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1. Introduction

Let S1 = R/(2πZ) be the circle and τ : S1 −→ R
3 be a smooth knot. We will assume

that τ(t) is the arc length parametrization. Denote by D(t1, t2) the length of the minimal
subarc between t1 and t2 on the circle. Let | ∗ | denote the absolute value of vectors in R

3.
Following [1], we denote by

E(τ) = Ef(τ) =

∫∫

S1×S1

f(|τ(t1)− τ(t2)|, D(t1, t2))dt1dt2

the energy of the knot τ , where f(ρ, α) satisfies the following conditions:
1) f(ρ, α) ∈ C1,1(U), where U = {(ρ, α)|0 < ρ ≤ α, α ≤ π};
2) there exist the following limits:

lim
(ρ,α)∈U

ρ→0,ρ/α→1

f(ρ, α), lim
(ρ,α)∈U

ρ→0,ρ/α→1

∂f(ρ, α)

∂ρ
, lim

(ρ,α)∈U
ρ→0,ρ/α→1

∂f(ρ, α)

∂ρ
.

Almost all energies are not homothety invariant, so we will consider only knots of length
2π.

The energy of a knot is not an invariant of the topological class of this knot. If we
make a smooth perturbation of a knot, its energy smoothly changes. We will consider
energies with the following important properties. The energy is always positive. When a
knot crossing tends to a double point, the energy tends to infinity. So every topological
class of knots has a representative with the minimal value of energy. This knot is called a
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2 OLEG KARPENKOV

normal form of the class. It is unknown whether each class has a unique normal form or
not, i.e., whether the normal form for some energy is an invariant of the topological class
or not. The normal forms satisfy the variational equations considered below.

Some energies have a physical meaning. For example f = 1/(|τ(t1) − τ(t2)|) is the
energy of a charged knot. Unfortunately, this energy is always infinite. As long as the
charged knot does not break there must be some other forces which save the knot. Let
us consider a model of such a restriction:

f =
(D2(t1, t2))

(τ(t1)− |τ(t2)|)
.

For this energy we will develop our variational principles.
The study of knot energies began with the work of Moffatt (1969) [7], and was developed

by him in [8] following Arnold’s work [2]. The first steps in studying properties of the
energies of knots were made by O’Hara [9, 10, 11] and the first variational principles for
polygons in space were studied by Fukuhara [4].

The aim of this article is to prove that any extremal knot τ satisfies certain variational
equations. The paper is organized as follows. We start in Section 2 with the definitions
and formulations of the main theorem. In Section 3 we prove this theorem. In Section 4
we prove that the circle unknot always satisfies our extremal conditions. Unfortunately
the integrals in the equations do not converge for all possible energies. For example,
they do not converge in the case of the most famous energy: Möbius energy. We discuss
this also in Section 4. Section 5 seems to be independent from the previous sections. In
Section 5 we represent Mm-energy. The definition of this energy differs with one regarded
above. Nevertheless besides its own properties Mm-energy has some similar with Möbius
energy properties.

This work is partially published (see [5] and [6]).
The author is grateful to professor A. B. Sossinsky for constant attention to this work.

2. Notation and definitions

Mostly we will work with knots of fixed length 2π. So let S1 = R/(2πZ) be the circle
and let τ : S1 −→ R

3 denote some smooth knot of length 2π. Let τ(t) be the arc length
parametrization.

By κ(t) we denote the curvature at t and R(t) = 1/κ(t), the radius of curvature at t.

Definition 2.1. Given a smooth knot τ : S1 −→ R
3 and a point t0 ∈ S1, a locally perturbed

knot is a knot (denoted by τt0,ε) such that
a) |τ(t)− τt0,ε(t)| < ε2 if D(t0, t) ≤ ε and τ(t) = τt0,ε(t) if D(t0, t) > ε;
b) |κ(t)− κt0,ε(t)| < ε for D(t0, t) < ε;
c) τt0,ε(t0 + λ) = τt0,ε(t0) + λτ̇t0,ε(t0) + (λ2/2)τ̈t0,ε(t0) + o(ε2) if D(t0, t0 + λ) ≤ ε.

Note that at the points t0 − ε and t0 + ε the curvature is not restricted.
The length of the knot τt0,ε can change, but we regard knots of length 2π only. One of

the ways to solve this problem is to consider the restriction of the set of locally perturbed
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knots to the set of knots of constant length 2π, but this definition is unsatisfactory. Indeed,
let a knot τ in some neighborhood of the point t0 be a piece of a straight line. Then the
set of locally perturbed knots at the point t0 of length 2π consists of the knot τ only.

