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Abstract

In this paper, we present a novel methodology to solve the problem
of delineating homogeneous site-specific management zones (SSMZ )
in agricultural fields. This problem consists of dividing the field into
small regions for which a specific rate of inputs is required. The objec-
tive is to minimize the number of management zones, which must be
homogeneous according to a specific soil property: physical or chem-
ical. Furthermore, as opposed to oval zones, SSMZ with rectangular
shapes are preferable since they are more practical for agricultural
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technologies. The methodology we propose is based on evolutionary
computation, specifically on a class of the estimation of distribution
algorithms (EDAs). One of the strongest contributions of this study is
the representation used to model the management zones, which gener-
ates zones with orthogonal shapes, e.g., L or T shapes, and minimizes
the number of zones required to delineate the field. The experimental
results show that our method is e�cient to solve real-field and ran-
domly generated instances. The average improvement of our method
consists in reducing the number of management zones in the agricul-
tural fields concerning other operations research methods presented
in the literature. The improvement depends on the size of the field
and the level of homogeneity established for the resulting management
zones.

Keywords: Site-specific management zones; estimation of distribution
algorithms; orthogonal shapes; evolutionary computation; combinatorial op-
timization

1 Introduction

The problem of delineating site-specific management zones (SSMZ) in agri-
cultural fields consists of generating sub-regions within a plot for which a
specific rate of inputs is appropriate (Doerge, 1999; Moral et al., 2010). Ac-
cording to Plant (2001); Roudier et al. (2008); Zhang et al. (2016), rectangu-
lar management zones are more practical for farmers by reducing the di�cul-
ties of adopting variable technologies and facilitating the use of agriculture
machinery. Furthermore, the management zones with rectangular shapes are
more applicable for farming in underdeveloped areas because farmers can
easily apply these management zones to reduce fertilizer input, labor costs,
and environmental waste without using advanced agriculture machinery.

The management zones must be homogeneous according to a specific
soil property, physical or chemical, such as organic matter (OM), nitrogen
(N), phosphorus (P), potential of hydrogen (pH), potassium (K), sodium
(Na), and the sum of bases (SB), which is a mix of several properties. The
delineation of management zones is a critical decision problem in agriculture
since the soil characteristics have a strong impact on the crop yield. The
chemical properties determine the application of inputs, e.g., fertilizers and
pesticides, while the water for irrigation depends on the physical properties.

The integration of some information technologies, called Precision Agri-
culture (PA), such as the Global Positioning Systems (GPS), Geographical
Information Systems (GIS), and remote sensors, helps to improve crop pro-
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ductivity and makes farm management better. The idea of the PA is to face
the variability of the soil properties and doing the right management practice
at the right place and at the right time (Bongiovanni and Lowenberg-Deboer,
2004; Janrao and Palivela, 2015; Mulla, 2013). However, in some countries,
farmers attitudes and perceptions suggest that they are resistant to adopt-
ing unfamiliar technologies to improve agricultural management practices
(Anastasiadis and Chukova, 2019; Watoo and Mugera, 2019).

In this context, the generation of SSMZ arises from the need of PA to
deal with several factors, which are variable in space and time, that a↵ect
productivity and crop quality. Some of these factors, such as the hetero-
geneity of the physical and chemical soil properties, directly a↵ect the water
balance, the dynamics of nutrients, and the response to the application of
inputs (Ortega and Santibáñez, 2007). The SSMZ helps to minimize the
impact of spatial variability, allowing the site-specific application of inputs
and making more e↵ective the agricultural planning (Betzek et al., 2018;
Castrignanò et al., 2018).

An advantage of the SSMZ is the correct application of inputs in each
region of the plot only where and when they are necessary according to the
real requirements of the crop, its phenological stage, and the soil properties
of the field, which allows a reduction of the environmental impact and a
saving of resources and investment capital. These critical parameters and
the crop prices must be considered to improve the decision-making process
in agricultural fields (González et al., 2020; López et al., 2020). This
contrasts with the conventional management agricultural practices, where
the uniform applications of inputs are made throughout the whole production
cycle considering, just in some cases, the phenological stage of the crop,
which increases the production costs and the unnecessary waste of resources,
especially water (Janrao and Palivela, 2015; Mulla, 2013). As in other water
supply systems, the decision about the amount of water to be irrigated in
each irrigation period directly impacts the total costs of farmers (Santos
et al., 2020). The benefits of the site-specific management zones in vineyards
and some crops have been demonstrated in Ortega and Santibáñez (2007).

Delineating e�ciently site-specific management zones is a big challenge
for farmers and decision-makers. The most typical methodology used to solve
the problem is the clustering method, which uses soil samples in conjunction
with procedures such as fuzzy k-means, fuzzy c-means, and k-means (Betzek
et al., 2018; Monzon et al., 2018; Oldoni et al., 2019; Ohana-Levi et al., 2019).
The information for these algorithms is obtained from di↵erent methods such
as analysis of topographic maps, statistical information, remote sensing data,
or semivariogram analysis (Albornoz et al., 2018; Fu et al., 2010; Gaviola
et al., 2019; Georgi et al., 2018; Gili et al., 2017; Haghverdi et al., 2015;
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Hornung et al., 2006; Li et al., 2007; Molin and de Castro, 2008; Ortuani et al.,
2019; Tagarakis et al., 2013). Although these methods obtain homogeneous
management zones, in some cases, the solution can be harder to apply due
to the structure of the generated regions, which are disjoint or with circular
or irregular shapes.

Concerning operations research methods, the work of Cid-Garcia et al.
(2013) presents one of the first mono-objective mathematical formulations
of integer linear programming (MILP) to delineate rectangular and homo-
geneous management zones minimizing the total variance of the field for a
specific soil property, physical or chemical. The complexity of this math-
ematical formulation is demonstrated by using a reduction to the 2D-Bin
Packing Problem, which is NP-Hard (Chung et al., 1982). Therefore, the
computational time required to solve the problem can increase exponentially
with the size of the instance.

In Albornoz et al. (2015), the previous work was improved, showing a bi-
objective mathematical formulation of integer linear programming (BILP)
where: a) the number of management zones is minimized, and b) the ho-
mogeneity level within these zones is maximized. Some decomposition ap-
proaches to approximate a solution for the SSMZ problem are developed in
Albornoz and Ñanco (2016) and Albornoz et al. (2019). In Saez and Al-
bornoz (2016) the authors propose an approach to delineate SSMZ under
uncertainty conditions. Other works that integrate the delineation of rect-
angular management zones and the crop planning problems are presented in
Cid-Garcia and Ibarra-Rojas (2019); Albornoz et al. (2020); Albornoz and
Zamora (2020).

The operations research methods mentioned above are based on the work
of Cid-Garcia et al. (2013) and only consider regions with rectangular or
square shapes to generate site-specific management zones, avoiding zones
with orthogonal shapes, e.g., T or L shape, which can be used to partitioning
the field. Fig. 1 shows the delineation for an agricultural field using the
organic matter as chemical soil property with 40 soil samples and around
of 7.82 ha (256 m width and 305.6 m long) presented in the work of Cid-
Garcia et al. (2013). Fig. 1a is the thematic map obtained with specialized
software such as MapInfo, before the delineation, showing the variability
of the field and the number of soil samples (black points). Green zones
represent the ideal level of OM ; red or blue zones denote upper or lower
levels, respectively. Fig. 1b is the resulting delineation for the exact method
proposed by Albornoz et al. (2015), and Fig. 1c is the resulting delineation
using a clustering method with specialized software (MapInfo), which can be
harder to adopt by farmers considering the resulting zones (disjoint and with
irregular shapes).
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a) b) c)

Figure 1: Delineation of SSMZ for an agricultural field close to Santiago,
Chile, using organic matter as chemical soil property. Fig. 1a is the thematic
map for the field before the delineation, Fig. 1b is the delineation using an
operations research technique, and Fig. 1c is the delineation using clustering
methods.

