12,579 research outputs found

    An enhanced fall detection system for elderly person monitoring using consumer home networks

    Get PDF
    Various fall-detection solutions have been previously proposed to create a reliable surveillance system for elderly people with high requirements on accuracy, sensitivity and specificity. In this paper, an enhanced fall detection system is proposed for elderly person monitoring that is based on smart sensors worn on the body and operating through consumer home networks. With treble thresholds, accidental falls can be detected in the home healthcare environment. By utilizing information gathered from an accelerometer, cardiotachometer and smart sensors, the impacts of falls can be logged and distinguished from normal daily activities. The proposed system has been deployed in a prototype system as detailed in this paper. From a test group of 30 healthy participants, it was found that the proposed fall detection system can achieve a high detection accuracy of 97.5%, while the sensitivity and specificity are 96.8% and 98.1% respectively. Therefore, this system can reliably be developed and deployed into a consumer product for use as an elderly person monitoring device with high accuracy and a low false positive rate

    An Enhanced fall detection system with GSM and GPS Technology

    Get PDF
    Fall-related accident and injury are a standout among the most widely recognized motivations to reason for death and hospitalization among elderly. Falls among older people become a major problem facing hospitals and nursing homes. An enhanced fall detection system is proposed for elderly person monitoring that is based on-body sensor. Various fall-detection solutions have been previously proposed to create a reliable surveillance system for elderly people with high requirements on accuracy. In this paper, an enhanced fall detection system is proposed for elderly person monitoring that is based on smart sensors worn on the body and operating through long distance as well as consumer home networks. The principle behind this work is the detection of changes in the motion and position using the sensor which tracks the acceleration changes in three orthogonal directions. By using MEM's accelerometer sensor is used for determining exact angle of an elderly person with the help of signal magnitude vector (SMV). When the fall is detected the GPS locates the exact fall location and GSM modem is used to transmit the message to the mobile phone of caretakers/relatives of the fallen subjects at that time also send their latitude and longitude value by using GPS. This alert message helps to provide immediate assistance and treatment

    Weathering the Nest: Privacy Implications of Home Monitoring for the Aging American Population

    Get PDF
    The research in this paper will seek to ascertain the extent of personal data entry and collection required to enjoy at least the minimal promised benefits of distributed intelligence and monitoring in the home. Particular attention will be given to the abilities and sensitivities of the population most likely to need these devices, notably the elderly and disabled. The paper will then evaluate whether existing legal limitations on the collection, maintenance, and use of such data are applicable to devices currently in use in the home environment and whether such regulations effectively protect privacy. Finally, given appropriate policy parameters, the paper will offer proposals to effectuate reasonable and practical privacy-protective solutions for developers and consumers

    A Wearable Fall Detection System based on LoRa LPWAN Technology

    Get PDF
    Several technological solutions now available in the market offer the possibility of increasing the independent life of people who by age or pathologies otherwise need assistance. In particular, internet-connected wearable solutions are of considerable interest, as they allow continuous monitoring of the user. However, their use poses different challenges, from the real usability of a device that must still be worn to the performance achievable in terms of radio connectivity and battery life. The acceptability of a technology solution, by a user who would still benefit from its use, is in fact often conditioned by practical problems that impact the person’s normal lifestyle. The technological choices adopted in fact strongly determine the success of the proposed solution, as they may imply limitations both to the person who uses it and to the achievable performance. In this document, targeting the case of a fall detection sensor based on a pair of sensorized shoes, the effectiveness of a real implementation of an Internet of Things technology is examined. It is shown how alarming events, generated in a metropolitan context, are effectively sent to a supervision system through Low Power Wide Area Network technology without the need for a portable gateway. The experimental results demonstrate the effectiveness of the chosen technology, which allows the user to take advantage of the support of a wearable sensor without being forced to substantially change his lifestyle

    How 5G wireless (and concomitant technologies) will revolutionize healthcare?

    Get PDF
    The need to have equitable access to quality healthcare is enshrined in the United Nations (UN) Sustainable Development Goals (SDGs), which defines the developmental agenda of the UN for the next 15 years. In particular, the third SDG focuses on the need to “ensure healthy lives and promote well-being for all at all ages”. In this paper, we build the case that 5G wireless technology, along with concomitant emerging technologies (such as IoT, big data, artificial intelligence and machine learning), will transform global healthcare systems in the near future. Our optimism around 5G-enabled healthcare stems from a confluence of significant technical pushes that are already at play: apart from the availability of high-throughput low-latency wireless connectivity, other significant factors include the democratization of computing through cloud computing; the democratization of Artificial Intelligence (AI) and cognitive computing (e.g., IBM Watson); and the commoditization of data through crowdsourcing and digital exhaust. These technologies together can finally crack a dysfunctional healthcare system that has largely been impervious to technological innovations. We highlight the persistent deficiencies of the current healthcare system and then demonstrate how the 5G-enabled healthcare revolution can fix these deficiencies. We also highlight open technical research challenges, and potential pitfalls, that may hinder the development of such a 5G-enabled health revolution

    Developing residential wireless sensor networks for ECG healthcare monitoring

    Get PDF
    Wireless technology development has increased rapidly due to it’s convenience and cost effectiveness compared to wired applications, particularly considering the advantages offered by Wireless Sensor Network (WSN) based applications. Such applications exist in several domains including healthcare, medical, industrial and home automation. In the present study, a home-based wireless ECG monitoring system using Zigbee technology is considered. Such systems can be useful for monitoring people in their own home as well as for periodic monitoring by physicians for appropriate healthcare, allowing people to live in their home for longer. Health monitoring systems can continuously monitor many physiological signals and offer further analysis and interpretation. The characteristics and drawbacks of these systems may affect the wearer’s mobility during monitoring the vital signs. Real-time monitoring systems record, measure, and monitor the heart electrical activity while maintaining the consumer’s comfort. Zigbee devices can offer low-power, small size, and a low-cost suitable solution for monitoring the ECG signal in the home, but such systems are often designed in isolation, with no consideration of existing home control networks and smart home solutions. The present study offers a state of the art review and then introduces the main concepts and contents of the wireless ECG monitoring systems. In addition, models of the ECG signal and the power consumption formulas are highlighted. Challenges and future perspectives are also reported. The paper concludes that such mass-market health monitoring systems will only be prevalent when implemented together with home environmental monitoring and control systems

    Development of a Real-Time, Simple and High-Accuracy Fall Detection System for Elderly Using 3-DOF Accelerometers

    Full text link
    © 2018, King Fahd University of Petroleum & Minerals. Falls represent a major problem for the elderly people aged 60 or above. There are many monitoring systems which are currently available to detect the fall. However, there is a great need to propose a system which is of optimal effectiveness. In this paper, we propose to develop a low-cost fall detection system to precisely detect an event when an elderly person accidentally falls. The fall detection algorithm compares the acceleration with lower fall threshold and upper fall threshold values to accurately detect a fall event. The post-fall recognition module is the combination of posture recognition and vertical velocity estimation that has been added to our proposed method to enhance the performance and accuracy. In case of a fall, our device will transmit the location information to the contacts instantly via SMS and voice call. A smartphone application will ensure that the notifications are delivered to the elderly person’s relatives so that medical attention can be provided with minimal delay. The system was tested by volunteers and achieved 100% sensitivity and accuracy. This was confirmed by testing with public datasets and it also achieved the same percentage in sensitivity and accuracy as in our recorded datasets
    • 

    corecore