Descriptive complexity theory aims at inferring a problem's computational
complexity from the syntactic complexity of its description. A cornerstone of
this theory is Fagin's Theorem, by which a graph property is expressible in
existential second-order logic (ESO logic) if, and only if, it is in NP. A
natural question, from the theory's point of view, is which syntactic fragments
of ESO logic also still characterize NP. Research on this question has
culminated in a dichotomy result by Gottlob, Kolatis, and Schwentick: for each
possible quantifier prefix of an ESO formula, the resulting prefix class either
contains an NP-complete problem or is contained in P. However, the exact
complexity of the prefix classes inside P remained elusive. In the present
paper, we clear up the picture by showing that for each prefix class of ESO
logic, its reduction closure under first-order reductions is either FO, L, NL,
or NP. For undirected, self-loop-free graphs two containment results are
especially challenging to prove: containment in L for the prefix ∃R1⋯∃Rn∀x∃y and containment in FO for the prefix
∃M∀x∃y for monadic M. The complex argument by
Gottlob, Kolatis, and Schwentick concerning polynomial time needs to be
carefully reexamined and either combined with the logspace version of
Courcelle's Theorem or directly improved to first-order computations. A
different challenge is posed by formulas with the prefix ∃M∀x∀y: We show that they express special constraint satisfaction problems
that lie in L.Comment: Technical report version of a STACS 2015 pape