29 research outputs found

    Parallelization Research of Circle Detection Based on Hough Transform

    Get PDF
    Abstract There is a problem of too long computation time in Circle detection of Hough transform. In this paper, two paralleled methods are given based on Threading Building Blocks (TBB) and CUDA, by utilizing multi-core and GPU, the most timeconsuming part of circle detection is coped with parallelization. Experimental results show that the circle detection algorithms proposed in this paper has extremely good result of acceleration

    Parallel progressive multiple sequence alignment on reconfigurable meshes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the most fundamental and challenging tasks in bio-informatics is to identify related sequences and their hidden biological significance. The most popular and proven best practice method to accomplish this task is aligning multiple sequences together. However, multiple sequence alignment is a computing extensive task. In addition, the advancement in DNA/RNA and Protein sequencing techniques has created a vast amount of sequences to be analyzed that exceeding the capability of traditional computing models. Therefore, an effective parallel multiple sequence alignment model capable of resolving these issues is in a great demand.</p> <p>Results</p> <p>We design <it>O</it>(1) run-time solutions for both local and global dynamic programming pair-wise alignment algorithms on reconfigurable mesh computing model. To align <it>m </it>sequences with max length <it>n</it>, we combining the parallel pair-wise dynamic programming solutions with newly designed parallel components. We successfully reduce the progressive multiple sequence alignment algorithm's run-time complexity from <it>O</it>(<it>m </it>× <it>n</it><sup>4</sup>) to <it>O</it>(<it>m</it>) using <it>O</it>(<it>m </it>× <it>n</it><sup>3</sup>) processing units for scoring schemes that use three distinct values for match/mismatch/gap-extension. The general solution to multiple sequence alignment algorithm takes <it>O</it>(<it>m </it>× <it>n</it><sup>4</sup>) processing units and completes in <it>O</it>(<it>m</it>) time.</p> <p>Conclusions</p> <p>To our knowledge, this is the first time the progressive multiple sequence alignment algorithm is completely parallelized with <it>O</it>(<it>m</it>) run-time. We also provide a new parallel algorithm for the Longest Common Subsequence (LCS) with <it>O</it>(1) run-time using <it>O</it>(<it>n</it><sup>3</sup>) processing units. This is a big improvement over the current best constant-time algorithm that uses <it>O</it>(<it>n</it><sup>4</sup>) processing units.</p

    Implementation of a real time Hough transform using FPGA technology

    Get PDF
    This thesis is concerned with the modelling, design and implementation of efficient architectures for performing the Hough Transform (HT) on mega-pixel resolution real-time images using Field Programmable Gate Array (FPGA) technology. Although the HT has been around for many years and a number of algorithms have been developed it still remains a significant bottleneck in many image processing applications. Even though, the basic idea of the HT is to locate curves in an image that can be parameterized: e.g. straight lines, polynomials or circles, in a suitable parameter space, the research presented in this thesis will focus only on location of straight lines on binary images. The HT algorithm uses an accumulator array (accumulator bins) to detect the existence of a straight line on an image. As the image needs to be binarized, a novel generic synchronization circuit for windowing operations was designed to perform edge detection. An edge detection method of special interest, the canny method, is used and the design and implementation of it in hardware is achieved in this thesis. As each image pixel can be implemented independently, parallel processing can be performed. However, the main disadvantage of the HT is the large storage and computational requirements. This thesis presents new and state-of-the-art hardware implementations for the minimization of the computational cost, using the Hybrid-Logarithmic Number System (Hybrid-LNS) for calculating the HT for fixed bit-width architectures. It is shown that using the Hybrid-LNS the computational cost is minimized, while the precision of the HT algorithm is maintained. Advances in FPGA technology now make it possible to implement functions as the HT in reconfigurable fabrics. Methods for storing large arrays on FPGA’s are presented, where data from a 1024 x 1024 pixel camera at a rate of up to 25 frames per second are processed