We will extend this set in the following way.

Definition 2.2. Let the length of τt0,ε be (1 + δ)2π. The locally perturbed length 2π knot

τ̃t0,ε is the knot obtained from τt0,ε by homothety with coefficient 1/(1 + δ) and center at
the origin. We also say that the knot τ̃ is associated with the knot τ .

Consider any τt0,ε. We will show later that δ = c1ε
3 + ◦(e3). Thus by Definition 2.1 we

have

|τt0,ε(t1)− τt0,ε(t2)| = |τ(t1)− τ(t2)|+ c2(t1, t2)ε
2 + o(e2)

if D(t0, t1) < ε or D(t0, t2) < ε. Then we may conclude that

E(τt0,ε) = E(τ) + c3ε
3 + o(ε3) and E(τ̃t0,ε) = E(τ) + c4ε

3 + o(ε3).

The coefficients c3 and c4 of the term ε3 will be called the variation and denoted by
V ar(τt0,ε) and V ar(τ̃t0,ε) respectively.

Now all is prepared for the definition of a locally extremal point of a knot.

Definition 2.3. Any t0 ∈ S1 is called locally extremal point of τ if V ar(τ̃t0,ε) = 0 for each
locally perturbed knot τ̃t0,ε of length 2π.

Definition 2.4. The knot τ is said to be locally extremal if all its points are locally extremal.

Let us find necessary and sufficient conditions for the point t0 be locally extremal. We
denote the vector product of two vectors a and b by [a, b]. By (a, b, c) we denote the mixed
product (oriented volume) of the vectors a, b and c. Let τ̇ (t) be the velocity vector and
τ̈(t) be the acceleration vector. Now we define the functions Ψ(t0, t) and Φ(t0, t).

Ψ(t0, t) =







(

τ̇(t0)
|τ̇(t0)| ,

τ̈(t0)
|τ̈(t0)| ,

τ(t)−τ(t0)
|τ(t)−τ(t0)|

)

, if τ̈(t0) 6= 0;
(

τ(t)−τ(t0)
|τ(t)−τ(t0)| ,

τ̇(t0)
|τ̇(t0)|

)

, if τ̈(t0) = 0.

Φ(t0, t) =

{ (

τ̇(t0)
|τ̇(t0)| ,

τ(t)−τ(t0)
|τ(t)−τ(t0)| ,

[

τ̇(t0)
|τ̇(t0)| ,

τ̈(t0)
|τ̈(t0)|

])

, if τ̈ (t0) 6= 0;

0 , if τ̈ (t0) = 0.

Note that |τ̇(t0)| = 1 and |τ(t)− τ(t0)| 6= 0 if t 6= t0. Thus Ψ and Φ are well defined.
We also remark that Ψ(t0, t) = sinψ(t0, t), where ψ(t0, t) is the angle between the vector

τ(t) − τ(t0) and the oriented plane spanning of τ̇ (t0) and τ̈ (t0). The function Φ has a
similar representation: Φ(t0, t) = sin φ(t0, t), where φ(t0, t) is the angle between the vector
τ(t)−τ(t0) and the oriented plane spanning of τ̇ (t0) and [τ̇ (t0), τ̈(t0)]. (See Fig. 1). These
angles can be either positive or negative.
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φ

ψ

τ̇(t0)

τ̈(t0)

[τ̇(t0); τ̈(t0)]
τ(t)− τ(t0)

Figure 1. The geometric interpretation of ψ(t0, t) and φ(t0, t).

Theorem 2.1. Let τ be a smooth knot. The point t0 is a locally extremal point of τ if

and only if the following conditions hold:

V1(t0) :=
2

3R(t0)

(

4

∫

S1

(

f +R(t0)Φ(t0, t)
∂f

∂ρ

)

dt− 1

π

∫∫

S1×S1

(

2f +D(t1, t2)
∂f

∂ρ
+

|τ(t1)− τ(t2)|
∂f

∂α

)

dt1dt2 + 2

∫∫

A

∂f

∂α
dt1dt2

)

= 0;

V2(t0) :=
4

3R(t0)

∫

S

∂f

∂ρ
Ψ(t0, t)dt = 0.

Here A ⊂ S1 × S1 is the set of points (t1, t2) such that D(t1, t2) = D(t1, t0) +D(t0, t2).

Corollary 2.1. A knot τ is locally extremal if and only if almost all of its points are

locally extremal, i.e.,
∫

S1

(

V 2
1 (t) + V 2

2 (t)
)

dt = 0.

