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Abstract

Diffuse optical tomography (DOT) is an emerging technique that utilizes light in the near

infrared spectral region (650−900nm) to measure the optical properties of physiological

tissue. Comparing with other imaging modalities, DOT modality is non-invasive and

non-ionising. Because of the relatively lower absorption of haemoglobin, water and lipid

at the near infrared spectral region, the light is able to propagate several centimeters

inside of the tissue without being absolutely absorbed. The transmitted near infrared

light is then combined with the image reconstruction algorithm to recover the clinical

relevant information inside of the tissue.

Image reconstruction in DOT is a critical problem. The accuracy and precision of

diffuse optical imaging rely on the accuracy of image reconstruction. Therefore, it is of

great importance to design efficient and effective algorithms for image reconstruction.

Image reconstruction has two processes. The process of modelling light propagation in

tissues is called the forward problem. A large number of models can be used to predict

light propagation within tissues, including stochastic, analytical and numerical models.

The process of recovering optical parameters inside of the tissue using the transmitted

measurements is called the inverse problem. In this thesis, a number of advanced reg-

ularization and discretization methods in diffuse optical tomography are proposed and

evaluated on simulated and real experimental data in reconstruction accuracy and effi-

ciency.

In DOT, the number of measurements is significantly fewer than the number of op-

tical parameters to be recovered. Therefore the inverse problem is an ill-posed problem

which would suffer from the local minimum trap. Regularization methods are neces-
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sary to alleviate the ill-posedness and help to constrain the inverse problem to achieve

a plausible solution. In order to alleviate the over-smoothing effect of the popular used

Tikhonov regularization, L1-norm regularization based nonlinear DOT reconstruction for

spectrally constrained diffuse optical tomography is proposed. This proposed regulariza-

tion can reduce crosstalk between chromophores and scatter parameters and maintain

image contrast by inducing sparsity. This work investigates multiple algorithms to find

the most computational efficient one for solving the proposed regularization methods.

In order to recover non-sparse images where multiple activations or complex injuries

happen in the brain, a more general total variation regularization is introduced. The

proposed total variation is shown to be able to alleviate the over-smoothing effect of

Tikhonov regularization and localize the anomaly by inducing sparsity of the gradient

of the solution. A new numerical method called graph-based numerical method is intro-

duced to model unstructured geometries of DOT objects. The new numerical method

(discretization method) is compared with the widely used finite element-based (FEM) nu-

merical method and it turns out that the graph-based numerical method is more stable

and robust to changes in mesh resolution.

With the advantages discovered on the graph-based numerical method, graph-based

numerical method is further applied to model the light propagation inside of the tis-

sue. In this work, two measurement systems are considered: continuous wave (CW) and

frequency domain (FD). New formulations of the forward model for CW/FD DOT are

proposed and the concepts of differential operators are defined under the nonlocal vec-

tor calculus. Extensive numerical experiments on simulated and realistic experimental

data validated that the proposed forward models are able to accurately model the light

propagation in the medium and are quantitatively comparable with both analytical and

FEM forward models. In addition, it is more computational efficient and allows identical

implementation for geometries in any dimension.
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A-GTV Graph-based Anisotropic Total Variation Regularization

I-GTV Graph-based Isotropic Total Variation Regularization

MBLL Modified Beer-Lambert Law

NIRS Near-infrared Spectroscopy
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FVM Finite Volume Method

BEM Boundary Element Method

GNM Graph-based Numerical Method

NDE Nonlocal Diffusion Equation

NBC Nonlocal Boundary Condition

BF Boundary Flux

FR Fluence Rate

NBF Normalized Boundary Flux

SSIM Structural Similarity Index

RMSE Root Mean Square Error

TBI Traumatic Brain Injury

IC Incomplete Cholesky

ILU Incomplete LU
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CG Conjugate Gradient

GMRES Generalized Minimal Residual

BiCGSTAB Biconjugate Gradient Stabilised
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CHAPTER 1

INTRODUCTION

1.1 Background

The electromagnetic spectrum is the range of frequencies of electromagnetic radiation and

their respective wavelengths and photon energies. The visible light (400-700 nanometers

(nm)) is applied to observe and interpret images. It only represents a very small por-

tion of the electromagnetic spectrum. Other types of light which are imperceptible to

human eyes include radio waves, microwaves, infrared radiation, ultraviolet rays, X-rays

and gamma rays. The energy of electromagnetic radiation determines its usefulness for

diagnostic imaging (Figure 1.1). For example, magnetic resonance imaging (MRI) uses

radio frequency electromagnetic radiation as a transmission medium. Ultrasonography

uses ultrasound to find a source of a disease or to exclude pathology. Gamma rays and

X-rays are capable of penetrating large body tissues due to their extremely short wave-

lengths. Gamma rays are used in medicine (radiotherapy), industry (sterilization and

disinfection) and the nuclear industry while X-rays are normally used for plain film and

computed tomography (CT) imaging.

Specifically, X-ray is an electromagnetic radiation wave with wavelength between

0.01nm and 10nm. CT makes use of a series of X-ray images acquired from different

angles to produce cross-sectional (tomographic) images of specific areas of a scanned ob-

ject. However X-ray is an ionizing radiation which is harmful to living tissues [7] and

it has low resolution in soft tissues. Therefore, it fails to provide anatomical details in
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Figure 1.1: The energy, frequency and wavelength of the electromagnetic spectrum and

their associated imaging modalities [1].

some brain regions such as the cortex surface. Ultrasound is an imaging technology that

uses high-frequency sound waves to characterize tissues. It is real-time, portable and

low cost and does not involve ionizing radiation. However, ultrasound images have low

spatial resolution especially in deep tissue regions [8, 9]. Therefore, it is difficult to re-

construct structure of tissues behind bone and air in human brain. Magnetic resonance

imaging [10, 11] is a medical imaging technique to form pictures of the anatomy and

the physiological processes of the body in both health and disease. MRI can recover
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the internal structure of the subject based on the nuclear magnetic resonance (NMR)

phenomenon. MRI has been applied in the study of the human brain and it can provide

millimetre spatial resolution in the whole brain region. In addition, MRI is a non-invasive

and non-ionizing imaging modality, which is widely used in hospitals and clinics for medi-

cal diagnosis, staging of disease and follow-up. However there may be risks and discomfort

associated with MRI scans. Compared with CT scans, MRI scans typically take longer

and are louder, and they usually require that the subject enter a narrow, confining tube.

In addition, people with some medical implants or other non-removable metal inside the

body may be unable to undergo an MRI examination safely.

Diffuse optical tomography (DOT) is an emerging imaging modality which uses near-

infrared (NIR) light with wavelengths between 650nm and 900nm. Comparing with

the modalities involving ionizing radiations, DOT modality is non-invasive and non-

ionising. Typical building costs and the physical size of the device are smaller than in MRI

devices and no special environment, e.g. a magnetically shielded room, is needed. The

instrumentation can be made portable and suitable for continuous bedside monitoring

infant and adult subjects. Even though the spatial resolution and depth sensitivity of

DOT is lower than in MRI, the temporal resolution can be higher [12]. During recent

years, DOT has many applications such as diagnosing breast cancer [13–15], analyzing

functional changes in brain [16–19], and imaging small animals for study of disease and

treatment [20,21].

Image reconstruction in DOT is a critical problem. The accuracy and precision of

diffuse optical imaging is related to the accuracy of image reconstruction. Hence, the

design of an efficient algorithm for image reconstruction is of great importance. The

image reconstruction process in DOT includes modelling the propagation of photons

in highly scattering media and reconstructing images out of a finite number of surface

measurements. There are a few different models to describe light propagation in tissue-like

media. One of the simplest is called the diffusion approximation. The optical properties,

the absorption and the scattering coefficients, are the parameters which determine the
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light propagation in the diffusion approximation model. When optical properties are

known and one is interested in estimating the photon flux at the boundary, the problem

is called a forward problem. Likewise, when the photon flux at the boundary is measured

and the task is to find the optical properties, the problem is called an inverse problem.

1.2 Goals and contributions

The inverse model in DOT is an ill-posed problem because of the limited number of

measurements and diffusive nature of light propagation. Hence unique solution cannot

be guaranteed and small errors in the measurements can lead to large errors in the solu-

tion. Tikhonov regularization method is normally adopted to overcome issues related to

ill-posedness [22, 23]. This method is known to suppress the high-frequency components

of the reconstructed image (normally noise) leading to smooth reconstructions. However

this has the drawback of being unable to preserve sharp features in the reconstructed

images and over-smoothing the results. Therefore the first problem addressed in this

thesis is finding suitable regularization methods to recover images with high accuracy

and localization. Solving this problem requires quantitative evaluation and comparison

of different regularization methods. In this thesis, regularization methods proposed in

the DOT community are studied systematically. Previous studies mainly focus on spar-

sity preserving regularization methods for single wavelength DOT image reconstruction

or combining anatomical information from high resolution imaging modalities to guide

DOT reconstruction. Borrowing anatomical information from other modalities has been

proved to be an efficient strategy for improving the quality of the reconstructed images.

However, the segmentation process is prone to errors and can be extremely time consum-

ing. Hence one work in this thesis combines the pure sparsity preserving regularization

method (L1-norm regularization) with the spectral prior to promote localized recovery of

chromophore concentration for multiple wavelength DOT image reconstruction. It is the

first time that L1-norm regularization methods and spectrally constrained DOT methods

are used together. It gives detailed descriptions of how this can be done, and performs
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systematic comparisons of the performance and efficiency of the different methods on both

simulated and real data. A method to automatically select the regularization parameters

is developed in this work.

The work with sparsity preserving regularization methods is based on the assump-

tion that the optical properties (representing the image) to be reconstructed are spatially

sparse. It may tend to over-sparsify the distribution of the optical properties when such

an assumption does not hold. For example, in the case of multiple activations or complex

injuries in the brain, the features of interest are not spatially localized and the opti-

cal properties relative to the background are therefore non-sparse. In order to address

this limitation, the second work in this thesis introduces the spatial gradient differen-

tial operator to DOT reconstruction. Gradient differential operator can help to impose

smoothness to the solution. It can improve the conditioning of the minimization prob-

lem, thus enabling a robust numerical solution. Two regularizations are proposed at

this stage: Tikhonov regularization with a spatial gradient operator and Total variation

(TV) regularization, which uses the L1-norm of gradients. We introduce finite element

and graph-based numerical methods to model unstructured geometries of DOT objects.

The discrete differential operators resulting from each representation are defined so that

the minimization of the inverse problem associated with the regularization can be car-

ried out on unstructured domains. To the best of our knowledge, this is the first time

that graph-based numerical method is introduced to the DOT reconstruction. This work

gives a systematic comparison between these two numerical methods. Algorithms based

on alternating direction method of multipliers are proposed for each regularized inverse

problem. Results of this work determine whether the reconstruction performance is cor-

related with the discretization method. This work also validates the better performance

of the proposed total variation regularization with higher reconstruction accuracy and

better localization.

Generation of the forward model which simulates the light propagation is one of

the main processes in DOT recovery. Several different models have been applied to
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the generation process, and numerical models such as the finite element method are

one of the most commonly used forward models for complex subject such as human

brain. Under this numerical method, the computational domain is divided into a series of

elements (triangles in 2D, tetrahedrain 3D). However, finite element implementations can

be difficult and time-consuming, especially when higher-order polynomial basis (shape)

functions are used for non-linear interpolation between vertices of high-order elements

[24]. Hence, the third work in this thesis is applying the graph-based numerical method

which has shown much advantages over the finite element-based numerical method to

the forward model. New forward models are proposed in the continuous wave DOT and

frequency domain DOT reconstruction respectively. In order to fully leverage the power

of graph-based discretization, we use the nonlocal vector calculus in which the differential

operators include more pixel information in the domain. Results of the work provide the

most efficient solvers for the forward model in the frequency domain DOT measurement

system and validate the superior of the proposed forward model in the computational

efficiency, light propagation accuracy and simplicity.

The proposed discretization and regularization techniques can be used in many clin-

ical applications. For example, in traumatic brain injury, our proposed methods can be

incorporated to help to recover the injury with high accuracy and efficiency. It is very

important as these improvements can avoid the delay of the accurate clinical diagnosis

and prevent the symptoms from getting worse. In addition, the widely used finite element

discretization method in DOT reconstruction is computational expensive. It is problem-

atic, especially for longitudinal as well as large patient population studies. Our proposed

graph based discretization method can be used directly to alleviate this drawback.

1.3 Outline of the thesis

This thesis consists of 8 chapters.

Chapter 1 (this chapter) is the introduction of the work undertaken.

Chapter 2 is the introduction of diffuse optical tomography.

6



Chapter 3 is the detailed implementation of using the finite element method for solving

the partial diffusion equation which is the forward model in DOT reconstruction.

Chapter 4 is a literature review of different regularization method and the proposed

spectral-L1 regularization for spectrally constrained diffuse optical property

Chapter 5 is the introduction of the graph-based inverse model for diffuse optical

tomography and two new proposed regularization methods.

Chapter 6 is the introduction of the graph-based forward model for continuous-wave

diffuse optical tomography and the comparison of the proposed forward model with the

popular used finite element-based forward model.

Chapter 7 is the introduction of the graph-based forward model for frequency-domain

diffuse optical tomography and the comparison of the proposed forward model with the

popular used finite element-based forward model.

Chapter 8 is the summary and conclusion.
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CHAPTER 2

DIFFUSE OPTICAL TOMOGRAPHY

Diffuse Optical Tomography (DOT) uses near-infrared (NIR) light in the wavelength

range from 650 to 950 nm to reconstruct optical properties of biological tissues. This part

of the spectrum is the so-called ”NIR window” where chromophore absorption coefficients

(oxy-haemoglobin (HbO2), deoxy-haemoglobin (Hb), water (H2O) and lipid) are relatively

low (Figure 2.1). In addition, H2O and lipid have lower absorption coefficients than

other major chromophores that absorb light and the human tissue consists of mainly

water. As a result, NIR light can propagate several centimeters into the tissue without

being completely absorbed. The wavelength dependent absorption length in the tissue

corresponds to the expectation value of the distance travelled by a photon before it

is absorbed. Its reciprocal, the absorption coefficient, is denoted by µa,λ where λ is

the wavelength of light. The propagation of light through tissues is also affected by

scattering. Two length scales are important in this context: a rather short “scattering

length” which corresponds to the expectation value of the distance travelled by photons

before they scatter, and a longer “transport mean-free path” or “random walk step”

which corresponds to the typical distance travelled by photons before their direction is

randomized. The reciprocal of the photon transport mean-free path is called the reduced

scattering coefficient. It is wavelength dependent and is denoted by µ′s,λ. µ
′
s,λ is relative

to the scattering coefficient µs,λ with µ′s,λ = (1− g)µs,λ and g is the anisotropy factor

which is the average cosine of the scattering angle. With the optical properties at each

wavelength, the chromophore concentrations can be calculated using a constrained linear
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relationship fit to the Beer’s law relation µa = εC. ε is the molar absorption spectra of

the tissues absorbing chromophores and C is the concentration of these chromophores.

Similarly, the spectrum of tissue has been shown to fit well to an empirical approximation

to Mie scattering theory [25,26] given by µ′s,λ = aλ−b where a is the scattering amplitude

and b represents the scattering power.

Figure 2.1: A schema of the in vivo NIR window and the absorption spectra of main

tissue chromophores are plotted over a large wavelength range. There are clear features

in the spectra which enable estimation of chromophore concentrations from diffuse optical

measurements at several wavelengths [2].

The imaging process of DOT typically involves injecting NIR light into biological

tissue through optical fibres placed on its surface (step 1 in Figure 2.3). The light propa-

gates through the tissue and the spatial distribution of light remitted from the medium’s

surface is measured for each source fibre (Figure 2.2, step 2 in Figure 2.3). The internal

chromophore concentrations and optical properties can be reconstructed directly using

a transport-model-based image reconstruction algorithm (step 3 and 4 in Figure 2.3).

The mathematical model of photon transport which is built on the absorption and the

reduced scattering coefficient of the tissue is called the forward problem. The process in

which the optical properties are determined based on given measurements is known as

an inverse problem.
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Figure 2.2: NIR light is applied to the surface using source and the reflected light is

measured via a detector fibre. The path of light is diffuse and its spectrally varying

attenuation provides information about chromophore concentrations in the tissue [3].

Figure 2.3: Reconstruction process in DOT [4].

2.1 Sources and measurables

There are three types of light sources commonly used in DOT: continuous wave (CW),

intensity modulated (FD), and time pulsed (TD).
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The simplest source type is CW light, where the intensity remains constant over

time [2, 5] (Figure 2.4). This enables fast data acquisition and straightforward data col-

lection and analysis. However, this technique cannot measure the optical pathlength, with

the result that instruments of this type do not provide absolute values of chromophore

concentrations.

Figure 2.4: Continuous wave (CW) sources [5].

Intensity modulated sources (the frequency-domain technique, FD) are more complex

but also give more information about the tissue [27](Figure 2.5). This source emits high

frequency (between 100 and 1000 MHz [28]) light via a laser diode driven by a radio-

frequency (RF) oscillator. At a given source-detector separation, both the amplitude

and phase of the transmitted light are measured. The additional information from the

phase, in principle, permits simultaneous determination of absolute values of chromophore

concentrations.

Time pulsed light (the time-domain technique, TRS) is related to intensity modu-

lated light via a Fourier transform. It contains the same information content as intensity
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Figure 2.5: Intensity modulated (FD) sources [5].

Figure 2.6: Time-resolved (TR) sources [5].

modulated sources scanned over the wide range of modulation frequencies present in the

pulse [29](Figure 2.6). In TD measurements, the tissue is irradiated by ultrashort (pico

second order) laser pulses, and the intensity of the emerging light is recorded over time to

generate a temporal point spread function (TPSF) with picosecond resolution. The TPSF

is a delayed, broadened and attenuated version of the light pulse, and normally extends
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over several nanoseconds. The TRS data carries information about depth-dependent

attenuation based on the correlation of the detection time to the penetration depth of

photons. Changes in chromophore concentrations can be more selectively and quantita-

tively determined by analyzing the TPSF, as the TPSF contains information about the

optical properties of the tissue, i.e., the absorption and reduced scattering coefficients.

However, TD systems are comparably more expensive than CW and FD systems and

require more sophisticated analysis.

FD and TD measurements can be mutually translated using the Fourier (and its

inverse) transform and so one TD measurement contains information at all frequencies

whereas one FD measurement contains information at only one frequency. Therefore

FD measurements have to be taken at several modulation frequencies in order to obtain

comparable amount of information to single TD measurement [30].

2.2 Models of photon transport (Forward problem)

When light is interpreted as photons (particles) and its wave nature is neglected, the

main interactions between light and biological tissue are absorption and scattering. It is

generally accepted that the radiative transfer equation (RTE), which is a conservation

equation for photon travelling through a volume medium with absorbers and scatters,

accurately describes how light propagates in biological tissues [31–34]. Equation (2.1)

shows the FD RTE.[
iω

c
+ ŝ · ∇+ µa + µs

]
I (r, ŝ, ω) = µs

∫
4π

P (ŝ, ŝ′)I (r, ŝ, ω) dŝ′ + q (r, ŝ, ω) (2.1)

where I (r, ŝ, ω) is the energy radiance (the light intensity) as a function of the position

r, angular direction ŝ, and modulation frequency ω. The parameters µa and µs are the

absorption and scattering coefficients, respectively. c is the light speed in a turbid medium

and q (r, ŝ, ω) is light source at position r at frequency ω emitted in direction ŝ. P (ŝ, ŝ′)

is the scattering phase function, which describes the probability of a photon scattering

from the direction ŝ′ to the direction ŝ during a scattering event. The most commonly
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used scattering phase function is the Henyey-Greenstein scattering function [35–37] which

is defined as

P (cos β) =
1− g2

2(1 + g2 − 2g cos β)3/2
(2.2)

where β is the angle between the two directions ŝ and ŝ′ and g is the anisotropy factor,

which is used to characterize the angular distribution of tissue scattering. In time domain

(TD) systems, iω is replaced with ∂
∂t

and I(r,Ω, ω) becomes I(r,Ω, t).

Many groups [38–40] use the RTE based forward problem for DOT image reconstruc-

tion, taking advantage of the accuracy of the RTE for problems where the propagation

of photons may not be assumed as diffuse and problems where low scattering may be

present. Analytical solutions exist for the RTE only for simple geometries with nearly

homogeneous interior objects [41–43]. Although a number of algorithms exist that can

seek its numerical solution for more complex inhomogeneous domains [36, 44–47], they

are extremely computationally expensive, especially for large 3D volumes. Due to the

complexity of the RTE and the limitations of existing algorithms for its solutions, ap-

proximate light propagation models are adopted to simplify the RTE, which can be either

stochastic or deterministic.

2.2.1 Stochastic models

Stochastic (or statistical) methods predict interactions of each individual photon using

either explicit (e.g. Monte Carlo) or implicit methods (e.g. random walk or Markov

random field).

2.2.1.1 Monte Carlo methods:

The most commonly used stochastic model in diffuse optics is the Monte Carlo method

[48–54]. The transport paths of individual photons are simulated by local values of optical

parameters. Photons are followed until they are absorbed by tissue, or escape from the

surface of the object contributing to a measurement. Monte Carlo has the advantages of
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simulating data with arbitrarily low statistical errors [13], and offering great flexibility

in modelling light transport in complex heterogeneous objects. It is however costly in

computational time, because a large number of photons need to be simulated so as to

acquire meaningful statistics. In order to overcome this disadvantage, various acceleration

methods are proposed. Among them, parallel computation is the most preferred method

because the movements of photons inside tissue are intrinsically independent.

2.2.1.2 Random walk theory:

Another popular stochastic approach is based on the random walk theory [55,56], where

photon migration is modelled as a series of steps on a discrete cubic lattice. Random

walk theory is widely used in time domain imaging systems [57]. It has been applied

to calculate the photon travelling time in an absorptive inclusion within a scattering

medium [58], to quantify the optical parameters of a breast tumor [59], and to simulate

the light diffusion in brain extracellular space [60].

2.2.1.3 Markov random field method:

This is one general stochastic model based on transition probabilities which is proposed

by Professor Grunbaum et al. at the University of California at Berkeley [61–63]. With

exact values of the probabilities on the boundary, this model can reconstruct the internal

transition probabilities in the time independent case. Therefore this model needs noiseless

data. Even though this method can lead to an exact reconstruction result, it has never

been applied to real data because of the difficulty in relating the essentially topologically

invariant analysis to real cases.

2.2.2 Deterministic models

The RTE is a deterministic formulation of radiance transport, from which simpler de-

terministic models can be derived [64, 65]. If the scattering coefficients dominate over

absorption coefficients in tissues and the region of interest is far from the light sources,
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light propagation can be modelled by a deterministic diffusion equation (DE) using the

P1 approximation of the RTE (i.e. I (r, ŝ, ω) in equation (2.1) is approximated by the

first two terms of a series expansion in spherical harmonics). The DE is able to generate

isotropic fluence fields given a distribution of source fibres and the tissue optical proper-

ties. Let Ω be the computational domain with the boundary surface Γ. Given the optical

parameters (κ, µa), DE approximates the photon fluence, also called the photon density,

Φ (r, ω) =
∫
I(r,Ω, ω)dω by the following elliptic partial differential equation (PDE)

−∇ · (κ (r)∇Φ (r, ω)) + f (r, ω) Φ (r, ω) = q0 (r, ω) for r ∈ Ω, (2.3)

with

f(r, ω) = µa(r) +
iω

c
. (2.4)

Here the source function q0 (r, ω) is a distributed Gaussian source, matching the intensity

profile at the tip of the optical fiber. When the source function is located at the depth

of the one transport scattering distance (1/µ′s) below the boundary, the simulation can

accurately reflect the experimental data. ∇ · (·) denotes the differential divergence of

a vector function (i.e. κ∇Φ), while ∇ is the gradient vector. Note that these two

differential operators are normally defined based on the classical local vector calculus.

Φ(r, ω) is the photon fluence rate at position r and modulation frequency ω. It needs to

be solved explicitly. The diffusion coefficient κ = 1/(3(µa +µ′s)), where µ′s is the reduced

scattering coefficient. c is defined as c0/n, where c0 is the speed of light in vacuum and n

is the refractive index. The boundary condition adopted is the Robin boundary condition

(RBC), which is used for the case where the fluence at the edge of the tissue exits but

does not return [66, 67]. The flux leaving the external boundary is equal to the fluence

rate at the boundary weighted by a factor that accounts for the internal reflection of light

back into the tissue. This relationship is described in the following equation:

2An · (κ (m)∇Φ (m,ω)) + Φ (m,ω) = 0 for m ∈ Γ, (2.5)

where n denotes the outward unit normal on the boundary and A depends on the relative

refractive index mismatch between the tissue domain and air. The value of A can be
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obtained via Fresnel’s law.

The boundary quantity Ψ that is measured at the surface Γ is defined as

Ψ(m,ω) = −n · (κ(m)∇Φ(m,ω)) for m ∈ Γ. (2.6)

Combining equation (2.6) with the Robin boundary condition (2.5) simply gives the form

Ψ(m,ω) = Φ(m,ω)/2A.

2.2.3 Solution methods for deterministic equations

2.2.3.1 Analytical method:

A general approach for analytically solving the PDE with a source condition is to apply

the Green function [65]. The Green function can give the solution for the case where

the source is a δ-function. The pulsed sources adopted in DOT are often sufficiently

close approximations to δ-function to allow the Green function to be used. However,

solutions only exist for simple homogeneous objects [2, 13, 43, 64]. Numerical techniques

are required if more complex geometries are modelled.

2.2.3.2 Finite difference method:

The standard numerical technique to solve a PDE is the finite difference method (FDM).

FDM is suitable for dealing with the Cartesian grid where each element represents a pixel

in two dimensions (2D) or voxel in three dimensions (3D) in the image [68]. Then the

differential operators in the problem domain, such as gradient, divergence, Laplacian and

curvature, can be discretized straightforwardly using the FDM. However, in biomedical

applications, the computational domain (i.e. the multi-layer head) usually has a complex

shape. It is non-trivial to represent the complex geometry using a Cartesian grid and

therefore FDM is not always practical.

2.2.3.3 Finite element method:

In contrast to FDM, finite element method (FEM) is more flexible for handling objects

with complex geometry. FEM works by dividing the computational domain into a series
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of elements (triangles in 2D, tetrahedra in 3D). Therefore FEM can impose the boundary

conditions very easily and is a common choice to discretize the DE and its RBC. The

key principle of FEM as applied to photon transport problems is the reduction of the

general problem to that of finding an approximate solution that lies in the vector space

spanned by a finite number of basis functions. After that the forward problem is reduced

to one of matrix algebra of a finite size which can be solved by efficient techniques. In

principle this method can be applied to any PDE model of the transport process. Detailed

implementation of FEM for solving the DE and its RBC is described in Section 3.

2.3 Jacobian matrix

The Jacobian matrix (sensitivity matrix) is defined as the change in the surface mea-

surements given a small change in the optical parameters. In the frequency domain, the

sensitivity matrix has the form

J =

(
∂Ψ (m)

∂κ (r)

∂Ψ (m)

∂µa (r)

)
. (2.7)

There are many different ways to form the Jacobian matrix and one of those is called

the direct form or the forward sensitivity analysis [69]. It calculates the changes in

the measurement by running the forward problem (Equation (2.3)) multiple times with

slightly different parameter values. However, this method is impractical because of the

expensive computation time. Instead of perturbing every degree of freedom and calculat-

ing the corresponding change in the measurement [70], Arridge [65] presented an efficient

way to calculate the sensitivity of the measurement in DOT which is called the adjoint

method or the adjoint sensitivity analysis. If we assume the change in the optical param-

eters at the boundary is close to zero, by applying the Green function method we have

the following expression

δΨ (m) = −
∫

Ω

δκ (r)∇G (r) · ∇Φ (r) + δµa (r)G (r) Φ (r) dr, (2.8)
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where δκ (r) and δµa (r) are changes in optical parameters and G (r) is the solution of

the adjoint equation

−∇ · κ (r)∇G (r, ω) +

(
µa (r)− iω

c (r)

)
G (r, ω) = 0, (2.9)

with the boundary condition:

G (m,ω) + 2An · κ (m)∇G (m,ω) = q+
0 (m,ω) , (2.10)

where q+
0 (m,ω) is the adjoint source at the measurement location. Since equation (2.8)

is linear in both δκ(r) and δµa(r), the two components in the Jacobian (Equation (2.7))

can be defined as the Fréchet derivatives of the following forms

∂Ψ (m)

∂κ (r)
= −∇G (r) · ∇Φ (r) ,

∂Ψ (m)

∂µa (r)
= −G (r) Φ (r) .

Alternatively, instead of considering changes in the intensity directly, the Jacobian

can be derived from changes in some transformation of the intensity. For example, by

considering the logarithmic intensity, we can obtain the following variant of the Jacobian

J̃ =

(
∂ (log Ψ)

∂κ

∂ (log Ψ)

∂µa

)
, (2.11)

where

∂ (log Ψ)

∂κ
=

1

Ψ

∂Ψ

∂κ
=
−∇G (r) · ∇Φ (r)

Ψ (m)
,

∂ (log Ψ)

∂µa
=

1

Ψ

∂Ψ

∂µa
=
−G (r) Φ (r)

Ψ (m)
.

The new two components in equation (2.11) are now normalized by the boundary quantity

Ψ(m). Arridge [71] compared the image recovery results from intensity and log inten-

sity measurements, and found that the latter allows for the large dynamic range of the

measurement and can thus considerably improve the reconstruction. Later, O’Leary [72]

confirmed it and pointed out that the logarithmic intensity is actually equivalent to the

Rytov approximation whereas absolute intensity is the Born approximation. Technically,
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the logarithmic transformation can be considered as a measurement operator or postpro-

cessing transformation on the obtained boundary data Ψ(m). Arridge [70] has shown

that the imaging reconstruction algorithm can be improved by introducing the general

measurement operator to the Jacobian calculation.

2.4 Image reconstruction (Inverse problem)

Reconstructing an image representing internal optical properties from a series of boundary

measurements is a so-called inverse problem. Depending on the application, the DOT

image reconstruction can be approximately divided into two kinds: linear approach and

nonlinear iterative approach. DOT reconstruction based on linear approaches is mainly

used in neuroimaging studies where brain activity-related optical properties changes are

very small. In this case, high-quality images can be recovered by using high-density

DOT systems, such as the instruments with spatially overlapping multidistance source-

detector arrangements [73,74]. This approach reconstructs the spatiotemporal changes of

internal optical properties using temporal derivatives of boundary measurements, which

is sufficient for functional neuroimaging studies. In clinical use, quantitative images

of optical properties in steady-state are further useful with diagnostic optical imaging.

Therefore DOT based on the nonlinear iterative approaches have been developed to enable

this.

