5,528 research outputs found

    An extremal problem on crossing vectors

    Full text link
    For positive integers ww and kk, two vectors AA and BB from Zw\mathbb{Z}^w are called kk-crossing if there are two coordinates ii and jj such that A[i]B[i]kA[i]-B[i]\geq k and B[j]A[j]kB[j]-A[j]\geq k. What is the maximum size of a family of pairwise 11-crossing and pairwise non-kk-crossing vectors in Zw\mathbb{Z}^w? We state a conjecture that the answer is kw1k^{w-1}. We prove the conjecture for w3w\leq 3 and provide weaker upper bounds for w4w\geq 4. Also, for all kk and ww, we construct several quite different examples of families of desired size kw1k^{w-1}. This research is motivated by a natural question concerning the width of the lattice of maximum antichains of a partially ordered set.Comment: Corrections and improvement

    Solving the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents

    Get PDF
    We use the conformal bootstrap to perform a precision study of the operator spectrum of the critical 3d Ising model. We conjecture that the 3d Ising spectrum minimizes the central charge c in the space of unitary solutions to crossing symmetry. Because extremal solutions to crossing symmetry are uniquely determined, we are able to precisely reconstruct the first several Z2-even operator dimensions and their OPE coefficients. We observe that a sharp transition in the operator spectrum occurs at the 3d Ising dimension Delta_sigma=0.518154(15), and find strong numerical evidence that operators decouple from the spectrum as one approaches the 3d Ising point. We compare this behavior to the analogous situation in 2d, where the disappearance of operators can be understood in terms of degenerate Virasoro representations.Comment: 55 pages, many figures; v2 - refs and comments added, to appear in a special issue of J.Stat.Phys. in memory of Kenneth Wilso

    Perturbative and Non-Perturbative Aspects of N=8 Supergravity

    Full text link
    Some aspects of quantum properties of N=8 supergravity in four dimensions are discussed for non-practitioners. At perturbative level, they include the Weyl trace anomaly as well as composite duality anomalies, the latter being relevant for perturbative finiteness. At non-perturbative level, we briefly review some facts about extremal black holes, their Bekenstein-Hawking entropy and attractor flows for single- and two-centered solutions.Comment: 1+18 pages. Contribution to the Proceedings of the International School of Subnuclear Physics, 48th Course: "What is Known and Unexpected at LHC" Erice, Italy, Aug 29 - Sep 7 201

    Bending branes for DCFT in two dimensions

    Full text link
    We consider a holographic dual model for defect conformal field theories (DCFT) in which we include the backreaction of the defect on the dual geometry. In particular, we consider a dual gravity system in which a two-dimensional hypersurface with matter fields, the brane, is embedded into a three-dimensional asymptotically Anti-de Sitter spacetime. Motivated by recent proposals for holographic duals of boundary conformal field theories (BCFT), we assume the geometry of the brane to be determined by Israel junction conditions. We show that these conditions are intimately related to the energy conditions for the brane matter fields, and explain how these energy conditions constrain the possible geometries. This has implications for the holographic entanglement entropy in particular. Moreover, we give exact analytical solutions for the case where the matter content of the brane is a perfect fluid, which in a particular case corresponds to a free massless scalar field. Finally, we describe how our results may be particularly useful for extending a recent proposal for a holographic Kondo model.Comment: 35 pages + appendices, 12 figures, v2: added references and a paragraph on negative tension solutions, v3: updated reference

    X-code: MDS array codes with optimal encoding

    Get PDF
    We present a new class of MDS (maximum distance separable) array codes of size n×n (n a prime number) called X-code. The X-codes are of minimum column distance 3, namely, they can correct either one column error or two column erasures. The key novelty in X-code is that it has a simple geometrical construction which achieves encoding/update optimal complexity, i.e., a change of any single information bit affects exactly two parity bits. The key idea in our constructions is that all parity symbols are placed in rows rather than columns

    Holographic Holes and Differential Entropy

    Full text link
    Recently, it has been shown by Balasubramanian et al. and Myers et al. that the Bekenstein-Hawking entropy formula evaluated on certain closed surfaces in the bulk of a holographic spacetime has an interpretation as the differential entropy of a particular family of intervals (or strips) in the boundary theory. We first extend this construction to bulk surfaces which vary in time. We then give a general proof of the equality between the gravitational entropy and the differential entropy. This proof applies to a broad class of holographic backgrounds possessing a generalized planar symmetry and to certain classes of higher-curvature theories of gravity. To apply this theorem, one can begin with a bulk surface and determine the appropriate family of boundary intervals by considering extremal surfaces tangent to the given surface in the bulk. Alternatively, one can begin with a family of boundary intervals; as we show, the differential entropy then equals the gravitational entropy of a bulk surface that emerges from the intersection of the neighboring entanglement wedges, in a continuum limit.Comment: 62 pages; v2: minor improvements to presentation, references adde

    Energy of a knot: variational principles; Mm-energy

    Get PDF
    Let EfE_f be the energy of some knot τ\tau for any ff from certain class of functions. The problem is to find knots with extremal values of energy. We discuss the notion of the locally perturbed knot. The knot circle minimizes some energies EfE_f and maximizes some others. So, is there any energy such that the circle neither maximizes nor minimizes this energy? Recently it was shown (A.Abrams, J.Cantarella, J.H.G.Fu, M.Ghomu, and R.Howard) that the answer is positive. We prove that nevertheless the circle is a locally extremal knot, i.e. the circle satisfies certain variational equations. We also find these equations. Finally we represent Mm-energy for a knot. The definition of this energy differs with one regarded above. Nevertheless besides its own properties Mm-energy has some similar with M\"obius energy properties.Comment: 17 pages, 6 Postscript figure
    corecore