4,010 research outputs found

    Locality of not-so-weak coloring

    Get PDF
    Many graph problems are locally checkable: a solution is globally feasible if it looks valid in all constant-radius neighborhoods. This idea is formalized in the concept of locally checkable labelings (LCLs), introduced by Naor and Stockmeyer (1995). Recently, Chang et al. (2016) showed that in bounded-degree graphs, every LCL problem belongs to one of the following classes: - "Easy": solvable in O(logβ‘βˆ—n)O(\log^* n) rounds with both deterministic and randomized distributed algorithms. - "Hard": requires at least Ξ©(log⁑n)\Omega(\log n) rounds with deterministic and Ξ©(log⁑log⁑n)\Omega(\log \log n) rounds with randomized distributed algorithms. Hence for any parameterized LCL problem, when we move from local problems towards global problems, there is some point at which complexity suddenly jumps from easy to hard. For example, for vertex coloring in dd-regular graphs it is now known that this jump is at precisely dd colors: coloring with d+1d+1 colors is easy, while coloring with dd colors is hard. However, it is currently poorly understood where this jump takes place when one looks at defective colorings. To study this question, we define kk-partial cc-coloring as follows: nodes are labeled with numbers between 11 and cc, and every node is incident to at least kk properly colored edges. It is known that 11-partial 22-coloring (a.k.a. weak 22-coloring) is easy for any dβ‰₯1d \ge 1. As our main result, we show that kk-partial 22-coloring becomes hard as soon as kβ‰₯2k \ge 2, no matter how large a dd we have. We also show that this is fundamentally different from kk-partial 33-coloring: no matter which kβ‰₯3k \ge 3 we choose, the problem is always hard for d=kd = k but it becomes easy when d≫kd \gg k. The same was known previously for partial cc-coloring with cβ‰₯4c \ge 4, but the case of c<4c < 4 was open

    A Time Hierarchy Theorem for the LOCAL Model

    Full text link
    The celebrated Time Hierarchy Theorem for Turing machines states, informally, that more problems can be solved given more time. The extent to which a time hierarchy-type theorem holds in the distributed LOCAL model has been open for many years. It is consistent with previous results that all natural problems in the LOCAL model can be classified according to a small constant number of complexities, such as O(1),O(logβ‘βˆ—n),O(log⁑n),2O(log⁑n)O(1),O(\log^* n), O(\log n), 2^{O(\sqrt{\log n})}, etc. In this paper we establish the first time hierarchy theorem for the LOCAL model and prove that several gaps exist in the LOCAL time hierarchy. 1. We define an infinite set of simple coloring problems called Hierarchical 2122\frac{1}{2}-Coloring}. A correctly colored graph can be confirmed by simply checking the neighborhood of each vertex, so this problem fits into the class of locally checkable labeling (LCL) problems. However, the complexity of the kk-level Hierarchical 2122\frac{1}{2}-Coloring problem is Θ(n1/k)\Theta(n^{1/k}), for k∈Z+k\in\mathbb{Z}^+. The upper and lower bounds hold for both general graphs and trees, and for both randomized and deterministic algorithms. 2. Consider any LCL problem on bounded degree trees. We prove an automatic-speedup theorem that states that any randomized no(1)n^{o(1)}-time algorithm solving the LCL can be transformed into a deterministic O(log⁑n)O(\log n)-time algorithm. Together with a previous result, this establishes that on trees, there are no natural deterministic complexities in the ranges Ο‰(logβ‘βˆ—n)\omega(\log^* n)---o(log⁑n)o(\log n) or Ο‰(log⁑n)\omega(\log n)---no(1)n^{o(1)}. 3. We expose a gap in the randomized time hierarchy on general graphs. Any randomized algorithm that solves an LCL problem in sublogarithmic time can be sped up to run in O(TLLL)O(T_{LLL}) time, which is the complexity of the distributed Lovasz local lemma problem, currently known to be Ξ©(log⁑log⁑n)\Omega(\log\log n) and O(log⁑n)O(\log n)

    Machine learning approach for segmenting glands in colon histology images using local intensity and texture features

    Full text link
    Colon Cancer is one of the most common types of cancer. The treatment is planned to depend on the grade or stage of cancer. One of the preconditions for grading of colon cancer is to segment the glandular structures of tissues. Manual segmentation method is very time-consuming, and it leads to life risk for the patients. The principal objective of this project is to assist the pathologist to accurate detection of colon cancer. In this paper, the authors have proposed an algorithm for an automatic segmentation of glands in colon histology using local intensity and texture features. Here the dataset images are cropped into patches with different window sizes and taken the intensity of those patches, and also calculated texture-based features. Random forest classifier has been used to classify this patch into different labels. A multilevel random forest technique in a hierarchical way is proposed. This solution is fast, accurate and it is very much applicable in a clinical setup

    Existential Second-Order Logic Over Graphs: A Complete Complexity-Theoretic Classification

    Get PDF
    Descriptive complexity theory aims at inferring a problem's computational complexity from the syntactic complexity of its description. A cornerstone of this theory is Fagin's Theorem, by which a graph property is expressible in existential second-order logic (ESO logic) if, and only if, it is in NP. A natural question, from the theory's point of view, is which syntactic fragments of ESO logic also still characterize NP. Research on this question has culminated in a dichotomy result by Gottlob, Kolatis, and Schwentick: for each possible quantifier prefix of an ESO formula, the resulting prefix class either contains an NP-complete problem or is contained in P. However, the exact complexity of the prefix classes inside P remained elusive. In the present paper, we clear up the picture by showing that for each prefix class of ESO logic, its reduction closure under first-order reductions is either FO, L, NL, or NP. For undirected, self-loop-free graphs two containment results are especially challenging to prove: containment in L for the prefix βˆƒR1β‹―βˆƒRnβˆ€xβˆƒy\exists R_1 \cdots \exists R_n \forall x \exists y and containment in FO for the prefix βˆƒMβˆ€xβˆƒy\exists M \forall x \exists y for monadic MM. The complex argument by Gottlob, Kolatis, and Schwentick concerning polynomial time needs to be carefully reexamined and either combined with the logspace version of Courcelle's Theorem or directly improved to first-order computations. A different challenge is posed by formulas with the prefix βˆƒMβˆ€xβˆ€y\exists M \forall x\forall y: We show that they express special constraint satisfaction problems that lie in L.Comment: Technical report version of a STACS 2015 pape
    • …
    corecore