3,051 research outputs found

    Genetic algorithms with memory- and elitism-based immigrants in dynamic environments

    Get PDF
    Copyright @ 2008 by the Massachusetts Institute of TechnologyIn recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt genetic algorithms quickly to new environments by reusing historical information. This paper investigates a hybrid memory and random immigrants scheme, called memory-based immigrants, and a hybrid elitism and random immigrants scheme, called elitism-based immigrants, for genetic algorithms in dynamic environments. In these schemes, the best individual from memory or the elite from the previous generation is retrieved as the base to create immigrants into the population by mutation. This way, not only can diversity be maintained but it is done more efficiently to adapt genetic algorithms to the current environment. Based on a series of systematically constructed dynamic problems, experiments are carried out to compare genetic algorithms with the memory-based and elitism-based immigrants schemes against genetic algorithms with traditional memory and random immigrants schemes and a hybrid memory and multi-population scheme. The sensitivity analysis regarding some key parameters is also carried out. Experimental results show that the memory-based and elitism-based immigrants schemes efficiently improve the performance of genetic algorithms in dynamic environments.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom under Grant EP/E060722/01

    Population-based incremental learning with associative memory for dynamic environments

    Get PDF
    Copyright © 2007 IEEE. Reprinted from IEEE Transactions on Evolutionary Computation. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In recent years there has been a growing interest in studying evolutionary algorithms (EAs) for dynamic optimization problems (DOPs) due to its importance in real world applications. Several approaches, such as the memory and multiple population schemes, have been developed for EAs to address dynamic problems. This paper investigates the application of the memory scheme for population-based incremental learning (PBIL) algorithms, a class of EAs, for DOPss. A PBIL-specific associative memory scheme, which stores best solutions as well as corresponding environmental information in the memory, is investigated to improve its adaptability in dynamic environments. In this paper, the interactions between the memory scheme and random immigrants, multi-population, and restart schemes for PBILs in dynamic environments are investigated. In order to better test the performance of memory schemes for PBILs and other EAs in dynamic environments, this paper also proposes a dynamic environment generator that can systematically generate dynamic environments of different difficulty with respect to memory schemes. Using this generator a series of dynamic environments are generated and experiments are carried out to compare the performance of investigated algorithms. The experimental results show that the proposed memory scheme is efficient for PBILs in dynamic environments and also indicate that different interactions exist between the memory scheme and random immigrants, multi-population schemes for PBILs in different dynamic environments

    Memory-based immigrants for genetic algorithms in dynamic environments

    Get PDF
    Copyright @ 2005 ACMInvestigating and enhancing the performance of genetic algorithms in dynamic environments have attracted a growing interest from the community of genetic algorithms in recent years. This trend reflects the fact that many real world problems are actually dynamic, which poses serious challenge to traditional genetic algorithms. Several approaches have been developed into genetic algorithms for dynamic optimization problems. Among these approches, random immigrants and memory schemes have shown to be beneficial in many dynamic problems. This paper proposes a hybrid memory and random immigrants scheme for genetic algorithms in dynamic environments. In the hybrid scheme, the best solution in memory is retrieved and acts as the base to create random immigrants to replace the worst individuals in the population. In this way, not only can diversity be maintained but it is done more efficiently to adapt the genetic algorithm to the changing environment. The experimental results based on a series of systematically constructed dynamic problems show that the proposed memory based immigrants scheme efficiently improves the performance of genetic algorithms in dynamic environments

    Evolutionary computation in dynamic and uncertain environments

    Get PDF
    This book can be accessed from the link below - Copyright @ 2007 Springer-Verla

    Genetic algorithms with immigrants and memory schemes for dynamic shortest path routing problems in mobile ad hoc networks

    Get PDF
    This article is posted here with permission of IEEE - Copyright @ 2010 IEEEIn recent years, the static shortest path (SP) problem has been well addressed using intelligent optimization techniques, e.g., artificial neural networks, genetic algorithms (GAs), particle swarm optimization, etc. However, with the advancement in wireless communications, more and more mobile wireless networks appear, e.g., mobile networks [mobile ad hoc networks (MANETs)], wireless sensor networks, etc. One of the most important characteristics in mobile wireless networks is the topology dynamics, i.e., the network topology changes over time due to energy conservation or node mobility. Therefore, the SP routing problem in MANETs turns out to be a dynamic optimization problem. In this paper, we propose to use GAs with immigrants and memory schemes to solve the dynamic SP routing problem in MANETs. We consider MANETs as target systems because they represent new-generation wireless networks. The experimental results show that these immigrants and memory-based GAs can quickly adapt to environmental changes (i.e., the network topology changes) and produce high-quality solutions after each change.This work was supported by the Engineering and Physical Sciences Research Council of U.K. underGrant EP/E060722/

