot up caused less irrigation and vice versa. 

The irrigation management and experiment was explained in details in chapter 3.  
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2.3 Input attributes and data preparation 

Table 5-1 summarizes the data used in this study to derive WPFs. The field was sampled on March 21 and 22, 2014 

(400 undisturbed samples from 100 sampling locations at 4 different depths) to measure soil texture, soil water 

content and bulk density. Then, the soil water retention curves were predicted for samples and interpolated to 

generate high resolution maps. More details on soil data analysis and modeling was provided in chapters 1 and 2. In 

addition, soil apparent electrical conductivity (ECa) was collected using a Veris 3100 (Veris Technologies, Salina, 

KS) instrument. More information on proximal soil data collection/sensing was provided by in chapter 1. The cotton 

yield maps were obtained from yield monitors. The raw yield data were cleaned as explained in chapter 3. The field 

was divided into 25m2 cells and for each cell all attributes (input and output) were obtained. The kriging was used 

for interpolation. A total of 16,000 cells were prepared after removing cells with missing/bad data. Considering 

overlap between coverage areas of pivots was outside of the scope of this research, hence pivots were considered as 

separate individual irrigation units throughout this study. 

In many situation, there are only a few major driving forces governing a system. As number of input predictor 

increases, it is more likely to have redundancy/inter-correlation in data, meaning more than one attribute can explain 

the same driving principle controlling the behavior of the system. Prinicipal component analysis (PCA) is a 

statistical method aiming at reducing the dimension of a given data set, finding hidden patterns amongst the data and 

extracting the important information from the raw data through replacing them by a group of new input predictors 

called principle components. Principal components are orthogonal to each other and each of them is a linear 

combination of the original input attributes. (Mathworks, 2014; Abdi and Williams, 2010). In this study, Matlab 

2015a (MathWorks, Inc., Natick, Mass.) was used to perform PCA. The Hotelling's T2, a statistical measure of the 

multivariate distance of each observation from the center of the data set, was calculated to find the most important 

PCs. 

Prior to establishing WPFs, the data set was randomly divided into 10 almost equal-size subsets. The modeling 

was repeated 10 times where each time one subset was assigned to the test phase and the rest of them were used to 

develop the WPFs.  
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2.4 Modeling and simulation 

2.4.1 Phase 1: Establishing water production functions 

Multiple Linear Regression water production function, MLR WPF 

Figure 5-2 illustrates the three methods designed to establish site-specific WPFs. Traditionally linear regression is 

used to derive WPFs. Evidence in literature shows that cotton WPFs differs across soils with different water holding 

capacities (Duncan, 2012). Therefore, k-means was used to divide the data into 4 sub-groups with more homogenous 

soil properties following the recommendations in chapter 4. The ten most important PCs were used as input for 

clustering. Then, for each sub-group a separate MLR WPF was developed considering IW, IW2 and IW×PCs as 

input predictors. 

 

K Nearest Neighbors water production function, k-NN WPF 

The k-NN is a non-parametric lazy learning algorithm that processes all of the data in real-time when prediction of 

the response(s) for a new observation is required. The k-NN was considered to be among the top ten techniques used 

for data mining (Wu et al., 2008), but in general has been applied less than other data mining techniques in 

agriculture related studies (Mucherino et al., 2009). The k-NN considers a distance function, usually Euclidean 

distance, to find so-called closer observations with higher similarity. Then, it combines the response of k nearest 

surrounding observations to predict the response for a new observation. Figure 5-2 provides a visual step-by-step 

guide to derive site-specific k-NN WPFs. 

First, raw inputs were converted to PCs. Then, first 10 PCs plus IW were converted to input predictors with a 

zero mean and a standard deviation of one and then the ranges were tuned. In order to predict yield for a target cell 

of the test data set at a specific irrigation level (I*), the following steps were taken. First, distance from the target cell 

to every cell in the development data set was computed as the summation of the differences among their input 

predictors: 

∑ =
∆=

N

j iji ad
1

2
 (1) 

where di is the distance between ith cell in the development data set and the target cell, ∆aij is the difference between 

jth attribute of the two cells and N=11  is the number of the input attributes.  
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Second, a reference data set was created consisting of those cells in the development data set that had 

irrigation levels within a 20 mm range from the target irrigation level  (i.e. I*). Third, the k nearest cells to the target 

cell were selected from the reference data set. Fourth, a distance-dependent weight was assigned to each k nearest 

cell (Nemes et al., 2006): 
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where k is the number of selected nearest cells, p is the design parameter and wi is the weight of ith cell. Finally, the 

cotton yield for the target cell (Yp) was predicted as the weighted average of the yield values for the k nearest cells: 

∑
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A cross-validation procedure was designed to identify the optimum k and p values. The parameter k was varied 

from 1 to 10 and p was changed from 0.5 to 3 with 0.5 increments. For each combination of k and p parameters, the 

bagging technique was implemented to compute the output of the k-NN WPF (Breiman, 1996). In other words, the 

output was the aggregation of the output of multiple WPFs which were established on different realizations of the 

reference dataset using sampling with replacement. The number of ensembles was chosen to be 40 considering the 

recommended values by Haghverdi et al., (2015). The modeling was done using Matlab R2014a (MathWorks, Inc., 

Natick, Mass.). 

