
  

 
 

Abstract—fall detection is very important to provide 
adequate interventions for aging people in risk situations. 
Existing techniques focus on detecting falls using wearable or 
ambient sensors. However, they do not consider fall 
orientations.  In this paper, we present our novel fall detection 
system based on smart textiles and machine learning techniques. 
Using a non-linear support vector machine, we determine the 
fall orientation which will be helpful to study the impact of a fall 
according to its orientation. Additionally, we classify falls based 
on their orientations among 11 classes (moving upstairs, moving 
downstairs, walking, running, standing, fall forward, fall 
backward, fall right, fall left, lying, sitting). Results show the 
reliability of the proposed approach for falls detection (98% of 
accuracy, 97.5% of sensitivity and 98.5% specificity) and also 
for fall orientation (98.5% of accuracy). 

I. INTRODUCTION 

Fall detection is very important in order to provide 
appropriate interventions to rescue people. The recent 
advances in sensor technology empower smart systems 
targeting safety particularly for aging people [1]–[3]. Fall is 
the major risk that aging people face while performing their 
indoor and outdoor Activities of Daily Living (ADL). Thus, 
falls must be quickly detected to prevent further injuries. The 
first generation of systems to manage falls require people 
intervention (e.g., push a button or make a call) to notify a 
center or a person that initiates the intervention [4]. Advances 
in sensor technologies enabled to build a new generation of 
ambient assistive technology that automatically detects falls 
and imitate interventions. This ambient technology also helps 
physical therapists and caregivers to clearly know the 
circumstances of falls, allowing for better caregiving [1].  

The techniques targeting fall rely on detecting falls using 
wearable, ambient sensors, or multiple sensors that use a 
combination of two or more sensor types. Wearable sensors 
include accelerometer and smartphone sensors [5]. 
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Non-wearable systems include: cameras and vision-based 
approaches (a single camera, or multiple-camera networks); 
and ambient sensors–based approaches (e.g., motion 
detectors involving infrared sensors that identify motion, 
acoustic sensors, pressure sensors that are placed in people’s 
environment and use various measurements to determine if a 
person has fallen [6]. 

This study presents a novel fall detection approach based 
on smart textiles. Our approach enables to determine the fall 
orientation that is helpful to study the impact of a fall 
according to its orientation. We also present our study of fall 
detection in various situations. We consider falls among 11 
classes based on their orientations (i.e., moving upstairs, 
moving downstairs, walking, running, standing, falling 
forward, falling backward, falling right, falling left, lying, 
sitting). 
 The paper is organized as follows. Section 2 presents the 
related work concerning fall detection based on wearable 
sensors with various detection techniques and algorithms. 
Section 3 presents our research methodology. Section 4 
discusses the obtained results. Finally, Section 5 concludes 
the paper.  

II. RELATED WORK  

The fall detection systems are based on either wearable (ad 
hoc and smartphones) [7]–[27] or ambient sensors to detect 
falls [1], [2]. Wearable systems generally rely on placing an 
accelerometer sensor (i.e., kinematic-based systems) device 
on people to monitor changes in acceleration as well as planes 
of motion in order to identify falls [12], [28]–[31]. The 
devices could be placed on the head, arms, hands or feet [32]. 
The smartphone sensors (e.g., accelerometers, gyroscopes, 
and magnetic field sensors) are used to detect falls [33].  The 
tri-axial accelerometer is the most used in wearable systems.  

Perry et al. [34] presents a survey on real-time fall 
detection methods based on techniques that measure only 
acceleration, techniques that combine acceleration with other 
methods, and techniques that do not measure acceleration. 
They conclude that the methods measuring acceleration are 
good at detecting falls. They also comment that the placement 
of a sensor at the right position on the body can impact the 
accuracy of fall detection techniques. 

Most of the research work in fall detection is based on 
threshold identification. The raw or processed sensory data is 
compared to a single threshold or multiple pre-defined 
thresholds to detect a fall situation. As representative 
examples of exiting solutions: Sposaro and Tyson provide a 
fall detection system named “iFall” based on the 
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accelerometer sensor of a smartphone. The fall detection 
algorithm uses an adaptive threshold that changes with user 
parameters such as height, weight and level of activity. The 
system generates a decision by automatically analyzing the 
difference in position data before and after a suspected fall 
event [23]. Lopes et al., propose “Sensorfall” a mobile 
application based on a fixed threshold. Sensorfall uses the 
smartphone accelerometer sensor that has to be placed in 
trouser pockets [35]. However, smartphones are not always 
placed in the pocket, and a mobile phone is rarely held by 
people during indoor ADL. Jacob et al., [36] use both an 
accelerometer and two gyroscopes placed, as a single unit, on 
three different positions along the thoracic vertebrae. The fall 
detection algorithm is based on multiple thresholds that 
utilizes the recorded resultant gravitational acceleration, 
angular change, angular velocity, and angular acceleration. 
Their multiple thresholds algorithm enabled to improve fall 
detection accuracy. However, fall detection depends on (1) 
sensor positions, and (2) fall detection based thresholding is 
not sufficiently robust or reliable because there are different 
fall types and their nature show variations for each individual 
[33][37]. 