The objective of this article is to present a new methodology based on
soil samples and an evolutionary algorithm, specifically on an estimation of
distribution algorithm (EDA), to delineate agricultural fields, minimizing the
number of management zones and satisfying a specific level of homogeneity
for each zone (the details for the EDA are given in Section 2.2). We consider
the computational complexity of the SSMZ problem and the possibility of
obtaining management zones with orthogonal shapes, which can be harder
to generate in the exact approaches mentioned above. Also, our algorithm
generates the zones during its execution, instead of using a preprocessing
stage to generate predefined management zones such as some previous ap-
proaches. Furthermore, the improvement of our method consists in reducing
the number of management zones in the agricultural fields with respect to
the operations research methods. This improvement depends on the size of
the field (number of soil samples), and the level of homogeneity established
for the resulting management zones.

The selection of an EDA approach is due to their applicability to solve
other complex combinatorial optimization problems, which include multi-
objective knapsack, routing, scheduling, forest management, portfolio man-
agement, environmental monitoring network design, and bioinformatics (Larrañaga
and Lozano, 2002; Armañanzas et al., 2008; Hauschild and Pelikan, 2011; Ce-
berio et al., 2013; Wang et al., 2015). With the EDA, we generate zones with
an orthogonal shape that can be used in the delineation of management zones
on the field. To the best of our knowledge, this is one of the first approaches
with these characteristics.

The rest of this paper is organized as follows. Section 2 presents the
materials and methods to solve the SSMZ problem. Section 3 shows the
experimental results for our EDA, and compares them with some exact ap-
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proaches of the literature to validate its e�ciency. Finally, Section 4 gives
some conclusions and recommendations.

2 Materials and methods

In Fig. 2, we present an overview of the methodology used to solve the SSMZ
problem. It is composed of two main steps: (I) collecting soil samples in the
agricultural fields (see Section 2.1); and (II) designing and implementing a
solution method based on an EDA algorithm (we call EDA-SSMZ ) to obtain
high-quality solutions in acceptable computational times (see Section 2.2).

Figure 2: Summary of our methodology.

2.1 Soil samples

The first step in the SSMZ problem consists of collecting soil samples from
the agricultural field that are represented by a grid where each soil sample is
equidistant one from each other. The sampling is made to obtain information
about the soil according to a specific soil property, chemical or physical. The
chemical properties are used to determine the seeds, fertilizers, and pesticides
to supply to the crop. The physical properties impact the amount of water
needed in the irrigation process. The number of soil samples for each field
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depends on the farmer’s investment1 and not necessarily on the field size, i.e.,
a plot with 10 ha can take the same number of soil samples as one with 30
ha. A way to visualize the soil variability of these properties is by generating
thematic maps with specialized software, as in Fig. 3a, where it is possible
to create a grid inside of the field with the resulting soil samples (see Fig.
3b). In this sense, each soil sample represents the center of each square in
the grid.

a) b)

Figure 3: Generation of a grid for an agricultural field considering the organic
matter (OM) as chemical soil property. Fig. 3a is the thematic map for the
field and Fig. 3b is the resulting grid. The pink circles represent dummy
samples.

When the fields are no initially with a rectangular or square shape, i.e.,
when the soil sampling does not generate a perfect grid, then the method-
ology adds dummy soil samples to complete the grid and enforces each soil
sample as the center of each square. A perfect grid facilitates and improves
the performance of the EDA-SSMZ algorithm. The number of dummy sam-
ples depends on the original soil sampling and the shape of the field. The
EDA-SSMZ algorithm uses the variability in the soil samples to delineate
the management zones considering a specific chemical or physical property.
Therefore, to avoid using dummy soil samples as a new management zone in
the final delineation, the value for each one is established by the decision-
maker considering the same concentration as a specific neighbor (a spatial
correlation among the soil samples can be considered). The procedures of
the EDA-SSMZ ensure that a management zone cannot group only dummy
soil samples. With this, the use of dummy samples is not a disadvantage for
the method. Fig. 3b shows two dummy soil samples (pink circles) in the
agricultural field (more details can be found in Cid-Garcia et al. (2013)).

1In Mexico, the costs per soil sample are around $50 dollars (INIFAP), which determines
the number of samples in the fields of the farmer.
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The relative variance (RV) constitutes an excellent criterion to prove the
e�ciency of a zoning method (Ortega and Santibáñez, 2007). Suppose a set
M of management zones in the field, then the RV is defined as:

RV (M) = 1�
P

m2M(nm � 1)�2
m

�2
T [N � |M |] , (1)

where �
2
T is the total variance of the field, N is the total number of soil

samples, |M | is the number of management zones used to delineate the field,
nm the number of soil samples in zone m, and �

2
m is the variance within the

management zone m. In this sense, �2
T and �

2
m are calculated considering

the formula of sample variance. According to the experts, to guarantee a
homogeneous behavior of the zoning method, the relative variance must be
greater than or equal to 0.5 (an alpha parameter (↵)). The highest values for
↵ mean the highest levels of homogeneity in the management zones. Notice
that the range of values for ↵ is [0, 1].

1�
P

m2M(nm � 1)�2
m

�2
T [N � |M |] � ↵. (2)

2.2 Estimation of Distribution Algorithms (EDA)

An estimation of distribution algorithm is a class of population-based opti-
mization algorithm that extracts statistical information from the population
of solutions, to generate new ones. The algorithm starts by generating a pop-
ulation of candidate solutions. These solutions are evaluated using an objec-
tive function. Based on this evaluation, a subset of solutions is selected using
a selection method, and the population of the selected individuals is used to
estimate a probability distribution. Finally, a new set of solutions is sampled
from the estimated distribution, generating a new population of solutions,
and the algorithm iterates again. The procedure ends when a stopping crite-
rion, previously established, is reached. In our algorithm, the best solution
represents the solution with the minimum number of management zones that
satisfy the homogeneity level (↵) established by the decision-maker, and the
stopping criterion is fixed with a maximum number of iterations. For further
reference about EDAs, the reader can consult (Larrañaga and Lozano, 2002).

There exist many di↵erent EDAs that di↵er one with each other by the
probabilistic models used and their construction. In this work, we are going
to consider the univariate marginal distribution algorithm (UMDA), which
is the most basic EDA and was introduced by Mühlenbein and Paaß (1996)
and Mühlenbein (1997) for binary optimization problems in the late 1990s.
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Mathematically, a univariate model decomposes the probability of a candi-
date solution x = (x1, x2, . . . , xn) into the product of probabilities of indi-
vidual variables as

p(x) = p(x1, x2, . . . , xn) = p(x1)p(x2) . . . p(xn)

where p(xi) is the probability of variable xi, and p(x1, x2, . . . , xn) is the
probability of the candidate solution (x1, x2, . . . , xn). In the case of bi-
nary problems, we can define the probability of xi as p(xi = 1) = ri and
p(xi = 0) = 1 � ri, each xi following a Bernouilli distribution with a pa-
rameter value equal to ri. On the other hand, we use D, to represent the
population of N individuals with n binary variables. In (3), we present
a short example with a population size set of N = 10 and n = 6 binary
variables per solution. Assuming that the initial population is obtained at
random by sampling the following probability function p(xi = 1) = 0.5 for
i = 1, . . . , 6, then a possible D is:

x1 = (0, 1, 1, 1, 1, 0) f(x1) = 2, x2 = (0, 1, 1, 1, 1, 1) f(x2) = 3,

x3 = (1, 0, 0, 1, 1, 0) f(x3) = 1, x4 = (1, 1, 1, 0, 1, 0) f(x4) = 1,

x5 = (0, 1, 0, 0, 0, 1) f(x5) = 2, x6 = (0, 1, 0, 0, 1, 0) f(x6) = 4,

x7 = (0, 0, 1, 1, 1, 0) f(x7) = 4, x8 = (1, 0, 1, 0, 1, 0) f(x8) = 5,

x9 = (0, 1, 0, 0, 0, 0) f(x9) = 5, x10 = (0, 1, 1, 1, 1, 1) f(x10) = 3,

(3)

where f is a fitness function, and f(x) is the fitness value of each individual,
x. Similarly, we use D