 

Artificial Neural Network water production function, ANN WPF 

The artificial neural networks (ANNs) exhibited a good potential to establish WPFs (Haghverdi et al., 2014). A three 

layers perceptron model was selected in this study. The best number of neurons in the hidden layer was 

automatically computed by SPSS Modeler 15 (SPSS Inc., Chicago, IL) which was used to derive ANN WPFs. The 

PCs and IW were chosen as input predictors. The bagging technique was implemented to enhance model stability. 

The number of ensembles was chosen to be 40. Thirty percent of the training data were assigned to cross-validation 

to avoid over-fitting  
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2.4.2 Phase 2: Simulating irrigation and zoning strategies 

The WPF with highest performance was selected to simulate irrigation and zoning strategies. Note, that both 

modeling and simulation phases were done separately for 2013 and 2014 data. The seasonal irrigation level was 

changed from 0 to 150 mm with 10 mm increment. Then, the optimum yield maps were delineated for three 

irrigation strategies including (i) uniform irrigation, (ii) speed control VRI and (iii) a hypothetical situation in which 

each cell (5×5 m2) to be irrigated individually at optimum level.  

The integer linear programing (ILP) optimization process developed in chapter 4 was adopted and modified to 

find the optimum arrangement of pie shape zones to maximize cotton lint yield. Each center pivot irrigation system 

was considered to consist of 360 pies each 1 degree wide. A total of 12,241 zones were obtained by combining 1 

degree pies. Then, the optimum irrigation level to maximize cotton lint yield was predicted for each zone by means 

of k-NN WPF separately for each cropping season. The optimization process was formulated as follows:  
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where xi is the decision variable for zone i, y is the optimum yield predicted by k-NN WPF within zone i, n is the 

total number of the zones, l is the length of each zone in degrees, cij is a coefficient equal to 1 if angle j is covered by 

zone i otherwise equal to 0, Pmax is the maximum number of desired zones.  

Objective function (4) maximizes cotton lint yield across the zones. Restriction (5) guarantees that each degree 

is covered only by one zone and the optimum zoning scheme covers the entire area underneath the center pivots. 

Constraint (6) keeps the total number of the zones less than the maximum user-defined number. Constraint (7) 

ensures that the length of the pies is greater than the minimum user-defined (i.e. 5 degree in this study). If a pie was 

selected, the decision variable of the model, xi, was equal to 1 otherwise 0. 
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2.5 Evaluation procedure 

The performance of the WPFs was evaluated using the root mean square error (RMSE), the mean bias error (MBE) 

and the correlation coefficient (r): 
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where Ei, and Mi are the predicted and the measured cotton lint yield (Mg ha-1), respectively; n is the number of 

actual cells in test/validation set; Em and Mm are the mean of predicted and the mean of actual lint yield (Mg ha-1), 

respectively.  

 

3. Results  

3.1 Principal component analysis 

PCA was performed to combine and summarize the variability in the input attributes (Figure 5-3). Cumulative 

Hotelling’s T2 was plotted against the number of PCs; about 96 % was explained by considering 10 PCs, but adding 

more PCs barely helped explaining more variability. Therefore, it was decided to use the first 10 PCs in the WPFs. 

The PCs coefficients for the first two PCs (Figure 5-3, panel c) indicated soil texture and water content within the 

effective root zone followed by soil structure had the highest influence on PC1. On PC2, percent of clay and water 

content at FC and PWP of the shallow soil played the major role. ECa, irrigation and fertilizer produced medium 

coefficients for both PCs. The PC1 map to a great extent showed the expected pattern of soil physical and hydraulic 

properties across field (Figure 5-3b). The PC1 negative values corresponds to soils with lower water holding 

capacity and available water content which were formed by three regions at the mid-east, mid-south and north west 

of the field. The PC1 is plotted against PC2 when ECa data were used to color code the points (Figure 5-3, panel d). 

There was a clear distinction between (i) points with lower ECa (corresponded coarse soil with lower available 
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water content) which were skewed and clustered towards upper left corner of the figure and (ii) points with higher 

ECa which were skewed towards upper right corner of the plot. The transition section at the middle of the plot 

represented soil with medium ECa, corresponding to moderate available water content. 

 

3.2 Performance of WPFs 

Figure 5-4 presents the performance of k-NN WPFs for a range of design parameters, i.e. p and k. The trend was 

identical for both cropping seasons; the error started to decline as number of nearest neighbors increased, reached a 

minimum at k= 4-5 and started to increase again. There was almost no difference in performance of WPFs with 

different p values and k less than 4, but the WPFs with lower p values exhibited a higher increase in RMSE for k 

greater than 4. In general, the standard deviation of RMSE values consistently decreased with increasing k from 1 to 

10 regardless of p values. The optimum parameters for k and p were equal to 4 and 1.5, respectively.  

