1,068 research outputs found

    Transform-based Distributed Data Gathering

    Full text link
    A general class of unidirectional transforms is presented that can be computed in a distributed manner along an arbitrary routing tree. Additionally, we provide a set of conditions under which these transforms are invertible. These transforms can be computed as data is routed towards the collection (or sink) node in the tree and exploit data correlation between nodes in the tree. Moreover, when used in wireless sensor networks, these transforms can also leverage data received at nodes via broadcast wireless communications. Various constructions of unidirectional transforms are also provided for use in data gathering in wireless sensor networks. New wavelet transforms are also proposed which provide significant improvements over existing unidirectional transforms

    A Comprehensive Review of Distributed Coding Algorithms for Visual Sensor Network (VSN)

    Get PDF
    Since the invention of low cost camera, it has been widely incorporated into the sensor node in Wireless Sensor Network (WSN) to form the Visual Sensor Network (VSN). However, the use of camera is bringing with it a set of new challenges, because all the sensor nodes are powered by batteries. Hence, energy consumption is one of the most critical issues that have to be taken into consideration. In addition to this, the use of batteries has also limited the resources (memory, processor) that can be incorporated into the sensor node. The life time of a VSN decreases quickly as the image is transferred to the destination. One of the solutions to the aforementioned problem is to reduce the data to be transferred in the network by using image compression. In this paper, a comprehensive survey and analysis of distributed coding algorithms that can be used to encode images in VSN is provided. This also includes an overview of these algorithms, together with their advantages and deficiencies when implemented in VSN. These algorithms are then compared at the end to determine the algorithm that is more suitable for VSN

    D-DSC: Decoding Delay-based Distributed Source Coding for Internet of Sensing Things.

    Get PDF
    Spatial correlation between densely deployed sensor nodes in a wireless sensor network (WSN) can be exploited to reduce the power consumption through a proper source coding mechanism such as distributed source coding (DSC). In this paper, we propose the Decoding Delay-based Distributed Source Coding (D-DSC) to improve the energy efficiency of the classical DSC by employing the decoding delay concept which enables the use of the maximum correlated portion of sensor samples during the event estimation. In D-DSC, network is partitioned into clusters, where the clusterheads communicate their uncompressed samples carrying the side information, and the cluster members send their compressed samples. Sink performs joint decoding of the compressed and uncompressed samples and then reconstructs the event signal using the decoded sensor readings. Based on the observed degree of the correlation among sensor samples, the sink dynamically updates and broadcasts the varying compression rates back to the sensor nodes. Simulation results for the performance evaluation reveal that D-DSC can achieve reliable and energy-efficient event communication and estimation for practical signal detection/estimation applications having massive number of sensors towards the realization of Internet of Sensing Things (IoST)

    Novel Techniques to Eradicate Energy Inefficiencies That Abbreviate The Lifetime of The Cell Phone Based WSNs

    Get PDF
    The Cell Phone Based WSN of compressed micro-sensors for data acquirement and supervise some surroundings distinctiveness, such as noise, trembling, temperature, and strain. These sensors are entrenched devices accomplished of data communication. In numerous of applications, sensor nodes are deployed over a geo-graphically large region. Due to their configuration, data of measured values must be transferred among stations through these sensor nodes. For this reason a successful, energy efficient routing protocol should be implemented to avoid data loss and additional challenges within limited energy levels. This paper presents a cell phone based routing algorithm for wireless sensor networks, based on the selection of the scheme of dynamic nodes. The key objective is to boost the lifetime of a sensor network while not cooperation data delivery. Significant tasks such as, scrutinize, supervise and determine of energy levels of nodes are handled by these independent mechanisms

    A Non-Cooperative Game Theoretical Approach For Power Control In Virtual MIMO Wireless Sensor Network

    Full text link
    Power management is one of the vital issue in wireless sensor networks, where the lifetime of the network relies on battery powered nodes. Transmitting at high power reduces the lifetime of both the nodes and the network. One efficient way of power management is to control the power at which the nodes transmit. In this paper, a virtual multiple input multiple output wireless sensor network (VMIMO-WSN)communication architecture is considered and the power control of sensor nodes based on the approach of game theory is formulated. The use of game theory has proliferated, with a broad range of applications in wireless sensor networking. Approaches from game theory can be used to optimize node level as well as network wide performance. The game here is categorized as an incomplete information game, in which the nodes do not have complete information about the strategies taken by other nodes. For virtual multiple input multiple output wireless sensor network architecture considered, the Nash equilibrium is used to decide the optimal power level at which a node needs to transmit, to maximize its utility. Outcome shows that the game theoretic approach considered for VMIMO-WSN architecture achieves the best utility, by consuming less power.Comment: 12 pages, 8 figure

    On the energy self-sustainability of IoT via distributed compressed sensing

    Get PDF
    This paper advocates the use of the distributed compressed sensing (DCS) paradigm to deploy energy harvesting (EH) Internet of Thing (IoT) devices for energy self-sustainability. We consider networks with signal/energy models that capture the fact that both the collected signals and the harvested energy of different devices can exhibit correlation. We provide theoretical analysis on the performance of both the classical compressive sensing (CS) approach and the proposed distributed CS (DCS)-based approach to data acquisition for EH IoT. Moreover, we perform an in-depth comparison of the proposed DCS-based approach against the distributed source coding (DSC) system. These performance characterizations and comparisons embody the effect of various system phenomena and parameters including signal correlation, EH correlation, network size, and energy availability level. Our results unveil that, the proposed approach offers significant increase in data gathering capability with respect to the CS-based approach, and offers a substantial reduction of the mean-squared error distortion with respect to the DSC system

    A Survey of multimedia streaming in wireless sensor networks: progress, issues and design challenges

    Full text link
    Advancements in Complementary Metal Oxide Semiconductor (CMOS) technology have enabled Wireless Sensor Networks (WSN) to gather, process and transport multimedia (MM) data as well and not just limited to handling ordinary scalar data anymore. This new generation of WSN type is called Wireless Multimedia Sensor Networks (WMSNs). Better and yet relatively cheaper sensors that are able to sense both scalar data and multimedia data with more advanced functionalities such as being able to handle rather intense computations easily have sprung up. In this paper, the applications, architectures, challenges and issues faced in the design of WMSNs are explored. Security and privacy issues, over all requirements, proposed and implemented solutions so far, some of the successful achievements and other related works in the field are also highlighted. Open research areas are pointed out and a few solution suggestions to the still persistent problems are made, which, to the best of my knowledge, so far have not been explored yet

    Performance Analysis of Multiple Access Techniques for LTE system under Symbol Error Rate (SER) Calculation

    Full text link
    In the recent years, so many technologies in multiple access trends have influenced the field of Wireless Sensor Networks in significant ways. Various trends are readily available technology of ubiquitous wireless sensor networks as well as wireless communication networks and progress in the development of two multiple access techniques are compared in this scenario: the OFDMA and SC-FDMA. The OFDMA and SC-FDMA transceivers are modeled and simulated considering both the interleaved and localized subcarriers mapping schemes. WSNs have the potentiality to connect the physical world with the virtual world by forming a network of sensor nodes. To prolong the networklsquo;s hop in terms of single and two hop using both techniques should be used in the sensor nodes. The minimization of computing and storage platforms as well as the development of novel micro sensors and sensor materials with high reliability force encourages technology in research on WSN. In this paper, we will proposed the field of multipath routing in wireless sensor networks, and mainly focus on the technology of SER of WSNs
    corecore