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ABSTRACT An approach to control non-linear objects based on evolving Rule-based (eR) models is presented in the
paper. Fuzzy rules, representing the structure of the controller are generated based on data collected during the process
of control using newly introduced technique for on-line identification of Takagi-Sugeno type of fuzzy rule-based
models. Initially, the process is supposed to be controlled for few time steps by any other conventional type of
controller (P, PID or a fuzzy one with a fixed structure determined off-line). Then, in on-line mode the output of the
plant under control (including its dynamic) and the respective control signal applied has been memorised and stored.
These data has been used to train in a non-iterative way the eR model representing the fuzzy controller, which aim is to
control the plant at a given set point. The indirect adaptive control approach has been used in combination with the
newly introduced on-line identification technique based on unsupervised learning of antecedent and consequent parts
separately. This approach exploits the quasi-linear nature of Takagi-Sugeno models and builds-up the control rule-base
structure and adapts it in on-line mode. The method is illustrated with an example from air-conditioning systems,
though it has wider potential applications.

KEYWORDS evolving fuzzy rule-based models, indirect adaptive control, on-line adaptation, air-conditioning
systems

1. INTRODUCTION

Fuzzy rule-based controllers have found wide application during the last decade, including the area of air-
conditioning (So et. al., 1994; Kuntze and Bernard, 1998). They have been responsible even for the thermal control of
the Space Shuttle (Lea et. al., 1992). Soon after the pioneering paper of Mamdani and Assilian (1975) an important
extension of the approach has been published (Mamdani and Procyk, 1979). It treats adaptation of the controller, self-
organisation of its structure. In the initial works, however, the rule-base has been supposed to be provided by experts
and only its tuning and adjustment has been seen as a leverage for adaptation.

Recently, so-called 'data-driven' techniques (Cios et. al., 1998; Cooper and Vidal, 1996) are gaining impetus as
more objective and easy to acquire, test and validate. They, however, are still mostly applied to classification and off-
line modelling and control (Burkhardt and Bonissone, 1992; Carse et. al., 1996). The problems of on-line application of
these control techniques are mostly related to the non-linear nature of the rule-base and computational expenses of the
training technique (normally back-propagation or genetic algorithms). From the other hand, the non-linearity of the
model/controller structure combined with the high level of transparency is their main advantage. It explains the good
performance of these models and controllers with complex plants and control aims, but in the same time it makes
difficult to design recursive, adaptive schemes.

Approaches for automatic generation of fuzzy rules (Furuhashi et. al., 1995; Angelov et. al., 2001) and for tuning of
fuzzy logic controllers (Cooper and Vidal, 1996) has been developed based on evolutionary algorithms and on gradient-
based techniques (Jang, 1993). Applying evolutionary techniques allows for tuning parameters of the fuzzy logic
controllers with the aim to achieve the desired quality of control. It makes also possible to generate the whole structure
of fuzzy rules of the controller off-line. Some practical applications of fuzzy logic and neural network-based controllers
are called self-learning or adaptive, (Chiang et. al., 1996), but they are rather self-adjusting and self-tuning. They,
normally, suppose structure of the controller to be fixed and apply adjustments to the parameters or make additive
corrections only (Hepworth et. al., 1994).

On-line application in real-time, however, are hampered by the high computational costs of genetic algorithms and
non-linearity of the models considered. Parameter adaptation, when possible, is time consuming because normally used
learning schemes are iterative. The lack of a true adaptivity hampers application, including portability (the ability to use
a system designed for one specific application to another quite similar one with as little modifications as possible),
which is extremely important in industrial and software applications.



2. ER MODELS AND CONTROLLERS IN THE CONTEXT OF SMART ADAPTIVE SYSTEMS

There are currently pressing demands from different branches of industry and science to find effective approaches to
build adaptive, autonomous, self-developing and self-enriching systems, which in the same time are flexible and robust
(EUNITE, 2000). It is also necessary for their practical application that they are computationally effective, compact and
transparent. They are needed to serve in autonomous intelligent sensors, self-diagnostic systems, evolving and re-
usable decision support systems, on-line control and performance analysis, knowledge extraction, intelligent agents etc.