Table 5-2 summarizes the performance evaluation statistics for the WPFs. Figure 5-5 illustrates the predicted 

versus measured lint yield for both cropping seasons using all three WPFs. The k-NN exhibited the highest 

performance and accuracy for both 2013 and 2014 with RMSE equal to 0.131 Mg ha-1 and 0.194 Mg ha-1, 

respectively which was in line with well scattered cloud of points around 1:1 line (Figure 5-5). The ANN (MLR) 

exhibited 60 % (73 %) and 52 % (65 %) increase in RMSE comparing to the corresponding k-NN WPFs in 2013 and 

2014 cropping seasons, respectively. The ANN WPFs had a better performance, lower RMSE values and higher r, 

than MLR WPFs for both cropping seasons. The low MBE errors showed there was no systematic under/over 

estimation for any of the WPFs. However, both ANN and MLR exhibited partial over estimation tendency for plots 

with yield smaller than 0.40 Mg ha-1 and 0.60 Mg ha-1 in 2013 and 2014 cropping seasons, respectively. All WPFs 

showed a slightly better performance in 2014 in comparison with 2013 considering the correlation coefficient and 

normal RMSE (i.e. RMSE divided by range of yield variation) as the criteria. For instance, ANN WPF had normal 

RMSE (r) equal to 14 % (0.65) and 13 % (0.78) for 2013 and 2014 lint yield data, respectively. 

 

3.3 Irrigation and zoning scenarios 

Figure 5-6 (panels a and b) shows the cotton lint yield predicted by k-NN WPF for different irrigation scenarios (i.e. 

uniform irrigation and irrigating each cell individually) over the 2013 and 2014 cropping seasons. Yield was lower 

in 2013 than in 2014 for all irrigation levels. The predicted yield was slightly different between pivots, yet followed 
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the same general trend across irrigation levels. This is attributed to differences in soil spatial distribution underneath 

the pivots. Given uniform irrigation scenarios, in 2013 the highest predicted yield was (for 110 mm seasonal IW) 

1.09 ± 0.06 Mg ha-1 and 0.98 ± 0.06 Mg ha-1 for east and wet pivots, respectively. In 2013 as IW increased, there 

was a small overall increase in yield up to the maximum level (i.e. IW = 110 mm) but it declined after that for higher 

IW amounts. If each cell was irrigated at optimum level, yield was improved to 1.19 ± 0.05 Mg ha-1 and 1.11± 0.06 

Mg ha-1 underneath east and west pivots, respectively. In 2014, there were two peaks at 20 and 120 mm IWs. There 

was a sharp increase in predicted yield for small irrigation amount comparing to rainfed situation in 2014, then it 

decreased and leveled off for most of the intermediate irrigation levels and increased again at IW=120 mm yet 

continuously decreased after that. The highest predicted yields (IW = 20 mm) were 1.52 ± 0.12 Mg ha-1 and 1.62 ± 

0.12 Mg ha-1, underneath the east and west pivots, respectively. When yield in each cell was optimized with 

different IW the predicted yield increased to 1.71 ± 0.10 Mg ha-1 and 1.80 ± 0.09 Mg ha-1 underneath the east and 

west pivots, respectively.  

Figure 5-6 (panels c and d) depicts the average irrigation and yield for optimum arrangement of pie shape 

zones. Yield was always higher in 2014 than in 2013. The yield predicted for 1 pie was equal to uniform irrigation. 

In both years there was overall constant increase in yield by adding to the number of pies, yet the highest boost 

occurred when pivot area was divided into two pies. The yield was higher under the east pivot than that under west 

pivot in 2013, but the opposite was true in 2014. In 2013, as number of zones increased, there was a slight decline in 

IW corresponding to the optimum yield underneath the west pivot, but IW remained almost constant across a 

different number of zones for the east pivot. In 2014, as the number of zones increased, higher IW was predicted to 

get the optimum yield underneath the west pivot and same was true under the east pivot but less pronounced. 

Compare to rainfed agriculture for the east pivot, the best uniform supplemental irrigation strategy was predicted to 

boost the yield up to 41 % and 47 % in 2013 and 2014 cropping seasons, respectively. Pie shape zoning added about 

4 % to the expected yield in both years. For west pivot, comparing to rainfed, the best uniform supplemental 

irrigation scenario improved the yield as much as 25 % and 40 % in 2013 and 2014 cropping seasons, respectively. 

The pie shape zoning added 4 % in 2013 and 7 % in 2014 to the expected yield boost. 