3. Proofs

Let t0 be any point of S1. We choose orthonormal coordinates in R
3 such that τ(t0) is

on the (X, Y )-plane, τ(t0 − ε) and τ(t0 + ε) lie symmetrically on the X-axis. If τ(t0 − ε),
τ(t0) and τ(t0 + ε) are on the same line, then we make any possible choice of the Y -axis.
Finally, we choose the Z-axis such that the orientation of the (X, Y, Z)-space is positive
(see Fig. 2a)).
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a)

X

Y

Z

τ(t0 + ε)

τ(t0 − ε)

τ(t0)

b)

X

Y

Z

τ(t0 + ε)

τ(t0 − ε)

γ

Figure 2. a)The choice of X , Y and Z-axes. b)The parabolic arcs (α, γ)
where γ is fixed.

Let Pε be the class of parabolic arcs and one segment such that all the parabolas have
their vertex in the (Y, Z)-plane, τ(t0 − ε) and τ(t0 + ε) are the endpoints of the arcs, and
the endpoints of the segment are τ(t0 − ε) and τ(t0 + ε). Each parabola can be specified
by two parameters (λ, γ), where 2λ is the “acceleration” and γ is the angle between the
(X, Y )-plane and the plane containing the parabola (see Fig. 2b)). Notice also that (0, γ)
is some segment.

Denote by MP,t0,ε the 2-dimensional set of knots τt0,ε,λ,γ, where the curve connecting
τ(t0 − ε) and τ(t0 + ε) belongs to the class Pε with the following property: the knot

(τt0,ε,λ,γ + τ)/2 is a locally perturbed knot. Denote by M̃P,t0,ε the set of knots associated
with the knots in the class Pε.

Theorem 3.1. Let τ be a smooth knot. The point t0 is a locally extremal point if and

only if V ar(τ̃t0,ε) = 0 for each locally perturbed (at t0) knot τ̃t0,ε ∈ M̃P,t0,ε.

Proof of Theorem 3.1.
We begin the proof with the following lemma.

Lemma 3.1. Let C = {(x, y, z) ∈ R
3|
√

y2 + z2 < r, |x| < s} be a cylinder. Suppose a

point moves inside C with velocity of constant modulus 1 and so that the absolute value

of its acceleration is bounded by K (see Fig.3). Let x(0) = −s, x(T ) = s, s ≫ r and

K < 1/(4r). Then the length of the trajectory of a point (i.e. T ) is bounded:

T <
2s√

1− 4Kr
.
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x

y
z

p(t)

s
−s

r

Figure 3. The trajectory of the point p(t) inside the cylinder C.

First let us prove that ẏ2(t0) < 2Kr. We first consider the case for which x(t0) < 0,
ẋ(t0) > 0 and y(t0) > 0; then

y(t) = y(t0) +

t
∫

t0

ẏ(ξ)dξ < r.

By the assumption, we have

ẏ(ξ) = ẏ(t0) +

ξ
∫

t0

ÿ(ζ)dζ > ẏ(t0)−
ξ
∫

t0

Kdζ = ẏ(t0)− (ξ − t0)K.

It follows that

y(t) > y(t0) +

t
∫

t0

ẏ(x0)− (ξ − t0)Kdξ = y(t0) + (t− t0)ẏ(t0)−
(t− t0)

2

2
K.

But y(t0) > −r and y(t) < r, so

(t− t0)ẏ(t0)−
(t− t0)

2

2
K − 2r < 0.

By assumption x < 0 and s ≫ r, so the vertex of the parabola is at the point t − t0 =
ẏ(t0)/K < s. This yields the inequality ẏ2(t0) < 2Kr.

The proof for the cases in which ẋ(t0) > 0 and y(t0) < 0; ẋ(t0) < 0 and y(t0) > 0;
ẋ(t0) < 0 and y(t0) < 0 is similar.

Secondly, we claim that ż2(t0) < 2Kr. The proof is similar to the inequality for ẏ2(t0).
By the previous statements, it follows that

ẋ2(t0) = 1− ẏ2(t0)− ż2(t0) > 1− 4Kr > 0

for every t0 ∈ [0, T ]. So we have T < 2s/(1− 4Kr)
This completes the proof of Lemma 3.1
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ỹ

z̃

x̃

p(t)

r

f(−s)
f(s)

Figure 4. The trajectory of the point p(t) inside the cylinder Cf .

We continue the proof with a generalization of the previous lemma.

