32 research outputs found

    An enhanced RNA alignment benchmark for sequence alignment programs

    Get PDF
    BACKGROUND: The performance of alignment programs is traditionally tested on sets of protein sequences, of which a reference alignment is known. Conclusions drawn from such protein benchmarks do not necessarily hold for the RNA alignment problem, as was demonstrated in the first RNA alignment benchmark published so far. For example, the twilight zone – the similarity range where alignment quality drops drastically – starts at 60 % for RNAs in comparison to 20 % for proteins. In this study we enhance the previous benchmark. RESULTS: The RNA sequence sets in the benchmark database are taken from an increased number of RNA families to avoid unintended impact by using only a few families. The size of sets varies from 2 to 15 sequences to assess the influence of the number of sequences on program performance. Alignment quality is scored by two measures: one takes into account only nucleotide matches, the other measures structural conservation. The performance order of parameters – like nucleotide substitution matrices and gap-costs – as well as of programs is rated by rank tests. CONCLUSION: Most sequence alignment programs perform equally well on RNA sequence sets with high sequence identity, that is with an average pairwise sequence identity (APSI) above 75 %. Parameters for gap-open and gap-extension have a large influence on alignment quality lower than APSI ≤ 75 %; optimal parameter combinations are shown for several programs. The use of different 4 × 4 substitution matrices improved program performance only in some cases. The performance of iterative programs drastically increases with increasing sequence numbers and/or decreasing sequence identity, which makes them clearly superior to programs using a purely non-iterative, progressive approach. The best sequence alignment programs produce alignments of high quality down to APSI > 55 %; at lower APSI the use of sequence+structure alignment programs is recommended

    The RNAz web server: prediction of thermodynamically stable and evolutionarily conserved RNA structures

    Get PDF
    Many non-coding RNA genes and cis-acting regulatory elements of mRNAs contain RNA secondary structures that are critical for their function. Such functional RNAs can be predicted on the basis of thermodynamic stability and evolutionary conservation. We present a web server that uses the RNAz algorithm to detect functional RNA structures in multiple alignments of nucleotide sequences. The server provides access to a complete and fully automatic analysis pipeline that allows not only to analyze single alignments in a variety of formats, but also to conduct complex screens of large genomic regions. Results are presented on a website that is illustrated by various structure representations and can be downloaded for local view. The web server is available at: rna.tbi.univie.ac.at/RNAz

    Homology ­modeling of complex structural RNAs

    Get PDF
    National audienceAligning macromolecules such as proteins, DNAs and RNAs in order to reveal, or conversely exploit, their functional homology is a classic challenge in bioinformatics, with far­reaching applications in structure modelling and genome annotations. In the specific context of complex RNAs, featuring pseudoknots, multiple interactions and non­canonical base pairs, multiple algorithmic solutions and tools have been proposed for the structure/sequence alignment problem. However, such tools are seldom used in practice, due in part to their extreme computational demands, and because of their inability to support general types of structures. Recently, a general parameterized algorithm based on tree decomposition of the query structure has been designed by Rinaudo et al. We present an implementation of the algorithm within a tool named LiCoRNA. We compare it against state­of­the­art algorithms. We show that it both gracefully specializes into a practical algorithm for simple classes pseudoknot, and offers a general solution for complex pseudoknots, which are explicitly out­of­reach of competing softwares

    Freiburg RNA Tools: a web server integrating IntaRNA, ExpaRNA and LocARNA

    Get PDF
    The Freiburg RNA tools web server integrates three tools for the advanced analysis of RNA in a common web-based user interface. The tools IntaRNA, ExpaRNA and LocARNA support the prediction of RNA–RNA interaction, exact RNA matching and alignment of RNA, respectively. The Freiburg RNA tools web server and the software packages of the stand-alone tools are freely accessible at http://rna.informatik.uni-freiburg.de