Figure 5-7 illustrates the thematic yield maps predicted by k-NN WPFs for rainfed scenario as opposed to 

multiple irrigation strategies (i.e. best uniform irrigation, cutting 4 pies and irrigating each cell individually at 

optimum level) for both pivots and cropping seasons. Four pies was suggested as optimum to minimize soil spatial 
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variation underneath pivots in chapter 4. To compare simulated yield zoning with zoning by soil, four zones was 

selected here and the results from chapter 4 are included in this figure. By visual assessment of the yield maps, the 

biggest change occurred from rainfed to uniform irrigation followed by the change from pie shape zoning to 

irrigating each cell individually. In 2014, the spatial yield pattern for the rainfed scenario is similar to soil texture 

maps and high resolution soil available water maps for the field of study illustrated and modeled in chapters 1 and 2: 

(i) underneath east pivot coarse-textured regions with low available water content located in the middle and eastern 

parts also in southwestern portion of the pivot (ii) underneath west pivot a sandy area with low water holding 

capacity in northern and northwestern of the pivot. In 2013, however, it is hard to match the yield pattern for the 

rainfed scenario against soil spatial distribution, yet yield patterns under uniform irrigation was somewhat similar to 

spatial pattern of soil physical and hydraulic properties within the effective root zone. For both pivots and cropping 

seasons, yield predicted under pie-shape zones exhibited lower minimum but higher maximum than that for 

corresponding uniform irrigation maps. Moving from pie shape zoning into the hypothetical scenario of irrigating 

each 25 m2 cell individually yield improvement mostly occurred for cells with low expected yield. In other words, 

the maximum predicted yield remained almost unchanged but minimum predicted yield was substantially improved.  

Figure 5-8 shows the spatial arrangement of the optimum pie-shape zones, from this study and the previous 

study in chapter 4. In this study, k-NN WPF along with ILP optimization were used to find optimum zones when the 

objective was to maximize cotton lint yield. In chapter 4 the best spatial arrangement of pie shape zones was found 

using ILP optimization and soil related attributed without considering the irrigation-yield relationships. Soil 

available water content, soil ECa, yield data and panchromatic space images (i.e. Landsat 8 band 8) were required 

when the objective was to minimize soil spatial variation within each zone. The spatial arrangement of optimum pies 

shape zones to maximize lint yield changed from 2013 to 2014 for both pivots. The 2013 zones for east pivot were 

somewhat similar to zones by AWC and ECa data. In 2014 for the east pivot, three pies were located on the coarse-

textured region with low soil available water content, while a big pie covered rest of the pivot. There were some 

similarities between 2014 zones for the west pivot and zoning by ECa and AWC data from chapter 4. In 2013, pies 

in northern part of the west pivot were somewhat similar to pies from AWC data (chapter 4). The spatial 

arrangement of optimum zones using yield data was different than the configuration of zones in this study. 
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4. Discussion 

4.1 Site-specific water production functions 

The k-NN performed better than MLR and ANN in predicting cotton yield. It seems even dividing the field into 

more homogenous regions did the not reduce the complexity enough to get the same level of accuracy by MLR 

WPFs as achieved by k-NN WPF. The ANN WPF showed a better performance than MLR, although the entire data 

set was used to train the ANN models. This is in line with the reported results by Haghverdi et al. (2014) and 

Drummond et al. (2003) who found ANN a better option than MLR models to predict yield. However, ANN in this 

study was not able to provide the same level of performance as k-NN WPF, meaning ANN could not entirely handle 

the huge amount of data and complex relationships between input and outputs. The efficiency of k-NN in this study 

is in line with the promising results reported in the literature: to model soil hydraulic properties (e.g. Nemes et al., 

2006, Haghverdi et al., 2015), to estimate cultivar coefficient of crop models (Bannayan, and Hoogenboom, 2009) 

and for prediction of daily weather data (Bannayan, and Hoogenboom, 2008). In general, linear techniques are not 

suitable to model yield spatial variability (Sudduth et al., 1996), yet the designed k-NN WPF in this study acts as a 

smart search engine to selects only a few similar data points for prediction. This approach helps k-NN WPF to take 

advantage of numerous data points (cells) provided by yield monitoring systems without necessarily having a good 

approximation of complex relationships between inputs and yield for all cells across the field of study. The k-NN 

WPF makes use of similarities to distinguish patterns instead of fitting coefficients and this approach could be 

favorable whenever the form of relationships between input and output of a system is not known in advance (Nemes 

et al., 2006). One should note that, k-NN WPF introduced in this study only provides a pseudo-continuous prediction 

of yield over a range of applied irrigation. In other words it gives trustable results only in the neighborhood of 

measured IWs, hence its application for continuous prediction of yield-water relationship is only suggested if IW are 

applied at multiple levels such that the available data sufficiently cover the desired prediction range.  