Lemma 3.2. Let f : [−s, s] 7−→ R
3 be a unit-length smooth map, let the curvature of f

be bounded (|f̈(t)| < K1) and sK1 < 1. Let D2(t) ∈ R
3, where t ∈ [−s, s] is the disk of

radius r centered at f(t) with the plane of the disc orthogonal to ḟ . Let also rK1 < 1.
Denote by Cf =

⋃

[−s,s]D
2(t) the tubular neighborhood of the curve f . Suppose a point

p(t) = (x(t), y(t), z(t)) moves inside Cf (see Fig. 4) with velocity of constant absolute

value 1 and let the absolute value of its acceleration be bounded by K2. Let p(0) ∈ D2(−s),
p(T ) ∈ D2(s). Let s≫ r and

K2 +
1

1− rK1
K1 <

1

4r
.

Then the length of the trajectory of the point (i.e., T) is bounded and

2s(1− rK1) < T <
2s(1 + rK1)√

1− 4K2r
.

Let us define x̃ = t.
Now we describe some map π from Cf to the standard cylinder C (see Fig. 3). Let

π(D2(x̃)) = {(x̃, y, z) ∈ R|
√

y2 + z2}
be isometric images of the disk D2(x̃) for each x̃ ∈ [−s, s]. If we fix a preimage ỹ-axis
of the y-axis and a preimage z̃-axis of the z-axis in the disc D2(x̃) for each x̃ ∈ [−s, s],
then the map will be completely described. As long as sK1 < 1 and rK1 < 1, this map
is well defined and the manifold Nf =

⋃

[−s,s] ∂D
2(t) with boundary ∂D2(−s)∪ ∂D2(s) is

smooth.
Let π(ỹ−s) = (−s, r, 0) for some ỹ−s ∈ ∂D2(−s). Consider the vector field on Nf with

the following property: if the point q lies on the circle ∂D2(x̃), then the vector vq equals

ḟ(x̃); this means that vq is the unit-length vector orthogonal to the disc D2(x̃) with the
corresponding direction. Denote the integral trajectory of this field passing through the
point ỹ−s by ỹ = {ỹ(x̃)|x̃ ∈ [−s, s]}. This trajectory defines the ỹ coordinate in each disc
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D2(x̃). Finally we define the unit-length z̃-vector as the vector product of the unit-length
x̃-vector and unit-length ỹ-vector (in each D2(x̃)).

The image π(p) of the point p moves inside C. We denote π(p) by p̂. Notice that

|ṗ(t)|
| ˙̂p(t)|

=
1

| ˙̂p(t)|
∈ [1− rK1, 1 + rK1].

Note also that if the curvature of the trajectory isK at some point p(t), then the curvature
of the image of this trajectory will be

K̂ < K +
1

1
K1

− r

at the point p̂(t), as can be easily shown.
Now Lemma 3.2 follows from Lemma 3.1.

We continue the proof of Theorem 3.1. Let τt0,ε be any locally perturbed knot at the
point t0 and let t ∈ S1 such that D(t0, t) < ε. Consider

Pτt0,ε
(t) = τt0,ε(t0) + (t− t0)

(

τ̇t0,ε(t0) + c1
)

+
(t− t0)

2

2

(

τ̈(t0) + c2
)

We choose the constants c1 = o(ε2) and c2 = o(ε2) so that

Pτt0,ε
(t+ ε) = τt0,ε(t+ ε), Pτt0,ε

(t− ε) = τt0,ε(t− ε).

Here we take the unit-length parametrization and denote the length of curves by l(∗).
Then Pτt0,ε

(t) is a parabolic arc in the ε-neighborhood of the point t0. From Lemma 3.2

it follows that |Pτt0,ε
(t) − τt0,ε(t)| = o(ε2) and also l(Pτt0,ε

(t)) = l(τt0,ε) + o(ε3). So

Eτt0,ε
− EPτt0,ε

(t) = o(ε3).

Consider the perturbed curve τt0,ε,λ,γ passing through the point τt0,ε(t0). We have

|τt0,ε,λ,γ(t)− τt0,ε(t)| < ε.

We also have Eτt0,ε,λ,γ
− PEτt0,ε

= o(ε3).

Finally we conclude that Eτt0,ε,λ,γ
− Eτt0,ε

= o(ε3).
One can see that the knot τt0,ε,λ,γ belongs MP,t0,ε. We note again that l(Pτt0,ε

(t)) =

l(τt0,ε) + o(ε3). Hence

Eτ̃t0,ε,λ,γ
− Eτ̃t0,ε

= o(ε3).