Ideally, such a system has to respond to the external influence (possible changes in the environment) or the
internal stimuli (change in the object of modelling or control itself possibly due to wearing, ageing, degradation or
fault development). It should incorporate or mimic human-specific activities like perception, reasoning, and action to
achieve multiple (possibly conflicting) goals while functioning autonomously in non-stationary environments. A
desirable smart adaptive system by differ from a 'simply' adaptive (normally linear) systems have to be:

� able to change, evolve its structure simultaneously with the parameters;
� autonomous (to act and evolve on their own);
� to accumulate experience (to build-up their structure during the routine operation);
� intelligent (to take decisions);
� able to react to a surprise, to unexpected input, to distinguish outlays;
� adaptation mechanism itself could change (evolve) with time;

One promising alternative is so-called evolving fuzzy Rule-based (eR) models (Angelov, 2000), which could be used as
a tool for building such smart adaptive systems. They combine the flexibility of the non-linear, in general, rule-based
models with the adaptive, recursive schemes, normally used in linear control theory by an effective mechanism of rules
innovation and parameters up-date (Angelov and Buswell, 2001). They make possible to generate the structure and
parameters of the rule-base on-line and to adapt them later in respect to the change in the environmental or internal
changes. In this context such fuzzy controllers could be characterised as self-learning, evolving control schemes.

A smart adaptive controller is proposed in the paper, which is based on eR models in combination with the indirect
adaptive learning scheme. It has been tested and illustrated with the example of controlling the outlet air temperature of
a cooling coil of a real air-conditioning system.

3. ADAPTIVE CONTROLLER USING EVOLVING FUZZY RULES

The adaptive control scheme presented here uses the indirect learning (IL) mechanism introduced initially by Psaltis et.
al. (1988). Effectively, it is based on the approximation of the inverse dynamics of the plant. As it is well known, the
neural networks and fuzzy rule-based models are both proven to be universal approximators (Hornk, 1991; Wang, 1992).

In the original works on IL-based control (Psaltis et. al., 1988; Andersen et. al., 1994) neural networks has been used
for learning purposes. As it is known, however, the learning techniques for NN are iterative and, therefore, Andersen et.
al. (1994) have trained the neuro-controller off-line. Additional important disadvantage of neural networks in comparison
to the fuzzy rule-based models is their lack of interpretability and transparency. We use fuzzy rule-based models to
represent the controller and we employ recently introduced technique for unsupervised on-line learning of such models
called eR models (Angelov, 2002).

It should be mention that there exist various schemes for adaptive control (Astrom and Wittenmark, 1984). The IL-
based adaptive control scheme is preferred, because it is convenient for recursive, on-line implementation. It supposes
model-free concept and instead of feeding back the error between the plant output and the set-point it feeds back the
integrated (or memorised one-step back) output signal (Fig.1):
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parameters are known. The learning process itself is performed at each time-step in the so-called 'learning phase' (Fig.2).
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Fig. 2 IL-based adaptive control (learning phase)

As it is seen, in the learning phase the actual output signal (yk+1) achieved at the time-step (k+1) is supplied instead of the
set-point signal (yset-point). This output has been a result of application of the control action uk having an output signal (yk)
at the time step (k), e.g. before the control signal is applied. The data set (yk, yk+1, Fk, uk) necessary to train and adapt the
controller could easily be collected by memorising or integrating the real output from the plant (yk+1) and recording the
disturbance (Fk) and the control signal applied (uk).

The proposed scheme is represented in the Fig.3. Initially, during the first few (N) time steps it is possible to apply
any conventional control algorithm, like P, PID or a fuzzy logic controller trained off-line. There is a constraint, which
apply to N: N>n; where n denotes the number of inputs to the controller, here n=3; N denotes the number of initial time-
steps (Angelov, 2002). Practically, as the experiments indicate N could be as low as 5÷10 and the structure of the
controller could practically be developed by 'learning trough experience'.
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4. COOLING COIL CONTROL
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Supply air temperature, which is outlet from the coil is controlled to some predetermined set point by regulating the
mass flow rate of chilled water through the coil. This is achieved via a control signal (u) that commands an electrically
driven actuator, which operates the control valve diverting the water flow from one port to the other. The measurements
of air inlet (in fact, the ambient temperature, Tamb) and outlet temperatures (Tout) are used as inputs to the eR controller.
Volumetric flow rate of air (ma=1.0,kg/s), moisture content (g=0.008,kg/kg), and the temperature of the water
(Tw=10,oC) are supposed to be constant. The sample interval is 1 minute.

Results of application of the eR controller are depicted in the Figs.5a and 5b.