2.4.1 Linear inverse problem

The linear inverse problem is defined as: given the temporal derivatives of boundary

measurements δy, find the spatiotemporal changes of internal optical properties δµ within

the computational domain, such that

δy = Jδµ, (2.12)

where Jacobian J is a linear operator mapping from δµ to δy and δµ = (δκ, δµa).
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Equation (2.12) has a unique solution δµ = J−1δy if it is a well-posed system. How-

ever, because J in real applications is most likely non-invertible (or even if it would be

invertible, its inversion may be ill-conditioned), equation (2.12) is ill-posed most of the

time. In fact, as the data δy contains measurement noise and there may exist modelling

errors, instead of directly inverting J one can seek a solution that minimizes the norm of

the residual e = δy − Jδµ. This leads to the normal equation of the following form

J∗Jδµ = J∗δy. (2.13)

Here J∗ is the adjoint operator of J. The solutions of the normal equation (2.13), δµ =

(J∗J)−1J∗δy, exist and is unique if (J∗J)−1 exists and continuous. The minimum residual

solution δµ is also known as the least square solution. Unfortunately, equation (2.13)

may still be a ill-posed problem since J∗J may not be invertible or its inversion may

be ill-conditioned. To overcome the ill-posedness, Levenberg-Marquardt(LM) approach

introduces a diagonal term to stabilize the problem. In this case the update equation is

altered to

(J∗J + λI)δµ = J∗δy. (2.14)

In equation (2.14) I is the identity operator and λ > 0 is a regularization parameter

which is often chosen based on the noise level present in the measurements δy. Note

that equation (2.14) has the same solution as the minimization problem with Tikhonov

regularization

δµ = arg min
δµ

{
‖δy − Jδµ‖2

2 + λ‖δµ‖2
2

}
. (2.15)

It is possible to show that equation (2.15) has a unique solution δµ = (J∗J + λI)−1J∗δy

when λ is fixed.

In a more general version of Tikhonov regularization, one can substitute the term

λ‖δµ‖2
2 in equation (2.15) with λ‖Lδµ‖2

2 where L can be regarded as a highpass operator

such as a linear differential operator like gradient or Laplacian. The minimization problem

thus becomes

δµ = arg min
δµ

{
‖δy − Jδµ‖2

2 + λ‖Lδµ‖2
2

}
. (2.16)
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The new regularization term ‖Lδµ‖2
2 can be seen as a prior or a smoothness constraint on

δµ. It can improve the conditioning of the problem, thus enabling a numerical solution.

Now assuming that L is linear and continuous with adjoint L∗, δµ is the solution of

equation (2.16) if and only if

(J∗J + λL∗L)δµ = J∗δy. (2.17)

2.4.2 Nonlinear iterative inverse problem

Nonlinear iterative inverse problem is to recover the underlying optical properties (κ, µa)

at each finite element node from the measurements y using a model-based approach. This

reconstruction process can be accomplished by matching the experimental measurements

y with the model predictions Ψ (κ, µa) iteratively in the least squares sense. We note that

the general theory of nonlinear inverse problems is however a lot more complicated. We

thereby focus only on how to numerically solve the given minimization problem for DOT

image reconstruction in this part. One can refer to [64,65,69] for detailed discussions on

the general theory of inverse problems.

Assume that we want to recover optical properties µ = (κ, µa) from M measurements

for a finite element mesh with N nodes. Let Ψ(·) be the nonlinear operator induced from

the forward problem (Equation (2.3)) in DOT. This finite-dimensional forward operator

explicitly describes the relationship between the measurement and the optical parameters

via y = Ψ(κ, µa). Instead of adopting the intensity of measurements directly, Arridge [71]

suggest using log intensity measurements which has been proved to allow for the large

dynamic range of the measurement and can considerably improve the reconstruction.

Therefore we transform the relationship into the logarithmic domain as

log y = logΨ. (2.18)

Given a reasonable guess for (κ, µa), one can linearize the nonlinear function Ψ(κ, µa)

using the first order Taylor expansion as follows

logΨ ≈ logΨk + J̃
k
δµ, (2.19)
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where the superscript k denotes the kth iteration. δµj = (κj − κkj µaj − µkaj)
T where

j = 1, ..., N , is the changes in the optical properties. According to the definition of the

Jacobian (Equation (2.11)), J̃
k

is given by

J̃
k

i,j =

(
−∇Gk

j (r) · ∇Φk
j (r)

Ψk
j (m)

−Gk
j (r) · Φk

j (r)

Ψk
j (m)

)
, (2.20)

where i = 1, ...,M . Gj and Φj, defined on each finite element node, are the discrete solu-

tions of the adjoint model in equation (2.9) and equation (2.3) respectively. Substituting

equation (2.19) to (2.18) leads to

δΨk = J̃
k
δµ, (2.21)

where δΨk = log y − logΨk is the data-model mismatch in the kth iteration. However,

the Jacobian is often ill-posed. Strategies that can be employed to invert an ill-posed

matrix includes truncated singular value decomposition (SVD), algebraic reconstruction

technique (ART), simultaneous iterative reconstruction technique (SIRT), and k-space

expansions [69, 75–77]. Another most commonly used approach is the Gauss-Newton

algorithm. Let the residual e = δΨk − J̃
k
δµ. The optical properties can be found by the

classical Gauss-Newton method through minimizing the following L2-norm of the residual

δµk+1 = arg min
δµ

∥∥δΨk − Jkδµ
∥∥2

2
(2.22)

Equation (2.22) is in fact the least square formulation of the linear inverse problem

(equation (2.12)), and its solution can be written as

δµk+1 =
(
JkTJk

)−1
JkTδΨk. (2.23)

The Gauss-Newton algorithm for approximately solving the DOT inverse problem (equa-

tion (2.18)) is therefore iteratively updating Ψ and δµ by using equation (2.19) and

equation (2.23) until some convergence condition is satisfied. Unfortunately, there is

no guarantee that this process is convergent due to the nonlinearity of equation (2.18).

Moreover, if the initial guess is far away from the actual solution, the algorithm is more

likely to get stuck into a local minimum which most often is meaningless.

As JkTJk is usually singular or close to singular, it is difficult to calculate the in-

version of JkTJk in equation (2.23) directly for the Gauss-Newton iteration. Further,
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experimental noise in the measurements y tends to lead to reconstruction artefacts. Reg-

ularization terms are normally imposed to convert equation (2.22) into a more readily

solvable problem. In Section 4, I will give the literature review about the regularization

methods proposed in the DOT community and present our new proposed regularization

method to alleviate the ill-posedness of the inverse problem.
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CHAPTER 3

FINITE ELEMENT METHOD FOR

SOLVING THE PARTIAL

DIFFERENTIAL EQUATION

In this chapter, we describe how the 2D and 3D partial differential equations in diffuse

optical tomography imaging reconstruction can be numerically solved by the Galerkin

finite element method. The main idea is to first derive the variational formulation of

the original partial differential equation and discretize it with the help of the first order

piecewise linear basis functions. Afterwards, the discretized formulation over the whole

calculation domain is broken down onto each local element. The Gauss-Legendre quadra-

ture rules are then applied, which allow the integrals over each element to be numerically

evaluated efficiently and accurately. Lastly, the computed integrals are assembled ele-

ment by element, giving rise to a sparse linear equation system which can be solved by

direct solvers (e.g. Gaussian elimination) or iterative solvers (e.g. generalized minimal

residual method). We first start with the 2D FEM case, followed by the corresponding

3D case in Section 3.4.

3.1 Variational (weak) formulation

To apply the Galerkin finite element method to solve the differential equation (2.3) on

irregular geometries, one needs to convert it into a variational (weak) formulation. In
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mathematics, variational (weak) formulations permit the transfer of concepts of linear

algebra to the analysis of partial differential equations such as equation (2.3). To derive

the variational formulation of equation (2.3), we multiply the two sides of the differential

equation by a test function v(x, y) and integrate them over the whole computational

domain Ω. Note that in a 2D geometry, we use (x, y) to represent the coordinate pair of

position r.∫∫
Ω

−∇ · (κ (x, y)∇Φ (x, y)) v (x, y) dxdy +

∫∫
Ω

f (x, y) Φ (x, y) v (x, y) dxdy

=

∫∫
Ω

q0 (x, y) v (x, y) dxdy.

(3.1)

By applying integration by parts to the first term of the left-hand side of equation (3.1)

and omitting the function variables (x, y) for brevity, we arrive at∫∫
Ω

(κ∇Φ)∇vdxdy −
∮

Γ

n · (κ∇Φ)vds+

∫∫
Ω

fΦvdxdy =

∫∫
Ω

q0vdxdy. (3.2)

Substituting the boundary condition (Equation (2.5)) into equation (3.2), we obtain∫∫
Ω

(κ∇Φ)∇vdxdy +

∮
Γ

Φ

2A
vds+

∫∫
Ω

fΦvdxdy =

∫∫
Ω

q0vdxdy. (3.3)

Equation (3.3) is now the variational formulation of equation (2.3) for Φ ∈ V , where V

denotes the vector space of the test function v = v(x, y).

3.2 Discretization using Galerkin finite element method

Given a 2D domain, we discretize the computational domain with a set of triangles or

quadrilaterals (rectangles). In this paper, we only focus on the triangular triangulation

but the Galerkin method is also applicable to other triangulations such as quadrilateral.

Now assume that a 2D finite element domain Ω is divided by M triangular elements

{Ti}Mi=1 connected with N nodes. Let Vh be the 2D vector space of continuous and

piecewise linear functions on these triangles. The Galerkin finite element method seeks

a solution Φ to equation (3.3), that can be expressed in terms of a set of basis functions

{ϕj}Nj=1, ϕj ∈ Vh (also known as shape or trial functions). Specifically, the solution Φ
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can be rewritten in the form of

Φ =
N∑
j=1

Φjϕj, (3.4)

where given three nodes of a element T , i.e. v1 = (x1, y1), v2 = (x2, y2) and v3 = (x3, y3),

the basis functions ϕj for the three vertices of the triangle can be respectively expressed

as

ϕ1 (x, y) =
(x2y3 − x3y2 + (y2 − y3)x+ (x3 − x2)y)

2AT
,

ϕ2 (x, y) =
(x3y1 − x1y3 + (y3 − y1)x+ (x1 − x3)y)

2AT
,

ϕ3 (x, y) =
(x1y2 − x2y1 + (y1 − y2)x+ (x2 − x1)y)

2AT
.

Here AT denotes the triangular area of T , which can be evaluated by

AT =
|x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)|

2
. (3.5)

Note that the problem equation (3.3) now reduces down to the calculation of the

fluence rate Φ at each node over the whole domain Ω. We thus substitute equation (3.4)

into equation (3.3) to obtain

N∑
j=1

Φj

(∫∫
Ω

κ∇ϕj∇vdxdy +

∫∫
Ω

fϕjvdxdy +

∮
Γ

1

2A
ϕjvds

)
=

∫∫
Ω

q0vdxdy. (3.6)

Since {ϕj}Nj=1 ∈ Vh are the basis functions of Vh, equation (3.6) is equivalent to

N∑
j=1

Φj

(∫∫
Ω

κ∇ϕj∇ϕidxdy +

∫∫
Ω

fϕjϕidxdy +

∮
Γ

1

2A
ϕjϕids

)
=

∫∫
Ω

q0ϕidxdy. (3.7)

Equation (3.7) is a sparse, well-posed quadratic system of N linear equations and N

unknowns, of the form

MΦ = Q. (3.8)

Equation (3.8) is normally known as the Galerkin system, where Φ = (Φ1,Φ2, ...,ΦN)T .

The matrixM = K + C + B the terms of which have elements given by

Kij =

∫∫
Ω

κ∇ϕi∇ϕjdxdy, (3.9)

Cij =

∫∫
Ω

fϕiϕjdxdy, (3.10)
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Bij =

∮
Γ

1

2A
ϕiϕjds, (3.11)

and the source term Q = (Q1, Q2, ..., QN)T has the form of

Qi =

∫∫
Ω

q0ϕidxdy. (3.12)

In the linear system, K is the stiffness matrix and C the mass matrix. Because B con-

tains the boundary contributions to the linear system matrix, its domain of integration

is different from the one of other three matrices K, C and Q. Note that it is however not

straightforward to find values for K, C, B and Q over the whole domain Ω directly. Alter-

natively, these matrices can be evaluated locally on each individual triangle or boundary

edge and then assembled to construct the global matrix M. In Section 3.3, we shall

introduce the whole procedure in detail.

3.3 Simplex coordinates, integral evaluations and quadra-

ture rules

3.3.1 Simplex coordinates

To evaluate the matrices K, C and Q over each triangle, simplex coordinates (also known

as area coordinates or barycentric coordinates) are normally used. By choosing this coor-

dinate system, Gauss-Legendre quadrature rules can be conveniently applied to evaluate

the domain integrals in these matrices. We note that Gauss-Legendre quadrature allows

fewer quadrature points to be used to achieve high accuracy. To develop the simplex

coordinate transformation, we consider a triangle T which is defined by three vertices

v1 = (x1, y1), v2 = (x2, y2) and v3 = (x3, y3) in the Cartesian coordinate system, as shown

in Figure 3.1 left. Any point r = (x, y) located on the triangle can be thereby represented

as a weighted sum of the three nodes via

r = (1− ξ − η)v1 + ξv2 + ηv3. (3.13)
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Equation (3.13) maps the original triangle T in the Cartesian coordinate system spanned

by x axis and y axis onto a standard triangle Tst in the simplex coordinate system spanned

by ξ axis and η axis. This is shown in Figure 3.1. Since equation (3.13) has the form of a

linear transform, the simplex coordinates will allow us to perform a linear interpolation

of a function at points on the triangle if the values of the function are known at the

nodes. We will have to apply this property when using Gauss-Legendre quadrature to

numerically approximate the integrals in the matrixM in Section 3.3.3.

x

3 3( , )x y

2 2( , )x y

1 1( , )x y

y

( , )x y

(0, 0) (1, 0)

(0,1)

( , )

(0, 0)

Figure 3.1: The linear transform from an arbitrary triangle T (left) to the standard

triangle Tst (right), which is defined in the simplex coordinates spanned by ξ axis and η

axis.

3.3.2 Integral evaluations

The simplex coordinates now equip us with three new nonzero basis functions over the

standard triangle Tst

ψ1 (ξ, η) = 1− ξ − η,

ψ2 (ξ, η) = ξ,

ψ3 (ξ, η) = η.
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With the new coordinate system and basis functions, we can evaluate the integrals over

the local triangle as follows

KT =

∫∫
T

κ∇ϕi∇ϕjdxdy = ∇ϕi∇ϕj
∫∫

Tst

κ (ξ, η) |J (ξ, η)| dξdη, (3.14)

CT =

∫∫
T

fϕiϕjdxdy =

∫∫
Tst

f (ξ, η)ψi (ξ, η)ψj (ξ, η) |J (ξ, η)| dξdη, (3.15)

QT =

∫∫
T

q0ϕidxdy =

∫∫
Tst

q0 (ξ, η)ψi (ξ, η) |J (ξ, η)| dξdη, (3.16)

where T is one triangle defined on the whole triangulation Ω, and Tst is the standard

triangle in the simplex coordinate system mapped from T . As i, j = 1, 2, 3 now, the size

of matrices define in equations (3.14), (3.15) and (3.16) is 3×3, 3×3 and 3×1 respectively.

Special attention should be paid to equation (3.14). Because the basis functions ϕi are

first order piecewise linear (high order basis functions can be also used for higher accuracy

but with lower computational efficiency and more complicated implementations),∇ϕi∇ϕj

in equation (3.14) are simply constant, and so can be taken outside of the integral.

Moreover, J (ξ, η) is the Jacobian of the transformation, which is of the form

J (ξ, η) =

∣∣∣∣∂ (x, y)

∂ (ξ, η)

∣∣∣∣ =

∣∣∣∣∣∣∣∣
∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η

∣∣∣∣∣∣∣∣ = 2AT , (3.17)

where AT is the triangular area defined in equation (3.5). Therefore, equations (3.14),

(3.15) and (3.16) can be reformulated as

KT =

∫∫
T

κ∇ϕi∇ϕjdxdy = 2AT∇ϕi∇ϕj
∫∫

Tst

κ (ξ, η)dξdη, (3.18)

CT =

∫∫
T

fϕiϕjdxdy = 2AT

∫∫
Tst

f (ξ, η)ψi (ξ, η)ψj (ξ, η)dξdη, (3.19)

QT =

∫∫
T

q0ϕidxdy = 2AT

∫∫
Tst

q0 (ξ, η)ψi (ξ, η)dξdη. (3.20)

Equation (3.11) must be evaluated separately to the domain integrals for the matrices

K, C and Q. First of all, we have to decompose the boundary into nedges edges of the

triangular elements that lie on it, such that∮
Γ

1

2A
ϕiϕjds =

nedges∑
p=1

∫
Lp

1

2A
ϕiϕjds. (3.21)
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Next, for each edge we consider the two nodes that delimit it: v
Lp
1 = (x1, y1) and

v
Lp
2 = (x2, y2). In the same way as we treated, for any point rLp = (x, y) on the edge Lp,

we can transform it into the simplex coordinate system (i.e. interval [0,1]) with

rLp = (1− t)vLp1 + tv
Lp
2 . (3.22)

Therefore, the new basis functions become

L1 (t) = 1− t,

L2 (t) = t.

Next, we can evaluate the integral for each edge separately

BLp =

∫
Lp

1

2A
ϕiϕjds = length (Lp)

∫ 1

0

1

2A (t)
Li (t)Lj (t)dt, (3.23)

where i, j = 1, 2 and equation (3.23) is thus a 2×2 matrix. The 1D two-point quadrature

rule can be applied to numerically evaluate this line integral, which is given in Table 3.2

in Section 3.3.3.

3.3.3 Quadrature rules

In order to numerically implement the domain integrals (Equations (3.18), (3.19) and

(3.20)), we need to develop quadrature formula over a standard triangle Tst, which is

given by ∫∫
Tst

g (ξ, η)dξdη ≈
Ng∑
i=1

wig (ξi, ηi) , (3.24)

where Ng is the number of quadrature points used, (ξi, ηi) are quadrature points located

on a standard triangle Tst and wi are weights (normalized with respect to the original

triangular area AT ). Practically, we want to choose points (ξi, ηi) and weights wi so that

the quadrature (Equation (3.24)) is accurate and can be also calculated efficiently. In [78],

the authors list Gauss-Legendre points and weights for triangles and the degree of the

quadrature varies from 1 to 20 (79 quadrature points used for degree 20). Technically,

higher degree quadrature involves more points and can lead to higher accuracy, but it

is also computationally expensive. For simplicity, we only provide some commonly used
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2D quadrature rules using one, three and four quadrature points, which are respectively

linear, quadratic and cubic cases. The coordinates of the points and weights are given

in Table 3.2, and the corresponding geometry of the points are illustrated in Figure 3.2.

Note that quadrature rules for triangular elements are normally not unique. For instance,

there exist multiple settings of the quadrature rule for the cubic case.

Table 3.1: Quadrature points and weights corresponding to the geometry in Figure 3.2.

Ng points (ξi, ηi) wi

1 a
(

1
3
, 1

3

)
1
2

3 a
(
0, 1

2

)
1
6

b
(

1
2
, 0
)

1
6

c
(

1
2
, 1

2

)
1
6

4 a
(

1
3
, 1

3

)
−27

96

b
(

2
15
, 11

15

)
25
96

c
(

2
15
, 2

15

)
25
96

d
(

11
15
, 2

15

)
25
96

Figure 3.2: A diagram of the 2D quadrature rules with one, three and four quadrature

points, respectively.

We are now ready to evaluate equations (3.18), (3.19) and (3.20). Here we take
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equation (3.19) as an example, since equations (3.18) and (3.20) are analogous to equation

(3.19) and equation (3.19) is more general. The detailed 3 × 3 matrix form of equation

(3.19) can be written as

∫∫
Tst

f (ξ, η)ψi (ξ, η)ψj (ξ, η)dξdη =



∫∫
Tst

fψ1ψ1dξdη

∫∫
Tst

fψ1ψ2dξdη

∫∫
Tst

fψ1ψ3dξdη∫∫
Tst

fψ2ψ1dξdη

∫∫
Tst

fψ2ψ2dξdη

∫∫
Tst

fψ2ψ3dξdη∫∫
Tst

fψ3ψ1dξdη

∫∫
Tst

fψ3ψ2dξdη

∫∫
Tst

fψ3ϕ3dξdη


.

(3.25)

Let us further use the first component of equation (3.25) as an example. By using the

three quadrature points rule in Table 3.1, i.e. Ng = 3, a = (0, 1
2
), b = (1

2
, 0), c = (1

2
, 1

2
)

and w1 = w2 = w3 = 1
6
, we have∫∫

Tst

fψ1ψ1dξdη =
1

6

(
f(0,

1

2
)ψ1(0,

1

2
)ψ1(0,

1

2
) + f(

1

2
, 0)ψ1(

1

2
, 0)ψ1(

1

2
, 0)

+ f(
1

2
,
1

2
)ψ1(

1

2
,
1

2
)ψ1(

1

2
,
1

2
).

(3.26)

As mentioned in Section 3.3.1, the simplex coordinates can perform a linear interpolation

of f at points (0, 1
2
), (1

2
, 0), (1

2
, 1

2
) on the standard triangle Tst by only using the values of

f at the nodes. The other components in equation (3.25) as well as equation (3.18) and

equation (3.20) can be evaluated in the same fashion.

Table 3.2: Quadrature points and weights for the line integral (Equation (3.23)).

Ng points ti wi

2 a 0.21132486540519 0.5

b 0.78867513459481 0.5

Next, we address numerical computation problem for the line integral over interval

[0,1]. The two quadrature points rule for the integral is listed in Table 3.2.

Lastly, we present the overall Galerkin finite element algorithm to solve the 2D PDE

in equation (2.3)
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Algorithm: Galerkin finite element method for equation (2.3)

1: Set up the computational triangular mesh and choose basis functions

2: Compute the matrix K, C, B and vector Q in equations (3.9)-(3.12), respectively:

3: • Loop over triangles, for each compute the elemental contributions KT (3 by 3

matrix) in equation (3.18), CT (3 by 3 matrix) in (Equation 3.19) and QT (3-vector)

in equation (3.20)

4: • For this, compute elemental area and use 2D quadrature rule in Table 3.1

5: • Add KT , CT and QT to K, C and Q appropriately

6: • Loop over Neumann boundary edges on Γ, for each compute the boundary con-

tribution BLp (2 by 2 matrix) in equation (3.23)

7: • For this, compute edge length and use 1D quadrature rule in Table 3.2

8: • Add BLp to B appropriately

9: Solve the linear systemMΦ = Q whereM = K + C + B

3.4 3D finite element algorithm

The theory behind 3D FEM is essentially the same as its 2D counterpart. Assume that

a 3D finite element domain V is divided by M tetrahedral elements {Ti}Mi=1, with the

corresponding N nodes. The 3D Galerkin system has the form of

MΦ = Q, (3.27)

where Φ = (Φ1,Φ2, ...,ΦN)T andM consists of

Kij =

∫∫∫
V

κ∇ϕi∇ϕjdxdydz, (3.28)

Cij =

∫∫∫
V

fϕiϕjdxdydz, (3.29)

Bij =

∫∫
Ω

1

2A
ϕiϕjdxdy. (3.30)

The source term Q = (Q1,Q2, ...,QN)T in (3.27) has the form of

Qi =

∫∫∫
V

q0ϕidxdydz. (3.31)
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Given the basis functions {ϕi}Ni=1, the 3D solution Φ to the PDE (Equation (2.3)) can

be rewritten in the form of

Φ =
N∑
j=1

Φjϕj, (3.32)

where given four vertices of an arbitrary tetrahedron T , i.e. v1 = (x1, y1, z1), v2 =

(x2, y2, z2), v3 = (x3, y3, z3) and v4 = (x4, y4, z4), the basis functions ϕj for the four

vertices of the tetrahedron read as

ϕ1(x, y, z) =
1

6VT

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x y z

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

ϕ2(x, y, z) =
1

6VT

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 y1 z1

1 x y z

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

ϕ3(x, y, z) =
1

6VT

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 y1 z1

1 x2 y2 z2

1 x y z

1 x4 y4 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

ϕ4(x, y, z) =
1

6VT

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x y z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Here VT denotes the volume of the tetrahedron T , which can be evaluated by

VT =
1

6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.33)
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Next, we need simplex coordinates to evaluate volume integrals K, C, and Q over

each tetrahedron. Now consider a tetrahedron T consisting of the four vertices v1, v2,

v3 and v4 in the Cartesian coordinate system. Any point r = (x, y, z) located in the

tetrahedron can be represented as a weighted sum of the four nodes via

r = (1− ξ − η)v1 + ξv2 + ηv3 + γv4. (3.34)

Equation (3.34) represents that the original tetrahedron in the Cartesian coordinate sys-

tem spanned by x-axis, y-axis and z-axis has been linearly mapped to a standard tetra-

hedron Tst in the simplex coordinate system spanned by ξ-axis, η-axis and γ-axis. See

the illustration in Figure 3.3 for details. Since equation (3.34) is the form of a linear

transform, the simplex coordinates will allow us to perform a linear interpolation of a

function at points in the tetrahedron if the values of the function are known at the nodes.

Figure 3.3: The linear transform from an arbitrary tetrahedron T (left) to the standard

tetrahedron Tst (right), which is defined in the simplex coordinates spanned by ξ-axis,

η-axis and γ-axis.

The simplex coordinates now equip us with four new nonzero basis functions over the
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standard tetrahedron Tst

ψ1 (ξ, η, γ) = 1− ξ − η − γ,

ψ2 (ξ, η, γ) = ξ,

ψ3 (ξ, η, γ) = η,

ψ4 (ξ, η, γ) = γ.

With the new coordinate system and basis functions, we can evaluate the integrals over

each local standard tetrahedron Tst in the simplex coordinate system as follows

KT = ∇ϕi∇ϕj
∫∫∫

Tst

κ (ξ, η, γ) |J (ξ, η, γ)| dξdηdγ, (3.35)

CT =

∫∫∫
Tst

f (ξ, η, γ)ψi (ξ, η, γ)ψj (ξ, η, γ) |J (ξ, η, γ)| dξdηdγ, (3.36)

QT =

∫∫∫
Tst

q0 (ξ, η, γ)ψi (ξ, η, γ) |J (ξ, η, γ)| dξdηdγ. (3.37)

Note that as i, j = 1, 2, 3, 4 now, the size of equations (3.35), (3.36) and (3.37) is 4 × 4,

4× 4 and 4× 1 respectively. The basis functions ϕi we used in this study are first order

piecewise linear, so ∇ϕi∇ϕj in equation (3.35) always stay constant. J (ξ, η, γ) is the

Jacobian of the following form

J (ξ, η, γ) =

∣∣∣∣∂ (x, y, z)

∂ (ξ, η, γ)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂ξ

∂x

∂η

∂x

∂γ

∂y

∂ξ

∂y

∂η

∂y

∂γ

∂z

∂ξ

∂z

∂η

∂z

∂γ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 6VT , (3.38)

where VT is the tetrahedral volume defined in equation (3.33). We still need to address

the integral problem Bij in equation (3.30) which is on the surface Ω of the whole 3D

FEM domain V . Note that this process should be made separately to the volume integrals

for the matrices K, C and Q. First of all we have to decompose the surface into ntri

triangles that lie on it, such that

Bij =

∫∫
Ω

1

2A
ϕiϕjdxdy =

ntri∑
p=1

∫∫
Tp

1

2A
ϕiϕjdxdy. (3.39)
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Note that unless the triangle face is on the boundary surface, this integral is equal to

zero.

Next, for each triangle on the boundary surface its integral problem simply goes back

to the 2D domain integral evaluation which is evident in Section 3.3.2. We thus can

evaluate the integral for each boundary triangle in the simplex coordinate system with

the 2D shape functions ψ1 (ξ, η), ψ2 (ξ, η) and ψ3 (ξ, η)

GTp =

∫∫
Tp

1

2A
ϕiϕjdxdy = 2ATp

∫∫
Tst

1

2A (ξ, η)
ψi (ξ, η)ψj (ξ, η) dξdη. (3.40)

Here ATp is the area of the triangle Tp on the boundary surface, and equation (3.40) is

3 × 3 matrix due to i, j = 1, 2, 3. The numerical implementation of equation (3.40) is

described in Section 3.3.3.

3.4.1 3D quadrature rules

In order to numerically implement the volume integrals (Equations (3.35), (3.36) and

(3.37)), we need to develop a quadrature formula over a standard tetrahedron, which is

given by ∫∫∫
Tst

g (ξ, η, γ) dξdηdγ ≈
Ng∑
i=1

wig (ξi, ηi, γi) (3.41)

whereNg is the number of quadrature points used, (ξi, ηi, γi) are quadrature points located

in a standard tetrahedron Tst and wi are weights (normalized with respect to the original

tetrahedron volume VT ). In this study, we use the Gauss-Legendre quadrature of degree

4 including 24 quadrature points and weights for our 3D FEM implementation, which is

listed in Table 3.3. One can refer to [79] for more options.

Finally, we present the overall Galerkin finite element algorithm to find the 3D solution

Φ to the PDE in equation (2.3)

3.5 Challenges

This chapter gives a detailed description about how to use the Galerkin finite element

method to solve the DE and its RBC. However, there are some limitations in this dis-
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Table 3.3: Quadrature points and weights for the volume integrals (Equations (3.35),

(3.36) and (3.37)).

Ng points (ξi, ηi, γi) wi

24 a (0.21460287125915202, 0.21460287125915202, 0.3561913862225439) 6.6537917096945820e-3

b (0.21460287125915202, 0.3561913862225439, 0.21460287125915202) 6.6537917096945820e-3

c (0.3561913862225439, 0.21460287125915202, 0.21460287125915202) 6.6537917096945820e-3

d (0.21460287125915202, 0.21460287125915202, 0.21460287125915202) 6.6537917096945820e-3

e (0.040673958534611353, 0.040673958534611353, 0.87797812439616594) 1.6795351758867738e-3

f (0.040673958534611353, 0.87797812439616594, 0.040673958534611353) 1.6795351758867738e-3

g (0.87797812439616594, 0.040673958534611353, 0.040673958534611353) 1.6795351758867738e-3

h (0.04067395853461135, 0.040673958534611353, 0.040673958534611353) 1.6795351758867738e-3

i (0.32233789014227551, 0.32233789014227551, 0.0329863295731735) 9.2261969239424536e-3

j (0.32233789014227551, 0.0329863295731735, 0.32233789014227551) 9.2261969239424536e-3

k (0.0329863295731735, 0.32233789014227551, 0.32233789014227551) 9.2261969239424536e-3

l (0.32233789014227551, 0.32233789014227551, 0.32233789014227551) 9.2261969239424536e-3

m (0.063661001875017525, 0.26967233145831580, 0.6030056647916492) 8.0357142857142857e-3

n (0.063661001875017525, 0.6030056647916492, 0.26967233145831580) 8.0357142857142857e-3

o (0.26967233145831580, 0.063661001875017525, 0.6030056647916492) 8.0357142857142857e-3

p (0.26967233145831580, 0.6030056647916492, 0.063661001875017525) 8.0357142857142857e-3

q (0.6030056647916492, 0.063661001875017525, 0.26967233145831580) 8.0357142857142857e-3

i (0.6030056647916492, 0.26967233145831580, 0.063661001875017525) 8.0357142857142857e-3

s (0.063661001875017525, 0.063661001875017525, 0.6030056647916492) 8.0357142857142857e-3

t (0.063661001875017525, 0.6030056647916492, 0.063661001875017525) 8.0357142857142857e-3

u (0.6030056647916492, 0.063661001875017525, 0.063661001875017525) 8.0357142857142857e-3

v (0.063661001875017525, 0.063661001875017525, 0.26967233145831580) 8.0357142857142857e-3

w (0.063661001875017525, 0.26967233145831580, 0.063661001875017525) 8.0357142857142857e-3

x (0.26967233145831580, 0.063661001875017525, 0.063661001875017525) 8.0357142857142857e-3

cretization method.