In this study, we propose a novel fall detection system 
based on smart textile and machine learning techniques. The 
innovative aspects of our approach include: the study of a fall 
orientation and the classification of falls based on their 
orientations among 11 classes which helps caregivers to 
provide the appropriate interventions according to fall class. 
Moreover, smart textile is among the promising emerging 
technologies that enables fall detection based on its advanced 
features. To our knowledge only one team is working on the 
topic [7]. The team uses simple geometric mean, posture and 
threshold based detection method for fall detection.  
The Smart textile approach has numerous advantages, 
including 1) manage data: the ability to communicate and 
collect data; 2) adaptability: it is adaptable to the needs or 
conditions in a variety of contexts (e.g., safety, protection, 
health monitoring, and disease management); 3) flexibility 
and portability: it can be used in any ambient environment 
without restrictions, by all age categories and with several 
sizes. As such, smart textile solutions are not obtrusive. They 
can easily be worn by people while performing ADL. 
Additionally, accelerometer is attached to the smart textile 
which minimizes the risk of losing sensor after a fall; 4) 
acquire rich physiological data: smart textile allows to 
collect physiological user’s data (e.g., heart-condition 
parameters, respiratory-condition parameters) as well as 
accelerometer data. Physiological data are very important for 
our study because it enables caregivers to study users 
conditions in real time after a fall).  
 Following we introduce our methodology to build our fall 
detection system based on smart textile.   

III. METHODOLOGY  

The innovative aspects of our approach include: the study of a 
fall orientation and the classification of falls based on their 
orientations in 11 classes which helps caregivers to provide 
the appropriate interventions according to fall class. Our 
novel textile-based approach enables to acquire physiological 

data after a fall, in order to help caregivers acquiring the 
health conditions of fallen people in real time. Additionally, 
to the best of our knowledge, this is the first research work 
that tackles the orientation aspects.  

Our approach introduces extra issues. In addition to using 
large sets of available on the shelf features, alternative 
methods can be developed to derive more discriminant 
features for fall detection. The wavelet or Gabor transforms 
can be applied to raw acceleration data for analyzing the 
signals in more details in frequency and time domain with the 
objective of deriving a new set of distinctive features (e.g., 
wavelet energy or coefficients).  

In addition to derive new features, more accurate detection 
methods are required. Most of the existing approaches use 
threshold-based detection methods while few use machine 
learning techniques to detect falls. Among them, Micucci et 
al. [8] and Albert et al. [26] use several classifiers and each 
classifier accuracy has been reported separately. However, 
combining these classifiers by the score level or decision 
level fusion may achieve higher accuracy and stability in 
detecting falls. 

Our approach is based on two phases: The first phase is fall 
detection and the second phase is fall orientation. For fall 
detection, 1st we detect a peak in real time using the 
accelerometric data magnitude. 2nd we identify a region of 
interest based on the use of a rectangular window around the 
detected peak. 3rd we perform feature extraction on the region 
of interest. 4th we use a nonlinear support vector machine 
(SVM) to classify the feature of the identified peak whether in 
falls or non falls classes. For fall orientations, we perform a 
second feature extraction to characterize and classify the 
orientation using a second SVM classification system. Figure 1 
illustrates our fall detection and orientation approach. 
Following more details about our approach: 

 

 
Figure 1. Bloc diagram of the proposed falls detection and orientation 
system. 

A. Data Acquisition 

This study was approved by institutional ethics committees, 
with all subjects providing written informed consent before it 
began. 13 healthy volunteers participated in the study (age 
25.43 ± 7.51 years old, weight 60.7 ± 6.7 kg, heigh172.7 ± 7,2 
cm). We performed the tests at the research center of the 
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hospital center of Montreal University. Each participant wore 
the smart textile and repeated 5 times a sequence of 11 tasks 
(moving upstairs, moving downstairs, walking, running, 
standing, fall forward, fall backward, fall right, fall left, lying, 
sitting). The intelligent textile (Hexoskin, Carré technologies, 
Montreal, Canada) enables real-time remote monitoring of 
3D acceleration data, cardiac activity and respiratory activity 
on smartphones and tablets using Bluetooth. The 
accelerations are collected using 3-axis sensors with a 13-bit 
resolution and a frequency of 64 Hz.  