Fig.5a eR control of outlet temperature of a cooling coil - case 1

Data from a real system, located in Iowa, USA, generated from the ASHRAE funded research project RP1020 (courtesy
of ASHRAE) has been used. The ambient temperature on 22 August 1998 (dotted line on Fig 5a) has been considered
as the disturbance to the HVAC plant and input to eR controller respectively (Figs.1 and 3). The set points (Tset-point) for
the outlet from the coil air temperature (Tout;solid line), which is supplied to the occupied zone has been fixed on 19oC
for the first 100 minutes, 17oC for the next 100 minutes and on the 20oC for the rest 100 minutes (Fig.5a).

Initially, a fuzzy controller is applied, which has three fuzzy rules generated off-line based on the data (100 data
points) from the same system. The rules of this off-line trained controller are:

R1: IF ( amb
kT is Low) AND ( out

kT 1+ is High) AND ( out
kT is High) THEN ( ku is Low) (1)

R2: IF ( amb
kT is High) AND ( out

kT 1+ is Medium) AND ( out
kT is Medium) THEN ( ku is High)

R3: IF ( amb
kT is Very Low) AND ( out

kT 1+ is High) AND ( out
kT is High) THEN ( ku is Very Low)

Where the linguistic labels are assigned to membership functions representing respective fuzzy rule. They are depicted
in the Fig.6 for the variable ambT  and they are similar for the other variables. For the output (control signal, u)
singletons are used, with the following values: Very Low is 0.0698, -; Low is 0.3178, -; Medium is 0.4751, -; Rather
High is 0.5065, -; High is 0.7519, -.

Fig.6 Membership functions and linguistic labels of the fuzzy variables ambT  and outT



Then starts the on-line phase. In real time the new triplet of data has been recorded ( out
kT , amb

kT , ku ). They are

memorised and at the next time step they will effectively be ( out
kT 1− , amb

kT 1− , 1−ku ). Adding to this triplet the current data

for out
kT a new set of data for training eR controller is collected. It is added to the already existing set of data based on

the off-line training and a recursive up-date of the controller structure and parameters starts. This process is repeated for
every time instant (from 1 to 300 in this example) and calculations take several seconds making possible real-time
application.

In most of the cases no changes are required as the informative potential of the new data sets is not high enough to
replace, modify or add a new rule and correct the parameters, but in two cases there was new data sets with high enough
potential. In such a way, at time instant k=3 (3 minutes after the on-line control starts) a new data point is informative
enough to generate a new fuzzy rule:

R5: IF ( amb
kT is Medium) AND ( out

kT 1+ is Low) AND ( out
kT is Low) THEN ( ku is Medium) (4)

Additionally, there was one data set, which has informative potential, not high enough to add a new rule, but high
enough to modify the rule-set, and the centre of this new rule is not very close to existing rules as well as linguistic
labels are not close to existing ones. Based on this, the fuzzy rule R3  has been replaced by the more informative rule R5
in a way described in more details in (Angelov, 2002):

R5: IF ( amb
kT is Medium) AND ( out

kT 1+ is Relatively High) AND ( out
kT is Medium) THEN ( ku is Medium) (4)

In a similar way, the second test has been performed (Fig 5b). This time the set point Tset-point; solid line) has been fixed
on 17oC. The controller has generated its four fuzzy rules on-line during the control of the Tout starting from the
Tout=22oC (dotted line, Fig.5b).

Fig.5b eR control of outlet temperature of a cooling coil - case 2

5. CONCLUSIONS

A new approach for adaptive control based on evolving Rule-based (eR) models is presented in the paper. Fuzzy rules,
representing the structure of the controller are generated based on data collected during the process of control using
newly introduced technique for on-line identification of Takagi-Sugeno type of fuzzy rule-based models. Initially, the
process is supposed to be controlled for few time steps by any other conventional type of controller (P, PID or a fuzzy
one with a fixed structure determined off-line). Then in on-line mode the output of the plant under control (including its
dynamic) and the respective control signal applied has been memorised and stored. These data has been used to train in
real time eR model representing the fuzzy controller, which aim is to control the plant at a given set point. The indirect
learning-based adaptive control approach has been used in combination with a newly introduced on-line identification
technique. The proposed approach exploits the quasi-linear nature of the Takagi-Sugeno models and builds-up an
adaptive on-line modelling and control rule-base structure. The method is illustrated with an example from air-



conditioning systems (control of a cooling process of the air through water mass flow rate), though it has much wider
potential applications.

6. ACKNOWLEDGEMENTS

The authors acknowledge support of the EC trough EUNITE (IST2000-29207) and use of the data courtesy of
ASHRAE; generated from the ASHRAE funded research project RP1020.