• Implementation of the FEM is complicated when higher order basis functions are

involved. It is because 1) higher degree polynomial basis functions require more oper-

ations to compute, 2) the corresponding quadrature rules for numerical integration to

compute the matrix for the discrete problem must be of correspondingly higher order,
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Algorithm: 3D Galerkin finite element method for equation (2.3)

1: Set up the computational tetrahedral mesh and choose basis functions

2: Compute the matrix K, C, B and vectorQ in equations (3.28)-(3.31), respectively:

3: • Loop over tetrahedrons, for each compute the elemental contributions KT (4 by

4 matrix) in (3.35), CT (4 by 4 matrix) in equation (3.36) and QT (4-vector) in

equation (3.37)

4: • For this, compute elemental volume and use 3D quadrature rule in Table 3.3

5: • Add KT , CT and QT to K, C and Q appropriately

6: • Loop over surface triangles on Ω, for each compute the boundary contribution

BT p (3 by 3 matrix) in equation (3.40)

7: • For this, compute triangular area and use 2D quadrature rule in Table 3.1

8: • Add BTp to B appropriately

9: Solve the linear systemMΦ = Q whereM = K+ C +B

which means more quadrature points at which to evaluate the basis functions, 3) the

matrix M for the discrete problem is denser, which means more computation to solve

the linear system [80].

• Even using the first order piecewise linear basis functions, the computational com-

plexity is still high. The 24 quadrature points and weights for the volume integrals as

shown in Table 3.3 can complex the FEM implementation and decrease the computational

efficiency.

• Under the finite element strategy, triangular elements are used in 2D analysis

whereas tetrahedron elements are used in 3D analysis. Therefore, different formulations

of basis functions, simplex coordinates and quadrature rules are needed for geometries

with different dimensions, leading to different FEM implementations.

• Accurate solution in FE analyses highly relies on the high mesh resolution and

refinement. As FEM operates on each local element, high quality meshes are crucial to

obtaining accurate results. This is also validated in Chapter 5, where FEM performance

is evaluated on the meshes with low and high resolution respectively.
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Due to these challenges of FEM, in Section 6, we will present our work on a new

discretization approach which is more computationally efficient and allows identical im-

plementation for geometries in different dimensions.
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CHAPTER 4

LITERATURE REVIEW AND

SPECTRAL-L1 MODEL FOR DIFFUSE

OPTICAL TOMOGRAPHY

Reconstruction of images from DOT measurements is a difficult inverse problem. The

limited availability of boundary measurements and the diffusive nature of light propaga-

tion in tissue [69, 81] make the problem non-linear and ill-posed. Different distributions

of optical parameters can lead to the same boundary measurements. Therefore itera-

tive solutions with effective methods for regularization are necessary to alleviate the ill-

posedness and obtain a plausible solution optimized for particular chosen characteristic.

In this chapter, we review the regularization methods proposed by the DOT community

in the recent two decades and then introduce our proposed regularization methods for

improving the DOT reconstruction.

4.1 Literature review of advanced regularization meth-

ods in DOT

Reviewing the regularization methods proposed in the DOT community over the past

two decades, three categories of regularization methods can be identified: regulariza-

tion methods with sparsity constraints (RSC), regularization methods with spatial priors

(RSP-I), and regularization methods with spectral prior (RSP-II).
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4.1.1 Regularization methods with sparsity constraints (RSC)

The simplest regularization applied to alleviate the ill-posed problem is Tikhonov regu-

larization, which was proposed by Pogue et al [82] to reduce high frequency noises in the

reconstructed images. Let y and Ψ be the logarithm of the boundary measurements and

model based prediction. The corresponding objective function is given as follows

Ω (µ) = ‖y −Ψ (µ)‖2
2 + λ ‖µ− µ0‖2

2 , (4.1)

where λ is the regularization parameter and µ0 is the initial estimate of the optical

properties, which in DOT is typically obtained from calibration [83]. µ is the optical

properties which need to be recovered. Taking the first order derivative with respect to

µ leads to the following first order Maclaurin series expansion

(
JkTJk + λI

)
δµ = JkTδΨk−1 − λ (µk−1 − µ0) . (4.2)

where the superscript k denotes the kth iteration. It is easy to see that equation (4.2) can

be computed analytically. Tikhonov regularization suppresses the high-frequency com-

ponents (normally noise) of the reconstructed image leading to smooth reconstructions.

Therefore Tikhonov regularization is the most popular approach in the DOT community.

However, this regularization has the drawback of being unable to preserve sharp features

in the reconstructed images and oversmoothing the results [22]. When the boundary

measurements have large dynamic range, Tikhonov regularization leads to artefacts in

specific data points near the source-detector locations [23].

Features of interest in DOT, such as tumours in the breast or activations in the brain,

are typically spatially localized and in this case the vector corresponding to the difference

in the optical properties relative to the background is sparse with only a few non-zero

elements [84–87]. Based on this assumption, regularization methods with sparsity con-

straints (RSC) were proposed to preserve the sparsity of the reconstructed DOT images

and improve the accuracy. The typical RSC is L1-norm regularization ‖µ− µ0‖1 which
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was first proposed by Cao et al. [88]. Experiments revealed that, compared to Tikhonov

regularization, L1-norm regularization can promote more localized reconstructed results

and is able to preserve edge-like features. Both Tikhonov and L1-norm regularizations

can be solved by convex optimization schemes where a unique solution can be guaran-

teed [87, 89]. A more general Lp-norm (‖µ− µ0‖p where 0 < p < 1) regularizations have

also been studied for DOT image reconstruction [86,90] and are known to induce sparsity

to the reconstructed image [91]. It was first proposed for time-domain diffuse optical

tomography by Okawa et al. [90]. However, in Lp-norm regularization it is difficult to

calculate the gradient of the objective function because it is not differentiable everywhere.

When calculating the derivative of Lp-norm and |δµ| is small, |δµ|p−1 tends to infinity.

To avoid this difficulty, Okawa et al. [90] reformulated |δµ| with a parameter z:

δµ = |z|2/p · sgn (z) . (4.3)

Then the DOT reconstruction with the Lp-norm becomes

Ω (z) = ‖y −Ψ (z)‖2
2 + λ ‖z‖2

2 . (4.4)

Equation (4.4) can be easily solved with the nonlinear conjugate gradient method [92].

Experiments confirmed that Lp-norm regularization can improve the accuracy and pre-

serve sharp features of the solutions. However, with p decreasing, an area with small δµ

may disappear because the recovered δµ becomes zero due to the excessive effect of the

Lp regularization. The Lp regularization with a small p can strongly localizes the solu-

tion, and the size of the reconstructed area decreases with the decrease in p. In addition,

Lp-norm regularization is known to be nonconvex meaning that local minima exist [93]

and unique solutions cannot be guaranteed.

Theoretically, the sparsest solution should be found in L0-norm regularization which

counts the nonzero elements. However the problem of using exact L0-norm regularization

is an NP-hard problem [94] which is very difficult to solve computationally. Prakash et

al. [86] employed an approximation for the L0-norm, namely smooth L0-norm, to provide
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more accurate sparse reconstruction results. They compared the proposed smooth L0-

norm regularization and other RSCs (L2-norm, L1-norm, Lp-norm where p is set as 0.45)

on a regular circular geometry. It is illustrated that as p goes to zero, the quantitative

accuracy of the reconstruction improves. Smooth L0-norm performs the best among

those RSCs in preserving sharp features. However, it is interesting to notice that, for

irregular geometries, Lp-norm with p = 0.65 performed superior compared to other RSCs

(L2-norm, L1-norm, L0-norm). Therefore for more regular geometry, RSC can provide

the best values compared to the traditional L2-norm based reconstruction method, with

p being close to zero providing the highest accuracy. Although L0-norm regularization

is the true sparsity measure, Donoho et al. [95] validated mathematically that L1-norm

regularization is able to give essentially the same sparsity as the L0-norm regularization.

Even though promising results have been obtained in RSC over the conventional

Tikhonov regularization, accurate DOT reconstruction is still challenging. The reasons

are: 1) Boundary measurements sometimes involve strong noise which satisfies the spar-

sity assumption [96]. In this case, true signals are difficult to be differentiated from

background noise. 2) RSC is based on the assumption that the underlying image to be

recovered is sparse. However when this assumption does not hold, these regularization

methods may fail to reconstruct the underlying signal.

4.1.2 Regularization methods with spatial priors (RSP-I)

Regularization methods with spatial priors (RSP-I) are popular in imposing a specific

spatial structure to improve quantitative accuracy of reconstructed images. It is first

used in the least square scheme where only a data fitting term is included. The most

straightforward way is using regions of interest (ROI) segmented from images of other

modalities like x-ray, MRI, or ultrasound as spatial priors to limit the DOT image re-

construction [97]. In this case, the Jacobian matrix only needs to be calculated over the

ROI area. OLeary [97] describes the method which segments image into different regions.

Each region becomes homogeneous and has its own optical property values. As a result,
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the number of unknowns is reduced to the number of segmented regions and the speed of

image reconstruction is improved. However, these methods rely on an accurate image seg-

mentation. If the segmentation is poor, this can lead to incorrect reconstruction results.

In order to overcome this drawback, the recent RSP-I methods [22, 98–101] minimize an

objective function that has a data term and a spatial prior based regularization term.

This strategy can adjust the influence of the spatial priors by appropriately weighting

the regularization term of the objective function.

The simplest RSP-I is the hard prior [98], which applies a matrix transformation to

the sensitivity matrix J. This transform matrix contains the region information of each

unknown FEM node, transforming the number of unknown parameters to be estimated

into the number of regions segmented from MRI images. This transformation significantly

reduces the ill-posedness of the inverse problem. However, using the hard prior, each

region is constrained to take homogeneous values, resulting in lower spatial information

in each region. In order to overcome the drawback, a so-called L matrix is introduced as

a soft prior to the regularization term

Ω (µ) = ‖y −Ψ (µ)‖2
2 + λ ‖L (µ− µ0)‖2

2 , (4.5)

where L correlated the optical properties of each node to the others in the same region. As

such, L can smooth each region and allow discontinuous changes across different regions.

The update equation involving a soft prior is:

(
JkTJk + λLTL

)
δµ = JkTδΨk−1 − λLTL (µk−1 − µ0) . (4.6)

Two forms of the L matrix discussed in [98] by Brooksby et al. are as follows:

1). Laplacian form [99,100]

Li,j =


0 if i 6= j; i and j are not in the same region

−1/Nr if i 6= j; i and j are in the same region

1 if i = j

, (4.7)
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where Nr is the number of nodes in that region. In this case, LTL approximates a

second-order Laplacian smoothing operator within each region. It functionally calculates

the average value of the update within a region and allows discontinuity across different

regions. This method works well even if there exist errors in the anatomical information.

2). Helmholtz form [22]

Li,j =


0 if i 6= j; i and j are not in the same region

−1/
[
Nr + (ςh)2] if i 6= j; i and j are in the same region

1 if i = j

, (4.8)

where ς = 1/l and l is the largest radius of the region. h is the distance between node i

and j. LTL here is a second-order Helmholtz smoothing operator.

These two soft priors (Equations 4.7 and 4.8) and the hard prior were compared in

detail in paper [22]. The experiments revealed that the soft priors allow the tissue optical

properties to vary within each region, while the hard prior constrains each region to be

homogeneous. The hard prior does not perform well when the anatomical information

has segmentation boundary errors, while soft-prior based approaches are robust to the

boundary errors. Experiments on phantom data reveal that the Helmholtz form (Equa-

tion (4.8)) could give a better estimation of scattering coefficient and the Laplacian form

(Equation (4.7)) leads to a superior absorption coefficient estimate. Therefore Laplacian

form can give the best estimates of total hemoglobin concentration (HbT), haemoglobin

oxygen saturation (StO2%) and water fraction (H2O) while Helmholtz structure can es-

timate the scattering power and scattering amplitude better.

Another kind of soft prior is the application of different regularization parameters for

different segmented regions [101]. Li et al used an x-ray tomosynthesis volume to segment

the breast into two regions and the corresponding objective function is given by (details

in [102] part 3.B)

Ω (µ) = ‖y −Ψ (µ)‖2
2 + λ1 ‖(I− S)(µ− µ0)‖2

2 + λ2 ‖S(µ− µ0)‖2
2 , (4.9)
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where I is the identity matrix and S is a diagonal matrix, whose diagonal values describe

the hypothesized support of the target indicated by the x-ray image. More specifically,

in the discrete form, the ith element of the diagonal is 1 if the ith node is identified

as part of the target by the x-ray image and 0 otherwise. λ1 and λ2 are the two reg-

ularization parameters that control the degree of regularization in the background and

target, respectively. Note that, if λ1 is set equal to λ2, the formulation is reduced to the

conventional Tikhonov regularization scheme. The update equation is

(
JkTJk + λrI

)
∆µ = JkTδk−1 − λ(r) (µk−1 − µ0) . (4.10)

where λr is a diagonal matrix with the diagonal elements being λ1 or λ2. The advantage

of this method is that the influence of the structural information can be adjusted by

appropriately weighting the structural component of the objective function. However,

it also amplifies the image noise in the designated region [82]. More importantly, the

reconstructed area is confined to a volume significantly smaller than the spatial prior

collected from other modalities.

Depth information [87] is also understood as a spatial prior, which improves the spa-

tial resolution and depth localization simultaneously in DOT imaging. Depth information

is helpful when the number of photons decreases dramatically with the increase in propa-

gation depth. The measurement sensitivity in deep tissue is significantly lower than that

in superficial tissue. The lower measurement sensitivity for deeper layers results in poor

depth resolution and biases reconstructed images towards the superficial layers. Kavuri et

al. [87] combined Depth Compensation Algorithm (DCA) with L1-norm regularization to

improve spatial resolution and depth localization for DOT. DCA adopts a weighted ma-

trix, which provides a pseudo-exponential increase in magnitude with propagation depth,

to compensate the sensitivity matrix J in deeper layers directly. The comprehensive

details on DCA can be found in Niu et al. [103].

The RSI-I methods described above can only be solved with an indirect two-step

procedure. First, high resolution anatomical images from other modalities are segmented
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into a small number of regions. Then, this anatomical information imposes either a

hard or a soft constraint on the image reconstruction process. Combining anatomical

information from high resolution imaging modalities to guide DOT has been proved to

be an efficient strategy for improving the quality of the reconstructed images. However,

the segmentation process is prone to errors and can be extremely time consuming. As

a solution, a direct reconstruction method is proposed in [104], where the anatomical

information is implicitly incorporated into the penalty term without users′ intervention.

The matrix L can be written as

Li,j =


1 if i = j

− 1

Fi
exp

(
−|γi − γj|

2

2σg

)
otherwise

, (4.11)

where γ is the grayscale value of anatomical images which corresponds to a particular

FEM node. The grayscale values were normalized to the maximum within the image. σg

is the characteristic grayscale difference over which to apply regularization, and Fi is a

normalization factor chosen for each row. Experiments illustrate that the reconstructed

results were significantly improved in terms of their qualitative and quantitative accuracy,

as well as their robustness. This proposed approach dramatically reduces processing

time and expands the potential of multimodal imaging by fully automating the image

reconstruction process. Later Althobaiti et al [105] adopted the same technique but using

Ultrasound images to regulate the objective function. Improvements in reconstructed

lesion shapes and the spatial distribution of absorption maps were clearly observed.

Inspired by RSC and RSP-I, authors in [106–108] proposed a structured sparsity where

fewer measurements are required for image reconstruction than the pure RSC method.

Chen et al. [96] proposed a clustered sparsity reconstruction method to improve the DOT

reconstruction by exploiting the clustered structure. In this work, the clustered sparsity

is approximated by grouping each node with its neighbor nodes. With this group setting,

non-zero nodes of the reconstructed image will be only in the same groups, leading to

the clustered structure of the non-zero pixels. The proposed method utilizes the mixed
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L2,1-norm regularization, leading to the following objective functional

Ω (µ) = ‖y −Ψ (µ)‖2
2 + λ ‖µ− µ0‖2,1 , (4.12)

where ‖µ− µ0‖2,1 = Σg

∥∥∥(µ− µ0)g

∥∥∥
2
, g denotes one of the group described above and

(µ− µ0)g denotes the components in the specific group. This clustered sparsity problem

is modelled with convex programming and solved by a new algorithm based on the Fast

Iterative Shrinkage Thresholding Algorithm (FISTA) framework [109]. The needed num-

ber of measurements becomes O(K + Clog(M/C)) where K is the number of nonzero

elements, M is the total number of measurements and C denotes the number of clusters

with C � K. In the case where the number of measurement is not sufficient for RSC,

it is still possible to achieve successful recovery with clustered sparsity. The proposed

method was compared with pure RSCs (L0, Lp where p is set as 0.5, L1 and L2) on human

brain activations and found that this method can recover images with the fewest arti-

facts and best contrast in the expected region. Pure RSCs encourage sparsity and have

no other constraints on the locations of the non-zero values, leading to slightly distorted

and distributed results.

4.1.3 Regularization methods with spectral priors (RSP-II)

The quantities of interest in DOT experiments are typically chromophore concentrations

(mainly HbO2 and Hb) and scattering parameters (scatter amplitude and scatter power)

rather than the absorption and scattering coefficients themselves. Measurements have to

be taken at multiple wavelengths in order to provide sufficient information to recover the

distributions of these chromophores. There are two main approaches for reconstruction of

chromophore images using multiple wavelength measurements: non-spectral methods and

spectrally constrained methods. Non-spectral methods (traditional DOT) reconstruct the

absorption and scattering coefficients at each wavelength independently and then calcu-

late the chromophore concentrations using Beer’s law and scattering parameters using

Mie scattering theory [110]. In spectrally constrained DOT (RSP-II), these constraints

can be incorporated into the reconstruction directly to estimate oxy-hemoglobin HbO2,
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deoxy-hemoglobin Hb, water, scatter amplitude and scatter power.

This technique was first documented by Corlu et al. [111], wherein absolute concen-

trations of chromophores are solved iteratively with a minimization function [112]. Com-

pared with non-spectral methods, RSP-II has been shown to be better at suppressing

artefacts in the resulting reconstructed images and to reduce crosstalk between chro-

mophores and scatter parameters in breast imaging [100, 113, 114]. After that, Li et

al. [115] applied RSP-II to continuous-wave data in functional (also known as temporal

or differential) imaging. Experiments revealed that when considering functional imaging,

linear DOT algorithms that incorporate spectral priors directly in the image reconstruc-

tion can provide a solution that is more stable, albeit with an increase in crosstalk between

chromophores. Srinivasan et al. [113] extended the approach to the frequency domain

and showed experimental evidence of improved quantification. Intes et al. [116] com-

bined RSP-II with RSP-I to improve the accuracy and quality of NIR images. Analysis

of these two techniques (RSP-II and RSP-I) was first provided by Brooksby et al. [100].

It is proved that spatial priors improve image quality by reducing artifacts but does not

significantly improve parameter quantification. The spectral prior obtained by including

the intrinsic behavior of tissue chromophores and scattering plays a more important role

in preserving quantitative parameter estimates. A synergy between these two priors was

shown to yield the most accurate characterization of breast tissue properties [100].

In Table 4.1, we give a brief summary of the three regularization categories.

51



Table 4.1: Summary of regularization methods

Category Name Advantage Disadvantage

Popular used
Tikhonov (L2-norm) regularization

[22,23, 82]

1. Analytical solution

2. Suppress high-frequency

components

3. Convex

1. Over-smooth the results

2. Unable to preserve sharp features

Regularization methods

with sparsity constraints

(RSC)

L1-norm regularization [68,87–89]

1. Promote localized results

2. Keep sharp features

3. Convex

Lp-norm regularization [86,90, 91]
1. Induce sparsity

2. Keep sharp features

1. Nonconvex

2. Small p leads to strong localized results

L0-norm regularization [86,94, 95] 1. Lead to sparsest solution

1. NP-hard problem

2. Give essentially the same sparsity as the

L1-norm regularization

Regularization methods

with spatial priors

(RSP-I)

Hard prior [98]
1. Significantly reduces the ill-posedness

of the inverse problem

1. Low spatial information in each region

2. Suffer from segmentation errors

3. Segmentation process is time consuming

Soft prior with Laplacian matrix

[99, 100]

1. Allow the tissue optical properties to

vary within each region

2. More superior absorption coefficient

estimate

1. Suffer from segmentation errors

2. Segmentation process is time consuming

Soft prior with Helmholtz matrix

[22]

1. Allow the tissue optical properties to

vary within each region

2. Better estimation of scattering coefficient

1. Suffer from segmentation errors

2. Segmentation process is time consuming

Soft prior using different

regularization parameters for

different segmented regions [82, 101]

The influence of the structural information

can be adjusted by appropriately weighting

the structural component of the objective

function

1. Amplify the image noise in the

designated region

2. Over confined results

3. Suffer from segmentation errors

4. Segmentation process is time consuming

Depth information [87]

Combine Depth Compensation Algorithm

(DCA) with L1-norm regularization to

improve spatial resolution and depth

localization

1. Affected by segmentation errors

2. Segmentation process is time consuming

Direct reconstruction method [104] No users′ intervention

Regularization methods

with spectral priors

(RSP-II)

[100,111–114]

1. Suppress artefacts in the resulting

reconstructed images

2. Reduce crosstalk between chromophores

and scatter parameters in absolute imaging

Increase crosstalk between chromophores

in functional imaging
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4.2 L1-norm regularization for spectrally constrained

diffuse optical tomography

Inspired by the three regularization categories, in this section, I propose an L1-norm regu-

larization based nonlinear DOT reconstruction method for spectrally constrained diffuse

optical tomography (SCDOT). This work combines the L1-norm regularization(RSC)

with RSP-II to promote localized recovery of chromophore concentrations in absolute

imaging.

The contents of this chapter were the subject of the following publication.

• Wenqi Lu, Daniel Lighter, and Iain B. Styles, L1-norm based nonlin-

ear reconstruction improves quantitative accuracy of spectral diffuse

optical tomography, Biomedical Optics Express 9, 1423-1444 (2018)

Text and figures from this article are reproduced here with modification under

the terms of the Creative Commons Attribution 4.0 License under which this

article was published.

4.2.1 Introduction

In traditional DOT, L1-norm regularization has only been adopted for single wavelength

DOT image reconstruction. However, there are no guarantees that the solutions across

multiple wavelengths will be consistent with Beer’s law. This would require the assump-

tion that the regularization will have the same sparsifying effect at all wavelengths. This

may not necessarily be true, given that signal-to-noise ratio(SNR), scattering etc are dif-

ferent. With the incorporation of spectral priors, spectrally constrained diffuse optical

tomography (SCDOT) can be used to constrain the solution space to those solutions that

are physically spectrally consistent. Therefore, reconstruction with sparsity and spectral

regularization simultaneously applied will constrain the solution space much more reliably

than their sequential application. To the best of our knowledge, L1-norm has not yet been
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used in SCDOT image reconstruction. We introduce a novel algorithm, spectral-L1, which

combines the sparsity-preserving advantages of L1-norm regularization with the spectral

priors imposed by coupling optical properties across multiple wavelengths, to solve the

inverse problem for image reconstruction in SCDOT. The key advance is to adapt the

DOT reconstruction process to incorporate efficient methods for solving each iterative

step. These are necessary because the L1-norm regularization is non differentiable and

the update terms in the reconstruction process cannot be computed analytically. We in-

vestigate three algorithms for solving the update term: iteratively reweighted least square

algorithm (IRLS) [117], alternating directional method of multipliers (ADMM) [118–121]

and fast iterative shrinkage-thresholding algorithm (FISTA) [109,122]. All three methods

have been widely used to obtain sparse solutions to linear systems. IRLS and ADMM

are second-order algorithms that require explicit inversion of a large matrix; FISTA is a

first-order algorithm that does not require explicit matrix inversion, but does require a

gradient operator to be constructed.

We adapt the DOT reconstruction process to use these methods for the solution of

the update terms. An automated method to automatically select the regularization pa-

rameters is developed which is based on the L-curve method but is modified for this

use-case. Then we perform a systematic comparison of the different regularization meth-

ods (L1-norm and L2-norm) and optimization algorithms (IRLS, ADMM and FISTA) on

simulated data in two- and three-dimensions. The comparison evaluates the methods

on the accuracy of image reconstruction; ability to preserve edges; robustness against

noise; and computational efficiency. Comprehensive and robust qualitative and quan-

titative evaluations are performed to quantitatively compare the reconstruction results

using average contrast (AC), Pearson correlation (PC) and peak signal-to-noise ratio

(PSNR). To our knowledge, this is the first systematic study in the area of spectral DOT

reconstruction to perform such a comprehensive evaluation. We then apply our methods

to the reconstruction of functional activations in simulated human brain imaging data

using realistic anatomical models and finally evaluate the proposed algorithms using ex-
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perimentally acquired data, by imaging a tissue-mimicking, plastic phantom of known

optical properties using a multispectral DOT system. The experiments in this work use

data obtained from a CW system but the proposed method can be easily applied to FD

data with the same implementation.

4.2.2 Theory

Image reconstruction in SCDOT aims to find the tissue composition that best explains

the boundary measurements. It typically requires the repeated evaluation of a forward

model of light propagation in biological tissues as part of an inverse model that minimizes

the difference between the measurements and the model’s predicted measurements. In

this section, the forward model for CW light propagation is introduced, followed by the

spectrally constrained inverse model. The L1-norm and L2-norm regularization methods

for the inverse problem are described at the end of this section.

4.2.2.1 The forward model

Let w = 0 in equation (2.3), the DE in a CW system can be written as

−∇ · κ (r, λi)∇Φ (r, λi) + µa (r, λi) Φ (r, λi) = q0 (r, λi) . (4.13)

where λi represents the wavelength. κ (r, λi) and µa (r, λi) have specific values at each

wavelength with position r. It should be noted that in CW imaging, the value of reduced

scattering coefficient µ′s (r, λi) is not updated by the reconstruction algorithm and is

assumed to be a known constant. FEM is used to numerically solve equation (4.13) on a

discretized mesh, which has been implemented in several open-source software packages,

notably TOAST++ [123] and NIRFAST [110]. In this work, the NIRFAST package is

used for all computations.

In CW systems, the tissue absorption coefficient µa depends on the concentration

of chromophores in the tissue. The relationship between the absorption coefficients at

different wavelengths is therefore constrained by the intrinsic absorption properties of
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the chromophores via Beer’s law. For a dual-wavelength imaging system, and for two

chromophores, Beer’s law is written in matrix-vector form as µa,λ1

µa,λ2

 =

 εc1,λ1 εc2,λ1

εc1,λ2 εc2,λ2


 c1

c2

 , (4.14)

where c1 and c2 are chromophore concentrations and λ1 and λ2 are two measurement wave-

lengths. Here c1 and c2 correspond to oxy-haemoglobin HbO2 and deoxy-haemoglobin

Hb respectively, with λ1 = 750nm and λ2 = 850nm. εci,λi (i = 1, 2) are the extinction

coefficients of the two chromophores at the corresponding wavelength λi. The values of

εci,λi have been documented by Zeff et al (2007) [17].

4.2.2.2 The inverse model for SCDOT image reconstruction

In SCDOT, chromophore concentrations c1, and c2 are directly estimated from the bound-

ary measurements in preference to explicitly reconstructing optical properties at each

wavelength. The following SCDOT inverse model allows direct estimation of chromophore

parameters from two measurement wavelengths (i.e. 750 and 850nm) using some form of

iterative procedure. Using a block notation, in which ( ·· ) represents the concatenation of

two column vectors, we have:

c1, c2 = arg min
c1,c2

∥∥∥∥∥∥∥
 yλ1

yλ2

−
 Ψk

λ1

Ψk
λ2


∥∥∥∥∥∥∥

2

2

, (4.15)

where chromophores c1 and c2 are the model parameters to be recovered. yλi (i = 1, 2)

is the measured fluence at the tissue surface and Ψλi is the calculated data using the

forward solver. The superscript k denotes the iteration number. Equation (4.15) defines

a non-linear least square problem which can be solved via the classical Gauss-Newton

method in which the first order Taylor series is used to expand the forward solution Ψλi

as Ψk
λ1

Ψk
λ2

 =

Ψk−1
λ1

Ψk−1
λ2

+ Jk−1

ck1 − ck−1
1

ck2 − ck−1
2

 , (4.16)

in which the spectral Jacobian J relates the changes in boundary data to changes in

chromophore concentrations and can be constructed directly with the incorporation of
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spectral priors using the adjoint method [70]. Note that when k = 1, an initial guess of

the chromophore concentrations c0
1 and c0

2 is required which can be obtained by a data-

calibration procedure explained elsewhere [124]. The spectral Jacobian J can be derived

as [125]:

J =

 ∂Ψλ1

∂c1

∂Ψλ1

∂c2

∂Ψλ2

∂c1

∂Ψλ2

∂c2

 =

 ∂Ψλ1

∂µa,λ1
· ∂µa,λ1

∂c1

∂Ψλ1

∂µa,λ1
· ∂µa,λ1

∂c2

∂Ψλ2

∂µa,λ2
· ∂µa,λ2

∂c1

∂Ψλ2

∂µa,λ2
· ∂µa,λ2

∂c2

 =

 Jλ1 · εc1,λ1 Jλ1 · εc2,λ1

Jλ2 · εc1,λ2 Jλ2 · εc2,λ2

 ,

(4.17)

where Jλi relates the changes in boundary data to changes in the absorption coefficient at

wavelength λi. The size of J in this case is the number of wavelengths times the number

of measurements per wavelength, by number of finite element nodes times number of

chromophore parameters.

Substituting equation (4.16) into equation (4.15) leads to

δck = arg min
δc

||δΨk−1 − Jk−1δc||22, (4.18)

where δck is the change in the chromophore parameters at the k-th iteration and can be

written as

δck =

δck1
δck2

 =

ck1 − ck−1
1

ck2 − ck−1
2

 . (4.19)

δΨ in equation (4.18) is the data-model mismatch which is given by

δΨk−1 =

yλ1 −Ψk−1
λ1

yλ2 −Ψk−1
λ2

 . (4.20)

Minimizing equation (4.18) leads to the normal equations(
J(k−1)TJ(k−1)

)
δck = J(k−1)TδΨk−1. (4.21)

which can be solved to find the update term δck using the Gauss-Newton algorithm which

is summarized in Algorithm 1.