Se, to represent the population of the selected Se

individuals from D, where Se < N . This can be done using one of the
standard selection methods that are common in evolutionary computation,
and which use information from the fitness function. Hence, individuals
with better fitness values have a bigger chance of being selected. Let us
assume that our selection method is truncation and that we select half of
the population, i.e., Se = 5. The population of selected individuals D

Se is
represented by (4):

x1 = (0, 1, 1, 1, 1, 0),

x2 = (0, 1, 1, 1, 1, 1),

x3 = (1, 0, 0, 1, 1, 0), (4)

x4 = (1, 1, 1, 0, 1, 0),

x5 = (0, 1, 0, 0, 0, 1).

In UMDA, the interest is to estimate p(x | DSe), that is, the joint proba-
bility distribution over one individual x being among the selected individuals
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D
Se. Therefore, p(xi | DSe) with i = 1, . . . , 6 is estimated from D

Se using its
corresponding relative frequency, p(xi = 1 | DSe). Thus, using the informa-
tion from (4), the univariate marginal frequencies are:

p(x1 = 1 | DSe) = 2/5, p(x2 = 1 | DSe) = 4/5,

p(x3 = 1 | DSe) = 3/5, p(x4 = 1 | DSe) = 3/5, (5)

p(x5 = 1 | DSe) = 4/5, p(x6 = 1 | DSe) = 2/5.

Consequently, with the learned model and the values of (5), we can gen-
erate the next population D, where the first binary variable for each new
candidate solution has a probability of 0.4 of being 1, and a 0.6 chance of
being a 0. The second one has a 0.8 chance of being 1, and 0.2 of being a 0,
and so on. Finally, we repeat the selection, estimation, and sampling steps,
until a stopping criterion is reached, e.g., a maximum number of generations
Tmax. The general form of the UMDA is as follows:

• STEP 0 (Initialization): Set t 1. D0  Generate N > 0 individ-
uals randomly.

• STEP 1 (Selection): D
Se
t�1  Select Se < N individuals for Dt�1

according to a selection method.

• STEP 2 (Estimation): pt(xi|DSe
t�1) Compute the univariate marginal

frequencies of the selected set.

• STEP 3 (Sampling): Dt  Generate N new individuals according
to the distribution pt(x) =

Qn
i=1 pt(xi|DSe

t�1). Set t t+ 1.

• STEP 4: If termination criteria are not met, go to STEP 1.

2.2.1 EDA for the SSMZ problem

In this section, we define the methodology to solve the SSMZ problem using
the population-based method of UMDA along with the objective function to
evaluate the fitness for each candidate solution, which we call as EDA-SSMZ
algorithm.

Individual Representation

Designing any iterative metaheuristic needs a representation of a solution.
The individual representation plays a major role in the e�ciency and e↵ec-
tiveness of any metaheuristic, and constitutes an essential step in designing a
metaheuristic. A solution for the EDA-SSMZ problem represents a partition

10



of the field using a specific number of management zones. We implement
an indirect encoding (representation) for the site-specific management zones
problem. First, each possible edge inside of the grid is enumerated and la-
beled to create the representation of solutions for the SSMZ problem. Then,
the candidate solution is generated with a vector of 1’s or 0’s represented by
x = (x1, x2, . . . , xn) where xi indicates if the i

th edge inside of the grid (bi-
nary variable) appears in the solution or not. The size of the search space is
determined by 2[nc·(nr�1)+nr·(nc�1)] possible candidate solutions, where nr and
nc represents the number of rows and columns inside of the grid, respectively.

Fig. 4 shows the representatiton (binary enconding) for a plot with 16
soil samples, 4⇥ 4, where Fig. 4a shows the sequence of the 16 soil samples
numbered by m1,m2, . . . ,m16, and the total edges inside of the grid (binary
variables) numbered by 1, 2, . . . , 24. Fig. 4b illustrates a candidate solution
for the SSMZ problem given by

x = (0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0)

where it is possible to determine which edges inside of the grid are activated,
and therefore, which soil samples correspond to which management zone.
Fig. 4c illustrates a partition of the field with six management zones where
q1 contains m1 and m2; q2 contains m3, m4, m6, m7, m8, m10, and m14; q3
contains m5; q4 contains m9 and m13; q5 contains m11; and q6 contains m12,
m15, and m16. Note that, qi ✓ S, where S = {m1,m2 . . . ,mM} denotes the
set of soil samples on the grid, and qi represents a subset of the soil samples
in the management zone i. We represent the set of management zones Q as a
collection of subsets (partitions) of the soil samples {q1, q2, . . . , qk}, and |Q|
as the total number of management zones.

a) b) c)

1 2 3m1 m2 m3 m4

4 5 6 7

8 9 10m5 m6 m7 m8

11 12 13 14

15 16 17m9 m10 m11 m12

18 19 20 21

22 23 24m13 m14 m15 m16

m1 m2 m3 m4

m5 m6 m7 m8

m9 m10 m11 m12

m13 m14 m15 m16

Figure 4: Individual representation for the SSMZ problem. Fig. 4a is the
binary encoding, Fig. 4b is a candidate solution, and Fig. 4c is a partition
of the field with six management zones.

Our indirect encoding can generate candidate solutions that represent the
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same delineation of the field, e.g., Figs. 5a–5d show four candidate solutions
that produce a similar result as Fig. 4b. In this particular case, these can-
didate solutions show a delineation of the field that corresponds to the same
solution illustrated in Fig. 4c with six management zones. Notice that, in
the candidate solutions of Figs. 5a–5d, not all activated edges separate two
zones, i.e., some edges are isolated, which does not generate infeasibility. An
isolated edge does not split a region of the plot into two di↵erent zones. For
example, Figs. 5a–5d show the isolated edges for the four candidate solu-
tions, which correspond to the edges labeled with the numbers 3, 6, 7, and
10, respectively. Moreover, the procedures of the EDA-SSMZ ignore these
isolated edges to avoid them in the final delineation.

a) b) c) d)

m1 m2 m3 m4

m5 m6 m7 m8

m9 m10 m11 m12

m13 m14 m15 m16

m1 m2 m3 m4

m5 m6 m7 m8

m9 m10 m11 m12

m13 m14 m15 m16

m1 m2 m3 m4

m5 m6 m7 m8

m9 m10 m11 m12

m13 m14 m15 m16

m1 m2 m3 m4

m5 m6 m7 m8

m9 m10 m11 m12

m13 m14 m15 m16

Figure 5: Four candidate solutions representing a similar delineation as Fig.
4b.

The EDAs build and maintain a probability distribution of the current
population over the search space, from which the next generation of indi-
viduals is sampled. The fact that our algorithm obtains similar solutions
tells us that it has converged, and therefore an edges pattern on the grid is
learned. The above means that the probability of variable xi could remain
fixed at either zero or one, obstructing some search space regions in the next
generation. On the other hand, the chance that some edges are active or not
on the grid depends on whether their marginal frequencies are di↵erent from
zero or one.

