23 research outputs found

    Acceleration Methods for MRI

    Full text link
    Acceleration methods are a critical area of research for MRI. Two of the most important acceleration techniques involve parallel imaging and compressed sensing. These advanced signal processing techniques have the potential to drastically reduce scan times and provide radiologists with new information for diagnosing disease. However, many of these new techniques require solving difficult optimization problems, which motivates the development of more advanced algorithms to solve them. In addition, acceleration methods have not reached maturity in some applications, which motivates the development of new models tailored to these applications. This dissertation makes advances in three different areas of accelerations. The first is the development of a new algorithm (called B1-Based, Adaptive Restart, Iterative Soft Thresholding Algorithm or BARISTA), that solves a parallel MRI optimization problem with compressed sensing assumptions. BARISTA is shown to be 2-3 times faster and more robust to parameter selection than current state-of-the-art variable splitting methods. The second contribution is the extension of BARISTA ideas to non-Cartesian trajectories that also leads to a 2-3 times acceleration over previous methods. The third contribution is the development of a new model for functional MRI that enables a 3-4 factor of acceleration of effective temporal resolution in functional MRI scans. Several variations of the new model are proposed, with an ROC curve analysis showing that a combination low-rank/sparsity model giving the best performance in identifying the resting-state motor network.PhDBiomedical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120841/1/mmuckley_1.pd

    ISCR annual report FY 1998

    Full text link

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Variational Discretization of Higher Order Geometric Gradient Flows Based on Phase Field Models

    Get PDF
    In this thesis a phase field based nested variational time discretization for Willmore flow is presented. The basic idea of our model is to approximate the mean curvature by a time-discrete, approximate speed of the mean curvature motion. This speed is computed by a fully implicit time step of mean curvature motion, which forms the inner problem of our model. It is set up as a minimization problem taking into account the concept of natural time discretization. The outer problem is a variational problem balancing between the L2-distance of the surface at two consecutive time steps and the decay of the Willmore energy. This is a typical ansatz in case of natural time discretization as it is used in the inner problem. Within the Willmore energy the mean curvature is approximated as mentioned above. Consequently our model is a nested variational and leads to a PDE constraint optimization problem to compute a single time step. It allows time steps up to the size of the spatial grid width. A corresponding parametric version of this model based on finite elements on a triangulation of the evolving geometry was investigated by Olischläger and Rumpf. In this work we derive the corresponding phase field version and prove the existence of a solution. Since biharmonic heat flow is a linear model problem for our nested time discretization of Willmore flow we transfer our model to the linear case. Moreover we present error estimates for the fully discrete biharmonic heat flow and validate them numerically. In addition we compare our model with the semi-implicit phase field scheme for Willmore flow introduced by Du et al. which leads to the result that our nested variational method is significantly more robust. An application of our nested time discretized Willmore model consists in reconstructing a hypersurface corresponding to a given lower-dimensional apparent contour or Huffman labeling. The apparent contour separates the regions where the number of intersections between the hypersurface and the projection ray is constant and the labeling which specifies these intersection numbers is called Huffman labeling. For reconstructing the hypersurface we minimize a regularization energy consisting of the scaled area and Willmore energy subject to the constraint that the Huffman labeling of the minimizing surface equals the given Huffman labeling almost everywhere. To solve the corresponding phase field problem we use an algorithm alternating the minimizes of the regularization and mismatch energy. Moreover we use a multigrid ansatz. In most parts of this work our nested variational problem is solved by setting up the corresponding Lagrange equation and solving the resulting saddle point problem. An alternative is presented in the last part of this work. It deals with the problem of solving the linear model problem as well as our nested variational problem with an Augmented Lagrange method

    Semiannual report

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period 1 Oct. 1994 - 31 Mar. 1995

    Advanced regularization and discretization methods in diffuse optical tomography

    Get PDF
    Diffuse optical tomography (DOT) is an emerging technique that utilizes light in the near infrared spectral region (650−900nm) to measure the optical properties of physiological tissue. Comparing with other imaging modalities, DOT modality is non-invasive and non-ionising. Because of the relatively lower absorption of haemoglobin, water and lipid at the near infrared spectral region, the light is able to propagate several centimeters inside of the tissue without being absolutely absorbed. The transmitted near infrared light is then combined with the image reconstruction algorithm to recover the clinical relevant information inside of the tissue. Image reconstruction in DOT is a critical problem. The accuracy and precision of diffuse optical imaging rely on the accuracy of image reconstruction. Therefore, it is of great importance to design efficient and effective algorithms for image reconstruction. Image reconstruction has two processes. The process of modelling light propagation in tissues is called the forward problem. A large number of models can be used to predict light propagation within tissues, including stochastic, analytical and numerical models. The process of recovering optical parameters inside of the tissue using the transmitted measurements is called the inverse problem. In this thesis, a number of advanced regularization and discretization methods in diffuse optical tomography are proposed and evaluated on simulated and real experimental data in reconstruction accuracy and efficiency. In DOT, the number of measurements is significantly fewer than the number of optical parameters to be recovered. Therefore the inverse problem is an ill-posed problem which would suffer from the local minimum trap. Regularization methods are necessary to alleviate the ill-posedness and help to constrain the inverse problem to achieve a plausible solution. In order to alleviate the over-smoothing effect of the popular used Tikhonov regularization, L1-norm regularization based nonlinear DOT reconstruction for spectrally constrained diffuse optical tomography is proposed. This proposed regularization can reduce crosstalk between chromophores and scatter parameters and maintain image contrast by inducing sparsity. This work investigates multiple algorithms to find the most computational efficient one for solving the proposed regularization methods. In order to recover non-sparse images where multiple activations or complex injuries happen in the brain, a more general total variation regularization is introduced. The proposed total variation is shown to be able to alleviate the over-smoothing effect of Tikhonov regularization and localize the anomaly by inducing sparsity of the gradient of the solution. A new numerical method called graph-based numerical method is introduced to model unstructured geometries of DOT objects. The new numerical method (discretization method) is compared with the widely used finite element-based (FEM) numerical method and it turns out that the graph-based numerical method is more stable and robust to changes in mesh resolution. With the advantages discovered on the graph-based numerical method, graph-based numerical method is further applied to model the light propagation inside of the tissue. In this work, two measurement systems are considered: continuous wave (CW) and frequency domain (FD). New formulations of the forward model for CW/FD DOT are proposed and the concepts of differential operators are defined under the nonlocal vector calculus. Extensive numerical experiments on simulated and realistic experimental data validated that the proposed forward models are able to accurately model the light propagation in the medium and are quantitatively comparable with both analytical and FEM forward models. In addition, it is more computational efficient and allows identical implementation for geometries in any dimension
    corecore