As discussed in Chapter 2.4.1, it is non-trivial to calculate the inverse of J(k−1)TJ(k−1)

in equation (4.21) (i.e. step 6 in Algorithm 1) because it is normally singular or close
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Algorithm 1: Gauss-Newton Algorithm for Minimizing Equation (4.15)

INPUT: yλi (i = 1, 2), iter, Tol

Initialize: c0
1, c0

2

for k = 1 : iter

1: Update µa,λi at each wavelength using Beer’s law (Equation (4.14))

2: Update Ψk−1
λi

at each wavelength using the forward model (Equation (4.13))

3: Update δΨk−1 using equation (4.20)

4: Stop if k = iter or ||δΨk−1 − δΨk−2||1 6 Tol, otherwise go to step 5

5: Update Jk−1 using equation (4.17)

6: Update δck = (J(k−1)TJ(k−1))−1J(k−1)TδΨk−1

7: Update ck1 and ck2 using equation (4.19)

end for

RETURN ck1 and ck2

to singular. Furthermore, experimental noise in the measurements Ψλi tends to lead to

reconstruction artefacts if this inversion is computed directly. Therefore regularization is

needed to reduce model errors and artefacts caused by measurement noise.

4.2.2.3 The proposed spectral-L1 inverse model

To convert equation (4.18) into a more readily solvable problem, a Tikhonov (L2-norm)

regularization term is usually introduced into the inverse problem:

δck = arg min
δc

{
||δΨk−1 − Jk−1δc||22 + λ||δc||22

}
. (4.22)

The regularization parameter λ determines the degree of regularization that will be im-

posed on the model. This can be solved analytically to give

δck = (J(k−1)TJ(k−1) + λI)−1J(k−1)TδΨk−1. (4.23)

I is the identity matrix and its size is the same as that of J(k−1)TJ(k−1). The introduction

of λI effectively reduces the condition number of the matrix, thus stabilizing the matrix
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inversion. An analytical solution to this problem is possible because equation (4.22) is

convex and quadratic which makes L2-norm regularization an attractive choice for many

inverse problems. However, in image reconstruction problems, it tends to over-smooth

the result and sharp features such as object boundaries in the reconstructed images are

often smeared. Moreover, L2-norm regularization discourages sparsity, and is not suitable

for sparse image reconstruction. In SCDOT image recovery, the perturbation/change δck

is usually zero or close to zero when the region to be recovered is not in the vicinity of the

region of interest. In this case, δck is spatially sparse. Recently, L1-norm regularization

has been widely studied because of several useful properties: it is sparsity-promoting,

convex, edge-preserving, and is more robust against noise. Therefore, we propose a new

inverse model for SCDOT image recovery based on L1-norm regularization that we refer

to as spectral-L1. This is formulated as

δck = arg min
δc

{
||δΨk−1 − Jk−1δc||22 + λ||δc||1

}
. (4.24)

Although L1-norm regularization has many advantages over L2-norm regularization,

the L1-norm is non-differentiable, which makes it difficult to solve equation (4.24). Three

candidate algorithms for this task will be investigated in the next section.

4.2.3 Candidate algorithms for solving the proposed spectral-L1

method

We now consider three algorithms for the solution of equation (4.24): iteratively reweighted

least squares (IRLS) [117]; alternating directional method of multipliers (ADMM) [119];

and fast iterative shrinkage-thresholding algorithm (FISTA) [109]. These algorithms will

be incorporated into the image reconstruction process by substituting them into step 6

of Algorithm 1, which solves for the update term.
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4.2.3.1 IRLS

Instead of solving the L1-minimization problem directly, IRLS reformulates the problem

as a sequence of weighted L2-minimization problems. Specifically, by introducing a weight

matrix W, the L1-minimization can be converted into finding the optimal solution of the

quadratic problem

δck = arg min
δc

{
||δΨk−1 − Jk−1δc||22 + λ||Wδc||22

}
. (4.25)

W is a diagonal matrix with weights, ws, along its diagonal that are given by

ws =

 |δc
i−1
s |−0.5 if |δci−1

s | > ε

ε−1 if |δci−1
s | < ε

. (4.26)

The superscript i above denotes the i’th IRLS iteration (Algorithm 2), and it should

be distinguished from the superscript k denoting the iterations of Algorithm 1. A small

positive number 0 < ε � 1 is used to avoid the possibility of division by zero. It has

been suggested that ε should be a series of positive real numbers that decay to zero

over iterations [126]. In practice, we have found that using a fixed value in the range

0.001 ≤ ε ≤ 0.01 does not give significantly different results. Equation (4.25) results in

the normal equation (
J(k−1)TJ(k−1) + λWTW

)
δc = J(k−1)TδΨk−1. (4.27)

Equation (4.27) is known as the weighted L2-minimization scheme. We note that if the

diagonal weights ws are set to 1, the normal equation reduces to the conventional L2

scheme (Equation (4.23)). The IRLS approach is summarized in Algorithm 2.

The calculation of the elements of W requires an initial guess for δc for which we use

the solution to the L2-regularized problem (Equation (4.23)). One of the biggest advan-

tages of IRLS is that equation (4.27) has an analytical solution which allows equation

(4.25) to be solved exactly, making IRLS almost as easy to implement as the Levenberg-

Marquadt scheme. In common with many sparsity-promoting optimization methods, the

sparsity level in IRLS is controlled by the regularization parameter λ which must be

chosen carefully for each specific problem.
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Algorithm 2: Iteratively Reweighted Least Square Algorithm (IRLS)

INPUT: δΨk−1, Jk−1, λ, iter, Tol

Initialize: Set δc0 using equation (4.23)

for i = 1 : iter

1: Update W using equation (4.26)

2: Update δci = (J(k−1)TJ(k−1) + λWTW)−1J(k−1)TδΨk−1

3: Stop if i = iter or ||δci − δci−1||1 6 Tol, otherwise go to step 1

end for

RETURN δck = δci

4.2.3.2 ADMM

ADMM has been widely used to solve optimization problems in machine learning, signal

processing, and standard image restoration and reconstruction. This method has become

particularly important in the field of variational image processing, which frequently re-

quires the minimization of non-differentiable objectives [118,119]. It has been shown to be

able to solve constrained optimization problems effectively and efficiently. The basic idea

is to decompose a complex optimization problem into several simpler subproblems, which

usually have closed-form solutions [120]. Its simplicity, flexibility, and broad applicability

have made it an important part of the modern optimization toolset. To apply ADMM

to our spectral-L1 problem, we first introduce an auxiliary splitting vector variable v, an

augmented Lagrangian multiplier b, and a positive penalty parameter θ, reformulating

equation (4.24) as the following unconstrained optimization problem

δc,v, b = arg min
δc,v,b

{
||δΨk−1 − Jk−1δc||22 + λ||v||1 +

θ

2
||v − δc− b||22

}
. (4.28)

This multivariate optimization problem corresponds to a sub-minimization problem with

respect to δc, v and b, separately. When all the subproblems converge, the solution for

δc approximately represents that of equation (4.24). In order to find the minimizers for

all of the subproblems, ADMM searches all the saddle points of equation (4.28) by first
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fixing the variables (v, b) and minimizing the subproblem with respect to δc using the

following normal equation(
J(k−1)TJ(k−1) + θI

)
δc = J(k−1)TδΨk−1 + θ

(
vi−1 − bi−1

)
. (4.29)

By inverting the matrix on the left-hand side of equation (4.29), a unique solution for δc

is found. We then fix variables δc and b and set the first order derivative with respect to

v to zero. This leads to

λ
v

|v|
+ θ

(
v − δci − bi−1

)
= 0, (4.30)

which can be solved component-wise using an analytical shrinkage-thresholding method

to give

vi = max

(∣∣δci + bi−1
∣∣− λ

θ
, 0

)
◦ sign

(
δci + bi−1

)
, (4.31)

where ◦ and sign symbols denote component-wise multiplication and the signum function,

respectively. The last step of ADMM is to update the augmented Lagrangian multiplier

b, as bi = bi−1 + δci − vi. The complete method is presented in Algorithm 3. The

key advantage of ADMM is that equations (4.29) and (4.30) have closed-form solutions.

We note that the augmented Lagrangian multiplier means that different choices of the

penalty parameter θ will provide similar results but with different rates of convergence.

In all the experiments we have conducted, we used θ = 0.01 to achieve fast convergence.

4.2.3.3 FISTA

FISTA is an efficient optimization approach that uses the forward-backward splitting

technique (FBS) [109,122]. It is an extension of the classical gradient descent method and

belongs to the class of first order methods that are a better choice for large-scale problems

than second-order methods such as IRLS and ADMM because they do not require the

explicit construction of large matrices. Let us consider minimizing the L1-regularized data

fitting energy given by equation (4.24). We begin by analyzing the standard unregularized

problem with λ = 0. Let F(δc) = ||δΨk−1 − Jk−1δc||22 and ∇F(δc) = J(k−1)T(J(k−1)δc −

δΨk−1) denote its gradient. We apply the gradient descent algorithm

δci = δci−1 − t∇F
(
δci−1

)
, (4.32)
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Algorithm 3: Alternating Directional Method of Multipliers (ADMM)

INPUT: δΨk−1, Jk−1, λ, θ, iter, Tol

Initialize: v0 = 0, b0 = 0

for i = 1 : iter

1: Update δci = (J(k−1)TJ(k−1) + θI)−1(J(k−1)TδΨk−1 + θ(vi−1 − bi−1))

2: Update vi using equation (4.31)

3: Update bi = bi−1 + δci − vi

4: Stop if i = iter or ||δci − δci−1||1 6 Tol, otherwise go to step 1

end for

RETURN δck = δci

where t > 0 is a suitable stepsize which controls how far the iteration moves along the

gradient direction in the i’th iteration. The value of t is initialized by estimating the

Lipschitz constant L̃ of ∇F as L̃ = L (∇F) and then backtracking rules are adopted to

guarantee that the objective has decreased sufficiently [122]. The gradient iteration given

by equation (4.32) can be understood as a proximal regularization [127] of the linearized

function F(δc) at δci−1, which corresponds to the following optimization problem:

δc = arg min
δc

{
F
(
δci−1

)
+∇F

(
δci−1

) (
δc− δci−1

)
+

1

2t
||δc− δci−1||22

}
. (4.33)

Analogously, adopting the same gradient descent idea to solve equation (4.24) with λ 6= 0

leads to the following minimization problem

δc = arg min
δc

{
1

2t
||δci−1 − t∇F

(
δci−1

)
− δc||22 + λ||δc||1

}
. (4.34)

Minimizing this results in a formulation similar to equation (4.30) and can be solved in

the same way to give

δci = max
(∣∣δci−1 − t∇F

(
δci−1

)∣∣− tλ, 0) ◦ sign (δci−1 − t∇F
(
δci−1

))
. (4.35)

The minimizer of the equation (4.24) can then be found by iterating δci in equation

(4.35) to convergence. In isolation, equation (4.35) is known as the iterative shrinkage-

thresholding algorithm (ISTA) [128–133], whose global convergence rate is O(1/N), where
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N is the iteration counter. This is improved upon by using a Nesterov-type acceleration

technique to obtain faster convergence. In the FISTA algorithm, the iterative shrinkage

operator is not used on the value obtained from the previous iteration δci−1, but rather on

a combination of the values from the previous two iterations. Thus, in FISTA, equation

(4.35) is replaced with

δci = max
(∣∣δdi − t∇F

(
δdi
)∣∣− tλ, 0) ◦ sign (δdi − t∇F

(
δdi
))
, (4.36)

where δdi comes from the prediction procedure given in step 4 of Algorithm 4. This

step can help to push the solution to the current iteration further in the direction it

moved during the previous iteration, which can significantly improve the computational

efficiency. The complete FISTA method is presented in Algorithm 4, where steps 2 and

3 implement the acceleration strategy and can be viewed as an over-relaxation step that

improves the global convergence rate from O(1/N) to O(1/N2).

Algorithm 4: Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

INPUT: δΨk−1, Jk−1, λ, iter, Tol

Initialize: Set δc0 using equation (4.23), α0 = 1, t < 1/L̃

for i = 1 : iter

1: Update δci using equation (4.36)

2: Stop if i = iter or the relative residual 6 Tol, otherwise go on to step 3

3: Update αi = (1 +
√

1 + 4(αi−1)2)/2

4: Update δdi+1 = δci + (αi−1 − 1)/(αi)(δci − δci−1)

end for

RETURN δck = δci

4.2.3.4 The spectral-L1 algorithm

We have introduced three methods for solving the chromophore update terms in SC-

DOT with a sparsity enforcing constraint: IRLS, ADMM, and FISTA. These algorithms
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replace the single update term of the conventional reconstruction algorithm (step 6 of

Algorithm 1). The flow-chart presented in Figure 4.1 shows how these proposed methods

are integrated into SCDOT reconstruction for CW imaging. Since the three proposed

optimization schemes are themselves iterative, our method contains nested iterations. In

IRLS and FISTA, an initial guess for δc is required. We use the standard L2-regularized

solution (Equation (4.23)). This is only required on the first iteration of the outer loop.

No
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Figure 4.1: Flow chart for SCDOT image reconstruction using the spectral-L1 model.

4.2.4 Parameter selection

The regularization parameter λ determines the trade-off between the goodness-of-fit of the

model to the data, and the strict enforcement of the regularization criteria. An optimal

value between the two quantities must therefore be found: if too much regularization

is imposed on the model, then it will not fit the data properly; if the regularization
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parameter is too small, the fit will be good but the solution will be dominated by data

errors and measurement noise (the overfitting regime). There are several methods to

find an optimal compromise between these two considerations and the L-curve method

is both simple and effective. By plotting the model-data mismatch ||δΨ− Jδc||22 against

the model regularization ||δc||22 or ||δc||1 for a sequence of different λ, a curve which is

typically L-shaped can be constructed. Figure 4.2 shows the L-curves obtained from each

of the four candidate optimization schemes using the numerical experiments described by

Zhan et al [125]. The optimal trade-off occurs at the “elbow” of the L-shaped curve and

this can be located by determining the point of maximum curvature of the curve.

Since strong regularization can improve the conditioning of the linear system, we solve

the formulations given by equations (4.22) and (4.24) with a relatively large regulariza-

tion parameter λ and then decrease it gradually by a fixed factor until the curvature of

the L-curve starts to decrease. This corner point is considered to be at the optimum value

of λ where both the model fit and the regularization function are simultaneously near to

their minimum values. In principle, computing the L-curve requires the full image recon-

struction process to be run multiple times which is computationally very expensive. We

have found that it is sufficient to compute the L-curve for one iteration of the outer loop

of Figure 4.1, and then to use the resulting optimal value of λ for the remaining iterations.

In addition, in order to avoid the special case where the L-curve does not allows an opti-

mal value of λ to be found by purely numerical means [134,135], we select a range around

the parameter with the highest curvature value. We then adjust the values manually

to get the final optimal parameter by visually inspecting the solutions and choosing the

one that generates the sparsest solution with a well-defined compact localization. This

approximate optimum is then used for subsequent iterations. In Figure 4.2, we note that

the choice of algorithm for L1 regularized reconstruction significantly affects the shape of

the L-curve and the optimal value of λ. Comparing with the L-curve generated by IRLS

and ADMM, FISTA algorithm has the most L shaped curve which “elbow” gives the

largest curvature. It implies that the λ chosen at the “elbow” of the L-curve by FISTA

66



can give the best trade-off between the data-fitting term and the regularization term.

(a) (b) 

(c) (d) 

Figure 4.2: L-curves (data fit against model regularization) derived from a synthetic

example: a) Tikhonov regularization; b) L1 regularization using IRLS; c) L1 regularization

using ADMM; d) L1 regularization using FISTA. The optimal regularization parameter

is around the point of maximum curvature (within the red boxes).

In addition to the regularization parameter λ that is common to all three L1 algo-

rithms, we have considered how to select the other parameters of each method to ensure

that our comparison is fair and unbiased. IRLS has one parameter ε and we set this to

0.001 ≤ ε ≤ 0.01 following the recommendations set out by Shaw and Yalavarthy [126].

ADMM has one parameter θ and the use of the augmented Lagrangian multiplier means

that different choices of θ provide similar results but lead to different rates of conver-

gence. In all the experiments, θ was set to 0.01 to achieve fast convergence. FISTA

has two parameters t and α. t is initialized by estimating the Lipschitz constant and

then backtracking rules are adopted to guarantee that the objective has decreased suffi-
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ciently [122]. t is therefore updated automatically. α is involved in an over-relaxation step

(i.e. step 4 in Algorithm 3) and its update is also automatic (i.e. step 3 in Algorithm 3).

The regularization parameter λ is therefore the only parameter that must be optimized

for a specific problem.

4.2.5 Experiment setup

We have performed extensive experiments to evaluate the performance of different models

and algorithms qualitatively and quantitatively. We first define three evaluation metrics

to quantify the quality of the reconstructed images. We then describe simulated numerical

experiments, and then real experiments performed on phantom samples. For experiments

in which measurement noise was added, ten repeats were performed. In all cases, the

forward model was implemented using the NIRFAST package [110] in Matlab R2013a

(Mathworks, Natick, USA).

4.2.5.1 Quantitative evaluation metrics

Three quantitative evaluation metrics are considered: the average contrast (AC), Pearson

correlation (PC) and peak signal-to-noise ratio (PSNR). Ideally, if the reconstructed

image is exactly same as the ground truth image, AC is equal to 1. For PC and PSNR,

the recovered image has higher quality if higher PC or PSNR values are obtained.

Average constrast (AC) is based on the mean value of the region of interest and is

defined as:

AC =

∑N
j=1 c

j
i/N

c̃i
i = 1, 2 (4.37)

where cji denotes the recovered values of chromophore i on the finite element node j.

N is the number of nodes in the activation region which is selected by thresholding the

recovered changes based on 50% of the maximum recovered changes. c̃i are the ground

truth values of the chromophores in the activation region.

The second evaluation metric PC is given by

PC =
COV (ci, c̃i)

σ (ci)σ (c̃i)
i = 1, 2. (4.38)
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The numerator is the covariance (COV) of the recovered images with the ground truth

and σ indicates standard deviation. The PC is thus a measure of the joint variability of

the ground truth image with the reconstructed image.

Finally, PSNR evaluates the difference between the ground truth image and the re-

covered image. Larger PSNR values means less difference between the target and the

recovered image. This measure is defined as follows

PSNR = 10 · log10

(
MAX2

ci

MSE

)
i = 1, 2. (4.39)

Here, MAXci is the maximum pixel value of ci and MSE is the mean squared error between

the reconstructed and ground truth values.

MSE =
1

N

N∑
j=1

(
cji − c̃

j
i

)2
. (4.40)

For AC, values closer to 1 indicate better performance. For PC and PSNR, higher values

are better.

4.2.5.2 Two dimensional circle model

We first consider a simple simulated 2D circular geometry containing two anomalies (Fig-

ure 4.3). The model has a radius of 43mm and is composed of 1785 nodes and 3418 linear

triangle elements. Sixteen source-detector fibres are placed equidistant around the exter-

nal boundary for CW boundary data acquisition. When one fibre as a source is turned

on, the rest are used as detectors, leading to 240 total boundary data points per wave-

length. All sources were positioned one scattering distance within the outer boundary

because the source is assumed to be spherically isotropic. The background chromophore

concentrations, c1 (HbO2) and c2 (Hb), are both set to 0.01mM. Two 10mm radius target

regions are centred at (-14mm, 14mm) and (14mm, 14mm). The oxyhemoglobin concen-

tration HbO2 of the left target is set to 0.02mM, and the deoxyhemoglobin Hb of the

right target as 0.02mM. Boundary data was generated at 750 and 850nm. To represent

various realistic cases, normally distributed randomly generated noise ranging from 0%

to 5% at 1% intervals was added to the amplitude of the boundary data.
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Figure 4.3: A typical circle mesh with sixteen co-located sources and detectors (left) and

true distribution of internal chromophores (middle: HbO2; right: Hb).

IRLS ADMM FISTATikhonov

 2 1HbO c

0% Noise

 2Hb c

1% Noise

 2 1HbO c

 2Hb c

5% Noise

 2 1HbO c

 2Hb c

0.02

0.01

Figure 4.4: Chromophore images reconstruction using Tikhonov and IRLS, ADMM,

FISTA (from left to right column) on 0% (top part), 1% (middle part) and 5% (bot-

tom part) noisy data.

In Figure 4.4 we show the chromophore reconstruction results using the Tikhonov

model (Equation (4.22)) and the spectral-L1 model (Equation (4.24)) using the IRLS,

ADMM and FISTA methods on 0%, 1% and 5% noisy data respectively. By visual

inspection, it is evident that the background of the images recovered by spectral-L1 is
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similar to the target background as shown in Figure 4.3, whilst Tikhonov regularization

recovers much higher levels of background signal. This is because spectral-L1 imposes

sparsity on the solution δc in equation (4.24) and this is consistent with low signal in the

background area. It is also apparent that Tikhonov regularization performance degrades

significantly with increasing noise levels, while spectral-L1 is consistently more robust

even at high levels. In addition, the boundaries of the targets reconstructed by spectral-

L1 are sharper than those recovered by Tikhonov. We observe that the three different L1

optimization algorithms lead to similar reconstruction results.
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Figure 4.5: 1D cross sections of images recovered in Figure 4.4 along the corresponding

light blue lines annotated on the targets in Figure 4.3. Left to right column: 0%, 1% and

5% added Gaussian noise.

The one-dimensional cross-sections of the reconstructed chromophores in Figure 4.5

show that Tikhonov regularization gives lower peak values of oxyhemoglobin and deoxy-

hemoglobin in comparison to both the ground truth (red) and to spectral-L1. This is

because L2 over-smooths the results so they tend to have lower contrast. The curves

from the three spectral-L1 variants are seen to have similar shape implying that all three

converge towards similar solutions. This is consistent with our visual observation from

the reconstructed images in Figure 4.4.

The values of the metrics AC, PC and PSNR are calculated to qualitatively evaluate
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the results in Figure 4.4. Specifically, the performance of each method is measured in

terms of mean and standard deviation of the corresponding metric over all 6 noise levels.

The corresponding boxplots are shown in Figure 4.6 for easy assess of these evaluation

metrics numbers. The boxplots shown in Figure 4.6 show the distribution across repeats

of the three metrics for reconstructions performed at different noise levels. Tikhonov

regularization is seen to have the lowest performance in all cases, while IRLS, ADMM

and FISTA are seen to produce more accurate reconstructions based on all computed

metrics, and have higher accuracy and lower error rates for both oxyhemoglobin and

deoxyhemoglobin. The boxplots also show that there is less variation in performance

of each of the three spectral-L1 methods than is seen with Tikhonov, and that even in

the worst case scenario spectral-L1 yields lower error than the average performance of

Tikhonov, showing its robustness against noise. Among the three algorithms, FISTA

shows slightly better performance than ADMM and IRLS.
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Figure 4.6: Evaluation metrics comparing the performance of different methods on 2D

simulated data at six different noise levels. Left to right column: AC index; PC index

and PSNR index. The first row gives the results for HbO2, the second row for Hb.
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4.2.5.3 Three dimensional cylinder numerical experiments

We conducted further experiments on a three dimensional (3D) simulated model consist-

ing of one cylinder of radius 43 mm and height 60 mm, composed of 12695 nodes with

63810 tetrahedral elements. Sixteen CW sources and detectors were placed equidistant

around the equator (first image in Figure 4.7) giving 240 source-detector pairs per wave-

length. The background concentration of HbO2 and Hb were both set to 0.01mM. The

geometric centre of the model is set as (0,0,0). Two 10 mm spherical targets centred on

(-25,10,0) and (25,10,0) respectively were added with the chromophore concentrations of

HbO2 and Hb respectively set to 0.02mM (Figure 4.7, middle and right). 0% to 2% in

0.5% intervals Gaussian random noise was added to the boundary measurement data.

Higher levels of noise were not used because 2% noise was found to be large enough to

reveal differences between methods. We only display the results for 0%, 0.5% and 1%

added noise, which is sufficient to show a visual difference. Three evaluation metrics (AC,

PC and PSNR) were calculated to assess the reconstruction quality.

Figure 4.7: Three-dimension mesh used for image simulation. Left to right: source-

detector location on the cylinder’s equator; HbO2 inclusion at (-25,10,0); Hb inclusion at

(25,10,0).

Reconstructed images of chromophores using Tikhonov for L2-norm regularization

and IRLS, ADMM, FISTA algorithms for L1-norm regularization are shown in Figure 4.8

with 0% , 0.5% and 1% added Gaussian random noise respectively. In the case of 0%

added noise, a region of crosstalk (areas marked with black dotted line) can be easily

identified in the images recovered by Tikhonov regularization along with other artefacts.
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Reconstructions with L1-norm regularization do not show evidence of crosstalk, which we

believe has been supressed by the sparsity constraint. The results from IRLS, ADMM

and FISTA are visually similar, but compared with FISTA, IRLS and ADMM algorithms

produce more compact localizations that appear to be somewhat more compact than the

ground truth. The images recovered with FISTA appear to be visually closer to the

desired results. Increasing levels of noise produce increases in crosstalk and artefacts in

Tikhonov regularization whilst L1-norm regularization is able to continue to reconstruct

well-localized and compact inclusions.

Figure 4.9 shows the quantitative evaluation of these experiments. We observe similar

results compare to the 2D experiment: all L1-norm methods are seen to give an average

contrast closer to 1, and higher correlations with the ground truth than L2 regularization.

4.2.5.4 Three dimensional head numerical experiments

We then evaluate our proposed methods using a physically realistic three dimensional

head model derived from T1-weighted MPRAGE scans originally acquired by Eggebrecht

et al [73] that were kindly provided to us by the authors of that work. Following the

process described by Wu et al [136], Statistical Parametric Mapping (SPM) software [137]

was used to perform a parametric segmentation of the 5 tissue types (scalp, skull, cere-

brospinal fluid (CSF), gray matter, white matter) based on the pixel intensity probability

function distribution. These five different layers were then further processed in NIRFAST

to create masks and layered volumetric FEM meshes.

The mesh is composed of 101046 nodes corresponding to 589658 tetrahedral elements.

Each node is labelled by one of the five segmented head tissue types, as shown in Fig-

ure 4.10. Chromophore concentrations assigned to each layer are computed from the

tissue optical properties at 750nm and 850nm in a previous in vivo study [6] (Table 4.2)

using Beer’s law and Mie scattering formulae. A high-density (HD) imaging array con-

taining 158 sources and 166 detectors (Figure 4.11) [73] was placed over the whole head,

with source-detector (SD) separation distances ranging from 1.3 to 4.8cm. In this study,
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Tikhonov IRLS ADMM FISTA
0.02
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0% Noise
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Hb

2HbO

Figure 4.8: Reconstruction of HbO2 and Hb using (L-R): Tikhonov for L2-norm regular-

ization; IRLS, ADMM, FISTA algorithms for L1-norm regularization with different noise

levels. Areas marked with black dotted line represent the region of crosstalk between

different chromophores.
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Figure 4.9: Evaluation metrics comparing the performance of different methods on 3D

simulated data at five different noise levels. Left to right column: AC index; PC index

and PSNR index. The first row gives the results for HbO2, the second row for Hb.

Scalp Skull CSF 

Gray matter White matter Overall 

Figure 4.10: Three-dimensional surface mesh for each of the five head layers.

3478 differential measurements per wavelength were used to image the hemodynamic

changes in the brain. Two individual activations were simulated in the visual cortex

with chromophore concentrations of HbO2 and Hb respectively increasing to double the
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background level in the gray matter (Figure 4.12). Each simulated activation has a ra-

dius of 5mm. 0% to 2% distributed Gaussian noise at 0.5% intervals was added to the

measurement vector.

Figure 4.11: Schematic view from three directions showing the distribution of the imaging

array with 158 sources (blue circles) and 166 detectors (red circles).

Reconstructed chromophore concentrations of the simulated activation using the Tikhonov

model (Equation (4.22)) and the spectral-L1 model (Equation (4.24)) on noise-free data

are displayed in Figure 4.13, while those on data with 1% Gaussian noise are displayed in

Figure 4.14. We only show the area with changes in chromophore concentration greater

than 0.0001mM. Compared to the spectral-L1 model, Tikhonov reconstructions have

lower image contrast, which can be clearly seen from the first column of Figure 4.13 and

Figure 4.14. Some artifacts (areas contained within green ellipses) can be easily observed

around the source and detector areas. With increased levels of noise, larger artefacts

are seen with Tikhonov regularization and the results are spatially smeared. In contrast,

results from the spectral-L1 model show fewer artifacts in the non-activation area. Higher

noise does not noticeably affect the L1-regularized reconstructions. IRLS produces visu-

ally more compact localizations than ADMM and FISTA, whilst ADMM appears to have

better sparsity-inducing properties compared with IRLS and FISTA.

Evaluation metrics from these experiments are shown in Figure 4.15. It is clear that

the spectral-L1 model can achieve higher AC, PC and PSNR values than the Tikhonov

model which means higher image contrast and accuracy can be achieved with L1-norm

regularization. Although the results of FISTA show more visual artifacts than other L1-

norm methods, it is still able to produce better performance based on the metrics. This

77



Table 4.2: Head tissue optical property for each of five layers. These numbers in the table

are based on [6]. CSF stands for cerebrospinal fluid.

Scalp Skull CSF Gray Matter White Matter

c1 (mM) 0.0575 0.0438 0.011 0.0548 0.0683

c2 (mM) 0.0313 0.0209 0.0083 0.0354 0.0273

Scattering amplitude 0.53 0.7258 0.3 0.5040 0.8176

Scattering power 1.1599 0.8987 9×10−7 1.7757 1.3048

µa (mm−1) at 750nm 0.017 0.012 0.004 0.018 0.017

µ′s (mm−1) at 750nm 0.74 0.94 0.3 0.84 1.19

µa (mm−1) at 850nm 0.019 0.014 0.004 0.019 0.021

µ′s (mm−1) at 850nm 0.64 0.84 0.3 0.6726 1.0107

(a) 

(b) (c) 

(d) (e) 

Figure 4.12: Ground-truth image with the activation exists in the gray matter and white

matter. (a): Illustration of the overall distribution of slices. (b)-(c): Individual activation

is color-coded in red and represents the individual simulation of HbO2. (d)-(e): Individual

activation is color-coded in green and represents the individual simulation of Hb.
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Tikhonov IRLS ADMM FISTA

2HbO

Hb

2HbO

Hb

Figure 4.13: The reconstructed image of the change of HbO2 and Hb in mM with noise-

free data. Some examples of reconstruction artefacts are highlighted in green ellipses.

Tikhonov IRLS ADMM FISTA

2HbO

Hb

2HbO

Hb

Figure 4.14: The reconstructed image of the change of HbO2 and Hb in mM with data

contaminated by 1% Gaussian noise. Some examples of reconstruction artefacts are

highlighted in green ellipses.
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is because (i) AC is defined on the activation region which is selected by thresholding the

recovered changes based on 50% of the maximum recovered changes, artefacts away from

this region do not influence this metric; (ii) By the other metrics (PC and PSNR), the

improved ability of FISTA to localize the activation is sufficient to counteract the effect

of the artefacts.
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Figure 4.15: Evaluation metrics comparing the performance of different methods on a

simulated 3D head model at five different noise levels. Left to right column: AC, PC and

PSNR index. The first row gives the results from HbO2; the second row from Hb.