    Ant colony optimization with immigrants schemes in dynamic environments

    Get PDF
    This is the post-print version of this article. The official published version can be accessed from the link below - Copyright @ 2010 Springer-VerlagIn recent years, there has been a growing interest in addressing dynamic optimization problems (DOPs) using evolutionary algorithms (EAs). Several approaches have been developed for EAs to increase the diversity of the population and enhance the performance of the algorithm for DOPs. Among these approaches, immigrants schemes have been found beneficial for EAs for DOPs. In this paper, random, elitismbased, and hybrid immigrants schemes are applied to ant colony optimization (ACO) for the dynamic travelling salesman problem (DTSP). The experimental results show that random immigrants are beneficial for ACO in fast changing environments, whereas elitism-based immigrants are beneficial for ACO in slowly changing environments. The ACO algorithm with hybrid immigrants scheme combines the merits of the random and elitism-based immigrants schemes. Moreover, the results show that the proposed algorithms outperform compared approaches in almost all dynamic test cases and that immigrant schemes efficiently improve the performance of ACO algorithms in DTSP.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1

    Memory-based immigrants for ant colony optimization in changing environments

    Get PDF
    Copyright @ 2011 SpringerAnt colony optimization (ACO) algorithms have proved that they can adapt to dynamic optimization problems (DOPs) when they are enhanced to maintain diversity. DOPs are important due to their similarities to many real-world applications. Several approaches have been integrated with ACO to improve their performance in DOPs, where memory-based approaches and immigrants schemes have shown good results on different variations of the dynamic travelling salesman problem (DTSP). In this paper, we consider a novel variation of DTSP where traffic jams occur in a cyclic pattern. This means that old environments will re-appear in the future. A hybrid method that combines memory and immigrants schemes is proposed into ACO to address this kind of DTSPs. The memory-based approach is useful to directly move the population to promising areas in the new environment by using solutions stored in the memory. The immigrants scheme is useful to maintain the diversity within the population. The experimental results based on different test cases of the DTSP show that the memory based immigrants scheme enhances the performance of ACO in cyclic dynamic environments.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/2

    Genetic algorithms with elitism-based immigrants for dynamic load balanced clustering problem in mobile ad hoc networks

    Get PDF
    This article is posted here with permission of IEEE - Copyright @ 2011 IEEEIn recent years, the static shortest path (SP) problem has been well addressed using intelligent optimization techniques, e.g., artificial neural networks, genetic algorithms (GAs), particle swarm optimization, etc. However, with the advancement in wireless communications, more and more mobile wireless networks appear, e.g., mobile networks [mobile ad hoc networks (MANETs)], wireless sensor networks, etc. One of the most important characteristics in mobile wireless networks is the topology dynamics, i.e., the network topology changes over time due to energy conservation or node mobility. Therefore, the SP routing problem in MANETs turns out to be a dynamic optimization problem. In this paper, we propose to use GAs with immigrants and memory schemes to solve the dynamic SP routing problem in MANETs. We consider MANETs as target systems because they represent new-generation wireless networks. The experimental results show that these immigrants and memory-based GAs can quickly adapt to environmental changes (i.e., the network topology changes) and produce high-quality solutions after each change.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1 and Grant EP/E060722/2

    Hyper-selection in dynamic environments

    Get PDF
    This article is posted here with permission from IEEE - Copyright @ 2008 IEEEIn recent years, several approaches have been developed for genetic algorithms to enhance their performance in dynamic environments. Among these approaches, one kind of methods is to adapt genetic operators in order for genetic algorithms to adapt to a new environment. This paper investigates the effect of the selection pressure on the performance of genetic algorithms in dynamic environments. A hyper-selection scheme is proposed for genetic algorithms, where the selection pressure is temporarily raised whenever the environment changes. The hyper-selection scheme can be combined with other approaches for genetic algorithms in dynamic environments. Experiments are carried out to investigate the effect of different selection pressures on the performance of genetic algorithms in dynamic environments and to investigate the effect of the hyper-selection scheme on the performance of genetic algorithms in combination with several other schemes in dynamic environments. The experimental results indicate that the effect of the hyper-selection scheme depends on the problem under consideration and other schemes combined in genetic algorithms.This work was supported by UK EPSRC under Grant No. EP/E060722/1 and Brazil FAPESP under Grant Proc. 04/04289-6
    corecore