Soil spatial variation was substantial within the field. Long term analysis of yield maps with different crops 

revealed a great impact of soil variation on yield at the field of study (chapter 3). Guo et al. (2012) tried to 

mathematically explain spatial and temporal variation of cotton yield on the Southern High Plains of Texas by 

means of ECa, soil brightness, and topography data. They observed that a combination of the above attributes could 

explain up to 70.1 % of cotton yield variability. Guo et al. (2012) mentioned the soil texture as one of the greatest 

factor affecting cotton yield. They found a relatively stable spatial pattern of yield over time although yield and soil 



168 

properties had stronger relationship in dry years than wet seasons. The results of this study also showed a 

considerable impact of weather condition and rainfall pattern on cotton yield spatial distribution. It was observed 

that rainfall pattern can mask/change the effect of supplemental irrigation practices on yield. Both years were wet 

during the experiment when there were 712 mm and 633 mm of rainfall over growing seasons 2013 and 2014, 

respectively. The total of seasonal applied irrigation water by farmer by east (west) pivot was 133 (93) mm and 65 

(50) mm in 2013 and 2014, respectively meaning that irrigation was less than 20 % of precipitation in 2013 and less 

than 10 % of precipitation in 2014. Wong and Asseng (2006) introduced interactions of seasonal rainfall, plant 

available soil water storage capacity and N fertilizer applications as dominant factors causing spatiotemporal wheat 

yield variation. In 2013, wet soil and cold weather forced the farmer to postpone planting cotton. Furthermore, 

heavy rainfall throughout the growing season caused excessive vegetative growth and larger number of bolls on soil 

with higher available water content. It seems that the planting delay caused cotton to not be able to accumulate 

adequate heat-unit and delayed maturity. This condition caused yield reduction, especially over soils with higher 

water holding capacity, since there was not enough time for all of the bolls to open by harvesting time. This trend 

affected the yield response to irrigation which in turn caused slightly higher error in corresponding WPFs. Bajwa 

and Vories (2007) demonstrated that excessive irrigation in wet weather conditions decreased cotton lint yield in 

Arkansas. That is why the quantity of optimum ET to maximize cotton lint yield is directly proportional to length of 

cropping seasons; in longer seasons, higher irrigation is expected to produce the highest cotton lint yield (Orgez et 

al., 1992). 

The performance of site-specific WPFs may differ in different conditions, hence should be tested for different 

crops, climate and soil spatial variation. All attributes affecting crop available water need to be considered for 

deriving site-specific WPFs. For instance, there are some studies reporting the positive correlation of yield with 

topographic attributes (e.g. Andales et al., 2007; Green et al., 2007). The field of study was fairly flat, thus 

topography and slope had negligible influence on yield. However, if topography and slope impact the spatial 

distribution of water within a field, they should be considered in site-specific WPF derivation. 

 

4.2 Zoning and irrigation strategies 

The majority of the farmers in west Tennessee practice uniform irrigation despite the available field-scale soil 

spatial variation that exists in their fields. Site-specific WPFs can help them to move towards optimum uniform 
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irrigation strategies for different crops and climate condition. Rainfall was abundant over the course of this 

experiment but some dry periods occurred when supplemental irrigation was crucial to fulfill ET demand especially 

for coarse soils with lower AWC. Thus there was a positive cotton lint yield response to irrigation predicted by k-

NN WPFs under both center pivots in comparison to rainfed. In 2013, delayed planting affected heat unit 

accumulation/distribution and maturity which in turn suppressed the yield across the field, while yield reduction in 

soils with higher available water was more pronounced. This was shown in WPFs prediction as a general slight 

increase in yield as IW increased. Adding more water reduced the drought stress for soils with lower AWC but 

increased overall yield until a peak point. Analysis of yield data showed that even for coarse-textured soils with low 

WHC, cotton yield reduction occurred due to over irrigation (chapter 3). That is why, a yield reduction was 

predicted by k-NN WPF for IW of more than 120 mm. In 2014 the overall yield-irrigation relationship across the 

field was somewhat different than that for 2013, yet closer to what was expected to occur in most of the years. Like 

2013, there was a peak at a high irrigation level (IW = 110 mm) which is attributed to the optimum level of IW for 

soil with lower AWC. Unlike 2013, however, in 2014 there was also a second peak for lower IWs which turned out 

to be the best uniform cotton irrigation strategy according to k-NN WPF predictions. This was recognized as the 

point of optimum IW level for soils with higher AWC suggesting that in a more typical year like 2014 (a wet year 

without delayed planting) lower irrigation for the fine textured soils gained more yield compensating for the yield 

reduction over coarse textured regions due to water stress. More years of data are needed to confirm this as a long 

term trend. 

Given the field-scale spatial soil variation in west Tennessee farmers are likely to depart from uniform 

irrigation scenarios to some type of VRI. Pie shape zoning is the easier and less expensive irrigation strategy for 

those who possess center pivot irrigation systems. Zone delineation for irrigation management is complex. Site-

specific WPFs could be beneficial to support such conversion from uniform to pie shape zoning. First, they are 

useful to delineate crop-specific irrigation zones and second to identify the optimum irrigation strategy for each pie. 