4.2.5.5 More realistic three dimensional head numerical experiments

Following the proof-of-concept experiments described in Section 4.2.5.4, we extended

our analysis to a more realistic case in functional imaging where much smaller changes

happened in chromophore concentrations. In the activation area we model a small region

with changes in HbO2 (c1) of 5µM and Hb (c2) of −5µM, relative to the background

concentrations given in Table 4.2. The mesh is the same as that used in the previous

section 4.2.5.4. In line with the expected in vivo performance of imaging systems, 0.12%,

0.15%, 0.41% and 1.42% Gaussian random noise was added to first (13mm), second
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(30mm), third (40mm) and fourth (48mm) nearest neighbour measurements to provide

realistic data [138].

Figure 4.16: Ground-truth image showing the change in chromophore concentration con-

fined to the gray matter.

Reconstruction using the four methods considered here are shown in Figure 4.17

with noise-free and noisy simulated data. With reference to results shown earlier in this

chapter, we make a similar observation that in comparison to the ground truth values,

results using Tikhonov regularization are visually inferior to those from L1-norm regu-

larization. With increased noise, Tikhonov regularization performs progressively worse

with more artefacts visible in the source-detector areas. L1-norm regularization induces

sparse results with fewer artefacts in non-activated areas. It is noticed that with the

same regularization term, different algorithms lead to different reconstructed results. Vi-

sual inspection of the results from the three L1 algorithms suggests that IRLS produces

over-sparse reconstructions with strong activations confined to a small area. ADMM and

FISTA results are much more visually realistic and they are seen to give higher quanti-

tative accuracy. These differences may result from the different regularization parameter

value selected for each algorithm. The regularization parameter λ controls the amount

of regularization applied to the model. As can be seen from Figure 4.2, the λ values

which meet with the large curvature in the L-curves plotted in different algorithms are

different. Therefore different amount of regularization is applied to the model, leading

to different reconstruction performance. Because the L-curve by FISTA is the most L

shaped, we take the results by FISTA as the best reconstruction results. A quantitative
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Table 4.3: Three evaluation metrics for HbO2 on results by different methods

Without noise With noise

Tikhonov IRLS ADMM FISTA Tikhonov IRLS ADMM FISTA

AC 0.72 0.81 0.84 0.91 0.67 0.72 0.73 0.76

PSNR 73.81 76.48 77.33 78.55 38.08 63.79 67.92 73.43

evaluation using AC and PSNR is given in Table 4.3 and Table 4.4 and these support

the conclusion that even at small changes in chromophore concentration, the spectral-L1

model can still guarantee higher image contrast and accuracy, with FISTA performing

consistently better by all measures (AC closer to 1, higher PSNR).

Tikhonov IRLS ADMM FISTA

Hb

2HbO

Hb

2HbO

Without noise

With noise

Figure 4.17: Reconstruction of HbO2 and Hb using (L-R): Tikhonov for L2-norm reg-

ularization; IRLS, ADMM, FISTA algorithms for L1-norm regularization with different

noise levels. First two rows: results with clean simulated data; Last two rows: those with

noisy data.
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Table 4.4: Three evaluation metrics for Hb on results by different methods

Without noise With noise

Tikhonov IRLS ADMM FISTA Tikhonov IRLS ADMM FISTA

AC 0.86 0.95 0.96 0.97 0.72 0.91 0.91 0.93

PSNR 76.18 76.99 78.94 79.07 40.59 66.35 75.00 76.26

4.2.5.6 Experiments with phantom data

To evaluate the proposed algorithms on real experimental data, a multispectral, non-

contact CW-DOT system designed for hand imaging [139,140] was used to image a solid

plastic cylindrical phantom (INO, Quebec, Canada) of radius 12.3mm and length 50mm.

Boundary data was collected at five wavelengths (650nm, 710nm, 730nm 830nm and

930nm), in a transmission setup with a 7 x 5 grid of source positions on the underside of

the phantom and a 11 x 9 grid of virtual detectors on top, displayed in Figure 4.18(b). The

spatially constant, but spectrally varying optical properties of the phantom were measured

previously in time resolved experiments [141]. The absorbing dye within the phantom

was treated as a chromophore that has unit concentration in the bulk of the phantom,

the extinction coefficient of which was modelled by the measured absorption coefficient.

A heterogeneous version of the phantom was imaged which contained a cylindrical rod

of radius 3mm and length 50mm, at a depth of 5mm (Figure 4.18(a)). The rod has

twice the absorption coefficient of the bulk phantom which provides a 2:1 contrast in dye

concentration compared to background (Figure 4.19 left). A homogeneous version was

also imaged, enabling calibration of the model/data mismatch and any source or detector

coupling variation. The mesh, as shown in Figure 4.18(a), consists of 85,205 nodes and

451,821 linear tetrahedral elements.

Ground truth data and images reconstructed with L2 and L1 methods are shown in

Figure 4.19 respectively. The experiments described in the previous sections showed that

the particular choice of L1 method makes only a very small difference to the quality of

the reconstruction, but there are very large differences in computational efficiency, with
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( )a ( )b

Figure 4.18: (a): Illustration of the overall distribution of slices. (b): Distribution of

sources and detectors.

FISTA being far more efficient in this domain because of its superior ability to deal

with large problems. Therefore in this experiment, we only use FISTA as the L1 solver.

It can be clearly observed from Figure 4.19 that L2-norm regularization over-smooths

the reconstructed images which have much lower image contrast than the ground truth.

Some artefacts can be seen in the source and detector areas. We note that only the

central region can be reconstructed in both cases because the sources and detectors are

confined to this region, with very low sensitivity away from the centre. The image contrast

reconstructed by L1-norm regularization is much closer to the ground truth but with more

compact results. We calculate the three evaluation metrics in the volume of illumination

(Table 4.5) and these support the same conclusions.

4.2.5.7 Comparison of CPU time consumed in the inverse model

We now compare the computational efficiency of the proposed methods. All experi-

ments are performed using Matlab 2013a (Mathworks, Natick, USA) on a Windows 7

(Microsoft, Redmond, USA) platform with an Intel Core CPU i7-6700 at 3.40GHz and

64.0GB memory. The simulated experiments described in Section 4.2.5.2, 4.2.5.3 and
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Figure 4.19: Ground truth and reconstruction results with different regularizations. From

left to right: ground truth; results with L2-norm regularization; results with L1-norm

regularization using FISTA algorithm.

Table 4.5: Evaluation of L1-norm and L2-norm regularization methods for reconstruction

of a single rod inclusion in a tissue-simulating phantom.

L2-norm L1-norm with FISTA

AC 0.72 1.14

PC 0.66 0.73

PSNR 13.75 13.88

4.2.5.4 were used to perform this comparison. CPU times used in the inverse procedure

only are measured. We run each method over ten realizations of noise at each of five

noise levels to obtain reliable statistics. Figure 4.20 shows the CPU time consumed for

the four different methods (Tikhonov, IRLS, ADMM, FISTA). In order to display the

recorded times from ten repetitions clearly, CPU times for one iteration of the outer loop

of the reconstruction algorithm are shown in Figure 4.20. Averaged total CPU times for

iteration to convergence are given in Table 4.6, 4.7 and 4.8.

FISTA is clearly the fastest L1 regularization method amongst those considered here,

and it is faster even than Tikhonov regularization which does not use an inner iteration.

FISTA only involves the computation of JTJ which is much more computationally efficient

than the computation of JJT. IRLS and ADMM are substantially slower because they

require an inner iteration and inversion/multiplication of large matrices.
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Figure 4.20: Total CPU time consumed in the experiments described in Section 4.2.5.2,

4.2.5.3 and 4.2.5.4

Table 4.6: Total CPU time(s) consumed in the inverse model for the experiments de-

scribed in Section 4.2.5.2

Evaluation metric CPU time (Mean)

Chromophore 0% 1% 2% 3% 4% 5%

Tikhonov 34.52 5.43 5.30 5.20 5.63 5.32

IRLS 156.61 145.61 129.27 94.39 67.55 44.69

ADMM 204.59 140.48 132.19 107.54 85.19 50.07

FISTA 1.04 1.05 1.13 0.84 0.84 0.83

4.2.6 Conclusion and discussion

In this section, we introduce spectral-L1 model for spectrally constrained DOT recon-

struction. Numerical experiments showed that compared to the L2-norm, L1-norm regu-

larization can reduce crosstalk and maintain image contrast by inducing sparsity. These

findings were tested on real experimental data using a tissue-simulating phantom and

similar results were found. Although all L1-based methods perform similarly in terms of

reconstruction quality, FISTA performs marginally better than ADMM and IRLS by the
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Table 4.7: Total CPU time(s) consumed in the inverse model for the experiments de-

scribed in Section 4.2.5.3

Evaluation metric CPU time (Mean)

Chromophore 0% 0.5% 1% 1.5% 2%

Tikhonov 17.15 3.65 3.74 2.61 2.63

IRLS 250.55 223.21 185.11 135.99 87.99

ADMM 853.02 751.08 350.99 252.59 154.60

FISTA 1.13 1.20 1.18 1.21 1.22

Table 4.8: Total CPU time(s) consumed in the inverse model for the experiments de-

scribed in Section 4.2.5.4

Evaluation metric CPU time (Mean)

Chromophore 0% 0.5% 1% 1.5% 2%

Tikhonov 42.79 33.41 35.47 33.42 14.56

IRLS 10171.96 10171.95 6823.03 6821.99 6822.01

ADMM 9100.34 7444.31 6195.01 4193.57 2892.30

FISTA 2.53 1.97 1.84 1.85 1.93

measures of AC, PC, and PSNR, and is far more computationally efficient as it avoids

direct matrix inversion and large matrix-matrix multiplications.

The contributions of this paper can be summarized as follows: 1) It is the first time

that L1-norm regularization methods and spectrally constrained DOT methods have been

used together and it is their combination (i.e. spectral-L1 model) that is original. We

have given detailed descriptions of how this can be done, and performed systematic com-

parisons of the performance and efficiency of the different methods on both simulated

and real data. We are not aware of any previously published work that proposes such a

model and performs such a detailed analysis of its performance; 2) We have developed

a method to automatically select the regularization parameters. This is based on the

L-curve method but is modified for efficient application in this use-case; 3) We have con-
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ducted extensive numerical experiments on simulated data and on real experimental data,

and have performed comprehensive and robust qualitative and quantitative evaluations.

To the best of our knowledge, this is the first systematic study in the area of spectral

DOT reconstruction to perform such a comprehensive evaluation.

While promising results have been obtained, accurate reconstruction is still challeng-

ing. Regularizations involving the sparsity constraints are used under the assumption that

the optical properties (representing the image) to be reconstructed are spatially sparse.

These regularizations tend to oversparsify the distribution of the optical properties when

such an assumption does not hold, as shown in Figure 4.19. In the case of multiple acti-

vations or complex injuries in the brain, the features of interest are not spatially localized

and the optical properties relative to the background are therefore non-sparse [73]. A

different approach is required to reconstruct images in which edges are preserved and

features are not spatially sparse.
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CHAPTER 5

GRAPH-BASED INVERSE MODEL FOR

DIFFUSE OPTICAL TOMOGRAPHY

Tikhonov (L2-norm) regularization is attractive for use in ill-posed problems because of

its simplicity. However in functional neuroimaging studies, when the dynamic range of

the measurement is large, incorporation of the maximum variance in the measurement

will lead the minimization to bias the solution to specific data points, especially near the

boundaries at source-detector locations in DOT [23]. To reduce the effect of bias, some

researchers incorporate the spatial priors (RSP-I) from other medical modalities (for

example MRI) which have relatively higher spatial resolution to improve quantitative

accuracy and depth information of reconstructed images [22]. However, obtaining images

from other modalities is time consuming and the pre-processing segmentation process is

prone to errors.

In order to efficiently reduce above bias and alleviate the over-sparsifying effect exist-

ing in purely sparsity inducing regularization, we introduce spatial gradient differential

operator to DOT reconstruction. Gradient differential operator is a highpass operator,

which can impose smoothness to the solution and improve the conditioning of the mini-

mization problem.

The contents of this chapter were the subject of the following publication.

• Wenqi Lu, Jinming Duan, David Orive-Miguel, Lionel Herve, and Iain

B. Styles, Graph- and finite element-based total variation models for

89



the inverse problem in diffuse optical tomography, Biomedical Optics

Express 10, 2684-2707 (2019)

Text and figures from this article are reproduced here with modification un-

der the terms of the Optical Society of America Open Access Publishing

Agreement under which this article was published.

5.1 Introduction

In image processing, the image domain is normally expressed as a Cartesian grid which

is composed of squares (cubes in 3D) and is aligned with the Cartesian coordinate axes

[68]. Cartesian grids can be generated easily with low computational effort. Under

this expression, the differential operators, such as gradient, divergence, Laplacian and

curvature, can be discretized straightforwardly using the finite difference method (FDM)

[68]. However, the weakness of the Cartesian methods is the accuracy of the flow solution

at boundaries, which are either curved or not oriented along the Cartesian coordinates.

This problem becomes especially serious in the case of DOT, where the computational

geometry is irregular (i.e. the multi-layer head) and accurate boundary flux are required.

Hence, FDM is not practical in DOT. Normally, two representations can be employed to

model irregular geometries: finite element and graph representations. In the former, the

object geometry is represented by a polygon/polyhedron, over which a series of triangles

(tetrahedra in 3D) are generated. In the latter, the object geometry is represented by

an unstructured graph, defined by vertices, edges and weights. A vertex (plural vertices)

or node is the fundamental unit of which graphs are formed and edge is each of the

related pairs of vertices. In order to show the difference between the two representations

clearly, in Figure 5.1, we use a circle as one example which is discretized with the two

representations. For the FE representation (left), the circle is divided by a series of

elements jointed at different vertices (nodes). In FE representation, we normally term a

discrete geometry as a FE mesh. Within the mesh, a triangle (representing one element)
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is highlighted comprising three disjoint vertices. For the graph representation (right), the

circle is simply represented with a set of vertices and edges. In the graph representation

there is no concept of ‘element’. Note that it is easy to convert the FE representation

to the graph representation. For example, the FE mesh can be viewed as a graph if we

consider only the vertices and edges in it.

1v

2v

3v

Figure 5.1: Modeling an unstructured geometry using finite element (left) and graph

(right) representations.

For each representation, there is a systematic discretization scheme (finite element

discretization or graph discretization) for the differential operators, which can be readily

applied to the minimization problems. However, FEM implementations can be difficult

and time-consuming, especially when higher-order polynomial basis (shape) functions

are used for non-linear interpolation between vertices of high-order elements [24]. Finite

element representation has been widely used in DOT reconstruction but we are not aware

of any previous work that attempts to formulate the DOT reconstruction using a graph

representation.
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5.2 Graph representation

Under the graph representation [142, 143], the computational domain Ω is discretized

using a weighted graph G = (V,E,w), where V = {Vk}Nk=1 denotes a finite set of N

vertices, and E ∈ V × V represents a finite set of weighted edges. Here V = VΩ′ ∪ VΓ

with VΩ′ representing vertices in the inner area Ω′ and VΓ vertices on the boundary Γ.

In this study, we assume that G is an undirected simple graph (no multiple edges). Let

(i, j) ∈ E be an edge of E that connects the vertices i and j in V . The weight wij denotes

the similarity between two vertices i and j. The computation of this quantity is discussed

later in this section.

A typical graph in image processing is the 8-adjacency graph where vertices are asso-

ciated to pixels and edges correspond to pixel adjacency relationships. This corresponds

to a classical local processing. By changing the graph topology, we can naturally extend

this idea to include nonlocal information. A vertex may have nonlocal edges with other

vertices which are not spatially nearby. This idea is popularly used in image processing

applications such as image denoising [142, 144] and image inpainting [121, 145]. Antoni

et al. [144] pointed out that nonlocal methods can result in much greater post-filtering

clarity, and less loss of detail in the image compared with local algorithms. Therefore, in

order to fully leverage the power of graph-based discretization, we use the nonlocal vector

calculus in this work. The corresponding nonlocal differential operators on the graph G

can be defined as follows.

Definition (Nonlocal gradient). For a function µi : V → R and a nonnegative and

symmetric weight function wij: V ×V → R, the nonlocal partial derivative can be written

as

∂jµi , (µj − µi)
√
wij : V × V → R. (5.1)

Therefore, the nonlocal gradient ∇wµi is defined as the vector of all partial derivatives:

∇wµi , (µj − µi)
√
wij : V → R. (5.2)

Definition (Nonlocal divergence). Given a vector function νi: VΩ′ → R and a weight

92



function wij: V × V → R, the nonlocal divergence operator divw acting on νi is

divw νi ,
N∑
j=1

(νij − νji)
√
wij : VΩ′ → R, (5.3)

where νij is the j’th element of νi.

Definition (Nonlocal Laplacian). Let µi : V → R and wij: V × V → R. The linear

nonlocal Laplace operator acting on Φi is defined based on equations (5.2) and (5.3):

∆wµi ,
1

2
divw (∇wµi) =

N∑
j=1

(µj − µi)wij : V → R. (5.4)

It should be noticed from the nonlocal differential operator definitions (Equations

(5.2), (5.3), and (5.4)) that, in a full non-local scheme, each vertex has connections with

all the vertices in V over Ω such that the constructed graph is fully connected. This

can make the computational load extremely heavy and so approaches based on spectral

graph theory [146, 147] or nearest neighbors [148], are typically employed to partition

the vertices in the computational domain into groups according to their similarities.

For example, Bertozzi [147] used spectral approaches along with the Nyström extension

method to efficiently calculate the eigendecomposition of a dense graph Laplacian. The

second eigenvector of the graph Laplacian was used to initialize the partitioning so that

the weights between vertices in different groups are small and the weights between vertices

within the same group are large. In this work, we build the graph by using the positions

of the nodes and the connectivity between nodes in the finite element mesh as the vertices

and edges in the graph to sparsify the graph for computational efficiency. Therefore, for

each vertex i, we consider only those vertices that are directly connected to the vertex

i for Ni (i.e. those vertices that share the edge with i). This approach constrains the

nonlocal scheme to edges that exist between spatially connected vertices. Instead of using

the differential operators defined under the FE representation, we use the ones defined

under the nonlocal vector calculus to improve the discretization accuracy.
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5.3 Graph based Tikhonov regularization (GTikhonov)

for DOT reconstruction

5.3.1 Introduction

In this section, we combine the spatial gradient differential operator with the Tikhonov

(L2-norm) regularization to alleviate above bias in functional neuroimaging studies. Here

we name the new proposed regularization as GTikhonov. We perform a systematic com-

parison between Tikhonov and GTikhonov regularizations on a digital head model where

activations are simulated on the auditory cortex. The concentrations of HbO2 and Hb

were recovered from 3D continuous-wave DOT at two wavelengths (750 and 850 nm). The

results from the two methods were compared with respect to their ability to localize the

activation depth and to achieve higher accuracy. Localization error (LE), average con-

trast (AC) and peak signal-to-noise ratio (PSNR) in the recovered activation are adopted

to quantitatively evaluate the performance of different regularizations. LE is defined as

the Euclidian distance between the central node of the simulated activation region and

the one of the recovered activation region while AC and PSNR were defined in the last

section as equations (4.37) and (4.39).

5.3.2 Methodology

Functional imaging is based on the assumption that the change of absorption is very

small. The image reconstruction problem is single-step and linear and remains ill-posed.

The recovery of chromophore concentrations consists of two steps [125]. The first step

is to recover a temporal change of absorption coefficient δµλ at each wavelength. This

procedure needs to compare the boundary measurements before and after the activation

at each wavelength. The objective function is given by

δµkλ = arg min
δµλ

{
||δΨk−1

λ − Jk−1
λ δµλ||22 + λ||∇w (δµλ) ||22

}
. (5.5)
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We compute an analytical solution by calculating the derivative of the objective function

(Equation (5.5)) with respect to δµλ and setting the result to zero to find the minimum.

We can get the solution

δµkλ = (J
(k−1)T
λ J

(k−1)
λ − λ∆w)−1J

(k−1)T
λ δΨk−1

λ . (5.6)

where the laplacian operator ∆w is defined in equation (5.4). wij is a nonnegative and

symmetric weight function. There are many ways to define the weights, including conti-

guity weights, distance weights, and other weights. The simplest form of weights is binary

weight where wij=1 for neighboring locations i and j, or when the distance between lo-

cation i and j is less than a fixed distance, or for the fixed number of locations nearest to

location i. Otherwise, wij=0. Another widely used weight is the spatial weight, defined

by kernel, such that closer points are given higher weights. The Gaussian kernel is one

of the most widely used kernel. In this work, in order to find a better way to guide the

reconstruction in one-step functional imaging, we evaluate two weight functions which

are defined using the Gaussian kernel: one is based on the spatial closeness (Equation

(5.7)) and the other is based on the optical property difference (Equation (5.8)).

wij = exp

(
−
‖Xi −Xj‖2

2

2σ2
d

)
, (5.7)

wij = exp

(
−
‖δµλ,i − δµλ,j‖2

2

2σ2
r

)
. (5.8)

Xi and Xj are the coordinates of the two vertices i and j respectively while δµi and δµj

are the corresponding difference of absorption coefficients. We name the regularization

which uses equation (5.7) for the weight function definition as GTikhonov-SC while the

one using equation (5.8) as GTikhonov-OD. In the second step, we decompose the change

of chromophore concentrations from the calculated δµλ at different wavelength [125]

δHbO2

δHb

 =

εHbO2,λ1 εHb,λ1

εHbO2,λ2 εHb,λ2


−1δµλ1

δµλ2

 , (5.9)

where εc,λ is the molar extinction coefficient of chromophore c (c is either HbO2 or Hb)

at wavelength λ.
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5.3.3 Experiments

We compare the Tikhonov, GTikhonov-SC and GTikhonov-OD methods on a three di-

mensional(3D) head model derived from T1-weighted MPRAGE scans originally acquired

by Eggebrecht et al [73]. The mesh for the image reconstruction has 200000 nodes with

1215434 elements. The imaging system is same to the one used in Section 4.2.5.4 which

is a high density (HD) DOT system with 158 NIR light sources and 166 detectors. The

source-detector (SD) separation distances range from 1.3cm to 4.8cm, resulting in 3478

associated SD pairs. 0.12%, 0.15%, 0.41% and 1.42% Gaussian random noise was added

to first (13mm), second (30mm), third (40mm) and fourth (48mm) nearest neighbour

measurements to provide realistic data [138]. Ten repeats were performed at different

realizations of the noise. In this experiment, one activation is simulated in the auditory

cortex with changes in HbO2 of 5µM and Hb of −3µM, relative to the background con-

centrations as shown in Table 4.2. The distance from the activation to the head surface

is between 7.5mm to 12mm.

Figure 5.2: Reconstruction of HbO2 (first row) and Hb (second row) using (L–R):

Tikhonov; GTikhonov-SC and GTikhonov-OD regularization.

Reconstructed chromophore concentrations of the simulated activation using the Tikhonov

model and the GTikhonov models are displayed in Figure 5.2. The results are scaled in

the same range. It can be clearly seen that Tikhonov regularization results in the lowest

image contrast. NLTikhonov-OD regularization can better localize the activation area
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Figure 5.3: 1D cross section of the results in Figure 5.2.

Table 5.1: Evaluation on chromophore concentrations reconstructed by Tikhonov,

GTikhonov regularization methods respectively

HbO2 (mean) Hb (mean)

Tikhonov GTikhonov-SC GTikhonov-OD Tikhonov GTikhonov-SC GTikhonov-OD

LE 4.03 3.83 0.56 4.27 3.74 0.58

AC 0.16 0.25 0.26 0.16 0.24 0.22

PSNR 61.34 80.70 82.13 61.31 86.12 86.57

and recover higher accuracy. In Figure 5.3, we plot the 1D cross section of results in Fig-

ure 5.2 along the line which crosses the nearest boundary node of the central simulated

activation node and the central simulated activation node. The simulated activation is

at a depth of from 7.5mm to 12mm, which is the area between the two black dash lines.

We find that better depth localization can be achieved using the GTikhonov-OD regu-

larization, while results by the GTikhonov-SC regularization and the standard Tikhonov

model both deviate from the target area. We compare the three evaluation metrics in

the volume of illumination (Table 5.1) and lower localization error and higher accuracy

can be achieved by the GTikhonov-OD regularization.
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5.3.4 Conclusion

GTikhonov regularization with a spatial gradient operator is proposed for image recon-

struction in functional imaging. Simulated experiments have shown that GTikhonov

regularization in which the similarity is mainly constrained by the optical properties

can obtain higher accuracy and better depth localization than the standard Tikhonov

regularization.

Even though graph-based gradient differential operators can help to locate the recov-

ered activation, GTikhonov method still suffers from the over-smoothing effect because it

is based on the Tikhonov regularization. In the next section, we introduce total variation

regularization, which combines the L1-norm regularization and graph-based gradient dif-

ferential operator, to recover non-sparse images in which edges are preserved and features

are not spatially sparse.

5.4 Graph based total variation regularization (GTV)

for DOT reconstruction

5.4.1 Introduction

Total variation (TV) regularization, which uses the L1-norm of the gradient of the so-

lution as a regularizing term (details are given in Section 5.4.2 and 5.4.3), can be used

to overcome the limitations associated with Tikhonov regularization ‖δµ‖2
2, GTikhonov

regularization ‖∇ (δµ) ‖2
2, L1-norm ‖δµ‖1 or Lp-norm regularization ‖δµ‖p. The gradient

operator can transform the solution δµ∗ to a sparse space where non-zero values only

occur at sharp features. As such, TV can perform better than ‖δµ‖1 or ‖δµ‖p at pre-

serving edges of objects in images that are not sparse. Due to these advantages, TV

has been adapted from applications in image processing [121,149,150] to various medical

image reconstruction problems, including photoacoustic tomography (PAT) [151], biolu-

minescence tomography (BLT) [152], fluorescence tomography (FT) [153,154], as well as
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DOT [155,156].

The minimization of a TV-associated problem can be non-trivial due to the non-

linearity and non-differentiability of the TV regularization. In image processing, many

efficient optimization algorithms have been developed for this task, including iteratively

re-weighed least squares [117], primal dual [157], split Bregman [158], and fast itera-

tive shrinkage-thresholding algorithm (FISTA) [109,122]. Recently, alternating direction

method of multipliers (ADMM) [68, 121, 159, 160] has become increasingly popular. The

elegance of ADMM lies in decomposition of the original minimization problem into several

simple subproblems, each of which either has a closed-form solution or can be iteratively

solved with efficient numerical methods. However, since ADMM-based methods have

been implemented mainly for Cartesian grids using a forward-backward FDM [161], it is

not straightforward to generalize them to solve the inverse problem on an unstructured

domain. Moreover, the non-linearity of the data fitting term further complicates the

DOT reconstruction problem, making the overall minimization process difficult.

In this work, we address these limitations to develop TV regularization approaches

to the inverse problem in DOT. More specifically, we make the following three distinct

contributions: (1) We introduce finite element and graph representations to model un-

structured geometries of DOT objects. The discrete differential operators resulting from

each representation are then defined so that the minimization of the inverse problem as-

sociated with TV regularization can be carried out on unstructured domains. To the best

of our knowledge, this is the first time that finite element-based discretizations have been

provided in detail for DOT image reconstruction with TV regularization. Additionally,

we are not aware of any previous work that attempts to formulate the TV-regularized in-

verse problem using a graph representation. (2) We propose an efficient algorithm based

on ADMM to minimize the TV-regularized inverse problem. Our algorithm can handle

unstructured geometries, and also reduced the computational difficulties arising from the

non-differentiability and dual non-linearities in the inverse problem. (3) We further in-

vestigate the isotropic and anisotropic variants of TV regularization, and compare their
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finite element- and graph-based implementations against the popular Tikhonov model,

both qualitatively and quantitatively using extensive numerical experiments.

5.4.2 TV regularizations under finite element representation

Under the Galerkin FE method which we detailed in Section 3 and take a 2D geometry

as one example, we first discretize the unstructured 2D domain Ω by M triangles jointed

at N vertex nodes. V = {Vk}Nk=1 denotes a finite number of N nodes. The continuous

function piecewise-linear function U(x, y) : Ω→ R, approximating the optical properties

on Ω, can be written in the form of

U =
N∑
i=1

µiϕi. (5.10)

Here {ϕi}Ni=1 are linear basis functions defined as ϕj(Vi) = 1 if i = j and ϕj(Vi) = 0

if i 6= j. µi : V → R is the value of optical property on each node in the FE mesh,

i = 1, ..., N .

Equation (5.10) means that the optical property value inside a triangle is associated

with the optical property values on all nodes in the mesh. Given three nodes of a triangle

T , i.e. v1 = (x1, y1), v2 = (x2, y2) and v3 = (x3, y3), there are three linear basis functions

ϕi associated with the nodes, which are respectively expressed as

ϕ1 (x, y) = a1x+ b1y + c1

ϕ2 (x, y) = a2x+ b2y + c2

ϕ3 (x, y) = a3x+ b3y + c3

: Ω→ R (5.11)

where a1 = (y2 − y3) /(2AT ), b1 = (x3 − x2) /(2AT ), c1 = (x2y3 − x3y2) /(2AT ), a2 =

(y3 − y1) /(2AT ), b2 = (x1 − x3) /(2AT ), c2 = (x3y1 − x1y3) /(2AT ), a3 = (y1 − y2) /(2AT ),

b3 = (x2 − x1) /(2AT ) and c3 = (x1y2 − x2y1) /(2AT ). (x, y) represents any point in-

side of the triangle T . AT denotes the triangular area of T , which is computed as

AT = |x1 (y2 − y3) + x2 (y3 − y1) + x3 (y1 − y2)| /2.

In FE, one starts from a continuous problem and approximates the solution with

a piecewise-polynomial function U . As such, we define the following anisotropic and
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isotropic TV regularizations

∫
Ω

(|∂xU |+ |∂yU |)dxdy = ‖Dxµ‖1 + ‖Dyµ‖1 (5.12)

∫
Ω

√
(∂xU)2 + (∂yU)2dxdy =

M∑
i=1

√
|(Dxµ)i|

2 +
∣∣(Dyµ)i

∣∣2 (5.13)

In equations (5.12) and (5.13), the continuous TV regularizations and their resulting

discretized versions are shown on the left-hand side and right-hand side, respectively.