    R-Coffee: a web server for accurately aligning noncoding RNA sequences

    Get PDF
    The R-Coffee web server produces highly accurate multiple alignments of noncoding RNA (ncRNA) sequences, taking into account predicted secondary structures. R-Coffee uses a novel algorithm recently incorporated in the T-Coffee package. R-Coffee works along the same lines as T-Coffee: it uses pairwise or multiple sequence alignment (MSA) methods to compute a primary library of input alignments. The program then computes an MSA highly consistent with both the alignments contained in the library and the secondary structures associated with the sequences. The secondary structures are predicted using RNAplfold. The server provides two modes. The slow/accurate mode is restricted to small datasets (less than 5 sequences less than 150 nucleotides) and combines R-Coffee with Consan, a very accurate pairwise RNA alignment method. For larger datasets a fast method can be used (RM-Coffee mode), that uses R-Coffee to combine the output of the three packages which combines the outputs from programs found to perform best on RNA (MUSCLE, MAFFT and ProbConsRNA). Our BRAliBase benchmarks indicate that the R-Coffee/Consan combination is one of the best ncRNA alignment methods for short sequences, while the RM-Coffee gives comparable results on longer sequences. The R-Coffee web server is available at http://www.tcoffee.org

    R-Coffee: a web server for accurately aligning noncoding RNA sequences

    Get PDF
    The R-Coffee web server produces highly accurate multiple alignments of noncoding RNA (ncRNA) sequences, taking into account predicted secondary structures. R-Coffee uses a novel algorithm recently incorporated in the T-Coffee package. R-Coffee works along the same lines as T-Coffee: it uses pairwise or multiple sequence alignment (MSA) methods to compute a primary library of input alignments. The program then computes an MSA highly consistent with both the alignments contained in the library and the secondary structures associated with the sequences. The secondary structures are predicted using RNAplfold. The server provides two modes. The slow/accurate mode is restricted to small datasets (less than 5 sequences less than 150 nucleotides) and combines R-Coffee with Consan, a very accurate pairwise RNA alignment method. For larger datasets a fast method can be used (RM-Coffee mode), that uses R-Coffee to combine the output of the three packages which combines the outputs from programs found to perform best on RNA (MUSCLE, MAFFT and ProbConsRNA). Our BRAliBase benchmarks indicate that the R-Coffee/Consan combination is one of the best ncRNA alignment methods for short sequences, while the RM-Coffee gives comparable results on longer sequences. The R-Coffee web server is available at http://www.tcoffee.org

    PicXAA-R: Efficient structural alignment of multiple RNA sequences using a greedy approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate and efficient structural alignment of non-coding RNAs (ncRNAs) has grasped more and more attentions as recent studies unveiled the significance of ncRNAs in living organisms. While the Sankoff style structural alignment algorithms cannot efficiently serve for multiple sequences, mostly progressive schemes are used to reduce the complexity. However, this idea tends to propagate the early stage errors throughout the entire process, thereby degrading the quality of the final alignment. For multiple protein sequence alignment, we have recently proposed PicXAA which constructs an accurate alignment in a non-progressive fashion.</p> <p>Results</p> <p>Here, we propose PicXAA-R as an extension to PicXAA for greedy structural alignment of ncRNAs. PicXAA-R efficiently grasps both folding information within each sequence and local similarities between sequences. It uses a set of probabilistic consistency transformations to improve the posterior base-pairing and base alignment probabilities using the information of all sequences in the alignment. Using a graph-based scheme, we greedily build up the structural alignment from sequence regions with high base-pairing and base alignment probabilities.</p> <p>Conclusions</p> <p>Several experiments on datasets with different characteristics confirm that PicXAA-R is one of the fastest algorithms for structural alignment of multiple RNAs and it consistently yields accurate alignment results, especially for datasets with locally similar sequences. PicXAA-R source code is freely available at: <url>http://www.ece.tamu.edu/~bjyoon/picxaa/</url>.</p

    Accelerated large-scale multiple sequence alignment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple sequence alignment (MSA) is a fundamental analysis method used in bioinformatics and many comparative genomic applications. Prior MSA acceleration attempts with reconfigurable computing have only addressed the first stage of progressive alignment and consequently exhibit performance limitations according to Amdahl's Law. This work is the first known to accelerate the third stage of progressive alignment on reconfigurable hardware.</p> <p>Results</p> <p>We reduce subgroups of aligned sequences into discrete profiles before they are pairwise aligned on the accelerator. Using an FPGA accelerator, an overall speedup of up to 150 has been demonstrated on a large data set when compared to a 2.4 GHz Core2 processor.</p> <p>Conclusions</p> <p>Our parallel algorithm and architecture accelerates large-scale MSA with reconfigurable computing and allows researchers to solve the larger problems that confront biologists today. Program source is available from <url>http://dna.cs.byu.edu/msa/</url>.</p
    corecore