It is likely to still have pies with soil variation and site-specific WPFs would be helpful to figure out which soil to 

follow in irrigation scheduling. In chapter 4 the focus was on soil properties to delineate irrigation management 

zones. Here the crop was added to the suggested optimization process with the aid of site-specific WPFs. While 

there were some similarities between zones in this study and zones developed in chapter 4, the differences were 

substantial both between years and methods. To a great extent, this difference reflected the inherent spatiotemporal 
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variation associated with crop growth and yield which in turn governed the spatial configuration of optimum crop-

based zones. According to Basso et al. (2009) bias in the evaluation of homogenous management zones may occur 

due to the impact of weather patterns on both crop growth and interaction with soil type. It was shown that temporal 

rainfall pattern, which varies from year to year, influences cotton yield-irrigation-soil relationships in west 

Tennessee. Farmer irrigation management also influences the crop-based zoning result, because for each cropping 

season the k-NN WPF only combines the available observations to make a new predication in that year. Therefore, it 

is important to look at the zoning system in this study as an iterative process which helps farmers to improve their 

irrigation decision. The more farmer improves the irrigation management, the better k-NN WPF predications reflect 

yield potential within a field. As a result, longer experimentation is needed to see how the crop-based zoning 

strategy works across years and how different it would be from the soil based zoning strategy introduced in chapter 

4.  

Irrigating each cell individually at optimum levels caused a moderate increase in yield in 2014 and a slight 

increase in 2013 comparing to the best uniform irrigation strategy. In reality, this provides a cap for potential yield 

boost expected from a VRI for a specific site. Even in 2014, the expected yield boost may not be high enough to 

compensate for the infrastructure and management expenses to convert to a VRI system. This may differ for 

different places and even for the same site but on a drier year.  

 

5. Conclusion 

Design-based statistics were dominant for much of the last century when contemporary constraints on data 

collection and processing prevented on-farm experimentation (Pringle et al., 2010). Nowadays, however, most of the 

farmers in US are collecting numerous site-specific data useful for on-site experimentation. The available data 

usually have different spatial and temporal resolution. Moreover, the observations are spatially auto-correlated and 

carry some error and uncertainty. Therefore, in order to convert these data to useful information robust algorithms 

and models are needed. Some site-specific WPFs were designed and evaluated. The result confirmed that site-

specific WPFs could be used as after the fact tools by farmers to enhance irrigation management and scheduling. 

The WPFs were used to evaluate different irrigation and zoning strategies. Currently, implementation and 

management of VRI systems demand high capital costs (Evans et al., 2013), hence it is crucial to assess the potential 

yield gain of a VRI over uniform and pie shape zoning scenarios for each crop and specific site. Pie shape zoning 
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seems to be a good option as opposed to uniform irrigation because it improves the yield, it is applicable with 

current center pivots and potentially can enhance water use efficiency and reduce leaching. The result showed that 

crop based zoning using WPFs produce different zones based on yearly climate condition and farmer management. 

Data from several years are needed under different climate and irrigation management conditions to derive stable 

zones. A practical option is to start with soil-based pie shape zoning proposed in chapter 4 and use site-specific k-

NN WPF to improve both zoning and within zone irrigation decisions in an iterative process. For the study site and 

over the course of the experiment, the expected yield improvement by a VRI system was not substantially higher 

than that of pie shape zoning. Note, that this experiment was conducted on two wet years and this result may differ 

to some extent in a drier condition when more yield increase will likely occur by a VRI comparing to pie shaped 

zoning.  
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Appendix 5: Chapter 5 Figures and Tables 

 

Figure 5-1. Field of study in Dyer County, State of Tennessee. 
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Figure 5-2. Three methods to establish site-specific water production functions. ANN: artificial neural network, k-

NN: k nearest neighbors, PCA: principle component analysis.  
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Figure 5-3. PCA result. Panel a: cumulative Hotelling’s T2 against PCs. Panel b: thematic map of PC1. Panel c: 

principle component coefficients for PC1 and PC2. Panel d: Scatter plot of PC1 against PC2.  
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Figure 5-4. The k-NN WPFs performance over both cropping season for different combinations of k and p values. 
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Figure 5-5. Scatter plots of measured versus predicted cotton lint yield using k-NN, ANN and MLR WPFs.  
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Figure 5-6. Cotton lint yield prediction using site-specific k-NN WPF for multiple irrigation scenarios. Uniform 

irrigation: panels a and b, dash lines with circles; Pie shape zoning: panels c and d, dash lines with circles; Irrigating 

each cell individually: panels a and b; individual circles. Bars in panels c and d are average irrigation applied by 

each pivot.  
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Figure 5-7. Cotton lint yield maps predicted by site-specific k-NN WPF under different irrigation scenarios. On the 

lower right part of each map: the numbers show cropping seasons (2013 versus 2014), the first letter distinguishes 

between pivots (i.e. E for east and W for west) and the last letter represents the irrigation status (R: rainfed, U: 

uniform irrigation, P: pie shape zoning (n = 4), M: irrigating each cell individually).  
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Figure 5-8. Spatial arrangement of the optimum pie shape zones (n = 4). Pies delineated using ILP plus k-NN WPFs 

were from this study, but Pies delineated using ILP were from chapter 4. Band 8: panchromatic band from space 

images taken by OLI sensor onboard Landsat 8; AWC: soil available water content; ECD: deep ECa readings.  
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Table 5-1. Input/output attributes for deriving site-specific WPFs. 

