33 research outputs found

    The effect of polydispersity in a turbulent channel flow laden with finite-size particles

    Full text link
    We study turbulent channel flows of monodisperse and polydisperse suspensions of finite-size spheres by means of Direct Numerical Simulations using an immersed boundary method to account for the dispersed phase. Suspensions with 3 different Gaussian distributions of particle radii are considered (i.e. 3 different standard deviations). The distributions are centered on the reference particle radius of the monodisperse suspension. In the most extreme case, the radius of the largest particles is 4 times that of the smaller particles. We consider two different solid volume fractions, 2% and 10%. We find that for all polydisperse cases, both fluid and particles statistics are not substantially altered with respect to those of the monodisperse case. Mean streamwise fluid and particle velocity profiles are almost perfectly overlapping. Slightly larger differences are found for particle velocity fluctuations. These increase close to the wall and decrease towards the centerline as the standard deviation of the distribution is increased. Hence, the behavior of the suspension is mostly governed by excluded volume effects regardless of particle size distribution (at least for the radii here studied). Due to turbulent mixing, particles are uniformly distributed across the channel. However, smaller particles can penetrate more into the viscous and buffer layer and velocity fluctuations are therein altered. Non trivial results are presented for particle-pair statistics.Comment: Under review in the European Journal of Mechanics/B - Fluid

    An Improved Direct Forcing Immersed Boundary Method for Simulating Floating Objects

    Get PDF
    An enhanced direct forcing immersed boundary method implemented in the open-source hydrodynamic framework REEF3D::CFD is used to simulate six-degrees-of-freedom (6DOF) motion response of a 1:30 scale point-absorber wave energy converter(WEC) under extreme wave conditions. The enhancement of the method is achieved with a new density interpolation method that removes unphysical spurious phenomena. The governing equations are solved on a staggered rectilinear grid. REEF3D::CFD uses the level set function to represent the free surface. A ray casting algorithm is employed to get inside-outside information in the vicinity of the body with the underlying Cartesian grid. The enhanced method is tested and validated based on the experimental data from the experimental wave tank campaign carried out in the Ocean and Coastal Engineering Laboratory, at Aalborg University, in Denmark.&nbsp

    A boundary condition-enhanced direct-forcing immersed boundary method for simulations of three-dimensional phoretic particles in incompressible flows

    Get PDF
    In this paper we propose an improved three-dimensional immersed boundary method coupled with a finite-difference code to simulate self-propelled phoretic particles in viscous incompressible flows. We focus on the phenomenon of diffusiophoresis which, using the driving of a concentration gradient, can generate a slip velocity on a surface. In such a system, both the Dirichlet and Neumann boundary conditions are involved. In order to enforce the boundary conditions, we propose two improvements to the basic direct-forcing immersed boundary method. The main idea is that the immersed boundary terms are corrected by adding the force of the previous time step, in contrast to the traditional method which relies only on the instantaneous forces in each time step. For the Neumann boundary condition, we add two auxiliary layers inside the body to precisely implement the desired concentration gradient. To verify the accuracy of the improved method, we present problems of different complexity: The first is the pure diffusion around a sphere with Dirichlet and Neumann boundary conditions. Then we show the flow past a fixed sphere. In addition, the motion of a self-propelled Janus particle in the bulk and the spontaneously symmetry breaking of an isotropic phoretic particle are reported. The results are in very good agreements with the data that are reported in previously published literature.</p

    From Rayleigh-B\'enard convection to porous-media convection: how porosity affects heat transfer and flow structure

    Get PDF
    We perform a numerical study of the heat transfer and flow structure of Rayleigh-B\'enard (RB) convection in (in most cases regular) porous media, which are comprised of circular, solid obstacles located on a square lattice. This study is focused on the role of porosity ϕ\phi in the flow properties during the transition process from the traditional RB convection with ϕ=1\phi=1 (so no obstacles included) to Darcy-type porous-media convection with ϕ\phi approaching 0. Simulations are carried out in a cell with unity aspect ratio, for the Rayleigh number RaRa from 10510^5 to 101010^{10} and varying porosities ϕ\phi, at a fixed Prandtl number Pr=4.3Pr=4.3, and we restrict ourselves to the two dimensional case. For fixed RaRa, the Nusselt number NuNu is found to vary non-monotonously as a function of ϕ\phi; namely, with decreasing ϕ\phi, it first increases, before it decreases for ϕ\phi approaching 0. The non-monotonous behaviour of Nu(ϕ)Nu(\phi) originates from two competing effects of the porous structure on the heat transfer. On the one hand, the flow coherence is enhanced in the porous media, which is beneficial for the heat transfer. On the other hand, the convection is slowed down by the enhanced resistance due to the porous structure, leading to heat transfer reduction. For fixed ϕ\phi, depending on RaRa, two different heat transfer regimes are identified, with different effective power-law behaviours of NuNu vs RaRa, namely, a steep one for low RaRa when viscosity dominates, and the standard classical one for large RaRa. The scaling crossover occurs when the thermal boundary layer thickness and the pore scale are comparable. The influences of the porous structure on the temperature and velocity fluctuations, convective heat flux, and energy dissipation rates are analysed, further demonstrating the competing effects of the porous structure to enhance or reduce the heat transfer

    Consolidation of freshly deposited cohesive and non-cohesive sediment: particle-resolved simulations

    Full text link
    We analyze the consolidation of freshly deposited cohesive and non-cohesive sediment by means of particle-resolved direct Navier-Stokes simulations based on the Immersed Boundary Method. The computational model is parameterized by material properties and does not involve any arbitrary calibrations. We obtain the stress balance of the fluid-particle mixture from first principles and link it to the classical effective stress concept. The detailed datasets obtained from our simulations allow us to evaluate all terms of the derived stress balance. We compare the settling of cohesive sediment to its non-cohesive counterpart, which corresponds to the settling of the individual primary particles. The simulation results yield a complete parameterization of the Gibson equation, which has been the method of choice to analyze self-weight consolidation.Comment: 16 pages, 9 figures, accepted for Physical Review Fluid

    Suspension of flexible cylinders in laminar liquid flow

    Get PDF
    Peer reviewedPostprin
    corecore