Fitness Function

The objective of the fitness function is to have the means to evaluate each
one of the possible individuals so that the search algorithm can compare
the di↵erent solutions and act in consequence to find the best solution. It
is important to define it appropriately to assess the search for the SSMZ
problem. For our EDA-SSMZ, the best solution represents the solution with
the minimum number of management zones.
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First, let us define our SSMZ problem as a combinatorial optimization
problem, which can be described as finding a k-partition of the field by
using a candidate solution, x. The objective is minimizing the number of
management zones (partitions) given by f(x) = |(q1, . . . , qk)|, subject to
some constraints in the shape of these partitions and on the homogeneity
level of the soil samples inside each partition i 2 K, where K 2 {1, ..., k}.
The mathematical model for the SSMZ problem is expressed as follows:

Minimize f(x) = |(q1, . . . , qk)| (6)

subject to : qi 6= ;, i 2 K (7)[

i2K

qi = S, (8)

qi1 \ qi2 = ;, i1, i2 2 K (9)

�(qi) is connected, i 2 K, (10)

h(Q,S) � ↵. (11)

where (6) is the fitness function that minimizes the number of management
zones. Constraints (7)–(9) define the k-partition: with no-empty zones, all
soil samples are covered by the zones generated, and there is no intersection
of soil samples between zones, respectively. Constraints (10) represent the
contiguity of the soil samples, where �(qi) represents the set of soil samples
that are adjacent to at least one soil sample of qi. Constraint (11) guaran-
tees the homogeneity of the management zones Q = {q1, . . . , qk}. Note that
constraints (7) to (10) can be easily handled by the representation proposed
in the previous section. For constraint (11), it is necessary to introduce a
special constraint handling strategy. In this work, we use a simple penal-
izing mechanism where infeasible solutions are considered during the search
process.

The penalty function modifies the original fitness function f(x) applied
to a candidate solution x such that f

0(x) = f(x) + P̄ (x), where P̄ (x) is
a distance metric from the infeasible point to the feasible region F (this
might be simply a count of the number of constraints violated). The penalty
function P̄ is zero for feasible solutions, and it increases with distance from
the feasible region (for minimization problems). Equation (12) shows that
one simple strategy is to calculate the homogeneity of the management zones
(based on Equation (2))

h(Q,S) =

✓
1�

P
i2K [s(qi)� 1] �2(qi)

�2
T (S) [|S|� |Q|]

◆
, (12)
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and then we use the penalty function

P̄ (x) =

⇢
0, if h(Q,S) � ↵,

M̄ � h(Q,S), if h(Q,S) < ↵,
(13)

where ↵ is a given homogeneity parameter, and the fixed number M̄ is large
enough that feasible solutions are preferred; s(qi) represents the number of
soil samples in the management zone qi; �2

i (qi) represents the variance in qi,
and finally, �2

T (S) represents the total variance about the set of soil samples
S in the field. The M̄ value is setting as M̄ = |S| · 10, where |S| is the
number of soil samples. With this, we ensure that M̄ es large enough for
this purpose. Therefore, in the case of some infeasible solution, P̄ (x) is one
order of magnitude more than f(x). If the value of M̄ is large enough, then
infeasible points near the constraint boundary will be discarded, which may
delay, or even prevent, the exploration of this region. On the other hand, if
M̄ is not large enough, then solutions in infeasible regions may dominate the
feasible ones.

The fitness evaluation process requires a search process over an adjacency
list to find connected soil samples for each management zone. In the worst
case, the search process is O(n · |S|), where |S| is the number of soil samples,
and n is the number of edges inside of the grid. Finally, the algorithm deter-
mines which soil samples belong to which management zones and computes
their homogeneity level.

EDA-SSMZ algorithm

The most representative steps for the proposed EDA-SSMZ are presented
by the Algorithm 1 that takes as inputs the population size (N), the initial
probability vector (p0(x)), the selection size (Se), the homogeneity parame-
ter (↵), and the maximum number of iterations (Tmax). With the proce-
dure InitializePopulation(N, p0(x)), an initial population of N individuals
is generated at random by sampling several Bernouilli distributions using
the initial probability vector p0(x). Then, with EvaluatePopulation(D,↵),
a fitness function f

0(x) is evaluated, which weighs the infeasibilities using
the objective (6) and the constraint (11). In this step, we evaluate each indi-
vidual of the population D using the parameter of homogeneity ↵, and store
the best individual in Q

best obtained with GetBestSolution(D). Procedure
SelectBestSolutions(Dt�1, Se) selects the best Se individuals from popula-
tion Dt�1, according to the fitness function. Then the joint probability distri-
bution pt(x) is estimated with CalculateMarginalFrequency(DSe

t�1), using
the population of the selected individuals,DSe

t�1. ProcedureGeneratePopulation(N, pt(x))
generates the new population of solutions using the estimated probability
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model pt(x). The algorithm evaluates the new individuals withEvaluatePopulation(D,↵),
gets the best individual of the population with GetBestSolution(D), and
stores it in Best. Finally, the algorithm updates the best solution, com-
paring the best current solution with the solution obtained in the previous
iteration (UpdateBestSolution(Qbest

, Best)). The above step preserves the
best solution (or incumbent for short) to the current iteration. The EDA-
SSMZ algorithm iterates until the maximum of iterations Tmax has been
reached and returns the best solution found, Qbest.

Algorithm 1 EDA-SSMZ
Input:

↵ := homogeneity parameter
Se := selection size
N := population size
p0(x) := initial probability vector
Tmax := maximum number of iterations

Output: Q
best: A feasible solution, k-partition of S (soil sam-

ples)
1: t 1
2: D0  InitializePopulation(N, p0(x))
3: EvaluatePopulation(D0,↵)
4: Qbest  GetBestSolution(D0)
5: for t = 1, 2, ..., Tmax do

6: D
Se
t�1  SelectBestSolutions(Dt�1, Se)

7: pt(x) CalculateMarginalFrequency(DSe
t�1)

8: Dt  GeneratePopulation(N, pt(x))
9: EvaluatePopulation(Dt,↵)

10: Best GetBestSolution(Dt)
11: Q

best  UpdateBestSolution(Qbest
, Best)

12: t t+ 1
13: end for

14: return Q
best

3 Experimental Results

In this section, we present the experimental results to validate the perfor-
mance of our EDA-SSMZ algorithm. In Section 3.1, we describe two exact
approaches used to compare our methodology. In Section 3.2, we show the
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set of instances used to test our algorithm. In Section 3.3, we present the cal-
ibration of the critical parameters for the EDA. Finally, Sections 3.4 and 3.5
show the experimentation and some graphical visualizations of the results,
respectively.

3.1 Benchmark algorithms

We compare the EDA-SSMZ algorithm with the exact approaches of Cid-
Garcia et al. (2013) and Albornoz et al. (2015) that proposed a mono-
objective mathematical formulation of integer linear programming (MILP)
and a bi-objective mathematical formulation of integer linear programming
(BILP), respectively. To the best of our knowledge, these approaches are the
first ones in the literature to generate rectangular and homogeneous man-
agement zones by using operations research techniques.

3.2 Test problem instances

3.2.1 Real-field instances

To evaluate the performance of the algorithm, we used the real-field instances
proposed by Cid-Garcia et al. (2013) and adapted in the work of Albornoz
et al. (2015). These instances show an agricultural field with 40 soil samples,
which extract information about the following soil properties: organic matter,
potential of hydrogen, phosphorous, and sum of bases. For these instances,
two dummy soil samples were considered to complete a perfect grid (the pink
circles of Fig. 3b), and their values were fixed considering the neighbor of
the left.

