2,323 research outputs found

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Computational intelligence techniques for HVAC systems: a review

    Get PDF
    Buildings are responsible for 40% of global energy use and contribute towards 30% of the total CO2 emissions. The drive to reduce energy use and associated greenhouse gas emissions from buildings has acted as a catalyst in the development of advanced computational methods for energy efficient design, management and control of buildings and systems. Heating, ventilation and air conditioning (HVAC) systems are the major source of energy consumption in buildings and an ideal candidate for substantial reductions in energy demand. Significant advances have been made in the past decades on the application of computational intelligence (CI) techniques for HVAC design, control, management, optimization, and fault detection and diagnosis. This article presents a comprehensive and critical review on the theory and applications of CI techniques for prediction, optimization, control and diagnosis of HVAC systems.The analysis of trends reveals the minimization of energy consumption was the key optimization objective in the reviewed research, closely followed by the optimization of thermal comfort, indoor air quality and occupant preferences. Hardcoded Matlab program was the most widely used simulation tool, followed by TRNSYS, EnergyPlus, DOE–2, HVACSim+ and ESP–r. Metaheuristic algorithms were the preferred CI method for solving HVAC related problems and in particular genetic algorithms were applied in most of the studies. Despite the low number of studies focussing on MAS, as compared to the other CI techniques, interest in the technique is increasing due to their ability of dividing and conquering an HVAC optimization problem with enhanced overall performance. The paper also identifies prospective future advancements and research directions

    Evolving rules-based control

    Get PDF
    An approach to control non-linear objects based on evolving Rule-based (eR) models is presented in the paper. Fuzzy rules, representing the structure of the controller are generated based on data collected during the process of control using newly introduced technique for on-line identification of Takagi-Sugeno type of fuzzy rule-based models. Initially, the process is supposed to be controlled for few time steps by any other conventional type of controller (P, PID or a fuzzy one with a fixed structure determined off-line). Then, in on-line mode the output of the plant under control (including its dynamic) and the respective control signal applied has been memorised and stored. These data has been used to train in a non-iterative way the eR model representing the fuzzy controller, which aim is to control the plant at a given set point. The indirect adaptive control approach has been used in combination with the newly introduced on-line identification technique based on unsupervised learning of antecedent and consequent parts separately. This approach exploits the quasi-linear nature of Takagi-Sugeno models and builds-up the control rule-base structure and adapts it in on-line mode. The method is illustrated with an example from air-conditioning systems, though it has wider potential applications

    Assessing the saving potential of blind controller via multi-objective optimization

    Get PDF
    This paper presents the results of computational experiments where multi-objective algorithms were used to tune a controller for blind movements in a residential building and a room of the LESO (Solar Energy and Building Physics Laboratory) experimental building. The blind controller, which is based on fuzzy logic, was optimized not only in terms of energy consumption but also in terms of thermal comfort. The goal is to show saving potential for intelligent blind controller in a real world example rather than in tailored idealized test rooms. Therefore, a state of the art simulation program with a multi-objective evolutionary algorithm was combined. It was found that with elementary control systems, like schedules for the lighting in a building, almost 40% of the energy could be saved. With the help of more advanced controllers this can be further increased. Also discussed in this paper are the results and the feasibility of implementing such a controlle

    Genetic learning of accurate and compact fuzzy rule based systems based on the 2-tuples linguistic representation

    Get PDF
    One of the problems that focus the research in the linguistic fuzzy modeling area is the trade-off between interpretability and accuracy. To deal with this problem, different approaches can be found in the literature. Recently, a new linguistic rule representation model was presented to perform a genetic lateral tuning of membership functions. It is based on the linguistic 2-tuples representation that allows the lateral displacement of a label considering an unique parameter. This way to work involves a reduction of the search space that eases the derivation of optimal models and therefore, improves the mentioned trade-off. Based on the 2-tuples rule representation, this work proposes a new method to obtain linguistic fuzzy systems by means of an evolutionary learning of the data base a priori (number of labels and lateral displacements) and a simple rule generation method to quickly learn the associated rule base. Since this rule generation method is run from each data base definition generated by the evolutionary algorithm, its selection is an important aspect. In this work, we also propose two new ad hoc data-driven rule generation methods, analyzing the influence of them and other rule generation methods in the proposed learning approach. The developed algorithms will be tested considering two different real-world problems.Spanish Ministry of Science and Technology under Projects TIC-2002-04036-C05-01 and TIN-2005-08386-C05-0

    A systematic literature review on the use of artificial intelligence in energy self-management in smart buildings