The two discrete versions respectively are the anisotropic and isotropic definitions of TV

regularization. ∂x and ∂y are continuous partial derivatives along the x and y directions,

respectively. Dx is a matrix of size M ×N which, when applied to µ, gives the discrete

partial derivative of µ along the x direction. Dy is the derivative matrix along the y

direction. Dxµ and Dyµ are therefore two vectors of size M × 1, where M is the number

of triangles in the mesh. We note that the main idea of FE is to break down the calculation

domain Ω onto the local elements individually. Afterwards, the derived local matrices

are assembled element by element to enable the final computation. Equations (5.12) and

(5.13) can be proved by expressing the partial derivatives ∂xU and ∂yU in terms of a

basis. To illustate this idea we prove the first term of equation (5.12):

∫
Ω

|∂xU |dxdy =
M∑
i=1

∫
Ti

|∂xU | dxdy =
M∑
i=1

∫
Ti

|
N∑
j=1

µj∂xϕj|dxdy

=
M∑
i=1

ATi |ai,1µi,1 + ai,2µi,2 + ai,3µi,3|

=
M∑
i=1

|(Dxµ)i| = ‖Dxµ‖1,

(5.14)

where ATi denotes the area of triangle Ti and the subscripts {i, 1}, {i, 2} and {i, 3}

in |ai,1µi,1 + ai,2µi,2 + ai,3µi,3| represent the indices of the nodes of the ith triangle. As

|ai,1µi,1 + ai,2µi,2 + ai,3µi,3| is a linear combination, we can thus construct the discrete

derivative matrix Dx with the following steps:

• Initialize all-zeros matrix Dx of size M ×N .
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• Loop over M triangles; for each triangle i, compute the coefficients a1, a2 and a3

using the coordinates of the three nodes and fill in the three columns in the ith row

of matrix Dx corresponding to the position of the three nodes in the node sequence.

The discrete derivative matrix Dy can be obtained in a similar way. Note that Dx

and Dy are sparse matrices as most entries are zeros. With Dx and Dy defined, we can

therefore minimize the TV regularization (either anisotropic (5.12) or isotropic (5.13)

version) with the data fidelity term for DOT reconstruction over 2D unstructured geome-

tries. The corresponding 3D counterparts were also implemented in this work, as shown

in the experiments.

5.4.3 TV regularizations under graph representation

With these discrete differential operators defined on graph (Section 5.2), the anisotropic

graph TV regularization is

‖∇wµ‖1 =
N∑
i=1

∑
j∈Ni

∣∣(µj − µi)√wij∣∣, (5.15)

and the isotropic graph TV regularization is

‖∇wµ‖1 =
N∑
i=1

√∑
j∈Ni

(µj − µi)2wij, (5.16)

where Ni = {j ∈ V : (i, j) ∈ E}. We note that the 2D and 3D implementations of these

differential operators are identical, making the resulting minimization processes of equa-

tions (5.15) and (5.16) more straightforward than the FE implementation.

5.4.4 Minimization of TV-associated DOT inverse problems

Due to the non-linearity of the data fitting term and the non-differentiability of the TV

regularizations, it is non-trivial to minimize a TV-regularized inverse problem. It is harder

than minimizing the standard L1-regularized inverse problem [162] because of the exis-

tence of the gradient operator. In this section, we propose an efficient algorithm based on
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ADMM to address this, the idea of which is to first linearize the non-linear inverse prob-

lem, and afterwards apply ADMM to the resulting linearized problem. The whole process

is then iterated until convergence. We note that due to the use of the differential operators

in Sections 5.4.3 and 5.4.2, the proposed algorithm can handle unstructured geometries,

and also can ease the computational difficulties arising from the non-differentiability and

non-linearities in the inverse problem. In equations (5.12), (5.13), (5.15) and (5.16), we

have defined four types of TV regularizations using different representations. We then

apply them to the regularization term, resulting in four linearized minimization problems

in Table 5.2. These four TV-regularized minimization problems are A-FETV, I-FETV,

A-GTV and I-GTV, representing anisotropic finite element total variation, isotropic fi-

nite element total variation, anisotropic graph total variation and isotropic graph total

variation respectively.

Table 5.2: Four TV-regularized minimization problems obtained by applying different

TV regularizations.

Name Formulation

A-FETV δµ∗ = arg min
δµ

{
1
2‖Jδµ− δΨ‖

2
2 + λ‖Dx(δµ)‖1 + λ‖Dy(δµ)‖1

}
I-FETV δµ∗ = arg min

δµ

{
1
2‖Jδµ− δΨ‖

2
2 + λ

M∑
i=1

√
|(Dx(δµ))i|

2
+
∣∣(Dy(δµ))i

∣∣2}
A-GTV δµ∗ = arg min

δµ

{
1
2‖Jδµ− δΨ‖

2
2 + λ

N∑
i=1

∑
j∈Ni

∣∣(δµj − δµi)√wij∣∣
}

I-GTV δµ∗ = arg min
δµ

{
1
2‖Jδµ− δΨ‖

2
2 + λ

N∑
i=1

√ ∑
j∈Ni

(
δµj − δµi

)2
wij

}

5.4.4.1 ADMM implementations

We begin with the ADMM implementation for A-FETV. Specifically, auxiliary splitting

vectors νx and νy are introduced to represent Dx(δµ) and Dy(δµ) respectively. There-

fore, the A-FETV problem is transformed into the following unconstrained optimization
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problem:

δµn,νnx,ν
n
y = arg min

δµ,νx,νy

{1

2
||Jδµ− δΨ||22 + λ||νx||1 + λ||νy||1

+
θ

2
||νx −Dx(δµ)− bn−1

x ||22 +
θ

2
||νy −Dy(δµ)− bn−1

y ||22},
(5.17)

where superscript n denotes the n-th ADMM iteration and bx and by are iterative pa-

rameters. In order to find the minimizer of equation (5.17), an alternating optimization

method is used where equation (5.17) is split into several subproblems with respect to

δµ, νx, νy, bx and by, each of which can be solved separately.

First the iterative minimization approach requires us to solve the subproblem with

respect to µ

δµn = arg min
δµ
{1

2
||Jδµ− δΨ||22 +

θ

2
||νn−1

x −Dx(δµ)− bn−1
x ||22

+
θ

2
||νn−1

y −Dy(δµ)− bn−1
y ||22},

(5.18)

which has the optimality condition

((
JTJ + θ

(
Dx

TDx + Dy
TDy

)))
δµn = JT δΨ−θDx

T
(
bn−1
x − νn−1

x

)
−θDy

T
(
bn−1
y − νn−1

y

)
.

(5.19)

As the inversion matrix of equation (5.19) has size N × N , in order to achieve high

efficiency, we use the gradient descent method with backtracking line search to optimize

the functional iteratively, in which the step size controls how far the iterate moves along

the gradient direction during the current iteration [122].

The next subproblem with respect to νx and νy is given as

νnx,ν
n
y = arg min

νx,νy

{λ||νx||1 + λ||νy||1 +
θ

2
||νx −Dx(δµ

n)− bn−1
x ||22

+
θ

2
||νy −Dy(δµ

n)− bn−1
y ||22}.

(5.20)

It should be noticed that, in A-FETV, there is no coupling between νx and νy. We

can explicitly compute the optimal value of νx and νy using the generalized shrinkage

operators

νnx = max

(∣∣Dx(δµ
n) + bn−1

x

∣∣− λ

θ
, 0

)
Dx(δµ

n) + bn−1
x∣∣Dx(δµn) + bn−1
x

∣∣
νny = max

(∣∣Dy(δµ
n) + bn−1

y

∣∣− λ

θ
, 0

)
Dy(δµ

n) + bn−1
y∣∣Dy(δµn) + bn−1
y

∣∣ ,
(5.21)
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with the convention that 0/0 = 0. The last one is to update the iterative parameters bx

and by, as

bnx = bn−1
x + Dx(δµ

n)− νnx

bny = bn−1
y + Dy(δµ

n)− νny .
(5.22)

In I-FETV, using the same alternating optimization method, the original minimization

problem can be transformed as

δµn,νnx,ν
n
y = arg min

δµ,νx,νy

{1

2
||Jδµ− δΨ||22 + λ ‖(νx,νy)‖2 +

θ

2
||νx −Dx(δµ)− bn−1

x ||22

+
θ

2
||νy −Dy(δµ)− bn−1

y ||22},

(5.23)

where

‖(νx,νy)‖2 =
M∑
i=1

√
|(νx)i|

2 +
∣∣(νy)i∣∣2, (5.24)

and M is the number of finite elements. The first subproblem (L2 component) with

respect to δµ is the same as A-FETV. It should be noted that the νx and νy variables

cannot be decoupled as they were in A-FETV. In order to solve the subproblem with

respect to νx and νy, we can explicitly solve the minimization problem for
(
νnx,ν

n
y

)
,

using a generalized shrinkage formula

νnx = max

(
sn − λ

θ
, 0

)
Dx(δµ

n) + bn−1
x

sn

νny = max

(
sn − λ

θ
, 0

)
Dy(δµ

n) + bn−1
y

sn
,

(5.25)

with the convention that 0/0 = 0 and sn =
√∣∣Dx(δµn) + bn−1

x

∣∣2 +
∣∣Dy(δµn) + bn−1

y

∣∣2.

The iterative parameters bx and by are then updated as shown in A-FETV.

The ADMM-based algorithm for A-FETV and I-FETV is given in Algorithm 1, where

inner loop is the maximum number of iterations for the ADMM-based algorithm.

We then propose an ADMM-based algorithm to address the minimizations of A-GTV

and I-GTV. For A-GTV, we first introduce an auxiliary splitting vector variable ν, an

iterative parameter b, and a positive penalty parameter θ. The sizes of ν and b are both
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Algorithm 1: ADMM-based algorithm for A-FETV and I-FETV.

INPUT: δΨ, J, y, inner loop, ε1, regularization parameter θ > 0, λ > 0

Initialization: ν0
x = ν0

y = b0
x = b0

y = 0

for n = 1 : inner loop

1: Update δµn using equation (5.18)

2: Update νnx and νny using equation (5.21) for A-FETV or (5.25) for I-FETV

3: Update bnx and bny using equation (5.22)

4: Stop if n = inner loop or ||δµ
n−δµn−1||1
||δµn−1||1

≤ ε1.

end for

RETURN δµk = δµn

of N × N . The A-GTV problem can be reformulated as the following unconstrained

optimization problem

δµn,νn = arg min
δµ,ν

{
1

2
‖Jδµ− δΨ‖2

2 + λ
N∑
i=1

‖νi‖1 +
θ

2

N∑
i=1

‖νi −∇w(δµi)− bn−1
i ‖2

2

}
.

(5.26)

Since equation (5.26) is a multivariate minimization problem, we first solve the subprob-

lem with respect to δµ

δµn = arg min
δµ

{
1

2
‖Jδµ− δΨ‖2

2 +
θ

2

N∑
i=1

‖νn−1
i −∇w(δµi)− bn−1

i ‖2
2

}
, (5.27)

which gives the the optimality condition

(
JTJδµ− JT δΨ

)
i
+ θdivw

(
νn−1
i −∇w(δµi)− bn−1

i

)
= 0, i = 1, ..., N. (5.28)

With the definition of the nonlocal divergence operator (Equation (5.3)) and the nonlocal

Laplace operator (Equation (5.4)), the point-wise equation system (Equation (5.28)) can

be equivalently converted to the following matrix-based equation system

(JTJ− θL)δµ = JT δΦ− θgn−1. (5.29)
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L above is the graph Laplacian in matrix form, whose entries are

Li,j =


−
∑
j∈Ni

wij if i = j

wij otherwise

.

In equation (5.29), the vector gn−1 =
∑
j∈Ni

√
wij
(
νn−1
ji − νn−1

ij

)
+
∑
j∈Ni

√
wij
(
bn−1
ji − bn−1

ij

)
.

Equation (5.29) is a system of linear equations. The solution δµn can be acquired itera-

tively using the same method in A-FETV. Then we minimize the following subproblem

with respect to ν

νn = arg min
ν

{
λ

N∑
i=1

‖νi‖1 +
θ

2

N∑
i=1

‖νi −∇w(δµni )− bn−1
i ‖2

2

}
, (5.30)

which has an analytical solution, calculated from the generalized shrinkage formula

νnij = max

(∣∣√wij (δµnj − δµni )+ bn−1
ij

∣∣− λ

θ
, 0

) √
wij
(
δµnj − δµni

)
+ bn−1

ij∣∣√wij (δµnj − δµni )+ bn−1
ij

∣∣ , (5.31)

with the convention that 0/0 = 0. Lastly, we update the iterative parameter b with

bnij = bn−1
ij +

√
wij
(
δµnj − δµni

)
− νnij. (5.32)

We can similarly apply ADMM to the minimization of I-GTV, which can be trans-

formed into the following unconstrained problem with the auxiliary splitting vector vari-

able ν, an augmented Lagrangian multiplier b, and a positive penalty parameter θ.

δµn,νn = arg min
δµ,ν

{
1

2
‖Jδµ− δΨ‖2

2 + λ
N∑
i=1

‖νi‖2 +
θ

2

N∑
i=1

‖νi −∇w(δµi)− bn−1
i ‖2

2

}
.

(5.33)

The L2 subproblem with respect to δµ is the same as the one in A-GTV and can be

computed with equation (5.29). We then fix δµ to minimize the second subproblem with

respect to ν:

νn = arg min
ν

{
λ

N∑
i=1

‖νi‖2 +
θ

2

N∑
i=1

‖νi −∇w(δµni )− bn−1
i ‖2

2

}
, (5.34)

which can be solved with the following soft thresholding equation

νnij = max

√∑
j∈Ni

(√
wij
(
δµnj − δµni

)
+ bn−1

ij

)2 − λ

θ
, 0

 √
wij
(
δµnj − δµni

)
+ bn−1

ij√∑
j∈Ni

(√
wij
(
δµnj − δµni

)
+ bn−1

ij

)2
,

(5.35)
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with the convention that 0/0 = 0. The update of iterative parameter b is the same as

for A-GTV, as shown in equation (5.32). The ADMM-based algorithm for A-GTV and

I-GTV is given in Algorithm 2.

Algorithm 2: ADMM-based algorithm for I-GTV and A-GTV.

INPUT: δΨ, J, y, inner−loop, ε1, regularization parameter θ > 0, λ > 0

Initialization: ν0 = b0 = 0

for n = 1 : inner−loop

1: Update δµn using equation (5.29)

2: Update νn using equation (5.31) for A-GTV or equation (5.35) for I-GTV

3: Update bn using equation (5.32)

4: Stop if n = inner−loop or ||δµ
n−δµn−1||1
||δµn−1||1

≤ ε1.

RETURN δµk = δµn

Therefore, the whole procedure for minimizing the TV-regularized inverse problem is

given in Algorithm 3, in which outer−loop represents the maximum number of iterations

required for the DOT reconstruction.

Algorithm 3: Algorithm for minimizing the TV-associated inverse problem.

INPUT: y, Ψ (·), µ0, outer−loop, ε2

for k = 1 : outer−loop

1: Compute Ψ
(
µk−1

)
and Jk−1

2: Set δΨk−1 = ΨM −Ψ
(
µk−1

)
3: Compute δµk by introducing δΨk−1 and Jk−1 to one of Algorithm 1-2

4: Update µk = δµk + µk−1

5: Stop if k = outer−loop or
||Ψ(µk)−y||22−||Ψ(µk−1)−y||22

||Ψ(µk−1)−y||22
≤ ε2.

end for

RETURN µk
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5.4.5 Experiments
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Figure 5.4: (a)-(c): Discretized computational domain of the three experimental samples;

(d): Detailed mesh composition of 2D geometry in finite element and graph representation

respectively; (e): Detailed mesh composition of 3D geometry in finite element and graph

representation respectively.

In this section, we describe extensive experiments to qualitatively and quantitatively

evaluate the performance of finite element and graph representations on the two variants

of TV regularization in DOT. We use the finite element representation for the forward

modelling in all the experiments and use both the finite element and graph representa-
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tions to discretize the TV regularization term during the solution of the inverse problem.

We first define four evaluation metrics to quantify the quality of the reconstructed images.

Then we describe simulated numerical experiments on 2D circle and 3D head samples,

and real experiments performed on phantom samples. Figure. 5.4 shows the unstructured

grids of the three computational domains. Red dots represent the vertices in the computa-

tional domain. In 2D, using the finite element representation, the computational domain

is discretized with a finite number of triangles (Figure. 5.4 (d)) while in 3D, tetrahedra

are taken as the basic element (Figure. 5.4 (e)). However the graph representation is the

same in both 2D and 3D because the graph method requires only vertices and edges of

the mesh. For simulated experiments in which measurement noise was added, ten repeats

were performed. For all experiments in this section, the forward model was implemented

using the NIRFAST package [110] in Matlab R2017a (Mathworks, Natick, USA). The

simulated experiments conducted are all based on single wavelength continuous-wave

(CW) measurements where the optical property to be recovered is the tissue absorption

coefficient µa at that wavelength. We set inner loop to 100, outer−loop to 40, threshold

value ε1 to 0.001 and ε2 to 0.02 for all experiments in this work.

5.4.5.1 Quantitative evaluation metrics

Four evaluation metrics are used to perform the quantitative evaluation: the localization

error (as defined in section 5.3), average contrast (as defined in equation (4.37)), peak

signal-to-noise ratio (PSNR) (as defined in equation (4.39)) and relative recovered vol-

ume. The relative recovered volume is formulated as VRRV = Vr/Vs × 100% where Vr

and Vs denote the volume of the recovered activation region and simulated activation

region, respectively. If the reconstructed image is identical to the ground truth image,

the localization error is 0, average contrast and relative recovered volume are both equal

to 1. PSNR is higher if the reconstructed image is closer to the ground truth image.
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5.4.5.2 Experiments on anisotropic TV regularization

Anisotropic TV regularization is easy to implement because the partial derivatives along

different directions can be decoupled as explained in Section 5.4.4.1. It is based on the

assumption that the shape of the inhomogeneity that matters is aligned with the coor-

dinate axes. Its minimization favors horizontal and vertical structures, because oblique

structures cause the TV regularization to increase [163]. In DOT, this assumption does

not necessarily hold as the region of interest is normally random and structures are not

normally aligned with the coordinate system. Therefore, anisotropic TV regularization

seems to be a poor choice for discrete TV in DOT, as it yields ’blocky’ artefacts. However

no research has been carried out about the relationship between the ’blocky’ artefacts and

the representation employed to discretize over the unstructured computational domain.

In this section we investigate the anisotropic TV regularization in DOT reconstruction

and compare their FE- and graph-based implementations. The effect of the representation

method adopted on anisotropic TV regularization will be evaluated.

A 2D circular geometry is simulated with one anomaly centered at (-10mm,10mm).

The 2D model has a radius of 43mm while the radius of the anomaly is 10mm. Six-

teen source-detector fibres are placed equidistant around the external boundary for CW

boundary data acquisition. When one fibre as a source is turned on, the rest are used

as detectors, leading to 240 total boundary data points per wavelength. All sources were

positioned one scattering distance within the outer boundary because the source is as-

sumed to be spherically isotropic. In order to evaluate the effect of mesh resolution on

the representation method, two reconstruction meshes are created with different spatial

resolutions. The coarser mesh has 1785 nodes and 3418 linear triangle elements with

the average element size 1.6977mm2 (Figure. 5.5 (a)) while the finer one has 5133 nodes

and 10013 elements with the average element size 0.5801mm2 (Figure. 5.5 (d)). The

background absorption coefficient µa is set as 0.01mm−1 and µa for the anomaly is set as

0.03mm−1 (Figure. 5.5 (b) and (e)). µs remains constant as 1mm−1. To represent various

realistic cases, normally distributed randomly generated Gaussian noise ranging from 0%
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Figure 5.5: (a)-(c): Reconstruction on the 2D mesh with low spatial resolution. (d)-(f):

Reconstruction on the 2D mesh with high spatial resolution. (a) and (d): 2D reconstruc-

tion mesh with sixteen co-located sources and detectors. (b) and (e) give the original

target distributions. First row in (c) and (f) represents the results using A-FETV on 0%

, 1% , 2% and 3% noisy data while the second row shows the results using A-GTV.

to 3% at 1% intervals was added to the boundary measurements. Reconstructed images

of the absorption coefficient are shown in Figure. 5.5 (c) and (f).

5.4.5.3 Experiments on isotropic TV regularization

5.4.5.3.1 Two dimensional circular experiments Using the same reconstruction

meshes described in Section 5.4.5.2, we compare I-FETV, I-GTV against a baseline

Tikhonov model. To represent various realistic cases, normally distributed randomly gen-

erated noise ranging from 0% to 3% at 1% intervals was added to the amplitude of the

boundary data. Reconstructed images of absorption coefficient are shown in Figure. 5.6

(c) and (f). The 1D cross sections and evaluation metrics comparisons are displayed in
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Figure 5.6: (a)-(c): Reconstruction on the 2D mesh with low spatial resolution; (d)-(f):

Reconstruction on the 2D mesh with high spatial resolution. (a) and (d): 2D reconstruc-

tion mesh with sixteen co-located sources and detectors. (b) and (e) give the original

target distributions. First row in (c) and (f) represents the results using I-FETV on 0%

, 1% , 2% and 3% noisy data while the second row shows the results by I-GTV.

Figure. 5.7 and Figure. 5.8.

5.4.5.3.2 Three dimensional head numerical experiments We now evaluate the

isotropic TV model with two discrete differential operator definitions on the physically

realistic 3D head model which is described in Section 4.2.5.4. The reconstruction mesh

consists of 50721 nodes associated with 287547 tetrahedral elements, with the average

element size 9.2676mm3. Each node is labeled by one of the five segmented head tissue
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Figure 5.7: 1D cross section of images recovered in Figure. 5.6. First column corresponds

to Figure. 5.6 (c) where the spatial resolution of the reconstruction mesh is lower. Second

column corresponds to Figure. 5.6 (f) where the spatial resolution of the reconstruction

mesh is higher. Top to bottom row: 0%, 1%, 2% and 3% added Gaussian noise.

types. Absorption coefficients assigned to each layer are from an in vivo study [6] at

750nm (Table 4.2).

A high-density (HD) imaging array with 158 sources and 166 detectors (Figure. 5.9

first column) [73] was placed over the whole head, with source-detector (SD) separation

distances ranging from 1.3 to 4.8cm. 3478 differential measurements per wavelength were

used to image hemodynamic changes in the brain. Two distinct anomalies were simulated
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Figure 5.8: Evaluation metrics comparing the performance of different methods at four

different noise levels. Top to bottom row: localization error index; average contrast index;

PSNR index and relative recovered volume. Left column corresponds to the reconstruc-

tions in Figure. 5.6 (c) where the reconsturction mesh resolution is low. Right column

corresponds to Figure. 5.6 (f) where the reconsturction mesh resolution is relatively high.

simultaneously in the brain, with each 15mm radius. In order to simulate a traumatic

brain injury (TBI) case where tissue oxygen saturation (StO2) is normally between 50%

and 75% [164, 165], the absorption coefficient in the two anomalies are calculated using

Beer’s law [110] with 55% StO2 (Figure. 5.9 second column). In line with the expected

in vivo performance of the imaging system, 0.12%, 0.15%, 0.41% and 1.42% Gaussian
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I-FETV I-GTV Tikhonov Ground truth 

Figure 5.9: First column: distribution of the imaging array with 158 sources (red dots)

and 166 detectors (white dots) and the positions of the two simultaneous simulated

anomalies. Second to final column: Ground truth and reconstructions by Tikhonov,

I-FETV and I-GTV.

I-FETV I-GTV Tikhonov Ground truth 

Figure 5.10: 2D slices of the reconstructions of the absorption coefficient changes on the

forehead anomaly (first row in Figure. 5.9). The ground truth areas are highlighted in

white boundary.

random noise was added to first (13mm), second (30mm), third (40mm) and fourth

(48mm) nearest neighbor measurements to provide realistic data [138]. Reconstructed
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absorption coefficients using different model are displayed in the third to fifth column

of Figure. 5.9. Corresponding 2D slices are displayed in Figures. 5.10 and 5.11 and the

evaluation metrics are presented in Figure. 5.12.

I-FETV I-GTV Tikhonov Ground truth 

Figure 5.11: 2D slices of the reconstructions of the absorption coefficient changes on the

back-head anomaly (second row in Figure. 5.9). The ground truth areas are highlighted

in white boundary.

5.4.5.3.3 Experiments with phantom data In the final experiment we evaluate

different methods on real experimental data which is collected from the solid plastic

cylindrical phantom described in Section 4.2.5.6. The reconstruction mesh consists of

9082 nodes and 48099 linear tetrahedral elements with the average tetrahedral elements

size 0.4218mm3. Ground truth data and images reconstructed with Tikhonov, I-FETV

and I-GTV are shown in Figure. 5.13(c). The four evaluation metrics in the volume of

illumination are given in Table 5.3. For all the experiments above, the regularization

parameter λ is determined using an L-curve method [162].

117



Figure 5.12: Evaluation metrics comparing the performance of different methods on a

3D head model. The left column represents the reconstruction of the forehead anomaly

(first row in Figure. 5.9), while the right column gives the reconstruction of the back-head

anomaly (second row in Figure. 5.9).
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Figure 5.13: (a): Distribution of sources and detectors. (b): Illustration of the overall

distribution of three slices. (c): Ground truth and reconstruction results with different

methods. From top to bottom: ground truth; results with Tikhonov regularization;

results with I-FETV regularization and results with I-GTV regularization.

Table 5.3: Evaluation of different methods for reconstruction on a tissue-simulating phan-

tom. LE presents localization error. AC presents average contrast. RRV represents

relative recovered volume.

LE / mm AC / - PSNR / - RRV / %

Tikhonov 2.90 0.74 13.74 40

I-FETV 2.81 0.69 14.77 48

I-GTV 3.16 0.79 16.71 46

5.4.6 Discussion

The 2D images reconstructed using A-FETV and A-GTV are shown in Figure. 5.5, to-

gether with the original target distributions. The results show that A-FETV reconstructs

the target with boundaries that align with the coordinate axes which is consistent with

the assumption of the anisotropic TV regularization. In addition, some artefacts are
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observed inside the recovered region of interest when the mesh resolution is low. The

reconstructions using A-GTV do not feature these artefacts, and the recovered shape is

more accurate, with no bias towards the coordinate axes. The experiments reveal that

the blocky artefacts of anisotropic TV regularization are associated with the discretiza-

tion method used. The blocky artefacts are clearly visible in reconstructions based on

the finite element representation, but not in the ones based on the graph representation.

This is because in the graph representation, the region is discretized along all edge-based

directions, leading to nearly isotropic solutions. Therefore, in DOT, A-GTV can adapt

to the ground truth solution. However, it is not a good method to preserve anisotropy if

anisotropy is a desired property of the solution.

For the 2D case which uses isotropic TV regularization, Figure. 5.6, Tikhonov recon-

struction over-smooths the results and smears the edges. The results become smoother

with increases in measurement noise. Little difference can be visually observed between

the reconstruction by I-FETV and I-GTV when the reconstruction mesh resolution is

low. However when the reconstruction mesh has higher resolution, Figure. 5.6 (f), the

results by I-FETV is visually closer to the ground truth than the ones by I-GTV. Similar

findings are observed from the corresponding 1D cross sections (Figure. 5.7). Tikhonov

reconstruction produces a single peaked distribution in the piecewise constant target area,

and edges of the objects are over-smoothed. Both TV methods are able to reconstruct a

piecewise constant distribution. However when the mesh resolution is lower (first column

in Figure. 5.7), fluctuations in the target regions are observed in the results by I-FETV.

When the mesh resolution is higher (second column in Figure. 5.7), the cross-section from

I-FETV reconstruction is almost identical to the ground truth. In Figure. 5.8, red and

blue areas represent 25% to 75% value among the ten repeats’ experiments. We see that

the performance of I-FETV improves with an increase of mesh resolution: by 25% in

localization error, 26% in average contrast and 11% in PSNR, while the performance of

I-GTV improves 20% in localization error, 11% in average contrast and 2% in PSNR.

These 2D experiments confirm that comparing with the performance of I-FETV, the one
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of I-GTV has relatively fewer difference with different mesh resolution and the graph

representation is more stable and robust to changes in mesh resolution.

The 3D images reconstructed from the head geometry represent a physically realistic

case, in which two anomalies are simulated simultaneously in the brain. From Figure. 5.9,

Tikhonov reconstruction lead to many visible artefacts near the source and detector area.

Due to smoothing induced by Tikhonov regularization, sharp features are not present in

the image recovered. I-FETV and I-GTV both can eliminate the surface artefacts result-

ing from Tikhonov regularization and reconstruct tightly localized results. These findings

can be clearly observed in the 2D slice images shown in Figure. 5.10 and Figure. 5.11. It

should be noticed that, in Figure. 5.10, the colorbar values corresponding to the green and

red parts remain 0.001. It is because only three digits are selected after the radix point

and in this study we use rounding off to constrain the three digits. From the visualization

of the results, there is no obvious difference between the reconstruction performance of

I-FETV and I-GTV because both are based on TV regularization. However it can be

observed from the evaluation metrics comparison in Figure. 5.12 that I-GTV achieves

lower localization error (4mm), higher peak signal-to-noise ratio (79.5) and average con-

trast (0.8) much closer to 1. The average relative recovered volume achieved by I-GTV

is 77%, compared with I-FETV (66%) and Tikhonov (64%). The underestimation of the

magnitude of localized changes result from the partial volume effect, wherein the tissue

inhomogeneity occupies only a small portion of the optically interrogated volume.

In the experiments with phantom data, only the central region is reconstructed in all

the cases because the positions of sources and detectors lead to very low sensitivity away

from the centre. It can be seen from the second row of Figure. 5.13(c), that Tikhonov

regularization over-smooths the reconstructed images which have much lower image con-

trast than the ground truth, especially in the first slice image. Artefacts are clearly

observed near the source and detector areas. Even though total variation regularization

can alleviate the over-smoothing effect caused by Tikhonov regularization, discretization

methods still play an important role in the reconstruction performance. It should be
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noticed that I-FETV can alleviate the artefacts near to the sources and detectors but

introduce some artefacts (staircase effect) in the non-anomaly area and does not preserve

edges. I-GTV is seen to recover the anomaly with clear edges and high image contrast. It

is interesting to compare these results to those of our previous work [162] where L1-norm

regularization was applied to the phantom data. Reconstructions by L1-norm regulariza-

tion were found to be over-sparsified and over-compact. In this work, TV regularization,

which induces sparsity to the gradient of the solution, is seen to effectively alleviate the

over-sparsifying effect of L1-norm regularization and is therefore suitable for non-sparse

coefficient distributions. We calculate the four evaluation metrics in the volume of illu-

mination (Table 5.3) and these support the same conclusions. Similar localization errors

are obtained by the different methods with only 1mm difference. Comparing to I-FETV,

I-GTV can obtain the highest average contrast and PSNR values with similar relative

recovered volume.

5.4.7 Conclusion

In this work, we introduce finite element and graph representations to discretize the TV

regularization term in DOT reconstruction. Isotropic and anisotropic variants of the TV

regularization are also investigated and compared between their FE- and graph-based

implementations. The ADMM-based algorithms are proposed for each TV-regularized

inverse problem. Experiments on the anisotropic TV regularization reveal that finite

element representation yields the ’blocky’ artefacts which is the designed in feature in the

anisotropic TV regularization. However the graph representation favors the underlying

shape of the region of interest so that the ’blocky’ artefacts are not realized. Graph

discretization on anisotropic TV regularization can adapt to the ground truth solution,

but is not a good way to preserve anisotropy.