3.2.2 Randomly generated instances

Another set of instances was generated at random to evaluate the scalability
of the algorithm. We use the data information for organic matter of the
real-instances because this property showed more variability than the rest.
To generate a random value for each soil sample, we consider a uniform
distribution with the maximum and minimum value obtained from the OM
property. These random values were generated using the Mersenne Twister,
a strong pseudo-random number generator (PRNG). In non-rigorous terms,
a strong PRNG has a long period and statistically uniform distribution of
values (Shema, 2012).

The instances were grouped into five classes according to the number of
soil samples in the field, with a minimum of 42 and a maximum of 400 soil
samples. Each class contains ten di↵erent instances considering alpha values
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of 0.5, 0.7, and 0.9 for the homogeneity level (30 instances per class). Recall
that alpha values (↵) greater than or equal to 0.5 are desirable to guarantee
a homogeneity management zone delineation. For this set of instances, we
assume the plots have a rectangular or square shape. Therefore it is not
necessary to add dummy soil samples.

Table 1 presents the characteristics for each class of the random instances.
The first column represents the class of the instance. Columns 2 and 3 show
the width and height of the plot regarding the number of soil samples, respec-
tively. The fourth column represents the total number of soil samples. The
last column is the total number of potential management zones computed for
each plot according to the algorithm presented in Cid-Garcia et al. (2013),
which is pseudo-polynomial. This set of potential management zones con-
tains only zones with a rectangular or square shape, which depends on the
size of the field (soil samples in the width and height of the plot), and the size
of the zone with the minimum number of soil samples in the width and height.
In real-life scenarios, the number of soil samples in the plots commonly cor-
responds to instances of class 1 or 2 (the set of random instances can be
downloaded from https:// github.com/NxtrCd/ Instances-EDA-SSMZ.git).

Table 1: Characteristics for each instance group of the random instances.

Class Plot width Plot height Soil Samples Management Zones

1 6 7 42 588
2 10 10 100 3025
3 15 10 150 6600
4 15 15 225 14400
5 20 20 400 44100

3.3 Calibration of the EDA-SSMZ algorithm

Calibration of algorithms is one of the most important steps in order to ob-
tain good results. To set the appropriate parameters for the EDA-SSMZ
algorithm, we used the iterated racing procedure. This procedure focuses on
the sampling parameter configurations according to a particular distribution,
evaluating them using either the Friedman’s test or the t-test, and refining
the sampling distribution to bias the sampling towards the best configura-
tions. To calibrate the parameters, we used Friedman’s test and the irace
ver. 3.1.2112M, a software package that implements the iterated racing proce-
dure for metaheuristic parameter tuning (López-Ibáñez et al., 2016). For each
class, the tuning procedure was performed using a budget of 5000 experiments
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with the following ranges for the parameter sampling: p0(x) 2 [0.95, 0.99],
N 2 [1000, 25000], Se 2 [15, 1500], and Tmax 2 [50, 100]. For each iteration,
the irace package determines elite parameter configurations and selects the
best of them. The tuning procedure is conducted several times, and favorable
parameter settings are selected. For the real-field instances the parameters
obtained were p0(x) = (0.95, ..., 0.95), N = 9902, Se = 669, and Tmax = 32.
For the generated instances the parameters were p0(x) = (0.99, ..., 0.99),
N = 9902, Se = 669, and Tmax = 32, except for Class 5 where Tmax = 60,
and when ↵ = 0.9 then N = 24535, and Se = 200.

3.4 Computational results

The computational experiments were carried out on a server with four Intel
Xeon E5-2620 v2 Six-Core Processor @2.10 GHz, running the Linux operating
system with Ubuntu Server release 18.04.2 LTS, and 128 GB of RAM. The
EDA-SSMZ algorithm was implemented in C/C++ and replicated 50 times
with the tuned parameter settings. The MILP and BILP approaches of
Section 3.1 were executed in the same computer to compare the EDA-SSMZ
algorithm.

3.4.1 Results for real-field instances

In this section, we evaluate the EDA-SSMZ algorithm by using the real-field
instances described in Section 3.2. Table 2 shows the experimental results
comparing the BILP and MILP approaches with the EDA-SSMZ algorithm.
Numbers in bold are the best solutions. The first column presents the chem-
ical soil property (OM, pH, P, and SB). The second column determines the
homogeneity level of the management zones (↵–parameter). Columns 3-6
present the results for the EDA-SSMZ showing the minimum, the average,
the maximum, and the average time (in seconds) over 50 independent runs
of the algorithm. Columns 7-10 are the results for the BILP and MILP,
showing the number of zones (Z⇤) and the execution time (in seconds) for
each approach. The last column represents the improvement (in %) of the
EDA-SSMZ (considering its best solution) in comparison with the other ap-
proaches. The percentage is computed as |Min�Z⇤|/Min⇤100. The last row
shows the total number of management zones obtained by each approach.

The EDA-SSMZ algorithm obtains the best solutions in all the real-field
instances. However, for ten instances, the MILP and BILP approaches reach
similar solutions in comparison with our method. For OM and SB, the results
of the EDA-SSMZ and the exact approaches, in almost all cases, are very
di↵erent (high percentages of improvement). On the contrary, the results for
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Table 2: Experimental results for the real-field instances.

Soil Alpha EDA-SSMZ BILP MILP Improvement

Property (↵) Min Avg Max Time (s) Z* Time (s) Z* Time (s) (%)

OM 1 40 40.0 40 23.28 40 0.01 40 0.01 0.00
0.9 17 17.9 18 22.33 20 0.03 20 0.03 17.65
0.8 11 11.9 12 22.73 17 0.04 17 0.12 54.55
0.7 9 9.2 10 22.94 14 0.24 14 0.15 55.56
0.6 6 6.0 7 23.17 11 0.17 11 0.08 83.33
0.5 5 5.5 6 23.26 9 0.06 9 0.07 80.00
0.4 4 4.0 4 23.33 7 0.06 7 0.07 75.00
0.3 2 2.8 3 23.43 6 0.22 6 0.07 200.00
0.2 2 2.2 3 23.47 5 0.07 5 0.14 150.00
0.1 2 2.0 2 23.63 3 0.07 3 0.06 50.00

pH 1 19 19.0 19 22.30 24 0.01 24 0.01 26.32
0.9 13 14.7 16 22.33 17 0.06 17 0.08 30.77
0.8 8 8.8 9 23.15 10 0.05 10 0.10 25.00
0.7 6 6.0 6 23.28 7 0.06 7 0.07 16.67
0.6 5 5.0 5 23.39 5 0.06 5 0.08 0.00
0.5 4 4.0 5 23.45 4 0.06 4 0.08 0.00
0.4 3 3.8 4 23.52 4 0.06 4 0.08 33.33
0.3 3 3.0 3 23.62 3 0.05 3 0.06 0.00
0.2 2 2.2 3 23.60 3 0.07 3 0.14 50.00
0.1 2 2.0 2 23.64 2 0.05 2 0.01 0.00

P 1 32 32.0 32 21.46 33 0.01 33 0.01 3.13
0.9 7 7.94 8 23.28 9 0.05 9 0.13 28.57
0.8 4 7.9 4 23.46 5 0.26 5 0.19 25.00
0.7 3 3.0 3 23.54 3 0.05 3 0.01 0.00
0.6 2 2.0 2 23.64 3 0.05 3 0.01 50.00
0.5 2 2.0 2 23.67 3 0.04 3 0.01 50.00
0.4 2 2.0 2 23.67 3 0.07 3 0.01 50.00
0.3 2 2.0 2 23.66 3 0.05 3 0.04 50.00
0.2 2 2.0 2 23.64 3 0.05 3 0.08 50.00
0.1 2 2.0 2 23.61 2 0.05 2 0.01 0.00