By definition, the knot τ̃t0,ε,λ,γ belongs M̃P,t0,ε. This completes the proof of Theorem 3.1.
Proof of Theorem 2.1 Without loss of generality, we put

t0 = 0, γ = o(1), and λ = 1/(2R(0)) + o(1),

where R(0) is the radius of curvature at the point 0. According to Theorem 3.1, we can
consider only the class M̃P of knots. Let τ̃0,ε,λ,γ be a knot in K̃P . Denote

∆ :=
[ ε

1 + δ
,

ε

1 + δ

]

⊂ S1.

Now note that for any τ we have



ENERGY OF A KNOT: VARIATIONAL PRINCIPLES; MM-ENERGY. 9

E(τ) =

∫∫

S1×S1

fdxdy = 2

∫∫

∆×S1

fdxdy −
∫∫

∆×∆

fdxdy +

∫∫

A\(∆×S1
⋃

S1×∆)

fdxdy+

∫∫

S1×S1\A

fdxdy =: 2E1(τ)− E2(τ) + E3(τ) + E4(τ).

Here f = f(ρ(τ(x), τ(y)), α(τ(x), τ(y))). Further note that

V ar(τ) = 2V ar1(τ)− V ar2(τ) + V ar3(τ) + V ar4(τ),

where V ari is the variation of Ei.
First we calculate V ar1. We recall that sin φ = Φ and sinψ = Ψ.

Lemma 3.3.

V ar1(τ̃0,ε,λ,γ) =
4

3

(

∫

S1

f

R(0)
+ sinφ

∂f

∂ρ
dy
)

(

λ− 1

2R(0)

)

+
2

3R(0)

(

∫

S1

sinψ
∂f

∂ρ
dy
)

γ.

The length of the arc of the parabola is 2ε + 2
3
λ2ε3 + o(e3). So δ = 2

3
λ2ε3. Note also

that the coefficient of homothety is o(e2) and thus V ar1(τ0,ε,λ,γ) = V ar1(τ̃0,ε,λ,γ). Let

(a, b, c) = (a(t), b(t), c(t)) = τ0,ε,λ,γ(t), ℓ = ℓ(t) =
√

a(t)2 + b(t)2 + c(t)2, f = f(ρ, α).

Thus we have

E1(τ0,ε,λ) =

∫

S1

ε
∫

−ε

(

[

1 + (2λt1)
2
]1/2

f
(

[

((t1 − a(t2))
2 + ((λt1

2 − λε2) cos γ − b(t1))
2 + ((λt1

2 − λε2) sin γ − c(t1))
2)
]1/2

,

D(t1, t2)
)

)

dt1dt2 + o(ε3) =

∫

S1

+ε
∫

−ε

(

(

1 + 2λ2t1
2 + o(t1

2)
)(

f +
(t1

2 − at1 + λ(ε2 − t1
2)(b cos γ + c sin γ)

ℓ
− a2t1

2

2ℓ2

)

×

∂f

∂ρ
+
a2t1

2 ∂2f
∂ρ2

2ℓ
+D(0, t1)

∂f

∂α

)

)

dt1dt2 + o(ε3) =
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=

∫

S1

+ε
∫

−ε

(

2λ2t1
2f + f +

(t1
2 − at1 + λ(ε2 − t1

2)(b cos γ + c sin γ)

ℓ
−

a2t1
2

2ℓ2

)∂f

∂ρ
+
a2t1

2 ∂2f
∂ρ2

2ℓ
+D(t1, 0)

∂f

∂α

)

dt1dt2 + o(ε3) =

=

∫

S1

(

2λ2ε3

3
f + εf +

(2ε3 + 4λε3(b cos γ + c sin γ)

3ℓ
− a2ε3

2ℓ2

)∂f

∂ρ
+
a2ε3 ∂

2f
∂ρ2

2ℓ

)

dt2+

∫

S1

+ε
∫

−ε

D(t1, 0)
∂f

∂α
dt1dt2 + o(ε3)

This yields

dE1(λ, γ) = d

(
∫

S1

(2λ2ε3

3
f +

(4λε3(b cos γ + c sin γ)

3ℓ

)∂f

∂ρ

)

dt2 + o(ε3)

)

=

(
∫

S1

(4λε3

3
f +

(4ε3(b cos γ + c sin γ)

3ℓ

)∂f

∂ρ

)

dt2 + o(ε3)

)

dλ+

(
∫

S1

(4ε3λ(−b sin γ + c cos γ)

3ℓ

)∂f

∂ρ
dt2 + o(ε3)

)

dγ.