B. Fall detection:  

Using the acceleration magnitude a peak detection was 
performed in real time. Let Ax,	 Ay, and Az	 the accelerations 
along the x, y, and z axes, respectively. The acceleration 
magnitude A is given by:  

𝐴 = 	 𝐴)* + 𝐴,* + 𝐴-* 

Peaks detection was performed by looking for downward 
zero crossings in the smoothed first derivative of signal A. A 
predetermined minimum slope threshold was fixed to 
eliminate the false peaks (false zero-crossing). In our study, 
the threshold was fixed empirically to (1.5). 

Peak detection was followed by a region of interest (ROI) 
identification based on the use of a rectangular window of 
200 points around the detected peak. The feature extraction is, 
then, performed on the ROI. Let Sn denotes either the Ax,	 Ay,	
Az or A component where n is the component dimension. 
Extracted features consist, for each component, of the 
amplitude, minimum, and maximum, mean values, as well as 
the range and skewness of the signal component. These 
features are given by the following equations: 

maximum 𝑠 = max
5
(𝑆5) 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑠 = min
5
(𝑆5) 

𝑚𝑒𝑎𝑛 𝑠 = 	𝜇 = 	
1
𝑁

𝑆5

B

5CD

 

𝑅𝑎𝑛𝑔𝑒 𝑠 = max
5
(𝑆5) − min5 (𝑆5) 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑠) =
1
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where            𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑠 = 	𝜎* = D
B

(𝑆5 − 𝜇)*B
5CD  

These features serve the classification system for falls 
detection. We used a multi-class non-linear support vector 
machine (SVM) to classify the features of the identified peak 
whether in falls (F) or non falls (N-F) classes. SVM are 
popular machine learning methods which can efficiently 
perform a non-linear classification using mathematical 
programming and kernel functions.  

C. Falls orientation  

In case of a fall (F), a second feature extraction step is 
performed to characterize and classify the orientation using a 

second SVM classification system which discriminates 
between Fall right (Fr), Fall left (Fl), Fall forward (Ff), Fall 
backward (Fb). 

D. Performance evaluation 

The performance of the falls detection system is computed by 
a 10-fold cross-validation procedure:  the data set is divided 
into 10 subsets. Each time, one of the 10 subsets is used as the 
test set and the other 9 subsets are used as the training set. The 
classification performance is computed at each time and the 
average error across all 10 trials is estimated to obtain the 
classification rate, the sensitivity and the specificity. 
Sensitivity (Se) is the capacity of the system to detect falls 
where the specificity (Sp) is the capacity of the system to 
detect falls only when they occur. The performance of the 
falls orientation system is evaluated using the classification 
rate and the classification rates per class based on a10-fold 
cross-validation procedures too.  

IV. RESULTS & DISCUSSION  

Experimental results were performed using the data collected 
on 13 healthy participants. Each wore the smart textile and 
repeated 5 times the sequence of 11 tasks: moving upstairs, 
moving downstairs, walking, running, standing, falling 
forward, falling backward, falling right, falling left, lying, 
sitting. Each sequence duration is approximately 2 minutes 
(Figure 2).  
 

 
Figure 2.  Acceleration magnitude of a sequence of 11 tasks 

 
The peak detection on acceleration magnitude was performed 
in real time. Once a peak detected, an ROI is identified for 
feature extraction and classification. 
The used features for falls detection were the amplitude of Ax,	
Ay,	 Az and A	 and their skewness. The reliability of the falls 
detection system was 98% for the accuracy, 97.6% for 
sensitivity (Se) and 98.5% for specificity (Sp). 
For falls orientation, we used the minimum, the range and 
skewness of the signal component. 
The performance of the falls orientation system was 98% for 
the accuracy. The classification rates per class were 100% for 
falls forward (Ff), 99% falls backward (Fb), 96% for falls 
right (Fr), and 96% for falls left (Fl).  
The falls detection and classification system was developed 
using Matlab R2014b software (Mathworks, Massachusetts, 
United State). The system response time is approximately 
0.005 second using a machine Core i7-3720 with Quad-Core 
CPU (2.60GHz) and 8 G of memory. 



  

V. CONCLUSION  

We presented in this paper, a falls detection and orientation 
system based on smart textile and machine learning 
techniques. Using a support vector machine, we determined 
the fall orientation which will be helpful to study the impact 
of a fall according to its orientation. Additionally, we 
classified falls based on their orientations among 11 classes 
(moving upstairs, moving downstairs, walking, running, 
standing, fall forward, fall backward, fall right, fall left, lying, 
sitting). Results show the reliability of the proposed approach 
for both falls detection and falls orientation.  
Our approach enables to acquire physiological data after a 
fall, which helps caregivers to study the fallen person health 
conditions in real time. 
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