SB 1 40 40.0 40 23.51 40 0.01 40 0.01 0.00
0.9 14 14.0 14 22.60 20 0.02 20 0.02 42.86
0.8 9 9.7 11 22.94 16 0.04 16 0.04 77.78
0.7 5 5.1 6 23.16 12 0.05 12 0.20 140.00
0.6 3 3.0 3 23.35 9 0.27 9 0.16 200.00
0.5 3 3.0 3 23.43 7 0.08 7 0.17 133.33
0.4 2 2.2 3 23.54 5 0.06 5 0.16 150.00
0.3 2 2.0 2 23.50 4 0.07 4 0.07 100.00
0.2 2 2.0 2 23.57 2 0.06 2 0.01 0.00
0.1 2 2.0 2 23.51 2 0.06 2 0.01 0.00

Total 303 315.84 322 395 395

pH and P are relatively similar (low percentages of improvement). That is
because the data information for OM and SB exhibits more variability than
the rest of the soil properties, and delineating the field with management
zones that use orthogonal shapes allows using a minor number of management
zones than that with regions with rectangular or square shapes.

It is also noteworthy that the percentage of improvement for the EDA-
SSMZ algorithm is up to 200% higher compared with the other exact ap-
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proaches, and the computational time for solving the instances is higher for
the EDA-SSMZ than the exact methodologies, e.g., on average, around 23
seconds against less than one second. This behavior is expected because the
solution space for the EDA-SSMZ is bigger. However, the execution time
does not represent a disadvantage for the algorithm.

3.4.2 Results for random instances

In this section, we test the performance of the EDA-SSMZ by using the
random instances explained in Section 3.2. The experimental results for
each class of instances (Class 1–Class 5) are presented in Tables 3–7, which
have similar format as Table 2, except for the first two columns that show the
homogeneity level (↵ value) in the first column, and the number of instance
in the second column.

Table 3: Experimental results for the random instances: Class 1.

Alpha Instance
EDA-SSMZ BILP MILP Improvement

↵ Min Avg Max Time (s) Z* Time (s) Z* Time (s) (%)

0.5 1 6 6.00 6 23.06 11 0.23 11 0.18 83.33
2 5 5.34 7 23.02 10 0.07 10 0.20 100.00
3 6 6.62 7 22.87 8 0.06 8 0.18 33.33
4 4 4.00 4 23.33 10 0.05 10 0.07 150.00
5 8 8.00 8 23.09 11 0.27 11 0.10 37.50
6 3 3.98 5 23.24 9 0.06 9 0.07 200.00
7 8 9.38 10 23.08 13 0.07 13 0.15 62.50
8 4 4.94 5 23.19 10 0.06 10 0.15 150.00
9 7 7.78 9 22.96 13 0.06 13 0.12 85.71
10 5 5.08 6 23.02 11 0.06 11 0.15 120.00

0.7 1 10 10.28 11 22.76 16 0.25 16 0.15 60.00
2 10 10.94 12 22.55 18 0.05 18 0.07 80.00
3 9 10.10 11 22.64 14 0.37 14 0.04 55.56
4 6 7.16 9 23.00 13 0.04 13 0.05 116.67
5 10 10.54 12 22.73 16 0.30 16 0.14 60.00
6 8 9.48 11 23.00 14 0.05 14 0.19 75.00
7 13 13.98 15 22.68 18 0.04 18 0.08 38.46
8 6 7.20 8 22.88 14 0.06 14 0.16 133.33
9 12 14.18 16 22.38 19 0.05 19 0.08 58.33
10 8 8.20 9 22.66 15 0.04 15 0.12 87.50

0.9 1 19 19.00 19 22.03 24 0.02 24 0.03 26.33
2 21 22.70 25 21.84 26 0.02 26 0.03 23.81
3 22 23.34 25 21.81 25 0.02 25 0.13 13.64
4 22 23.82 25 21.81 24 0.02 24 0.04 9.09
5 21 23.48 25 21.87 25 0.02 25 0.02 19.05
6 16 17.02 18 22.41 21 0.02 21 0.09 31.25
7 23 24.62 25 21.77 26 0.17 26 0.02 13.04
8 16 16.85 18 22.15 21 0.03 21 0.03 31.25
9 25 26.06 27 21.55 29 0.02 29 0.02 16.00
10 19 21.68 23 21.66 22 0.02 22 0.02 15.79

Total 352 381.75 411 506 506
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For all the random instances, the EDA-SSMZ can provide better solu-
tions than the ones provided by the exact approaches. To highlight this
behavior, we mark in boldface the best solution obtained for each instance.
An important characteristic of the EDA-SSMZ is that even the worst solu-
tions outperform the best ones obtained by the exact approaches. However,
the computational time for the EDA-SSMZ increases considerably with the
instance size and the homogeneity level in comparison with the exact ap-
proaches, e.g., for Class 5, with the alpha parameter equal to 0.9, in the
worst case our algorithm takes around 3.5 hours in solving the instance,
against the 45 seconds of the MILP approach. As in the real-field instances,
this behavior is expected because the solution space for the EDA-SSMZ al-
gorithm is bigger. Currently, it seems a long time for large instances, but, in

Table 4: Experimental results for the random instances: Class 2.

Alpha Instance
EDA-SSMZ BILP MILP Improvement

↵ Min Avg Max Time (s) Z* Time (s) Z* Time (s) (%)

0.5 1 8 9.22 12 89.84 24 0.47 24 0.50 200.00
2 8 8.82 10 90.12 22 0.45 22 0.52 175.00
3 10 11.52 13 89.80 22 0.59 22 1.70 120.00
4 10 12.22 14 89.86 24 0.42 24 0.53 140.00
5 5 5.48 7 90.91 14 0.48 14 0.67 180.00
6 10 10.80 12 90.01 25 0.42 25 1.46 150.00
7 9 10.76 12 90.01 19 0.31 19 0.38 111.11
8 8 9.94 13 90.52 17 0.47 17 0.58 112.50
9 8 9.36 11 90.11 22 0.36 22 0.63 175.00
10 8 8.54 9 90.17 14 0.59 14 0.72 75.00

0.7 1 16 17.04 19 88.23 36 0.19 36 0.35 125.00
2 18 20.72 25 87.75 35 0.22 35 0.32 94.44
3 16 16.56 18 88.22 34 0.26 34 0.34 112.50
4 20 22.30 24 88.17 36 0.28 36 0.37 80.00
5 11 11.94 13 89.38 25 0.30 25 0.43 127.27
6 18 21.06 23 88.07 35 0.17 35 0.37 94.44
7 18 20.26 23 88.69 32 0.30 32 0.62 77.78
8 15 16.08 18 88.79 30 0.34 30 0.52 100.00
9 15 16.68 19 88.72 31 0.22 31 0.32 106.67
10 13 14.34 16 88.45 25 0.52 25 0.52 92.31

0.9 1 41 43.24 45 85.22 50 0.07 50 0.08 21.95
2 44 46.90 49 84.77 57 0.22 57 0.15 29.55
3 39 40.68 44 85.49 52 0.10 52 0.23 33.33
4 41 43.58 47 85.08 55 0.08 55 0.09 34.15
5 32 33.56 36 86.03 49 0.13 49 0.23 53.13
6 40 41.92 44 85.23 51 0.07 51 0.18 27.50
7 39 41.62 44 85.41 50 0.09 50 0.11 28.21
8 42 44.22 46 84.71 51 0.13 51 0.16 21.43
9 42 44.64 48 84.94 52 0.08 52 0.08 23.81
10 37 39.30 41 85.30 44 0.15 44 0.23 18.92

Total 641 693.30 755 1033 1033

practice, it is reasonable since the agricultural production cycle is every year
or, in some cases, every six months. Furthermore, we highlight the number
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of soil samples in real-fields corresponds, generally, to small instances (Class
1 or 2) that can be e�ciently solved by our EDA-SSMZ in less than two
minutes, as can be seen in Tables 3 and 4. Notice that, for large instances
(Table 7), the homogeneity level (↵–parameter) plays an important role in
the execution of the algorithm, i.e., when the alpha value tends to 1, our
algorithm requires more computational time. With this, we have detected
a future research line where it is possible to apply the parallelization of the
EDA-SSMZ to decrease the computational time for large instances.