Finally we substitute

b

ℓ
= sinφ,

c

ℓ
= sinψ, γ = o(1), λ =

1

2R(0)
+ o(1),

where R(0) is the radius of curvature at the point 0, obtaining

V ar1(τ̃0,ε,λ,γ) =
4

3

(

∫

S1

f

R(0)
+ sin φ

∂f

∂ρ
dt2

)(

λ− 1

2R(0)

)

+
2

3R(0)

(

∫

S1

sinψ
∂f

∂ρ
dt2

)

γ.

The proof of Lemma 3.3 is complete.

Lemma 3.4. V ar2 = 0.

Since E2(τ)− E2(τ̃0,ε) = o(ε3), we immediately have V ar2 = 0.

Lemma 3.5.

V ar3 =
( 2

3πR(0)

∫∫

A\(∆×S1
⋃

S1×∆)

−2f − ℓ
∂f

∂ρ
+ (2π −D(t1, t2))fλdt1dt2

)

(

λ− 1

2R(0)

)

.

The following calculations prove this lemma.
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E3(τ0,ε,λ) =

∫∫

A\(∆×S1
⋃

S1×∆)

fdt̃1dt̃2 =

∫∫

A\(∆×S1
⋃

S1×∆)

f

(

ℓ
(

1− 2λ2ε3

3π

)

, D
((

|t2 − t1|+
4λ2ε3

3

)(

1− 2λ2ε3

3π

)

, 0
)

)

d
(

(

1− 2λ2ε3

3π

)

t1

)

d
(

(

1− 2λ2ε3

3π

)

t2

)

+ o(ε3) =
∫∫

A\(∆×S1
⋃

S1×∆)

(

f +
(

−2

π
f − ℓ

π

∂f

∂ρ
+ 2fλ −

D(t1, t2)fλ
π

)2λ2ε3

3

)

dt1dt2 + o(ε3).

Let us remark that
∫∫

∆×S1
⋃

S1×∆

(

−2f

π
−
ℓ∂f
∂ρ

π
+ 2fλ −

D(t1, t2)fλ
π

)

2λ2ε3

3
dt1dt2 = o(ε3).

Therefore

V ar3 =

(

2

3πR(0)

∫∫

A\(∆×S1
⋃

S1×∆)

−2f − ℓ
∂f

∂ρ
+
(

2π −D(t1, t2)
)

fλdt1dt2

)

(

λ− 1

2R(0)

)

.

Lemma 3.6.

V ar4 =

(

2

3πR(0)

∫∫

S1×S1\A

−2f − ℓ
∂f

∂ρ
−D(t1, t2)

∂f

∂α
dt1dt2

)

(

λ− 1

2R(0)

)

The proof of this lemma is similar to the previous one.
Lemmas 3.3-3.6 complete the proof of Theorem 2.1.

4. Corollaries

In [1] it is shown that the circle is not always the global maximum, or the global
minimum for the energy considered. Let us show that circle is a locally extremal knot for
any energy E satisfying the conditions 1), 2) of the Introduction.

Corollary 4.1. The circle is always a locally extremal knot.

If τ is a circle, then

ℓ(t1, t2) = 2 sin
t2 − t1

2
, R(t1) = 1, ψ(t1, t2) = 0, φ =

t2 − t1
2

.

So V2(t1) = 0 for any t1 ∈ S1. Further
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V1(t1) =
1

3

(

8

∫

S1

f + sin
( |t1|

2

)

fρdt1 −
2

π

∫∫

S1×S1

2f + 2 sin
( |t2 − t1|

2

)∂f

∂ρ

+D(t1, t2)
∂f

∂α
dt1dt2 + 4

∫∫

A

∂f

∂α
dt1dt2

)

=

1

3

(

8

∫

S1

f + sin
( |t1|

2

)∂f

∂ρ
dt1 − 4

∫

S1

2f + 2 sin
( |t1|

2

)∂f

∂ρ
+D(0, t1)

∂f

∂α
dt1+

4

π
2
∫

−π
2

2D(t1, t2)
∂f

∂α
dt1dt2

)

f(ρ,α)=f(ρ,2π−α)
= −4

∫

S1

D(0, t1)
∂f

∂α
dt1 + 4

∫

S1

D(0, t1)
∂f

∂α
dt1 = 0.

Therefore any point of the circle is a locally extremal point. Hence the circle is locally
extremal. The corollary is proved.

Now let us say a few worlds about Möbius energy which is (in the version from [3])

fM =
1

|τ(t1)− τ(t2)|2
− 1

D2(t1, t2)
.

It has many remarkable properties (see [9] and [3]). Möbius energies of homothetic knots
are equal. This energy is invariant for Möbius transformations (see also Section 5). The
variational equations and the gradient flow equation of Möbius energy was studied in [3].