Numerical experiments on isotropic TV regularization illustrate that, comparing to

Tikhonov regularization, TV regularization can alleviate the over-smoothing effect of

Tikhonov regularization and localize the anomaly by inducing sparsity of the gradient
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of the solution. These findings were tested on real experimental data using a tissue-

simulating phantom. I-FETV does not perform well on low resolution reconstruction

meshes because of the discrete nature of the finite element representation. Because the

finite element representation operates on each element, the discretization becomes more

accurate when the mesh resolution increases. I-GTV is shown to be more stable and

robust to changes in mesh resolution because I-GTV is discretized on the graph directly,

having no information of elements. Hence I-GTV can give more accurate discretization

when the reconstruction mesh is a coarse mesh which is the usual case in DOT. However,

I-FETV will outperform I-GTV when an reconstruction mesh with high resolution is

available.
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CHAPTER 6

GRAPH-BASED FORWARD MODEL

FOR CONTINUOUS-WAVE DIFFUSE

OPTICAL TOMOGRAPHY

In DOT, the spatial distribution of light remitted from the object’s surface is measured

for each source fibre, and this information is used to estimate the object’s internal optical

properties by iteratively refining the optical properties of a forward model of light propa-

gation in the object until the model predictions match the measured surface remittance.

As such, the forward model of light propagation must be able to accurately model the

main interactions (i.e. absorption and scattering) between light and the object so as to

recover internal properties faithfully.

In this chapter, the graph-based methods previously applied to the inverse model

are developed to model the forward problem of modelling light transport for continuous-

wave(CW) DOT.

The contents of this chapter were the subject of the following publication.

• Wenqi Lu, Jinming Duan, Joshua Deepak Veesa, and Iain B Styles, New

nonlocal forward model for diffuse optical tomography, Biomedical Op-

tics Express 10, 6227-6241 (2019)

Text and figures from this article are reproduced here with modification un-

der the terms of the Optical Society of America Open Access Publishing

Agreement under which this article was published.
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6.1 Introduction

As we mentioned in Section 2.2, when its wave nature is neglected and light is inter-

preted as a stream of particles (photons), the main interactions between light and bi-

ological tissue are characterized as absorption and scattering and are modelled by the

radiative transfer equation (RTE) which is generally accepted to accurately describe how

light propagates in biological tissues [31,34]. Analytical solutions exist for the RTE only

for simple geometries with nearly homogeneous interior structure [41, 43]. Although a

number of algorithms exist to find numerical solutions for more complex inhomogeneous

domains [44, 47], they are extremely computationally expensive, especially for large 3D

volumes. Therefore, a range of stochastic or deterministic approximation schemes are

frequently adopted to simplify the RTE. The Monte Carlo method is the most commonly

used stochastic model [48, 54]. It is however costly in computational time, because mil-

lions of photons need to be tracked to acquire meaningful statistics. Light propagation

can also be modelled by a deterministic diffusion equation (DE) using the P1 approxima-

tion of the RTE. It is based on the assumption that the radiance in an optical medium

in which multiple scattering occurs is almost isotropic, and scattering in that medium is

dominant over absorption. The modified Beer–Lambert law (MBLL) is also sometimes

used to model thick tissues [166, 167]. However Boas et al. [168] observed that standard

MBLL analysis cannot accurately quantify relative changes in the concentration of chro-

mophores. Bhatt et al. [169] proposed a generalized Beer–Lambert model to overcome

this limitation and have applied this method widely to near-infrared spectroscopy (NIRS)

studies. In DOT, technically, such interactions can be accurately described by a diffusion

equation (DE) which is derived from the radiative transfer equation (RTE) [31] under

the assumption that the radiance in an optical medium is almost isotropic, and that the

scattering interactions dominate over absorption [170]. The DE for a continuous wave

(CW) imaging system is given in equation (2.3) with w = 0. The corresponding Robin

boundary condition is described in equation (2.5).
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Mathematically, Equation (2.3) is an elliptic partial differential equations, the dif-

ferential operators (i.e. gradient or divergence) in which are defined using the classical

vector calculus. A general approach to analytically solve the DE (with its RBC) is to

apply the Green function, but analytical solutions are only known for homogeneous ob-

jects [65, 171, 172]. Numerical techniques are required if more complex geometries are

modelled. When Equation (2.3) with its RBC (2.5) are discretized for a numerical so-

lution, a computational mesh must be established, which should essentially describe the

geometry of the object modelled. Such generated mesh can be structured (regular) or

unstructured (irregular). For a structured mesh where each element represents one pixel

in 2D or voxel in 3D, finite difference method (FDM) can be applied [68,134] to discretize

the computational domain. For an unstructured mesh, finite element method (FEM) is

a more natural choice [15, 65, 67, 70, 173, 174]. In this discretization, the computational

domain Ω is divided into a series of elements (triangles in 2D, tetrahedra in 3D). However,

FEM implementations can be difficult and time-consuming, especially when higher-order

polynomial basis (shape) functions are used for non-linear interpolation between vertices

of high-order elements [24]. Other numerical algorithms such as finite volume method

(FVM) [175] and boundary element method (BEM) [176, 177] have also been employed

in DOT, where only some specialized applications are observed. In Chapter 5, we intro-

duced a graph representation to discretize a total-variation regularization term for the

inverse problem in DOT where the object geometry is represented by an unstructured

graph, defined by vertices, edges and weights. The graph was constructed by exploring

neighborhood relationships between vertices.

In order to fully leverage the power of graph-based discretization, one must use the

nonlocal vector calculus. In the classical local vector calculus, the differential operators

are numerically evaluated using purely local information. In the nonlocal calculus, the

operators include more pixel information in the domain. For example, in image process-

ing, some well-known PDEs and variational techniques such as nonlocal image denois-

ing [142, 144] and inpainting [121, 145] have explored the advantages of nonlocal vector
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calculus [142,143]. When applied to these problems, local operators include information

from only neighbouring pixels whilst nonlocal methods include information from a wider

area and are naturally formulated in a graph-based representation instead of in terms of

the classical local difference operators.

In image processing, nonlocal methods are shown to have several advantages over

local methods, including preservation of important image features such as texture and

ability to handle unstructured geometries. It has also been observed that many PDE-

based physical processes, minimizations and computational methods, such as CT image

processing and reconstruction [178], can be generalized to be nonlocal. Therefore we

expect that such a framework may be useful for the physical modelling in DOT.

As such, we propose a nonlocal diffusion equation (NDE) as a new forward model

for DOT. The concept of differential operators under the nonlocal vector calculus [121,

142, 143, 145] is used to formulate a new forward model that can accurately simulate

light propagation in turbid media. The discretization for the NDE is performed using

a graph-based numerical method (GNM). As a result, the proposed method naturally

applies without modification to complex, unstructured DOT geometries in both two and

three dimensions. The accuracy of the proposed model is compared against the conven-

tional diffusion equation implemented by FEM and to the existing analytical solution

on both homogeneous and heterogeneous slabs. We also compare the image reconstruc-

tion accuracy of different forward models on a 2D circular model and a 3D human head

model. It should be noted that the diffusion equation is also used to model light prop-

agation in imaging techniques such as diffuse correlation spectroscopy and near infrared

spectroscopy, and our results can be applied to any technique that uses a diffusion-based

model of light propagation.

6.2 Methodology

Our approach is based on reformulating the diffusion equation (Equation (2.3)) in terms

of nonlocal differential operators. We denote ∇w(·), divw(·) and Nw(·) as the nonlocal
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gradient, the nonlocal divergence and the nonlocal normal derivative, respectively. Their

definitions are given in equations (5.2), (5.3) and (6.3). In the computational domain Ω

with boundary surface Γ and internal domain Ω′ (i.e. Ω=Ω′∪Γ and Ω′∩Γ = ∅), we simply

replace the differential operators in equation (2.3) with their nonlocal counterparts and

solve the new NDE under the framework of nonlocal vector calculus:

− divw (κ (r)∇wΦ (r)) + µa (x) Φ (r) = q0 (r) for r ∈ Ω′. (6.1)

Similarly, we reformulate the RBC with the nonlocal normal derivative and the nonlocal

gradient to give a nonlocal boundary condition (NBC):

2ANw (κ (r)∇wΦ (r)) + Φ (r) = 0 for r ∈ Γ. (6.2)

We now formulate a graph-based numerical method to discretize the NDE with its NBC.

Following the graph method introduced in Section 5.2, the computational domain Ω is

discretized using a weighted graph G = (V,E,w), including finite number of vertices V ,

edges E and similarity matrix w. The nonlocal differential operators required by the

new forward model on the graph G are nonlocal gradient, nonlocal divergence, nonlocal

normal derivative and nonlocal Laplacian. The definitions of nonlocal gradient, nonlocal

divergence and nonlocal Laplacian are already given in equations (5.2), (5.3) and (5.4).

The nonlocal normal derivative which is a nonlocal analogue of the normal derivative

operator at the boundary encountered in the classical differential vector calculus (i.e. n̂

in equation (2.5)) is defined as follows:

Definition (Nonlocal normal derivative). Given a function νi: VΓ → R and a weight

function wij: V × V → R, the nonlocal normal operator acting on νi is

Nwνi , −
N∑
j=1

(νij − νji)
√
wij : VΓ → R. (6.3)

Note that divw in equation (5.3) and Nw in equation (6.3) have similar definitions but

differ in their signs and the regions over which divw νi and Nwνi are calculated. Also note

that the mapping νi 7→ Nwνi is scalar-valued which is analogous to the local differential

divergence of a vector function in equation (2.3). Finally, with the definitions of divw
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and Nw, the nonlocal divergence theorem is
∫

Ω′
divw νdx =

∫
Γ
Nwνdx, which essentially

relates the flow (i.e. flux) of a nonlocal vector field through a boundary/surface to the

behaviour of the nonlocal vector field inside the boundary/surface.

It should be noticed from the nonlocal differential operator definitions (Equations

(5.2), (5.3), (6.3) and (5.4)) that, in a full non-local scheme, each vertex has connections

with all the vertices in V over Ω such that the constructed graph is fully connected. This

can make the computational load extremely heavy. Therefore we build the graph by using

the positions of the nodes and the connectivity between nodes in the finite element mesh

as the vertices and edges in the graph to sparsify the graph for computational efficiency.

We have learned from Chapter 5 that the graph-based nonlocal method is more stable

and robust to changes in mesh resolution. Therefore for each vertex i, we consider only

those vertices that are directly connected to the vertex i for Ni (i.e. those vertices that

share the same edge with i). With this structure and the nonlocal discrete differential

operators, we can derive the following discretized versions of equation (6.1) and (6.2):

∑
j∈Ni

(κi + κj) (Φi − Φj)wij + µaiΦi = q0i for i ∈ Ω′

2A
∑
j∈Ni

(κi + κj) (Φi − Φj)wij + Φi = 0 for i ∈ Γ

(6.4)

The nonnegative and symmetric weight function wij between two connected vertices

i and j has many possible choices. In order to reduce the number of hyper-parameters,

in this work, we use the Euclidean distance directly to define the weight function. Specif-

ically, we first obtain the similarity wij by simply using the inverse of the square of

the Euclidean distance dij between two nodes. Then we normalize the similarity using

wij/
∑

j∈Ni wij to convert the similarities into probabilities and ensure that the probabil-

ities sum to one.

We note that due to the nature of the graph representation, the implementation of

equation (6.4) is identical for a 2D or 3D geometry. It should also be noted that increasing

the number of vertices and edges will decrease the sparsity of the graph and increase the

computational burden with no change in the implementation. Under these assumptions,
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equation (6.4) can be rewritten in matrix form as

MΦ = Q. (6.5)

M is a N ×N sparse matrix and a diagonally dominant and positive definite real-value

matrix, whose entries are

Mi,j =



∑
j∈Ni

(κi + κj)wij + µai if i = j ∈ Ω′

∑
j∈Ni

(κi + κj)wij + 1
2A

if i = j ∈ Γ

−(κi + κj)wij if i 6= j and j ∈ Ni

0 otherwise

.

Q is a N×Ns sparse matrix where Ns is the number of sources and each column represents

one distributed Gaussian source.

6.3 Experimental results

Numerical experiments are conducted to quantitatively evaluate the performance of the

proposed NDE method. The NDE method with the GNM implementation will be com-

pared against the original DE with the FEM implementation. We evaluate the light

propagation performance of the proposed method in a 3D homogeneous rectangular slab

and then a heterogeneous two-layer rectangular slab where the analytical solutions are

known, followed by two dimensional (2D) and three dimensional (3D) image reconstruc-

tion examples. All the experiments are performed using Matlab 2018b on a Windows 7

platform with an Intel Xeon CPU i7-6700 (3.40 GHz) and 64 GB memory.

6.3.1 Forward modelling on a 3D rectangular-slab model

To quantitatively compare our GNM method with classical FEM approaches, we model

a rectangular-slab of size: 200×100×100 mm3, as shown in Figure 6.1. The mesh is com-

posed of 442381 nodes corresponding to 2620541 tetrahedral elements, with the average

nodal distance of 1.5 mm. For the forward model based on FEM, such a discrete struc-

ture can be directly employed for the finite element method. However, the forward model
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based on GNM requires only the vertices and edges of the mesh. It is well known that

Monte Carlo method is the gold standard for modeling photon and electron transport in

medium. However it is costly in computational time, because a large number of photons

need to be simulated so as to acquire meaningful statistics. FEM based models have

been shown to be capable of producing quantitatively correct boundary measurements

when the mesh resolution is high [66]. Therefore in this work, we evaluate the light

propagation performance of both methods (FEM and GNM) on a slab mesh in which the

average nodal distance is as small as 1.5 mm. We then compare both methods with the

well-known analytical solution. We conduct simulations using a CW source for which we

can analytically calculate the photon flux measurement on the boundary (BF) as well as

the fluence rate (FR) at each vertex.

15mm 

40mm 

1 2 3 4 5 6 

Figure 6.1: Rectangular-slab mesh with one source (red dot) and six detectors (green

dots). The distance between the source and the six detectors varies from 15 mm to 40

mm, in 5 mm increments.
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6.3.1.1 3D homogeneous rectangular-slab model

For a 3D homogeneous rectangular-slab model, the optical parameters µa and µ′s in the

slab were set to 0.01 mm−1 and 1 mm−1, respectively. The analytical solution of the BF

has the form [171]:

I (ρ) =
1

4π

[
1

µa + µ′s

(
µeff +

1

r1

)
e−µeffr1

r1
2

+
3 + 4A

3 (µa + µ′s)

(
µeff +

1

r2

)
e−µeffr2

r2
2

]
, (6.6)

where ρ represents the distance from the source, A is the internal reflection parameter for

the air-tissue interface, µeff is the effective attenuation coefficient which is
√

3µa (µa + µ′s),

r1 =
√

1/(µa + µ′s)
2 + ρ2 and r2 =

√
(3 + 4A)2/(3(µa + µ′s))

2 + ρ2.

In Figure 6.2(a), we plot the normalized photon flux at the boundary (NBF). We nor-

malize the BF to remove any constant offset resulting from the use of different propagation

models. It can be seen that the NBF from both forward models match the analytical

solution. In order to observe the difference clearly, in Figure 6.2(b), we plot the percent-

age of error between the analytical solution and the other two methods with regards to

NBF. The percentage of error is calculated by, for each source-detector channel, dividing

the absolute difference between each forward model and the analytical solution by the

analytical solution. We average the percentage errors along the six source-detector pairs.

The forward models based on FEM and GNM are both shown to reproduce the analytical

solution to within 7% on average.

We then compare the FR calculated at the vertices inside of the medium. The ana-

lytical solution of the FR is [172]:

Φ (rd, z) =
Pµ2

eff

4πµa

exp
{
−µeff

[
(z − z0)2 + r2

d

]1/2}
−µeff

[
(z − z0)2 + r2

d

]1/2
−

exp
{
−µeff

[
(z + z0)2 + r2

d

]1/2}
−µeff

[
(z + z0)2 + r2

d

]1/2
 ,

(6.7)

where P is the source power. z0 is the depth of the source which is 1/µ′s. z represents

the depth under the surface which is z = 50mm in our case. rd is the distance between a

given vertex and the source on the X-Y plane. Note that
√

(z − z0)2 + r2
d represents the

distance between a given vertex and the source.

In Figure 6.3, we compare the FR calculated using equation (6.7) and the FEM and
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(b) (a) 

Figure 6.2: The flux measurements on the boundary versus the source-detector distance.

(a): NBF; (b): Percentage of error based on NBF.

GNM methods. We choose the vertical plane across the source-detector positions as

the region of interest (ROI). For each method, in order to remove any constant offset

resulting from the use of different propagation models, we rescaled FR onto the range

[0, 1] by dividing the FR with the highest FR value in the ROI and name the rescaled FR

as NFR. This is necessary because in FEM, point sources are distributed across the nodes

belonging to the element in which the source is placed, whereas in GNM, the source is fully

attached to the nearest node. The two methods can therefore have different initialization

states for the same source. In Figure 6.3(a)-(c), we plot the NFR at each vertex in the

ROI calculated using the analytical method, and the FEM and GNM models, respectively.

We also plot its logarithm in (d)-(f), corresponding to the NFR in (a)-(c) respectively.

It can be observed that the light propagation in the medium modelled by the proposed

forward model is comparable to the one modelled by the forward model based on FEM.

In order to see the difference clearly, in Figure 6.4, we plot the descending tendency of the

NFR calculated by different propagation methods. Specifically, we plot the logarithm of

NFR along the z axis starting from the source position. As can be seen, for all methods

the fluence rate gradually drops as the light penetrates deeper. The descending tendency

of the curves derived from the both forward methods are almost parallel to the one from

the analytical solution. Therefore we can see that all the three models can generate the
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same NFR distribution.
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FEM 

GNM 

Analytical 

Figure 6.3: (a)-(c): NFR at each vertex in the ROI calculated using the analytical

solution, forward models based on FEM and the one based on GNM, respectively; (d)-

(f): logarithm of the NFRs, corresponding to (a)-(c).

6.3.1.2 3D heterogeneous rectangular-slab model

We further evaluate the light propagation performance of FEM and GNM on a hetero-

geneous model which has the same geometry as the previous example, but contains two

optically different layers. We choose the thickness of the first layer to be relevant to one

potential application of the layered model: DOT for measurements of cerebral oxygena-

tion, where the thickness of the tissues above the brain is around 10 mm. Figure 6.5

gives the 2D section of the two-layered model in which the thickness of the first layer is

7.5mm. The optical properties (µa, µ
′
s) in the two layers were set to (0.015 mm−1, 1.5

mm−1) and (0.01 mm−1, 1 mm−1), respectively. The positions of sources and detectors

are the same as that in Section 6.3.1.1. The analytical solution of the BF for two-layered
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Figure 6.4: Descending tendency of the NFR from the source to the medium along the z

axis.

medium is given in [179] and we use it as the ground truth to evaluate the accuracy of our

proposed forward model. In Figure 6.6, we first plot the normalized photon flux (NBF) at

the boundary versus the source-detector separation and then give the percentage of error

between the analytical solution and the other two methods. The forward models based

on FEM and GNM are both shown to reproduce the analytical solution to within 8.5%

on average. Similar to what we observed in the previous section, GNM has less error than

FEM when the source-detector distance is short (15mm) while the error becomes greater

when the source-detector distance is as long as 40mm. There is no significant difference

in the percentage errors when the source-detector distance is between 20mm to 35mm.

Therefore similar conclusions can be achieved from the experiments in Section 6.3.1.1

and 6.3.1.2.

6.3.1.3 Computational time

After evaluating the accuracy of the fluence rates and boundary measurements modelled

by different forward models, in Figure 6.7, we compare the computational efficiency of
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µa µ
′

s

7.5mm 

Figure 6.5: Scheme of the heterogeneous rectangular-slab model.

Figure 6.6: The flux measurements on the boundary versus the source-detector distance.

(a): NBF; (b): Percentage of error based on NBF.

FEM and GNM forward models on the 3D homogeneous rectangular-slab model. We run

each model on six mesh structures with different average nodal distance of 1.5, 2, 2.5, 3,

3.5 and 4 mm respectively. The mesh spatial resolution becomes lower when the nodal

distance is larger. We run each forward modelling process ten times and record the mean

and standard deviation of the CPU time consumed for computing one source-detector

channel. For a fair comparison, we use a direct solver with Cholesky decomposition to

solve the linear equation resulting from each forward model.

For all mesh resolutions, based on each source-detector channel, the CPU times re-

quired by the FEM model are larger than for GNM. When the mesh resolution is low (for
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example the case where the average nodal distance is 4 mm) the CPU time consumed

by the FEM approach (0.11s) is 175% larger than the time required by the GNM ap-

proach (0.04s). When the mesh resolution is high (average nodal distance is 1.5 mm),

the CPU time consumed by the FEM approach (14.6s) is only 14% longer than the GNM

approach (12.7s). It should be noticed that the CPU time plotted in Figure 6.7 is only for

one source-detector channel. GNM is 14% faster than the FEM approach when average

nodal distance is low (mesh resolution is high). For DOT which normally has thousands

of source-detector channels in some clinical scenarios, this 14% improvement at each

channel would make a significant difference in the total computational time. This result

demonstrates the computational efficiency of the proposed forward model.

Figure 6.7: CPU time (s) consumed at one source-detector channel using different forward

models. ’A’ represents the FEM approach while ’B’ represents the GNM approach. Right

figure is the zoomed-in plot of the area in the green dash line of the left figure.

6.3.2 Image reconstruction using different forward models

We now consider the recovery of the optical properties at each vertex within the medium

using both forward models. The image reconstruction process is implemented by it-

eratively refining the optical properties of the forward model until the forward model

prediction matches the boundary measurements [110]. It can be implemented by solving
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the following minimization problem:

µ∗ = arg min
µ

{
‖y −F (µ) ‖2

2 + λR (µ)
}
, (6.8)

where F is the non-linear operator induced from the forward model, R is a general regu-

larization term, and λ is a weight that determines the extent to which regularization will

be imposed on the solution µ∗. In this work, we adopt the popular quadratic Tikhonov-

type regularization for fair comparison [110]. Four quantitative evaluation metrics are

considered to evaluate the reconstruction results: the average contrast (AC) [162], peak

signal-to-noise ratio (PSNR) [162], structural similarity index (SSIM) [68] and root mean

square error (RMSE) [68]. If the reconstruction is identical to the ground truth image,

AC is equal to 1. For PSNR and SSIM, the recovered image has higher quality if higher

PSNR or SSIM values are obtained. Lower RMSE represents better reconstruction re-

sults. Randomly generated Gaussian noise is added to the amplitude of the measurement

vector to simulate real noise in a CW system. In order to reduce the randomness result-

ing from the randomly distributed Gaussian noise, we run each experiment ten times and

record the average (mean) and standard deviation (SD) of the four evaluation metrics.

6.3.2.1 Image reconstruction on a homogeneous circle model

We consider a 2D homogeneous circular geometry containing one target activation region

(Figure 6.8(b)). The model has a radius of 43mm and is composed of 1785 nodes and 3418

linear triangle elements. Sixteen source-detector fibres are placed equidistant around the

external boundary for data acquisition (Figure 6.8(a)). When one fibre as a source is

turned on, the rest are used as detectors, leading to 240 total boundary measurements.

All sources were positioned one scattering distance within the outer boundary because

the source is assumed to be spherically isotropic. The background absorption coefficient

is set to 0.01 mm−1. One 10mm radius target region is centred at (20mm, 0mm) with 0.03

mm−1 absorption coefficient. The reduced scattering coefficient is set to be homogeneous

throughout the whole computational domain with the value of 1 mm−1. 1% normally

distributed Gaussian noise was added to the amplitude of the measurement vector.
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Figure 6.8(c) shows the reconstruction results using the forward model based on FEM

(Equation (2.3)) and GNM (Equation (6.1)) on 0% and 1% noisy data respectively. By

visual inspection, it is evident that for the same level of Gaussian noise, the image recov-

ered using the GNM approach is similar to the one recovered using the FEM approach.

Figure 6.9 gives the 1D cross section of the results recovered in Figure 6.8 along the hor-

izontal line across the centre of the target (20mm, 0mm). It can be seen that the curves

resulting from different forward models have similar edge smoothing resulting from the

Tikhonov regularization and slightly different peak values. This is consistent with our

visual observation from the reconstructed images in Figure 6.8.

Figure 6.8: (a): A typical circle mesh with sixteen co-located sources and detectors; (b):

True distribution of µa; (c): Images reconstruction of µa using the forward model based

on FEM and GNM (from left to right column) on 0% (top part) and 1% (bottom part)

noisy data.

In Table 6.1, the values of the metrics AC, PSNR, SSIM and RMSE are shown to

qualitatively evaluate the results in Figure 6.8. It can be observed that when the data is
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0% noise 1% noise 

Figure 6.9: 1D cross sections of images recovered in Figure 6.8 along the horizontal line

across the centre of the target. Left to right column: 0% and 1% added Gaussian noise.

clean, GNM gives AC closer to 1, slightly higher PSNR and SSIM, and lower RMSE than

FEM. For the noisy data, GNM achieves similar AC, PSNR, SSIM and RMSE values

with the FEM approach. This experiment quantitatively validates the forward modelling

capacity of our proposed model and the consistency between these two forward models.

Table 6.1: Evaluation metrics for the recovered results using FEM and GNM on data

with 0% and 1% added noise.

0% noise 1% noise (Mean)

FEM GNM FEM GNM

AC 1.1 1.0 1.1 1.1

PSNR 54.5 55.8 54.3 54.3

SSIM 0.996 0.997 0.996 0.996

RMSE 0.0019 0.0016 0.0019 0.0019

6.3.2.2 Image reconstruction on a heterogeneous head model

We now evaluate both forward models on a physically realistic three dimensional hetero-

geneous head model. This head model is composed of three tissue layers which are scalp,
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skull and brain. The reconstruction mesh consists of 50721 nodes associated with 287547

tetrahedral elements, with the average element size 9.3mm3. Each node is assigned to

one of the three layers. Absorption coefficients assigned to each layer refer to an in vivo

study [6] at 750nm.

A large rectangular imaging array with 36 sources and 37 detectors was placed over

the back-head area (Figure 6.10(a)), allowing use of multiple sets of overlapping measure-

ments which can improve both the spatial resolution and quantitative accuracy [180]. The

source-detector (SD) separation distances ranges from 1.3 to 4.8cm, leading to 590 over-

lapping, multi-distance measurements. One anomaly with 15mm radius is simulated in

the brain (Figure 6.10(b)). In order to simulate traumatic brain injury (TBI) cases where

the cerebral tissue oxygen saturation (StO2) is normally between 50% and 75% [165] (com-

pared to 80% in healthy tissue), the absorption coefficient in the anomaly is calculated

FEM GNM 

(b) (c) (a) 

Figure 6.10: (a): Three-dimensional head mesh and distribution of the rectangular imag-

ing array with 36 sources (red dots) and 37 detectors (green dots); (b): Ground truth;

(c) Reconstruction with the forward model based on FEM and GNM, respectively.

using Beer’s law [110] with 55% StO2. In line with the current in vivo performance of the

imaging system, 0.12%, 0.15%, 0.41% and 1.42% Gaussian random noise was added to

first (13mm), second (30mm), third (40mm) and fourth (48mm) nearest neighbor mea-

surements to provide realistic data [138]. Reconstructed absorption coefficients of the
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simulated anomaly using different models are displayed in the third to fourth column of

Figure 6.10. Corresponding 2D cross section is given in the second row. The visualization

suggests that GNM can achieve better reconstruction performance with optical property

values closer to the ground truth. This may be because the simulated anomaly is close to

the outer surface and GNM gives lower errors when the source detector distance is low.

We can also see that the results by both methods are smoothed and the volume sizes of

the recovered anomaly are smaller than the ground truth. Evaluation metrics are given

in Table 6.2. Even though there is slight visual difference between the two methods ,

no obvious difference between these two reconstruction models can be observed from the

four evaluation metrics. These findings further quantitatively validate the consistency

between these two forward models.

Table 6.2: Evaluation metrics for µa on the recovered results shown in Figure 6.10.

FEM GNM

AC 0.8 0.9

PSNR 78.9 79.0

SSIM 0.99 0.99

RMSE 0.0001 0.0001

6.4 Conclusion

In this chapter, we proposed a new formulation of the forward model for DOT that is

based on the concepts of differential operators under a nonlocal vector calculus. The

discretization of the new forward model is performed using an efficient graph-based nu-

merical method. Our proposed model is shown to be able to accurately model the light

propagation in the medium and is quantitatively comparable with both analytical and

FEM forward models. Compared with the conventional forward model based on FEM,

our proposed model has the following two advantages: 1) according to the experiments

in Section 6.3.1, our proposed model is shown to be more computationally efficient with
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an average speed improvement of 30% compare to the FEM forward model due to the

simple graph-based discretization; 2) it allows identical implementation for geometries

in different dimensions thanks to the nature of the graph representation. In addition,

the proposed graph-based discretization method can also be applied to other imaging

techniques which are modelled using a diffusion equation, where has potential to improve

the computational efficiency and simplicity.
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CHAPTER 7

GRAPH-BASED FORWARD MODEL

FOR FREQUENCY-DOMAIN DIFFUSE

OPTICAL TOMOGRAPHY

7.1 Introduction

In chapters 5 and 6, we introduced graph discretization to DOT reconstruction and for-

ward modelling. Specifically we proposed a graph-based forward model and inverse model

with a total-variation regularization term for a continuous wave (CW) DOT imaging sys-

tem. In this chapter, we extend the graph-based forward model to frequency domain DOT

where intensity modulated near-infrared light is used as the excitation and the boundary

data includes both the amplitude (or intensity) and phase shift of the measured signal.

The traditional DE in frequency domain (FD) was described in equation (2.3) with the

Robin boundary condition (Equation (2.5)).

The concept of differential operators under the nonlocal vector calculus [121, 142,

143, 145] is used to formulate a new forward model that can accurately simulate light

propagation in turbid media. The discretization for the NDE is performed using a graph-

based numerical method (GNM). The nonlocal diffusion equation (NDE) in FD system

is a linear PDE. After its discretization with the GNM, the resulting equations are a

linear system, which must be solved for the numerical solution of photon fluence Φ.

Existing solvers for the linear equations are either direct or iterative. Direct solvers use
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a finite number of operations to find an exact solution to a finite set of linear equations.

Unfortunately, they are not feasible when the linear system becomes increasingly large

and complex. Instead of exactly solving linear equations, iterative solvers aim to find

an approximate solution iteratively up to a tolerance. They are expected to be more

computationally efficienct than direct solvers for large sized linear systems. In this work,

we study several representative linear solvers for the linear systems that result from the

discretization of the NDE with its nonlocal RBC for FD system. We will validate the

effectiveness of the new FD NDE model and the efficiency of different solvers through

numerical experiments.

The work on the FD system can be easily extended to the time domain (TD) cases by

replacing iω with ∂/∂t. In the TD system, tissue is irradiated by ultrashort (picosecond

order) leaser pulses, and the number of the emerging photons is recorded over time to

generate a temporal point spread function (TPSF). Using the TPSF, it is possible to

extract several important quantities from the boundary measurement, including total

intensity, transient time, variance, skew and other higher order moments. In this study,

we limit ourselves to the case of FD measurement systems. However, the proposed

approach can be generalized to TD measurements without difficulty.

