22,698 research outputs found

    Advances in forecast evaluation

    Get PDF
    This paper surveys recent developments in the evaluation of point forecasts. Taking West's (2006) survey as a starting point, we briefly cover the state of the literature as of the time of West's writing. We then focus on recent developments, including advancements in the evaluation of forecasts at the population level (based on true, unknown model coefficients), the evaluation of forecasts in the finite sample (based on estimated model coefficients), and the evaluation of conditional versus unconditional forecasts. We present original results in a few subject areas: the optimization of power in determining the split of a sample into in-sample and out-of-sample portions; whether the accuracy of inference in evaluation of multi-step forecasts can be improved with judicious choice of HAC estimator (it can); and the extension of West's (1996) theory results for population-level, unconditional forecast evaluation to the case of conditional forecast evaluation.Forecasting

    Advances in forecast evaluation

    Get PDF
    This paper surveys recent developments in the evaluation of point forecasts. Taking West’s (2006) survey as a starting point, we briefly cover the state of the literature as of the time of West’s writing. We then focus on recent developments, including advancements in the evaluation of forecasts at the population level (based on true, unknown model coefficients), the evaluation of forecasts in the finite sample (based on estimated model coefficients), and the evaluation of conditional versus unconditional forecasts. We present original results in a few subject areas: the optimization of power in determining the split of a sample into in-sample and out-of-sample portions; whether the accuracy of inference in evaluation of multistep forecasts can be improved with the judicious choice of HAC estimator (it can); and the extension of West’s (1996) theory results for population-level, unconditional forecast evaluation to the case of conditional forecast evaluation.Forecasting ; Time-series analysis

    Change-Point Testing and Estimation for Risk Measures in Time Series

    Full text link
    We investigate methods of change-point testing and confidence interval construction for nonparametric estimators of expected shortfall and related risk measures in weakly dependent time series. A key aspect of our work is the ability to detect general multiple structural changes in the tails of time series marginal distributions. Unlike extant approaches for detecting tail structural changes using quantities such as tail index, our approach does not require parametric modeling of the tail and detects more general changes in the tail. Additionally, our methods are based on the recently introduced self-normalization technique for time series, allowing for statistical analysis without the issues of consistent standard error estimation. The theoretical foundation for our methods are functional central limit theorems, which we develop under weak assumptions. An empirical study of S&P 500 returns and US 30-Year Treasury bonds illustrates the practical use of our methods in detecting and quantifying market instability via the tails of financial time series during times of financial crisis

    Estimating Time-Varying Effective Connectivity in High-Dimensional fMRI Data Using Regime-Switching Factor Models

    Full text link
    Recent studies on analyzing dynamic brain connectivity rely on sliding-window analysis or time-varying coefficient models which are unable to capture both smooth and abrupt changes simultaneously. Emerging evidence suggests state-related changes in brain connectivity where dependence structure alternates between a finite number of latent states or regimes. Another challenge is inference of full-brain networks with large number of nodes. We employ a Markov-switching dynamic factor model in which the state-driven time-varying connectivity regimes of high-dimensional fMRI data are characterized by lower-dimensional common latent factors, following a regime-switching process. It enables a reliable, data-adaptive estimation of change-points of connectivity regimes and the massive dependencies associated with each regime. We consider the switching VAR to quantity the dynamic effective connectivity. We propose a three-step estimation procedure: (1) extracting the factors using principal component analysis (PCA) and (2) identifying dynamic connectivity states using the factor-based switching vector autoregressive (VAR) models in a state-space formulation using Kalman filter and expectation-maximization (EM) algorithm, and (3) constructing the high-dimensional connectivity metrics for each state based on subspace estimates. Simulation results show that our proposed estimator outperforms the K-means clustering of time-windowed coefficients, providing more accurate estimation of regime dynamics and connectivity metrics in high-dimensional settings. Applications to analyzing resting-state fMRI data identify dynamic changes in brain states during rest, and reveal distinct directed connectivity patterns and modular organization in resting-state networks across different states.Comment: 21 page

    Most Likely Transformations

    Full text link
    We propose and study properties of maximum likelihood estimators in the class of conditional transformation models. Based on a suitable explicit parameterisation of the unconditional or conditional transformation function, we establish a cascade of increasingly complex transformation models that can be estimated, compared and analysed in the maximum likelihood framework. Models for the unconditional or conditional distribution function of any univariate response variable can be set-up and estimated in the same theoretical and computational framework simply by choosing an appropriate transformation function and parameterisation thereof. The ability to evaluate the distribution function directly allows us to estimate models based on the exact likelihood, especially in the presence of random censoring or truncation. For discrete and continuous responses, we establish the asymptotic normality of the proposed estimators. A reference software implementation of maximum likelihood-based estimation for conditional transformation models allowing the same flexibility as the theory developed here was employed to illustrate the wide range of possible applications.Comment: Accepted for publication by the Scandinavian Journal of Statistics 2017-06-1

    Two Procedures for Robust Monitoring of Probability Distributions of Economic Data Streams induced by Depth Functions

    Full text link
    Data streams (streaming data) consist of transiently observed, evolving in time, multidimensional data sequences that challenge our computational and/or inferential capabilities. In this paper we propose user friendly approaches for robust monitoring of selected properties of unconditional and conditional distribution of the stream basing on depth functions. Our proposals are robust to a small fraction of outliers and/or inliers but sensitive to a regime change of the stream at the same time. Their implementations are available in our free R package DepthProc.Comment: Operations Research and Decisions, vol. 25, No. 1, 201
    • …
    corecore