7. REFERENCES

Andersen H.C., F.C. Teng, A.C. Tsoi (1994) Single Net Indirect Learning Architecture, IEEE Transactions on Neural
Networks, v.5 (6), pp.1003-1005

Angelov P. (2002) Evolving Rule-based Models: A Tool for Design of Flexible Adaptive Systems, Springer Verlag, 1-
215

Angelov P. (2000) Evolving Fuzzy Rule-based Models, Journal of CIIE, special issue on Soft Computing Applications
to Industrial Engineering, v. 17, pp. 459-468

Angelov P., R. Buswell (2001) Evolving Rule-based Models - A Tool for Intelligent Adaptation, Proc. of the joint 9th

IFSA World Congress and 20th NAFIPS Annual Conference, Vancouver, BC, Canada, 25-28 July, 2001,
pp.1062-1067, invited paper

Angelov P.P., V.I. Hanby, R. A. Buswell, J.A. Wright (2001) Automatic Generation of Fuzzy Rule-based Models from
Data by Genetic Algorithms, In: Developments in Soft Computing (R. John and R. Birkenhead Eds.): Physica
Verlag, pp.31-40

Astrom K., B. Wittenmark (1984) Computer Controlled Systems: Theory and Design, Englewood Cliffs, NJ, USA:
Prentice Hall

Bigus J., J. Bigus (1998) Constructing Intelligent Agents with Java: A Programmers Guide to Smarter Applications,
Toronto, Canada: John Wiley and Sons Inc.

Burkhardt D.G., P.P. Bonissone (1992) Automated Fuzzy Knowledge Base Generation and Tuning, Proc. of the 1st

IEEE Fuzzy Systems Conference, pp.179-188
Carse B., T.C. Fogarty, A. Munro (1996) Evolving Fuzzy Rule-based Controllers using GA, Fuzzy Sets and Systems,

v.80, pp.273-294
Chiang C. K., H.-Y. Chung, J.J. Lin (1996), A Self-Learning Fuzzy Logic Controller using Genetic Algorithms with

Reinforcements, IEEE Trans. on Fuzzy Systems, v.5, pp.460-467
Cios K.J., W. Pedricz, R.W. Swinarski (1998) Data Mining Methods for Knowledge Discovery, Boston, MA, USA:

Kluwer Academic Press
Cooper M. G., J. J. Vidal (1996) Genetic Design of Fuzzy Controllers, In: Genetic Algorithms and Pattern Recognition,

S. K. Pal, P. P. Wang Eds., CRC Press, chapter v.13, pp.283-298
EUNITE (2000) EUropean Network on Intelligent Technologies for Smart Adaptive Systems, Contract No IST-2000-

29207, Project Summary, p.4
Furuhashi T., K. Nakaoka, Y. Uchikawa (1995) An Efficient Finding of Fuzzy Rules using a New Approach to Genetic-

based Machine Learning, Proc. of the IEEE Conference on Fuzzy Engineering, Yokohama, Japan, pp.715-722
Jang J.S.R. (1993) ANFIS: Adaptive Network-based Fuzzy Inference Systems, IEEE Transactions on Systems, Man &

Cybernetics, v.23 (3), pp.665-685
Hepworth S.J., A.L. Dexter, Willis S.T.P. (1994) Neural Network Control of a Non-linear Heater Battery, Building

Services Engineering Research and Technology, v.15 (3), pp. 119-129
Hornik K. (1991) Approximation Capabilities of Multilayer Feedforward Network, Neural Network, v.4, pp.251-257
Kuntze H.-B., T. Bernard (1998) A New Fuzzy-based Supervisory Control Concept for the Demand-responsive

Optimization of HVAC Control Systems, 37th IEEE DCC, Tampa, Florida, USA, pp.4258-4263
Lea R., E. Dohmann, W. Prebilsky, Y. Jani (1996) An HVAC Fuzzy Logic Zone Control System and Performance

Results, Proc. IEEE Conference, pp. 2175-2180
Loveday D.L., G.Virk (1992) Artificial Intelligence for Buildings, Applied Energy, v.41, pp.201-221
Psaltis D., A. Sideris, A. A. Yamamura (1988) A Multilayered Neural Network Controller, IEEE Transactions on

Control Systems Management, v.8 (2), pp.17-21
So A. T. P., W.L. Chan, W.L. Tse (1994) Fuzzy Air-Handling System Controller, Building Services Engineering

Research and Technology, v.15 (2) pp.95-105
Wang L.-X. (1992) Fuzzy Systems are Universal Approximators, Proc. of the International Conference on Fuzzy

Systems, San Diego, CA, USA, pp.1163-1170


	Fig. 3	eR control scheme based on indirect learning principle