Table 5: Experimental results for the random instances: Class 3.

Alpha Instance
EDA-SSMZ BILP MILP Improvement

↵ Min Avg Max Time (s) Z* Time (s) Z* Time (s) (%)

0.5 1 10 12.56 14 184.62 30 1.31 30 1.63 200.00
2 12 13.74 16 184.52 29 1.37 29 2.98 141.67
3 9 11.84 14 184.12 32 1.36 32 1.95 255.56
4 9 10.68 14 184.20 27 1.28 27 1.61 200.00
5 8 8.74 10 184.11 24 1.35 24 3.59 200.00
6 8 10.22 13 185.65 30 1.35 30 2.26 275.00
7 12 13.70 16 185.01 32 1.32 32 1.96 166.67
8 10 12.44 14 184.05 27 1.31 27 1.84 170.00
9 11 11.94 14 184.10 28 1.52 28 3.23 154.55
10 9 11.90 15 184.54 31 1.41 31 2.00 244.44

0.7 1 23 26.20 29 181.07 53 0.63 53 1.21 130.43
2 23 25.26 28 181.87 46 1.18 46 1.36 100.00
3 20 22.84 26 180.94 49 1.06 49 1.07 145.00
4 21 22.64 24 181.66 42 0.83 42 1.14 100.00
5 16 17.80 20 181.36 38 0.90 38 1.35 137.50
6 18 20.44 24 182.69 46 1.11 46 1.48 155.56
7 25 27.46 30 180.52 51 0.77 51 1.22 104.00
8 19 20.24 22 181.85 43 1.05 43 1.29 126.32
9 19 20.60 23 181.44 44 1.43 44 1.42 131.58
10 28 31.20 34 179.76 51 0.60 51 0.78 82.14

0.9 1 76 78.06 82 173.82 84 0.21 84 0.38 10.53
2 58 61.50 64 175.09 77 0.29 77 0.35 32.76
3 59 61.86 65 175.10 82 0.29 82 0.34 38.98
4 61 63.28 66 174.78 75 0.30 75 0.38 22.95
5 60 62.72 65 174.90 73 0.24 73 0.43 21.67
6 60 62.58 66 175.35 72 0.17 72 0.26 20.00
7 64 66.94 70 174.88 77 0.30 77 0.40 20.31
8 53 55.84 59 176.13 69 0.36 69 0.46 30.19
9 56 59.18 62 175.21 73 0.28 73 0.36 30.36
10 71 74.04 77 173.64 82 0.47 82 0.47 15.49

Total 928 998.44 1076 1517 1517

Table 8 shows a summary of the experimental results for the random
instances. The first and the second column present the class and the field
size (total number of soil samples on the width and height). The third column
is the homogeneity level (↵–parameter ). Columns 4-6 show the results for
the EDA-SSMZ algorithm (the minimum, the average, and the maximum
of management zones). Columns 7 and 8 are the results for the BILP and
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Table 6: Experimental results for the random instances: Class 4.

Alpha Instance
EDA-SSMZ BILP MILP Improvement

↵ Min Avg Max Time (s) Z* Time (s) Z* Time (s) (%)

0.5 1 11 13.50 16 549.33 39 4.09 39 4.78 254.55
2 18 21.34 23 550.24 47 4.92 47 5.41 161.11
3 10 12.42 15 553.42 41 3.69 41 5.58 310.00
4 14 16.88 20 549.75 45 3.49 45 7.03 221.43
5 13 19.82 21 550.75 43 4.46 43 5.69 230.77
6 7 9.16 12 552.61 37 4.82 37 4.95 428.57
7 18 21.36 25 551.79 47 4.11 47 8.36 161.11
8 10 12.48 15 552.06 34 4.39 34 9.65 240.00
9 12 15.92 19 550.08 42 3.55 42 9.08 250.00
10 11 13.64 16 551.20 38 4.11 38 6.18 245.45

0.7 1 24 28.96 32 579.22 64 1.97 64 2.75 166.67
2 36 39.50 43 574.92 69 2.95 69 4.38 91.67
3 25 27.26 30 584.00 66 1.68 66 2.27 164.00
4 25 28.26 30 574.06 71 1.75 71 2.46 184.00
5 28 30.78 34 579.34 68 2.36 68 3.31 142.86
6 21 24.80 29 583.24 63 3.35 63 4.49 200.00
7 30 33.72 37 584.97 73 2.18 73 3.11 143.33
8 24 28.46 32 583.46 62 2.89 62 3.13 158.33
9 29 32.98 37 574.14 64 1.88 64 2.86 120.69
10 28 30.12 33 577.07 63 3.26 63 5.27 125.00

0.9 1 72 77.30 84 565.32 108 0.57 108 0.62 50.00
2 84 89.20 94 570.64 115 0.84 115 1.16 36.90
3 82 85.58 89 569.74 112 0.90 112 1.21 36.59
4 76 78.48 83 560.41 105 0.85 105 1.18 38.16
5 80 83.64 88 565.92 114 0.48 114 0.74 42.50
6 74 78.20 82 562.85 106 0.60 106 0.85 43.24
7 75 78.28 81 568.91 111 0.54 111 0.73 48.00
8 82 86.68 91 567.64 114 0.84 114 1.11 39.02
9 87 94.74 104 557.68 116 0.57 116 0.73 33.33
10 79 84.24 87 572.69 113 0.65 113 0.74 43.04

Total 1185 1297.70 1402 2190 2190

MILP approaches, respectively. The last column shows the percentage of
improvement obtained by the EDA-SSMZ algorithm. Finally, the last row
presents the total of management zones obtained by each approach for all
the classes.

For each class, we observe when the homogeneity level decreases (↵ tends
to 0.5), then the average relative improvement of the EDA-SSMZ increases,
and when the homogeneity level increases (↵ tends to 1), then the average
relative improvement decreases. This behavior is not surprising since when
a high level of homogeneity is imposed, and there is variability in the infor-
mation of the soil sample, the EDA-SSMZ tends to assign each soil sample
within an individual zone. Therefore, the number of possibilities for delin-
eation is reduced, and the percentage of improvement decreases too. Further-
more, the percentage of improvement increases with the size of the instance,
i.e., larger instances show better improvements than short ones. For exam-
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Table 7: Experimental results for the random instances: Class 5.