Unfortunately, for Möbius energy, the variation V ar is always infinite, and this mean
that we can not perturb the knot in the way considered above.

The main property of Möbius energy is as follows. When a knot crossing tends to
a double point, the energy tends to infinity. The energy is always positive. So every
topological type of knot has a representative with minimal value of energy, some normal
form.

Notice that the main part of Möbius energy is 1/|τ(t1) − τ(t2)|2. The other part
1/D2(t1, t2) is only a normalization that makes the integral convergent. So let us make
another normalization of the “main part” of Möbius energy. In this case we often lose the
invariance for Möbius transformations. Let us consider the following energy:

f̃ =
D3(x, y)

|τ(x), τ(y)|2 .

It is easily seen that this energy on one hand has the above property and on the other
we can use our variational principles. Note also that such an energy is the same for
homothetic knots.
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Corollary 4.2. We present V1 and V2 for this energy:

V1(t0) =
2

3R(t0)

(

4

∫

S1

( |τ(t)− τ(t0)|3

D(t, t0)
2

(

1− 2
R(t0)

D(t, t0)
Φ(t0, t)

))

dt−

3

π

∫∫

S1×S1

|τ(t2)− τ(t1)|3

D(t2, t1)
2 dt1dt2 + 6

∫∫

A

|τ(t2)− τ(t1)|2

D(t2, t1)
2 dt1dt2

)

;

V2(t0) = − 8

3R(t0)

∫

S

|τ(t1)− τ(t2)|3

D(t0, t)
3 Ψ(t0, t)dt.

5. Definition and some basic properties of Mm-energy

In this section we define the Mm-energy of a knot. The nature of this energy differs
from the energies considered in the previous sections.

Let us fix some point t0 on the circle and define the real number fMm(t0). Consider
the map ρt0 : S1 −→ R such that ρt0(t) = |τ(t) − τ(t0)|. Let us note that the map τ is
smooth. Hence ρt0 is also smooth except for one point t0. If the number of maximums
and minimums is finite, then we define the function fMm as follows:

fMm(t0) =
1

ρt0(tM)
+
∑

tmi∈U1

1

ρt0(tmi
)
−
∑

tMj
∈U2

1

ρt0(tMj
)
,

where tM is one of the points where the function ρt0 achieves its global maximum; U1 is
the set of all points of the circle, except the point t0, where the function ρt0 has local
minimums; U2 is the set of all points of the circle, except the point tM , where the function
ρt0 has local maximums (see Fig. 5). Here we suppose t0 < t∗ < t0+2π. In the case of an
infinite number of maximums and minimums we make a small smooth perturbation ρ̃t0 so
that the number of minimums and maximums becomes finite. Now we can calculate the
value of f̃Mm(t0) for the function ρ̃t0 as it was made before. Finally we define the fMm(t0)

as the limit of f̃Mm(t0) in the C∞-topology.
Now we define the Mm-energy.

Definition 5.1. We call Mm-energy of the given knot the following number:

EMm(τ) =

∫

S1

fMm(t)dt,

if the integral converges.

Remark 5.1. Consider some small smooth perturbation of a knot. Then for any point t0
of the circle the function ρt0 is also perturbed in a smooth way. At a generic point four
possible modifications in the sums of fMm can occur: small changes of the values of the
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0 t

ρt0(t)

ρt0(tM )

t0 tM1

−

tm1

+

tM2

−

tm2

+

tM

+

tm3

+

tM3

−

t0 + 2π

Figure 5. The function ρt0 .

maximums and minimums; the death of one maximum and of the neighboring minimum;
conversely, the birth of one maximum and minimum at some point; a local maximum
close to the global maximum can become the global maximum. In all these cases the
variation of the resulting fMm is small. This is the reason why the Mm-energy depends
on small perturbations of knots continuously.

Further we formulate the basic properties of Mm-energy.

Proposition 5.1. The Mm-energy is greater than or equal to 2.

Consider the sum

fMm(t0) =
1

ρt0(tM)
+
∑

tmi∈U1

1

ρt0(tmi
)
−
∑

tMj
∈U2

1

ρt0(tMj
)

We can fix the ordering of the minimums and the maximums in the standard way:

t0 < tM1 < tm1 < . . . < tMk
< tmk

< tM < tmk+1
< tMk+1

< . . . < tmn < tMn < t0 + 2π.