    Fiber optic networks: fairness, access controls and prototyping

    Get PDF
    Fiber optic technologies enabling high-speed, high-capacity digital information transport have only been around for about 3 decades but in their short life have completely revolutionized global communications. To keep pace with the growing demand for digital communications and entertainment, fiber optic networks and technologies continue to grow and mature. As new applications in telecommunications, computer networking and entertainment emerge, reliability, scalability, and high Quality of Service (QoS) requirements are increasing the complexity of optical transport networks.;This dissertation is devoted to providing a discussion of existing and emerging technologies in modern optical communications networks. To this end, we first outline traditional telecommunication and data networks that enable high speed, long distance information transport. We examine various network architectures including mesh, ring and bus topologies of modern Local, Metropolitan and Wide area networks. We present some of the most successful technologies used in todays communications networks, outline their shortcomings and introduce promising new technologies to meet the demands of future transport networks.;The capacity of a single wavelength optical signal is 10 Gbps today and is likely to increase to over 100 Gbps as demonstrated in laboratory settings. In addition, Wavelength Division Multiplexing (WDM) techniques, able to support over 160 wavelengths on a single optical fiber, have effectively increased the capacity of a single optical fiber to well over 1 Tbps. However, user requirements are often of a sub-wavelength order. This mis-match between individual user requirements and single wavelength offerings necessitates bandwidth sharing mechanisms to efficiently multiplex multiple low rate streams on to high rate wavelength channels, called traffic grooming.;This dissertation examines traffic grooming in the context of circuit, packet, burst and trail switching paradigms. Of primary interest are the Media Access Control (MAC) protocols used to provide QoS and fairness in optical networks. We present a comprehensive discussion of the most recognized fairness models and MACs for ring and bus networks which lay the groundwork for the development of the Robust, Dynamic and Fair Network (RDFN) protocol for ring networks. The RDFN protocol is a novel solution to fairly share ring bandwidth for bursty asynchronous data traffic while providing bandwidth and delay guarantees for synchronous voice traffic.;We explain the light-trail (LT) architecture and technology introduced in [37] as a solution to providing high network resource utilization, seamless scalability and network transparency for metropolitan area networks. The goal of light-trails is to eliminate Optical Electronic Optical (O-E-O) conversion, minimize active switching, maximize wavelength utilization, and offer protocol and bit-rate transparency to address the growing demands placed on WDM networks. Light-trail technology is a physical layer architecture that combines commercially available optical components to allow multiple nodes along a lightpath to participate in time multiplexed communication without the need for burst or packet level switch reconfiguration. We present three medium access control protocols for light-trails that provide collision protection but do not consider fair network access. As an improvement to these light-trail MAC protocols we introduce the Token LT and light-trail Fair Access (LT-FA) MAC protocols and evaluate their performance. We illustrate how fairness is achieved and access delay guarantees are made to satisfy the bandwidth budget fairness model. The goal of light-trails and our access control solution is to combine commercially available components with emerging network technologies to provide a transparent, reliable and highly scalable communication network.;The second area of discussion in this dissertation deals with the rapid prototyping platform. We discuss how the reconfigurable rapid prototyping platform (RRPP) is being utilized to bridge the gap between academic research, education and industry. We provide details of the Real-time Radon transform and the Griffin parallel computing platform implemented using the RRPP. We discuss how the RRPP provides additional visibility to academic research initiatives and facilitates understanding of system level designs. As a proof of concept, we introduce the light-trail testbed developed at the High Speed Systems Engineering lab. We discuss how a light-trail test bed has been developed using the RRPP to provide additional insight on the real-world limitations of light-trail technology. We provide details on its operation and discuss the steps required to and decisions made to realize test-bed operation. Two applications are presented to illustrate the use of the LT-FA MAC in the test-bed and demonstrate streaming media over light-trails.;As a whole, this dissertation aims to provide a comprehensive discussion of current and future technologies and trends for optical communication networks. In addition, we provide media access control solutions for ring and bus networks to address fair resource sharing and access delay guarantees. The light-trail testbed demonstrates proof of concept and outlines system level design challenges for future optical networks

    Parallel architectures for image analysis

    Get PDF
    This thesis is concerned with the problem of designing an architecture specifically for the application of image analysis and object recognition. Image analysis is a complex subject area that remains only partially defined and only partially solved. This makes the task of designing an architecture aimed at efficiently implementing image analysis and recognition algorithms a difficult one. Within this work a massively parallel heterogeneous architecture, the Warwick Pyramid Machine is described. This architecture consists of SIMD, MIMD and MSIMD modes of parallelism each directed at a different part of the problem. The performance of this architecture is analysed with respect to many tasks drawn from very different areas of the image analysis problem. These tasks include an efficient straight line extraction algorithm and a robust and novel geometric model based recognition system. The straight line extraction method is based on the local extraction of line segments using a Hough style algorithm followed by careful global matching and merging. The recognition system avoids quantising the pose space, hence overcoming many of the problems inherent with this class of methods and includes an analytical verification stage. Results and detailed implementations of both of these tasks are given

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    MATLAB

    Get PDF
    A well-known statement says that the PID controller is the "bread and butter" of the control engineer. This is indeed true, from a scientific standpoint. However, nowadays, in the era of computer science, when the paper and pencil have been replaced by the keyboard and the display of computers, one may equally say that MATLAB is the "bread" in the above statement. MATLAB has became a de facto tool for the modern system engineer. This book is written for both engineering students, as well as for practicing engineers. The wide range of applications in which MATLAB is the working framework, shows that it is a powerful, comprehensive and easy-to-use environment for performing technical computations. The book includes various excellent applications in which MATLAB is employed: from pure algebraic computations to data acquisition in real-life experiments, from control strategies to image processing algorithms, from graphical user interface design for educational purposes to Simulink embedded systems

    Technology 2002: the Third National Technology Transfer Conference and Exposition, Volume 1

    Get PDF
    The proceedings from the conference are presented. The topics covered include the following: computer technology, advanced manufacturing, materials science, biotechnology, and electronics

    Autocalibrating vision guided navigation of unmanned air vehicles via tactical monocular cameras in GPS denied environments

    Get PDF
    This thesis presents a novel robotic navigation strategy by using a conventional tactical monocular camera, proving the feasibility of using a monocular camera as the sole proximity sensing, object avoidance, mapping, and path-planning mechanism to fly and navigate small to medium scale unmanned rotary-wing aircraft in an autonomous manner. The range measurement strategy is scalable, self-calibrating, indoor-outdoor capable, and has been biologically inspired by the key adaptive mechanisms for depth perception and pattern recognition found in humans and intelligent animals (particularly bats), designed to assume operations in previously unknown, GPS-denied environments. It proposes novel electronics, aircraft, aircraft systems, systems, and procedures and algorithms that come together to form airborne systems which measure absolute ranges from a monocular camera via passive photometry, mimicking that of a human-pilot like judgement. The research is intended to bridge the gap between practical GPS coverage and precision localization and mapping problem in a small aircraft. In the context of this study, several robotic platforms, airborne and ground alike, have been developed, some of which have been integrated in real-life field trials, for experimental validation. Albeit the emphasis on miniature robotic aircraft this research has been tested and found compatible with tactical vests and helmets, and it can be used to augment the reliability of many other types of proximity sensors
    corecore