Alpha Instance
EDA-SSMZ BILP MILP Improvement

↵ Min Avg Max Time (s) Z* Time (s) Z* Time (s) (%)

0.5 1 17 20.54 23 5253.77 69 25.14 69 44.95 305.88
2 25 28.96 33 4864.24 77 28.22 77 29.77 208.00
3 19 23.14 27 4911.34 70 27.85 70 23.29 268.42
4 19 22.88 26 5395.65 70 29.67 70 23.28 268.42
5 22 26.88 33 4974.36 67 26.36 67 31.68 204.55
6 18 22.48 26 4923.22 64 35.44 64 27.89 255.56
7 12 16.54 20 4861.87 60 24.83 60 24.29 400.00
8 20 23.28 27 5402.27 66 30.50 66 35.86 230.00
9 24 28.10 33 4885.62 73 30.41 73 27.62 204.17
10 24 28.52 33 4419.26 78 27.74 78 25.60 225.00

0.7 1 38 43.64 48 4201.84 114 15.75 114 18.51 200.00
2 50 56.14 62 3991.92 130 16.06 130 19.61 160.00
3 43 47.94 52 4041.12 113 15.03 113 12.01 162.79
4 42 47.98 53 3957.44 113 16.48 113 12.03 169.05
5 52 56.18 61 4047.37 116 20.06 116 17.34 123.08
6 38 44.54 51 3927.64 104 20.17 104 22.18 173.68
7 34 39.44 44 4011.76 103 13.20 103 19.59 202.94
8 43 47.88 53 3857.57 106 18.99 106 18.29 146.51
9 49 53.32 59 3800.13 118 17.86 118 14.67 140.82
10 50 57.96 63 3950.53 124 18.25 124 16.40 148.00

0.9 1 146 164.48 174 10977.90 189 3.88 189 6.92 29.45
2 178 189.10 207 10537.90 221 2.41 221 3.97 24.16
3 157 167.54 178 12930.10 198 4.55 198 6.87 26.11
4 158 166.54 183 10631.30 198 4.50 198 6.88 25.32
5 164 173.14 187 10579.00 196 3.80 196 4.63 19.51
6 151 161.10 172 10777.20 185 4.74 185 5.01 22.52
7 145 160.64 174 10424.40 174 3.62 174 5.34 20.00
8 149 164.48 174 10667.60 183 2.30 183 3.42 22.82
9 156 167.90 180 10715.10 200 5.02 200 6.03 28.21
10 160 171.30 183 10486.20 201 4.54 201 6.72 25.62

Total 2203 2422.56 2639 3780 3780

ple, instances of Class 5 show an average percentage of improvement up to
277% for ↵ = 0.5, 159% for ↵ = 0.7, and 24% for ↵ = 0.9. In contrast with
the 89% for ↵ = 0.5, 70% for ↵ = 0.7, and 19% for ↵ = 0.9 on the instances
of Class 1.

Fig. 6 shows a summary for each class of the random instances presented
in Tables 3–8. The X-axis represents the instance with its corresponding
alpha-value, and the Y-axis the number of partitions used in the final delin-
eation. Notice for all the instances, our EDA-SSMZ algorithm (black lines)
improves the BILP and MILP approaches (red lines).

3.5 Visualization

In Figs. 7–9 we show some configurations obtained by the EDA-SSMZ algo-
rithm, in comparison with the BILP approach, considering the organic mat-
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Table 8: Experimental results for the random instances. A summary.

Class Field size Alpha
EDA-SSMZ BILP MILP Improvement

↵ Min Avg Max Z* Z* (%)

1 6x7 0.5 5.6 6.1 6.7 10.6 10.6 89.29
0.7 9.2 10.2 11.4 15.7 15.7 70.65
0.9 20.4 21.8 23.0 24.3 24.3 19.12

2 10x10 0.5 8.4 9.6 11.3 20.3 20.3 141.67
0.7 16.0 17.6 19.8 31.9 31.9 99.37
0.9 39.7 41.9 44.4 51.1 51.1 28.72

3 15x10 0.5 9.8 11.7 14.0 29.0 29.0 195.92
0.7 21.2 23.4 26.0 46.3 46.3 118.40
0.9 61.8 64.6 67.6 76.4 76.4 23.62

4 15x15 0.5 12.4 15.6 18.2 41.3 41.3 233.06
0.7 27.0 30.4 33.7 66.3 66.3 145.56
0.9 79.1 83.6 88.3 111.4 111.4 40.83

5 20x20 0.5 20.0 24.1 28.1 69.4 69.4 277.00
0.7 43.9 49.5 54.6 114.1 114.1 159.91
0.9 156.4 168.6 181.2 194.5 194.5 24.36

Total 530.9 579.3 628.3 902.6 902.6

ter as chemical soil property and fixing the homogeneity level (↵–parameter)
to 0.5, 0.7, and 0.9, respectively. Figs. 7a, 8a, and 9a represent the solution
obtained by the EDA-SSMZ algorithm, and Figs. 7b, 8b, and 9b show the
solution of the BILP. We can observe that our approach selects figures with
orthogonal shapes to partitioning the field, which minimizes the number of
management zones in the final delineation.

4 Conclusions

In this paper, we introduce a new methodology to solve the problem of delin-
eating homogeneous site-specific management zones (SSMZ ) in agricultural
fields based on an estimation of distribution algorithm (EDA). This problem
consists of partitioning the field in small regions considering a specific soil
property, chemical or physical, such that the generated zones satisfy a deter-
mined level of homogeneity. To the best of our knowledge, this is the first
approach that generates management zones with orthogonal shape, e.g., L or
T, which minimizes the number of regions required in the final delineation
of the field.

Our methodology was tested on a set of real-life instances, and it was
compared with other operations research methodologies presented in the lit-
erature. Furthermore, a set of instances was generated at random to analyze
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Figure 6: EDA-SSMZ vs. BILP/MILP : A summary for each class of ran-
domly generated instances.

the scalability of the method. The experimental results show that our method
is e�cient and robust (the average/deviation behavior of the algorithm over
di↵erent runs of the algorithm) to solve instances with di↵erent size for the
SSMZ problem by improving the solutions presented by the other operations
research approaches. According to the size of the instances, the EDA-SSMZ
algorithm can find an average relative improvement is up to 277% when
↵ = 0.5, between 70% and 160% when ↵ = 0.7, and, at most, 40% when
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a) b)

Figure 7: Management zones for organic matter when ↵ = 0.5. Fig. 7a shows
the results for the EDA-SSMZ algorithm (five zones) and Figs. 7b shows the
results for the BILP approach (nine zones).

a) b)

Figure 8: Management zones for organic matter when ↵ = 0.7. Fig. 8a shows
the results for the EDA-SSMZ algorithm (nine zones) and Fig. 8b shows the
results for the BILP approach (fourteen zones).

a) b)

Figure 9: Management zones for organic matter when ↵ = 0.9. Fig. 9a
shows the results for the EDA-SSMZ algorithm (seventeen zones) and Fig.
9b shows the results for the BILP approach (twenty zones).

↵ = 0.9.
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The EDA-SSMZ represents the agricultural field with a grid composed
of edges and soil samples, from which and adjacency list is created. The
execution time for the EDA-SSMZ increases considerably for large instances
because our fitness evaluation process requires a search process (like depth-
first search) over the adjacency list to find which soil samples belong to which
management zone. Moreover, the fitness evaluation process is applied in a
sequential way in each generation and for each individual of the population.
Therefore, this is an important issue to improve. In particular, a parallel
evolutionary approach can e↵ectively reduce the computational time of the
EDA-SSMZ and lead to an increased exploration and better diversity, com-
pared to sequential one. In future research, our attention will concentrate on
two main parallel approaches: the evolution of parallel populations and the
parallelization of the fitness evaluation process. Additionally, we consider
formulating our combinatorial optimization problem as a mixed-integer lin-
ear program (MILP) to obtain optimal solutions for the SSMZ problem or
develop new methods for generating acceptable lower bounds. The main dif-
ficulty for both strategies is the procedure of finding connected components
to calculate the evaluation of the management zone.
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