2,654 research outputs found

    An expectation maximisation algorithm for behaviour analysis in video

    Get PDF
    Surveillance systems require advanced algorithms able to make decisions without a human operator or with minimal assistance from human operators. In this paper we propose a novel approach for dynamic topic modeling to detect abnormal behaviour in video sequences. The topic model describes activities and behaviours in the scene assuming behaviour temporal dynamics. The new inference scheme based on an Expectation-Maximisation algorithm is implemented without an approximation at intermediate stages. The proposed approach for behaviour analysis is compared with a Gibbs sampling inference scheme. The experiments both on synthetic and real data show that the model, based on Expectation-Maximisation approach, outperforms the one, based on Gibbs sampling scheme

    A genetic approach to Markovian characterisation of H.264 scalable video

    Get PDF
    We propose an algorithm for multivariate Markovian characterisation of H.264/SVC scalable video traces at the sub-GoP (Group of Pictures) level. A genetic algorithm yields Markov models with limited state space that accurately capture temporal and inter-layer correlation. Key to our approach is the covariance-based fitness function. In comparison with the classical Expectation Maximisation algorithm, ours is capable of matching the second order statistics more accurately at the cost of less accuracy in matching the histograms of the trace. Moreover, a simulation study shows that our approach outperforms Expectation Maximisation in predicting performance of video streaming in various networking scenarios

    Using segmented objects in ostensive video shot retrieval

    Get PDF
    This paper presents a system for video shot retrieval in which shots are retrieved based on matching video objects using a combination of colour, shape and texture. Rather than matching on individual objects, our system supports sets of query objects which in total reflect the user’s object-based information need. Our work also adapts to a shifting user information need by initiating the partitioning of a user’s search into two or more distinct search threads, which can be followed by the user in sequence. This is an automatic process which maps neatly to the ostensive model for information retrieval in that it allows a user to place a virtual checkpoint on their search, explore one thread or aspect of their information need and then return to that checkpoint to then explore an alternative thread. Our system is fully functional and operational and in this paper we illustrate several design decisions we have made in building it

    Future state maximisation as an intrinsic motivation for decision making

    Get PDF
    The concept of an “intrinsic motivation" is used in the psychology literature to distinguish between behaviour which is motivated by the expectation of an immediate, quantifiable reward (“extrinsic motivation") and behaviour which arises because it is inherently useful, interesting or enjoyable. Examples of the latter can include curiosity driven behaviour such as exploration and the accumulation of knowledge, as well as developing skills that might not be immediately useful but that have the potential to be re-used in a variety of different future situations. In this thesis, we examine a candidate for an intrinsic motivation with wide-ranging applicability which we refer to as “future state maximisation". Loosely speaking this is the idea that, taking everything else to be equal, decisions should be made so as to maximally keep one's options open, or to give the maximal amount of control over what one can potentially do in the future. Our goal is to study how this principle can be applied in a quantitative manner, as well as identifying examples of systems where doing so could be useful in either explaining or generating behaviour. We consider a number of examples, however our primary application is to a model of collective motion in which we consider a group of agents equipped with simple visual sensors, moving around in two dimensions. In this model, agents aim to make decisions about how to move so as to maximise the amount of control they have over the potential visual states that they can access in the future. We find that with each agent following this simple, low-level motivational principle a swarm spontaneously emerges in which the agents exhibit rich collective behaviour, remaining cohesive and highly-aligned. Remarkably, the emergent swarm also shares a number of features which are observed in real flocks of starlings, including scale free correlations and marginal opacity. We go on to explore how the model can be developed to allow us to manipulate and control the swarm, as well as looking at heuristics which are able to mimic future state maximisation whilst requiring significantly less computation, and so which could plausibly operate under animal cognition

    Breaking the habit: measuring and predicting departures from routine in individual human mobility

    No full text
    Researchers studying daily life mobility patterns have recently shown that humans are typically highly predictable in their movements. However, no existing work has examined the boundaries of this predictability, where human behaviour transitions temporarily from routine patterns to highly unpredictable states. To address this shortcoming, we tackle two interrelated challenges. First, we develop a novel information-theoretic metric, called instantaneous entropy, to analyse an individual’s mobility patterns and identify temporary departures from routine. Second, to predict such departures in the future, we propose the first Bayesian framework that explicitly models breaks from routine, showing that it outperforms current state-of-the-art predictor

    Quantifying the impact of daily and seasonal variation in sap pH on xylem dissolved inorganic carbon estimates in plum trees

    Get PDF
    In studies on internal CO2 transport, average xylem sap pH (pH(x)) is one of the factors used for calculation of the concentration of dissolved inorganic carbon in the xylem sap ([CO2*]). Lack of detailed pH(x) measurements at high temporal resolution could be a potential source of error when evaluating [CO2*] dynamics. In this experiment, we performed continuous measurements of CO2 concentration ([CO2]) and stem temperature (T-stem), complemented with pH(x) measurements at 30-min intervals during the day at various stages of the growing season (Day of the Year (DOY): 86 (late winter), 128 (mid-spring) and 155 (early summer)) on a plum tree (Prunus domestica L. cv. Reine Claude d'Oullins). We used the recorded pH(x) to calculate [CO2*] based on T-stem and the corresponding measured [CO2]. No statistically significant difference was found between mean [CO2*] calculated with instantaneous pH(x) and daily average pH(x). However, using an average pH(x) value from a different part of the growing season than the measurements of [CO2] and T-stem to estimate [CO2*] led to a statistically significant error. The error varied between 3.25 +/- 0.01% under-estimation and 3.97 * 0.01% over-estimation, relative to the true [CO2*] data. Measured pH(x) did not show a significant daily variation, unlike [CO2], which increased during the day and declined at night. As the growing season progressed, daily average [CO2] (3.4%, 5.3%, 7.4%) increased and average pH(x) (5.43, 5.29, 5.20) decreased. Increase in [CO2] will increase its solubility in xylem sap according to Henry's law, and the dissociation of [CO2*] will negatively affect pH(x). Our results are the first quantifying the error in [CO2*] due to the interaction between [CO2] and pH(x) on a seasonal time scale. We found significant changes in pH(x) across the growing season, but overall the effect on the calculation of [CO2*] remained within an error range of 4%. However, it is possible that the error could be more substantial for other tree species, particularly if pH(x) is in the more sensitive range (pHx > 6.5)
    corecore