Category *attribute 

Soil ECS, ECD, SSC-1, SSC-2, SSC-3, SSC-4, BD-1, BD-2, BD-3, BD-4, VWC-1, VWC-2, VWC-3, VWC-4,  
**θ10-1, θ10-2, θ10-3, θ10-4, θ33-1, θ33-2, θ33-3, θ33-4, θ1500-1, θ1500-2, θ1500-3, θ1500-4 

Crop Yield 2013, Yield 2014 

Water IW 2013, IW 2014 

Fertilizer P, K*** 

* ECS: shallow ECa (mS m-1), ECD: deep ECa (mS m-1), SSC: sand, silt and clay (%), BD: bulk density (g cm-3), 

VWC: volumetric water content at the time of sampling (cm3 cm-3), θ: water content predicted by PTFs and 

interpolated by co-kriging at soil matric potentials equal to -10, -33 and -1500 kPa (cm3 cm-3), IW: seasonal 

irrigation water (mm), P and K: phosphorus and potassium, respectively.  

** The soil related inputs were measured and predicted for four layers (i.e. 0-25 cm, 25-50 cm, 50-75 cm, 75-100 

cm) covering crop effective root zone.  

*** The farmer practiced variable rate P and K, but nitrogen was applied uniformly. 
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Table 5-2. Performance of k-NN, ANN and MLR WPFs for 2013 and 2014 cropping seasons. 

  2013   2014  

 r RMSE* MBE r RMSE MBE 

   k-NN - WPF 0.88 0.131 0.002 0.91 0.194 0.001 

   ANN - WPF 0.65 0.209 0.000 0.78 0.295 0.000 

   MLR - WPF 0.55 0.227 0.000 0.73 0.321 0.000 

* RMSE and MBE are in Mg ha-1.  
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Part 5: Conclusion 

Irrigation has been expanding across the humid areas of the Cotton Belt in the US for the last 20 years (Perry and 

Barnes, 2012). Stabilizing yields and the recent high commodity prices are the prime reasons for this growth in 

irrigation investment. There are two inherent difficulties for irrigation management in west Tennessee: (i) field-scale 

spatial soil variation and (ii) season-to-season variability in rainfall patterns. It was shown through a multi-year 

experiment in west Tennessee that optimum cotton irrigation was significantly different among the plots with 

different soil types (Duncan, 2012). Given temporal weather changes along with soil spatial variation, a variable rate 

irrigation scenario is needed to improve the efficiency of energy and water use as well as to increase sustainability of 

row crop agriculture in this region. 

Design-based statistics were dominant for much of the last century when contemporary constraints on data 

collection and processing prevented on-farm experimentation (Pringle et al., 2010). Irrigation studies have been 

traditionally reserved for experimental farms with small plots when design-based statistics are used to analyses the 

data. This approach relies on transformation of the research findings from small plots to a farmers’ fields. In reality, 

each field has its own complexity and needs a site-specific irrigation management plan. Nowadays most of the 

farmers in US are collecting numerous site-specific data useful for on-site experimentation. Statistical analysis of 

such data may be the key to move toward site-specific irrigation management. The available data usually have 

different spatial and temporal resolution. Moreover, the observations are spatially auto-correlated and carry some 

error and uncertainty. Therefore, robust algorithms and models are needed in order to convert these data to useful 

information.  

The main objective of this study was to design a dynamic data analysis and modeling system to move toward 

optimum site-specific irrigation strategies in an iterative process when farmers learns from each year’s results. 

Several site-specific models were developed and tested (i) to generate high resolution field-scale soil available water 

map within the effective root zone, (ii) to investigate cotton lint yield-irrigation relationships across different soil 

types, (iii) to delineate irrigation management zones and to (iv) to assess the performance of different irrigation 

scenarios from uniform to variable rate irrigation.  
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5-1 Root zone soil hydrology 

The objective of first part of this study was to explore and model soil physical and hydraulic variation in one type of 

agricultural fields in west Tennessee where elevation and slope differences were minor and soil texture dictated the 

majority of spatiotemporal changes of water content. Analyzing yield against soil maps revealed that soil physical 

and hydraulic properties to a great extent influenced yield patterns. This is expected because plant available water is 

a function of soil water holding capacity. This suggests variable rate irrigation as the appropriate irrigation scenario 

for this typical form of fields in west Tennessee.  

There are many methods in the literature providing non-spatial point estimation of soil water retention, yet the 

options are more limited when the goal is to produce a high resolution soil hydraulic property map at the field-scale. 