7.2 Nonlocal vector calculus

7.2.1 Nonlocal diffusion equation

With the nonlocal differential operators at hand (Equations (5.2), (5.3)), one readily

rewrites the DE (Equation 2.3) in the sense of the nonlocal vector calculus. The NDE is

given by

− divw [κ (r)∇w [Φ] (r)] (r, ω) + f (r, ω) Φ (r, ω) = q0 (r, ω) for r ∈ Ω′. (7.1)

The left-hand side of the NDE can be derived by using the definitions of the nonlocal

gradient (Equation 5.2) and the nonlocal divergence (Equation 5.3). f(r, ω) in equation
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7.1 is defined in equation 2.4. The equivalent formulation of the NDE is thereby given

by∫
Ω

(κ (r) + κ (y)) (Φ (r, ω)− Φ (y, ω))w (r, y) dy + f (r) Φ (r, ω) = q0 (r, ω) for r ∈ Ω′.

(7.2)

The corresponding nonlocal RBC of the NDE can be written as

2ANw [κ (r)∇w [Φ] (r)] (r, ω) + Φ (r, ω) = 0 for r ∈ Γ. (7.3)

In accordance with the definitions of the nonlocal gradient (Equation 5.2) and the nonlocal

normal derivative (Equation 6.3), the nonlocal RBC can be derived in a similar manner

as equation 7.2

2A

∫
Ω

(κ (r) + κ (y)) (Φ (r, ω)− Φ (y, ω))w (x, y) dy + Φ (r, ω) = 0 for r ∈ Γ. (7.4)

Note that the first term on the left-hand side of equation (7.4) has the same form as that

of equation (7.2), except that there is a weighted factor 2A imposed on equation (7.4).

Both equation (7.2) and equation (7.4) are linear equations.

With the graph discretization notations explained in Chapter 6, we have the following

two simultaneous discrete equivalents of (7.2) and (7.4)
∑
j∈Ni

(κi + κj) (Φi − Φj)wi,j + fiΦi = q0i for i ∈ Ω′

2A
∑
j∈Ni

(κi + κj) (Φi − Φj)wi,j + Φi = 0 for i ∈ Γ

. (7.5)

7.2.2 Linear system

If we rewrite equations (7.5) in the matrix form, we can have the following system of

linear equations

MΦ = Q, (7.6)
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whereM is a nN × nN sparse matrix, whose entries are

Mi,j =



∑
j∈Ni

(κi + κj)wij + fi if i = j ∈ Ω′

∑
j∈Ni

(κi + κj)wij + 1
2A

if i = j ∈ Γ

−(κi + κj)wij if i 6= j and j ∈ Ni

0 otherwise

.

Q is a N × Ns sparse matrix where Ns is the number of sources and each column rep-

resents one distributed Gaussian source. Figure 7.1 visualizes the sparsity patterns of

M resulting from the 3D slab and 3D head models, as shown in Section 7.4.2 and

7.4.3, respectively. Although the structures of M are all symmetric and sparse, M is

a non-Hermitian matrix. This is because some entries on the main diagonal of M are

complex values, which makes M non-Hermitian. The linear system (Equation 7.6) for

the FD system can be solved either exactly or approximately by the methods introduced

in section 7.3.

Figure 7.1: Visualization of the sparsity pattern ofM. From left to right are the results

from the slab and head models shown in Section 7.4.2 and 7.4.3. As evident, the structures

of M are all symmetric and sparse. However, M is the non-Hermitian matrix and nz

denotes the number of non-zeros.
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7.3 Solvers for linear system

There are a large number of solvers that are able to handle equation (7.6), which can be

direct, iterative, multigrid, and domain decomposition approaches. In the following, we

shall focus on some representative direct and iterative solvers in detail.

7.3.1 Direct solvers

WhenM is small, direct methods may be the best choice. Among them is the popular

Gaussian elimination. It has two steps: forward elimination and backward substitution.

The former reduces the matrix to an upper triangular matrix (i.e. echelon form), while

the latter reduces the matrix to a reduced row echelon form. Both steps use elementary

row operations. Another popular approach is factorization techniques that rewrite the

matrix as a product of two or more matrices, each of which has a meaningful structure

that can be exploited to make more efficient algorithms. The LU factorization is suitable

for the linear system with non-symmetric matrix from the FD system.

7.3.2 Iterative solvers

When M is large, direct methods would not be a plausible solution. To overcome the

computational bottleneck of direct solvers, various approximated solvers have been pro-

posed in the literature. They can be mainly classified into three categories: iterative,

multigrid, and domain decomposition approaches. Multigrid and domain decomposition

can be very efficient regardless of the linear system size. However, they require additional

input parameters which might be hard to choose for different problems. Instead, itera-

tive solvers [181] are very generic and require little or no additional inputs from users.

Therefore, they are suitable choices to solve the linear system (Equation 7.6).

Iterative methods for the linear system with non-symmetric matrix rely on the Krylov

subspace. Krylov subspace methods include the conjugate gradient (CG) method [182],

generalized minimal residual (GMRES) method [183], biconjugate gradient stabilised
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(BiCGSTAB) method [184], etc. Among them, GMRES and BiCGSTAB suit non-

symmetric/-Hermitian system (i.e. FD system).

7.3.3 Preconditioners

The computational speed of the iterative methods in Krylov subspace can be dramatically

increased by using the preconditioning technique for the linear system (Equation 7.6).

The main idea of the technique is to apply a transformation, called the preconditioner,

to reduce the condition number of the problem and make it more suitable for iterative

solvers. By choosing a suitable preconditioner, the condition number of a linear system

can be reduced such that convergence can be achieved with fewer iterations. Common

preconditioners include the incomplete Cholesky (IC) factorization [185], incomplete LU

(ILU) factorization [185], factorized sparse approximate inverse (FSAI) [186]. In practice,

choosing the best preconditioner is usually a trial and error procedure. For simplicity’s

sake, we investigate only the ILU preconditioner in this paper, which is applied to our

non-Hermitian linear system. In summary, we present the solvers and preconditioners for

the FD system in Table 7.1.

Table 7.1: Solvers and preconditioners for the FD system.

Direct Solver Iterative Solver+Preconditioner

LU Factorization GMRES+ILU BiCGSTAB+ILU

7.4 Experimental results

Extensive numerical experiments are conducted to qualitatively and quantitatively eval-

uate the performance of the proposed NDE method and the solvers introduced in Sec-

tion 7.3. The NDE method with the GNM implementation will be compared against the

original DE approach with the FEM implementation. In all the simulated experiments

(Section 7.4.2 and 7.4.3), the modulation frequency ω in f(x) in equation (2.4) is chosen

as 100MHz and the source term q0 is set to eiε, where ε is a very small positive value.
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With such q0, we assume that the injected light has no phase shift and its amplitude

is unity. In this section, we shall first define the relative error metric used to quantify

the accuracy of the solution obtained by the iterative solvers in Table 7.1, followed by

the experiments to the proposed NDE method. We finish with an image reconstruction

example on real human brain data. All the experiments are performed using Matlab

2018b on a Windows 7 platform with an Intel Xeon CPU i7-6700 with 3.40 GHz and 64

GB memory.

7.4.1 Relative error metric

In order to compare the convergence rate of different iterative solvers and guarantee that

these solvers do not lead large errors to the final solution, the following relative error Rk
Φ

is defined to monitor the accuracy of an iterative solver over iterations

Rk
Φ =
‖Φk

itr − Φdir‖2

‖Φk
dir‖2

, (7.7)

where ‖ · ‖2 denotes the L2-norm. Φdir is the photon fluence calculated using a direct

solver, which is taken as the ground truth here. Φk
itr is the fluence computed using an

iterative solver at the kth iteration. The iterative algorithm shall converge if Rk
Φ = 0. In

practice, the iteration normally terminates when Rk
Φ drops below a preset small positive

value instead of waiting for Rk
Φ = 0. This value is set to 1 × 10−12 for all the iterative

solvers used in the following experiments.

7.4.2 3D slab model

In this section, we continue to use the homogeneous rectangular-slab mesh which is

described in section 6.3.1 to compare the light propagation modelling by different forward

models. We conduct simulations using a FD source for which we can analytically calculate

the photon flux measurement on the boundary as well as the fluence rate at each vertex.

The analytical solutions are then compared with the solutions from the forward model

based on FEM and GNM. In FD system, both the amplitude and phase data types of
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the diffusing wave are measured. The additional information from the phase permits

simultaneous determination of µa and κ.

In Figure 7.2, we plot the normalized amplitude and phase of boundary measure-

ments versus the source-detector distance. It can be seen that the amplitude and phase

calculated using both forward models match the analytical solution. In order to observe

the difference clearly, we plot the percentage of error between the analytical solution and

mean(Percentage_error_FEM)=6.7886 
mean(Percentage_error_GNM)=7.2119 
mean(abs(NBF_FEM-NBF_ANA))=6.5007e-18 
mean(abs(NBF_GNM-NBF_ANA))=2.4252e-18 

mean(Percentage_error_FEM)=4.6117 
mean(Percentage_error_GNM)=3.2754 
mean(abs(NBF_FEM-NBF_ANA))=1.3605 
mean(abs(NBF_GNM-NBF_ANA))=0.8439 

Calculated boundary data using different forward models  

Figure 7.2: The boundary measurements versus the source-detector distance. First row:

normalized amplitude and the corresponding percentage of error; second row: phase and

the corresponding percentage of error.

the other two forward models with regards to amplitude and phase, respectively. The

percentage of error is calculated by, for each source-detector channel, dividing the abso-

lute difference between each forward model and the analytical solution by the analytical

solution. We average the error percentages across all the source-detector pairs. We can
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see that on average, the percentage of error with regards to amplitude by both forward

models are around 7%. For the phase data type, the percentage of error by the GNM

is around 3% which is lower than the one by the FEM which is around 4.5%. For the

amplitude, the error by the GNM increases when the source-detector distance becomes

larger, leading to 17.5% error when the source-detector distance is 40mm. We then eval-

uate the error by using the alternative definition of the effective attenuation coefficient

µeff =
√

3µaµ′s. We can see from Figure 7.3 that the error of GNM reduces at all the

source-detector separations. Under the new effective attenuation coefficient definition,

the percentage of error by GNM is around 5% on average, while the error was 7% when

µeff =
√

3µa (µa + µ′s). The error at 40mm source-detector separation appears the largest

reduction, reducing from 17.5% to 13.5%.

Figure 7.3: Percentage of error of amplitude by GNM using two different effective attenua-

tion coefficient definitions. GNM-eff1: µeff =
√

3µa (µa + µ′s); GNM-eff2: µeff =
√

3µaµ′s.

We then compare the fluence rate calculated at each vertex inside of the medium by

using the analytical, FEM and GNM approaches, respectively. In Figure 7.4, we plot the

values on a 2D cross section which is positioned though the source-detector and parallel

to the X-Z plane. For each method, we linearly rescaled the amplitude onto the range
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Analytical FEM GNM 

Amplitude 

Log(Amplitude) 

Phase 

Figure 7.4: 2D cross sections of light propagation images by different methods. First

to third row: the amplitude, logarithm of the amplitude and the phase. First to third

column: results by the analytical, FEM and GNM approaches respectively.

[0, 1]. We can see from this figure that the overall visual results by the forward models

based on FEM and GNM are compatible.

Table 7.2: Absolute difference on the results plotted in Figure 7.4. FEM-ANA: absolute

difference between results by the FEM approach and the analytical solution; GNM-ANA:

absolute difference between results by the GNM approach and the analytical solution.

Amplitude Log(Amplitude) Phase

FEM-ANA 2.9 4300 160.1

GNM-ANA 7.2 3900 32.5

In Figure 7.5, we compare the 1D signal profiles describing the light propagation by

the FEM and GNM approaches, as shown in Figure 7.4, from the source position and

along the Z axis. For all methods the amplitude gradually drops and the phase gradually

increases as the light penetrates deeper. It can be seen from the zoomed-in images (right
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• D:\MATLAB\Non local\3DNLMultipleWV\forward\results\comparision with different mesh resolution\NEW 
DATA\mesh_440k\results_440k\FD 

Calculated fluence rate 
using different forward 
models  

Figure 7.5: Dependency of the fluence rate as a function of distance from the source along

the z axis. Right column gives the zoomed-in detail of the grey rectangle area on the left

corresponding image.

column in Figure 7.5) that the amplitude calculated using the forward model based on

GNM is closer to the analytical solution when the light penetrates deeper. The difference

of the amplitudes become more evident after taking their logarithm. For the phase data,
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the curves derived from both forward methods are almost parallel to the one from the

analytical solution and the one by the GNM approach is much closer to the analytical

solution. This finding can also be validated from table 7.1 in which the absolute difference

between the two forward models and the analytical solution on the results plotted in

Figure 7.4 are given.

7.4.3 3D head model

In order to illustrate the light propagation performance of different methods on a more

realistic model, in this section, we use the heterogeneous 3D head model which we de-

scribed in section 4.2.5.4. Five tissue types are included: scalp, scull, cerebrospinal fluid

(CSF), gray matter and white matter. The optical properties for each segmented tissue

region at 750nm wavelength are taken from Eggebrecht et al. [6] and listed in Table 4.2 .

First, in Table 7.3, we compare the CPU time consumed in building the sparse matrix

M for the linear equation (7.6) using both FEM and GNM approaches. Five head meshes

are created with different mesh resolutions where the number of mesh nodes is 500k, 400k,

270k, 140k and 58k respectively. In order to reduce any instability, we run each process at

each setting ten times and record the mean consumed time and standard deviation (Mean

± Standard deviation). We can see that the time consumed by the GNM approach is ten

times lower than the one consumed by the FEM approach. The reason is that the FEM

approach needs to go through each element inside of the computational domain where

the number of elements is much larger than the number of nodes and then to calculate

the basis function at the corresponding nodes in each element. However GNM just needs

to go though each vertex and find its connectivity with the surrounding vertices.

Next we take the head mesh with 58886 nodes as an example, to evaluate the light

propagation performance by different forward models, as well as the computational ef-

ficiency of each linear solver. As shown in Figure 7.6, we place one light source on the

surface of the right side of the forehead. Both the GNM and FEM approaches are im-

plemented on the mesh, which results in two 58886 × 58886 sparse linear systems. Due
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Table 7.3: Time consumption (sec) of building the sparse matrixM for the linear equation

(7.6).

500k 400k 270k 140k 58k

FEM 14.9 ± 0.2 11.7 ± 0.1 7.3 ± 0.1 3.6 ± 0.1 1.2 ± 0.1

GNM 1.6 ± 0.0 1.3 ± 0.0 0.8 ± 0.0 0.4 ± 0.0 0.1 ± 0.0

to the large system size, the direct solver becomes less efficient than the iterative solvers.

Note that because different solvers lead to almost identical results, we only present the

light propagation results by the BiCGSTAB+ILU solver in Figure 7.6. One can ob-

serve that the qualitative results by the FEM and GNM approaches are similar. When

the light propagates away from the source, the amplitude is decreasing while the phase

is increasing. These results demonstrate the consistency between FEM and GNM. In

Figure 7.7, we present the plots of convergence rate (1st column) and the boxplots of

computational time (2nd column) for the solvers given in Table 7.1. We define a solver

converges if its relative residual defined in equation (7.7) is smaller than 1× 10−12. It is

clear from the results in the first column that preconditioned solvers converge faster than

their non-preconditioned counterparts, and that BiCGSTAB+ILU is the solver with the

fastest convergence rate (less than 20 iterations). In addition, the iterative solvers for

the FEM approach converge faster than those for the GNM approach, but they are more

computationally expensive as confirmed from the boxplots in the second column and Ta-

ble 7.3. Comparing to the FEM approach, GNM approach leads to 12%, 47%, 50% and

68% computational improvement with the LU factorization, GMRES+ILU, BiCGSTAB

and BiCGSTAB+ILU linear solvers respectively.

7.4.4 Image reconstruction

In the last section, we have evaluated the graph-based forward model on the continuous

wave simulations and promising results have been achieved. In this section, we consider

the reconstruction performance by different strategies on real experimental data which is
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FEM 

GNM 

Figure 7.6: Comparison of the light propagation results obtained by FEM and GNM

approaches through the FD system, as shown in the first and last two rows, respectively;

Row 2 and 4 represent the corresponding clipped results in Row 1 and 3; Column 1-3

show the amplitude, logarithm of amplitude and phase of photon fluence Φ, respectively.

measured over the visual cortex of a human subject. The frequency domain measuring

device is a functional brain imaging system using infrared photons (IMAGENTTM, ISS

Inc., Illinois). This system is composed of 32 sources and 30 detectors. The sources are

modulated at 140 MHz and coupled to laser diodes emitting at 690 nm and 830 nm. The

subject was recruited from the University of Birmingham, contacted via word of mouth

and required to sign informed consent forms prior to participating. The subject was

seated facing an adjustable screen while the imaging pad was attached over the occipital

cortex with hook and loop strapping. Visual stimuli consisted of rotating logarithmic
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Figure 7.7: Comparison of convergence rate and computational time of different solvers

using the FD system. First column: the plots of relative residual versus number of itera-

tions; Second column: the boxplots of computational time versus different solvers; First

row gives the plots by the FEM approach while the second row by the GNM approach.

checkerboards, reversing intensity at 10 Hz, on a 50% intensity gray background. The

grids rotate around a white cross located at the center of the visual field. Each rotation

completed in 36 seconds and 10 rotations occurred in the run. Gray screens are presented

for 30 seconds before and after the total scanning session as the baseline periods, resulting

in 7 minutes total scanning session time.

The imaging cap consisted of 24 source positions (two NIR wavelengths 690 nm and

830 nm at each position) and 28 detectors interlaced in a high-density array (Figure 7.8).

First to fourth nearest neighbour (13, 30, 39, 48 mm respectively) optode pairs were used,

giving a total of 348 total possible measurements, at a frame rate of 40 Hz.
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Figure 7.8: High-density imaging grid with the distribution of 24 sources (red) and 28

detectors (blue).

The measurement amplitude was converted to log-ratio to allow for the recovery of

change of optical properties. High-pass filter (0.01Hz cutoff) and low-pass filter (0.09Hz

cutoff) are used to remove the unwanted pulse signals. The channels which standard

deviation of the log-ratio of the data is larger than 7.5% were removed to alleviate the

effect of channels with high noise. In Figure 7.9, we plot the fourier transforms of the time

trace for one first nearest source-detector pair. From the amplitude data (left column),

the peak due to the stimuli (∼0.028Hz) is not obvious because the low separation only

samples the superficial tissues. However for the phase data, the peak due to the stimuli is

evident even in the nearest separation (13mm), which illustrates that the phase data can

sample the deeper brain tissue. The peaks due to breathing and cardiac pulse are much

smaller than the one due to the visual stimuli. Therefore the phase data is less sensitive

to signal contamination from the superficial tissues. This finding is consistent with the

findings of Doulgerakis et al. [187] who showed that the FD measurements can be used

to resolve activations in deeper regions. We remove a global signal derived from first-

nearest-neighbor measurements from all measurement amplitudes by linear regression.

After down-sampling to 1 Hz, and block averaged in 10 blocks of 72 s each, the time

traces were used for image reconstruction.
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NN1

• So only do regression on amplitude
Figure 7.9: Fourier transforms of the time traces obtained using the FD system on the

first nearest neighbour separation. The y-axis shows power (arbitrary units) and x-axis

depicts frequency (Hz). First row: 690 nm; second row: 830 nm. Left column (red

plots) correspond to amplitude data, whereas the right column (blue plots) correspond

to Phase data. Areas denoted by pink, green and yellow dashed lines represent the

rotation frequency of the stimulus wedge (∼0.028Hz), Breathing (∼0.1 Hz) and Cardiac

pulse (∼1Hz).

For reconstruction, a five-layer, hemispheric head model was used with around 70k

discretized nodes (Figure 7.8). Differential measurements which are measured at two

near-infrared wavelengths can be used to recover the chromophore concentration changes

(δ HbO2 and δHb). Therefore in this work, we calculated the absorption coefficient at

each wavelength and then unmix them spectrally to recover δ HbO2 and δHb respec-

tively. The image recovery process for functional imaging follows Doulgerakis et al. [187]

but under two different discretization strategies: FEM and GNM. Comparing with the

whole medium, the regions of activation are sparse so the vector corresponding to the

difference in the chromophore concentrations relative to the background is sparse with

only a few non-zero elements. Therefore in this work, instead of using the total variation

regularization, we use the L1-norm based regularization which is a pure sparsity preserv-
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ing regularization [162] to recover the activation. We also compare it with the results by

Tikhonov regularization [187] which is popular used in functional imaging reconstruction.

Figure 7.10 and Figure 7.11 give the reconstruction results under FEM and GNM

discretization strategy respectively. Color maps in the first, third rows were normalized

within each frame to positive maximum contrast and the negative values were set as zero.

No further thresholding is applied on the color map. It can be seen that more localized

activation can be recovered by the L1-norm regularization under GNM in response to each

presentation of the stimulus. It further verifies the superior performance of the proposed

discretization and regularization methods on real experimental data.

7.5 Conclusion

In this work, by using the concepts of differential operators in the framework of the nonlo-

cal vector calculus, we proposed the nonlocal diffusion equation (NDE) in the frequency

domain as a new forward model to accurately describe light propagation in biological

tissues. The discretization of the NDE was performed using an effective and efficient

algorithm based on the graph scheme, and the resulting linear systems were solved by

various linear solvers. Extensive numerical experiments on simulated and realistic meshes

validated the performance of the proposed approaches for modelling light transmission

through different complex geometries in either 2D or 3D space. The contributions can be

summarized as follows:

• We proposed a new light migration model by applying the nonlocal differential

operators to the original diffusion equation (DE) and its Robin boundary condition

(RBC). To the best of our knowledge, this is the first time that the nonlocal vector

calculus is used for the frequency domain forward modelling in the area of diffuse

optical tomography (DOT) imaging.

• We developed the graph-based numerical method (GNM) to discretize the proposed

NDE with its nonlocal RBC. Such numerical algorithm has several advantages over
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the finite element method (FEM) for the DE with its local RBC, including its

capability of easily processing complex geometric shapes of objects, of being more

computationally efficient, and of allowing identical implementation for both 2D and

3D geometries.

• We studied various linear solvers so as to find efficient ones for the linear systems re-

sulted from applying the GNM to the NDE for the FD DOT measurement systems.

We have found that the iterative solvers from Krylov subspace are generally more

efficient than other solvers. Furthermore, the computational speed of the Krylov

subspace methods can be drastically increased via the preconditioning technique.

For the frequency domain (FD) measurement system, the experimental results show

that the biconjugate gradient stabilised method with incomplete LU preconditioner

(BiCGSTAB+ILU) is the fastest solver in terms of both computational time and

convergence rate.

• We compared our NDE model implemented with the GNM with the original DE

model implemented with the FEM, and validated via extensive experiments that the

proposed NDE method is compatible to the DE approach in terms of performance

of both light propagation and image reconstruction. However, our model is more

efficient.

Ongoing research includes further boosting the computational efficiency of the pro-

posed NDE method by investigating more advanced preconditioners and using graphics

processing unit (GPU) programming and applying the NDE and its GNM to the time

domain measurement system.
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FEMFigure 7.10: Image recovery under FEM discretization strategy. First two rows represent

the results using Tikhonov regularization while the last two rows represent the results

using L1-norm based regularization. In each group, first row: response of δHbO2 at three

time points (10s, 20s and 35s); second row: time trace of hemoglobin concentrations in

a single voxel (δHbO2, red; δHb, green; δHbT, blue, where δHbT = δHbO2 + δHb) over

72s.
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Figure 7.11: Image recovery under GNM discretization strategy. First two rows represent

the results using Tikhonov regularization while the last two rows represent the results

using L1-norm based regularization. In each group, first row: response of δHbO2 at three

time points (10s, 20s and 35s); second row: time trace of hemoglobin concentrations in a

single voxel (δHbO2, red; δHb, green; δHbT, blue, where δHbT = δHbO2 + δHb) along

72s.
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CHAPTER 8

SUMMARY AND FUTURE WORK

8.1 Summary

In this thesis, we proposed advanced regularization and discretization methods for mod-

eling light propagation and image reconstruction in diffuse optical tomography (DOT).

DOT is a non-invasive and non-ionising imaging technology, in which the near-infrared

light with wavelength from 650−900nm is injected into the object to be imaged (e.g.

breast, head and mouse). The light, which propagates through the internal tissue and

emerges at the surface of the object, is then measured and utilized to reconstruct the

internal distribution of tissue’s optical properties. The image recovery process in DOT is

divided into two steps: forward modeling and inverse reconstruction. The forward model

is a fundamental pillar for such reconstruction, because it must be able to accurately

model the main interactions (i.e. absorption and scattering) between light and the object

so as to recover internal properties faithfully. Due to limited number of measurements,

the inverse reconstruction process is ill-posed and regularization methods are needed to

yield the physiologically and anatomically plausible reconstructed solutions.

This thesis focused on developing both forward modeling methods and advanced reg-

ularization methods to improve the accuracy DOT image reconstruction. For forward

and inverse models, we also proposed new discretization methods for accurate implemen-

tations. Of note, the methods proposed are not limited to DOT only. Our proposed dis-

cretization methods can be further applied to any technique that uses a diffusion-based

165



model of light propagation, such as diffuse correlation spectroscopy and near infrared

spectroscopy. The proposed regularization methods can be applied to other imaging

techniques to constrain the reconstruction process to get plausible solutions.

This thesis consists of four main distinguishable parts related to the publications that

have been produced by the author as a part of the PhD studies [162, 188–190]. In the

following, we summarize the thesis by highlighting our contributions which have been

introduced in more details in Chapters 4, 5, 6 and 7.

• Chapter 2 introduces diffuse optical tomography, including detailed descriptions

of modelling of light propagation (forward model) and image reconstruction (in-

verse model). Stochastic or deterministic approximate light propagation models

for simplifying the radiative transfer equation are discussed in detail. This chapter

also discussed the linear approach and nonlinear iterative approach for the inverse

model.

• Chapter 3 describes how the 2D and 3D partial differential equations in diffuse op-

tical tomography imaging reconstruction can be numerically solved by the Galerkin

finite element method.

• Chapter 4 reviews the regularization methods proposed in the DOT community and

proposes L1-norm regularization based nonlinear DOT reconstruction for spectrally

constrained diffuse optical tomography. It is the first time that L1-norm regulariza-

tion methods and spectrally constrained DOT methods have been used together.

It gives detailed descriptions of how this can be done, and performed systematic

comparisons of the performance and efficiency of the different methods on both sim-

ulated and real data. Compared to the L2-norm, L1-norm regularization is proved

to reduce crosstalk and maintain image contrast by inducing sparsity. Among all

the algorithms to solve the proposed model, FISTA performs marginally better than

ADMM and IRLS by the measures of AC, PC, and PSNR, and is more than 10

times faster than ADMM and IRLS as it avoids direct matrix inversion and large
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matrix-matrix multiplications.

• Chapter 5 introduces the gradient differential operator to alleviate the over-sparsifying

effect induced from the pure sparsity preserving regularizations on the non-sparse

images. Two regularizations are proposed: Tikhonov regularizationwith a spatial

gradient operator and Total variation (TV) regularization, which uses the L1-norm

of the gradient of the solution. Graph-based numerical methods are proposed in

this chapter to model unstructured geometries of DOT objects. Results show that

TV regularization can alleviate the over-smoothing effect of Tikhonov regulariza-

tion and localize the anomaly by inducing sparsity of the gradient of the solution.

Comparing with the popular used finite element-based numerical method, the in-

verse model implemented under the graph-based numerical method is shown to be

more stable and robust to changes in mesh resolution. From the work in section

5.4.5.3.1, the performance of FETV improves with an increase of mesh resolution:

by 25% in localization error, 26% in average contrast and 11% in PSNR, while the

performance of GTV has relatively fewer difference with different mesh resolutions.

• Chapter 6 applies the proposed graph-based numerical method to the forward model

in the continuous-wave(CW) DOT. A new formulation of the forward model for CW

DOT is proposed and it is based on the concepts of differential operators under a

nonlocal vector calculus. The proposed model is shown to be able to accurately

model the light propagation in the medium and is quantitatively comparable with

both analytical and FEM forward models. It is more computational efficient and al-

lows identical implementation for geometries in any dimension. This computational

improvement is validated in section 6.3.1. Our proposed model is shown to be more

computationally efficient with an average speed improvement of 30% compare to

the FEM forward model.

• Chapter 7 proposed the nonlocal diffusion equation (NDE) in frequency domain

as a new forward model to accurately describe light propagation in biological tis-
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sues. The discretization of the NDE was performed using an effective and efficient

algorithm based on the graph scheme, and the resulting linear systems were tack-

led by various linear solvers. Extensive numerical experiments on simulated and

realistic meshes validated the performance of the proposed approaches for mod-

elling light transmission through different complex geometries in either 2D or 3D

space. The biconjugate gradient stabilised method with incomplete LU precon-

ditioner (BiCGSTAB+ILU) is proved to be the fastest solver in terms of both

computational time and convergence rate. Comparing to the FEM approach, GNM

approach leads to 12%, 47%, 50% and 68% computational improvement with the

LU factorization, GMRES+ILU, BiCGSTAB and BiCGSTAB+ILU linear solvers

respectively.

8.2 Future work

Although the methods proposed in the thesis have achieved significant success, there is

still room for improvement of these methods. For example, (1) for a large-scale forward

model (e.g. from a 3D head mesh) discretized using either the FEM and the graph

method, we end up with a large linear system, for which it is very time consuming to solve

it numerically. (2) In the inverse model, for each subject the smoothness hyper-parameter

λ needs to be tuned carefully to deliver a precise reconstruction. While a too small

λ leads to an irregular and non-smooth reconstruction, setting it too large reduces the

reconstruction magnitude and therefore loses the ability to modeling anatomical structure

accurately. (3) The hand-crafted regularization term itself is another hyper-parameter,

which is usually selected based on the assumption about the solution, such as piecewise

constant, piecewise smooth, etc. However, existing assumptions may be too simple to

capture complex changes of image content associated with biological tissues. (4) The

inverse model is nonlinear and therefore needs to be optimized iteratively, which is a very

time-consuming process especially for high-dimensional data inputs.

Recently, many deep learning approaches have been very popular for image classifi-
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cation and recognition. Good feature extractors designed by hand normally (such as the

regularizations proposed in the thesis) require a considerable amount of engineering skill

and domain expertise. This however can be avoided if good features can be learned auto-

matically using a general-purpose learning procedure. This is why deep learning starts to

play an important role in medical image analysis by automatically learning morphological

and/or patterns from images without using man craft features. Deep learning methods

have achieved state-of-the-art performance across various medical image processing and

reconstruction applications. Breakthrough improvements were achieved by using a large

data set of medical images from which deep models can find more generalised features

and thus lead to improved performance. In addition, due to the powerful GPU, deep

learning approaches are much faster. Our next future work therefore will focus on im-

age reconstruction using deep learning techniques, with the aim to overcome the existing

limitations mentioned above.
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