Then we have

fMm(t0) =

k
∑

i=0

( 1

ρt0(tmi
)
− 1

ρt0(tMi
)

)

+
1

ρt0(tM)
+

n
∑

i=k+1

( 1

ρt0(tmi
)
− 1

ρt0(tMi
)

)

≥

0 +
1

ρt0(tM)
+ 0 =

1

ρt0(tM)
.

Finally, note that the length of the knot is 2π, hence the function ρt0(tM) is smaller than
or equal to π. Therefore

EMm(τ) =

∫

S1

fMm(t)dt ≤
∫

S1

1

ρt(tMt)
dt ≤

∫

S1

1

π
dt =

2π

π
= 2.

This completes the proof of Proposition 5.1.

Proposition 5.2. The Mm-energy is an invariant of homothety.
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Suppose τ is a knot of length 2π and τ̃ is a homothetic knot of length 2lπ, where
l is the coefficient of homothety. Then dt̃ = ldt and ρ̃(t̃) = lρ(t) for any t, and so

f̃Mm(t̃) = fMm(t)/l. Thus we obtain

EMm(τ̃) =

∫

S1

f̃Mm(t̃)dt̃ =

∫

S1

fMm(t)

l
ldt =

∫

S1

fMm(t)dt = EMm(τ).

Proposition 5.2 is proven.
So we can consider knots without any restriction on their lengths.

Proposition 5.3. When two branches of the knot tends to a double crossing, the Mm-

energy tends to infinity.

Consider a smooth family {τλ|λ ∈ [0, 1]} such that τ0 is a smooth knot with double
crossing and τλ, λ 6= 0 is a smooth knot without any double crossing. For every ε we can
choose a sufficiently small λ satisfying the following conditions: there exist two points t1
and t2 with |t1 − t2| < ε2 such that the functions ρt1 and ρt2 have global minima at the
points t2 and t1 correspondingly; and the ball Bε,p of radius ε with center at the midpoint
p of the segment [τλ(t1), τλ(t2)] has only two connected components of a knot τλ inside.

The family is smooth, hence the curvature of all knots is bounded by some N . If
ε < 1/N , then every point t of the knot τλ inside the ball Bε/2,p has one extremum (i.e.,
the global minimum) of the function ρt inside the ball Bε,p, and every point t of this knot
inside the ball Bε,p has no more than one extremum (i.e., the global minimum) of ρt inside
the ball Bε,p. Let us estimate the energy inside the ball Bε,p.

EMm(τλ ∩ Bε,p) > 4

ε
2
∫

ε2

2

1

t+ ε2

2

dt = 4 ln(t+
ε2

2
)

∣

∣

∣

∣

ε
2

ε2

2

= 4 ln
e
2
+ e2

2

ε2
> 4 ln

2

ε
.

The other terms (we ignore the global minimum of ρt) of the function fMm changes in a
smooth way, hence the Mm-energy grows to infinity.

Therefore Mm-energy separates knots from different topological classes.
The following property is an essential property of Mm-energy.

Proposition 5.4. The Mm-energy is well defined for piecewise smooth knots with obtuse

angles.

If some point t is “near” the angle then the function ρt is monotone function in some
neighborhood of the vertex of an angle and hence there are no minima or maxima of ρt
in this neighborhood.

In particular, the Mm-energy is well defined for piecewise linear knots with obtuse
angles. So we can consider piecewise linear approximations of smooth knots and take
the restriction to the set of piecewise linear knots. This property allows us to develop
computer experiments in calculating normal forms for Mm-energies of topological classes
of knots and the values of Mm-energies for this normal forms.
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O1 O2

Figure 6. Mm-energy of this knot is 2 ln(7+4
√
3

3
) .

Now we calculate Mm-energy for some knots. First we find the Mm-energy of the circle
τ0

EMm(τ0) =

∫

S1

1

2
dt = π.

Unfortunately the circle is not the normal form for the class of trivial knots. An example
of the trivial knot with Mm-energy less than π is shown on Figure 6. This knot is a union
of two arcs of the circle. Direct calculations shows that the Mm-energy of this knot is

2 ln(7+4
√
3

3
) ≈ 3.070607 < π.

Computer experiments provide upper bounds for the Mm-energies of the normal forms
for some topological classes (see the table behind).

CLASSES OF KNOTS the upper bounds for

the energies of normal forms

the class of the circle 3.044012
the class of the trefoil 13.152759
the class of the figure-eight 19.450447
the class of 51 26.498108
the class of 52 27.168222
the class of 61 34.469191
the class of 62 35.466138
the class of 63 37.683129
the class of the connected
sum of right and left trefoils

25.734616

the class of the connected
sum of two right trefoils

26.748901
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