The result showed that incorporating pseudo-continuous pedotransfer functions (Haghverdi et al., 2012, 2014) and 

cokriging could be a reliable method to predict a soil water retention curve in the field-scale where drastic soil 

spatial variation is available. Given the result of this study, a combination of deep core sampling and ECa data is 

suggested to generate high resolution soil available water content map within the effective root zone. The sampling 

scheme was designed considering geostatistical principals. ECa maps may be used in advance to guide sampling 

scheme and perhaps reduce the number of samples. Further investigation is needed to find optimum sampling 

scheme in order to minimize the cost while maintaining the desired level of accuracy. 

ECa turned out to be a useful proximal attribute to (i) understand spatial variation of alluvial soils and (ii) for 

converting point estimations of water retention to high resolution maps in west Tennessee. There is evidence in the 

literature showing ECa may not be as effective for some conditions. For instance, there is another typical form of 

agricultural fields in west Tennessee with totally different conditions where soil textural differences are minor yet 

slope and elevation differences affect infiltration and redistribution of water within root zone hence available water 

for plants. The findings of this study may not be transferable to this type of fields. A firm understanding of soil 

characteristics affecting soil ECa is needed for each site prior to applying ECa in a modeling process.  

 

5-2 Cotton response to supplemental irrigation 

A 2-year (2013-2014) on-farm experiment was conducted to understand the spatial and temporal dynamics of 

supplemental irrigation on cotton yields. Overall, irrigation improved yield in comparison to rainfed throughout this 

study. However, it was shown that cropping season length, rainfall pattern and heat unit accumulation /distribution 



186 

affected both cotton growth and development changing or even reversing the expected lint yield from an irrigation 

treatment for a specific soil type. While soil variation is inherent and not controlled by farmers, irrigation, if well 

scheduled, could be the key factor to orchestrate the whole cropping system toward an optimum condition. Within 

this study, it was demonstrated how site-specific information collected by on-the-go sensing, remote sensing and 

wireless network of sensors could help farmers manage irrigation. In addition, analysis of such information 

throughout the growing season provides insight to potential yield patterns, thus helps farmers to modify other inputs 

allocation. Cotton responded differently to irrigation across soil types suggesting that variable rate irrigation (i.e. 

precision irrigation systems or speed control panels) would probably be beneficial for the field of study.  

 

5-3 Irrigation strategy and zone delineation 

The performance of several clustering methods for zone delineation were evaluated. In addition, a new zoning 

strategy based on integer linear programming was designed for center pivots with limited speed control ability. High 

resolution soil available water maps were considered as standard input to zone the field. The effectiveness of ECa, 

space-borne satellite images and yield data for zone delineation were also assessed. The clustering methods 

performed similar in efficiently dividing the field into relatively homogenies zones in respect to soil hydraulic 

properties. The introduced integer linear programming method offers the optimum zoning strategy for center pivots 

with limited speed control ability to match water input to soil spatial patterns. However, further research is essential 

to investigate the optimum irrigation strategy over pies with a mixture of soils.  

The results of this study suggested that ECa and satellite images may be used to determine site-specific 

irrigation management zones in west Tennessee if a high spatial similarity is observed between these ancillary data 

with soil hydraulic properties. The spatial and temporal resolution and precision varies among different types of 

ancillary data and affect their efficiency for zone delineation. Temporal variability in soil moisture altered 

expression of spatial variability in space-born satellite images. Yield data did not show a high potential for zone 

delineation. This is attributed to various factors that affect yield in a complex manner and also temporal differences 

in yield data. In practice, farmer knowledge of field conditions could be extremely useful to choose the most 

appropriate data set for zone delineation. 

Currently, implementation and management of variable rate irrigation systems demand high capital costs 

(Evans et al., 2013), hence it is crucial to assess the potential yield gain of a VRI over uniform/pie shape zoning 
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irrigation scenarios for each crop and specific site. Pie shape zoning seems to be a good option as opposed to 

uniform irrigation because it improves the yield, is applicable with current center pivots and potentially can enhance 

water use efficiency and reduce leaching.  

The efficiency of different irrigation strategies were evaluated using site-specific water production functions 

(WPFs). Different models were designed and evaluated and k-NN (i.e k nearest neighbors) technique exhibited the 

highest accuracy. The result confirmed that site-specific WPFs could be used as after the fact tools by farmers to 

enhance irrigation management and scheduling. The WPFs were also employed to test a crop-based zoning method. 

The integer linear programing zoning method was modified such that the objective was to maximize the overall 

yield throughout the field. The result indicated that crop-based zoning using WPFs produce different zones based on 

climate condition and farmer management. It seems data from several years are needed under different climate and 

irrigation management conditions to derive stable zones. A practical option is to start with soil-based pie shape 

zoning and later on use site-specific WPFs to improve both zoning and within zones irrigation decisions in an 

iterative process. For the study site and over the course of the experiment, the expected yield improvement by a 

variable rate irrigation system was not substantially higher than that of pie shape zoning. Note, that this experiment 

was conducted in two wet years and this result may differ to some extent in a drier condition when more yield 

increase will likely occur by a variable rate irrigation system comparing to pie shape zoning.  
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