    Get PDF
    Buildings are one of the main consumers of energy in cities, which is why a lot of research has been generated around this problem. Especially, the buildings energy management systems must improve in the next years. Artificial intelligence techniques are playing and will play a fundamental role in these improvements. This work presents a systematic review of the literature on researches that have been done in recent years to improve energy management systems for smart building using artificial intelligence techniques. An originality of the work is that they are grouped according to the concept of "Autonomous Cycles of Data Analysis Tasks", which defines that an autonomous management system requires specialized tasks, such as monitoring, analysis, and decision-making tasks for reaching objectives in the environment, like improve the energy efficiency. This organization of the work allows us to establish not only the positioning of the researches, but also, the visualization of the current challenges and opportunities in each domain. We have identified that many types of researches are in the domain of decision-making (a large majority on optimization and control tasks), and defined potential projects related to the development of autonomous cycles of data analysis tasks, feature engineering, or multi-agent systems, among others.European Commissio

    Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities

    Get PDF
    In the last few years, the application of Model Predictive Control (MPC) for energy management in buildings has received significant attention from the research community. MPC is becoming more and more viable because of the increase in computational power of building automation systems and the availability of a significant amount of monitored building data. MPC has found successful implementation in building thermal regulation, fully exploiting the potential of building thermal mass. Moreover, MPC has been positively applied to active energy storage systems, as well as to the optimal management of on-site renewable energy sources. MPC also opens up several opportunities for enhancing energy efficiency in the operation of Heating Ventilation and Air Conditioning (HVAC) systems because of its ability to consider constraints, prediction of disturbances and multiple conflicting objectives, such as indoor thermal comfort and building energy demand. Despite the application of MPC algorithms in building control has been thoroughly investigated in various works, a unified framework that fully describes and formulates the implementation is still lacking. Firstly, this work introduces a common dictionary and taxonomy that gives a common ground to all the engineering disciplines involved in building design and control. Secondly the main scope of this paper is to define the MPC formulation framework and critically discuss the outcomes of different existing MPC algorithms for building and HVAC system management. The potential benefits of the application of MPC in improving energy efficiency in buildings were highlighted

    Genetic and Swarm Algorithms for Optimizing the Control of Building HVAC Systems Using Real Data: A Comparative Study.

    Get PDF
    Buildings consume a considerable amount of electrical energy, the Heating, Ventilation, and Air Conditioning (HVAC) system being the most demanding. Saving energy and maintaining comfort still challenge scientists as they conflict. The control of HVAC systems can be improved by modeling their behavior, which is nonlinear, complex, and dynamic and works in uncertain contexts. Scientific literature shows that Soft Computing techniques require fewer computing resources but at the expense of some controlled accuracy loss. Metaheuristics-search-based algorithms show positive results, although further research will be necessary to resolve new challenging multi-objective optimization problems. This article compares the performance of selected genetic and swarmintelligence- based algorithms with the aim of discerning their capabilities in the field of smart buildings. MOGA, NSGA-II/III, OMOPSO, SMPSO, and Random Search, as benchmarking, are compared in hypervolume, generational distance, ε-indicator, and execution time. Real data from the Building Management System of Teatro Real de Madrid have been used to train a data model used for the multiple objective calculations. The novelty brought by the analysis of the different proposed dynamic optimization algorithms in the transient time of an HVAC system also includes the addition, to the conventional optimization objectives of comfort and energy efficiency, of the coefficient of performance, and of the rate of change in ambient temperature, aiming to extend the equipment lifecycle and minimize the overshooting effect when passing to the steady state. The optimization works impressively well in energy savings, although the results must be balanced with other real considerations, such as realistic constraints on chillers’ operational capacity. The intuitive visualization of the performance of the two families of algorithms in a real multi-HVAC system increases the novelty of this proposal.post-print888 K

    Autonomic management of a building's multi-HVAC system start-up

    Get PDF
    Most studies about the control, automation, optimization and supervision of building HVAC systems concentrate on the steady-state regime, i.e., when the equipment is already working at its setpoints. The originality of the current work consists of proposing the optimization of building multi-HVAC systems from start-up until they reach the setpoint, making the transition to steady state-based strategies smooth. The proposed approach works on the transient regime of multi-HVAC systems optimizing contradictory objectives, such as the desired comfort and energy costs, based on the "Autonomic Cycle of Data Analysis Tasks" concept. In this case, the autonomic cycle is composed of two data analysis tasks: one for determining if the system is going towards the defined operational setpoint, and if that is not the case, another task for reconfiguring the operational mode of the multi-HVAC system to redirect it. The first task uses machine learning techniques to build detection and prediction models, and the second task defines a reconfiguration model using multiobjective evolutionary algorithms. This proposal is proven in a real case study that characterizes a particular multi-HVAC system and its operational setpoints. The performance obtained from the experiments in diverse situations is impressive since there is a high level of conformity for the multi-HVAC system to reach the setpoint and deliver the operation to the steady-state smoothly, avoiding overshooting and other non-desirable transitional effects.European CommissionJunta de Comunidades de Castilla-La ManchaMinisterio de Ciencia e Innovació
    corecore