34,415 research outputs found

    Efficient key management in wireless sensor network security

    Get PDF
    Wireless sensor network is a multi-hop ad hoc network formed by a large number of low-cost micro-sensor nodes which communicate through radio channels. It is widely used in many areas in modern society and attracts a lot of attention from researchers. This research is on wireless sensor network security and it focuses on key management in hierarchical wireless sensor networks. Through literature review, the drawback and weakness of existing key management schemes are analyzed from various aspects including key establishment, key distribution, key update, authentication and node operation mechanism. Assessment criteria for key management scheme are proposed under different requirements and constraints of wireless sensor networks. The security criteria cover keying model, key distribution, key update, node operation and resilience. For cluster based hierarchical wireless sensor networks, an assistant node is introduced in a cluster to deal with the situation of cluster head compromise and to keep the member nodes securely staying in the network. With introduction of assistant nodes, a complete secure efficient hierarchical key management scheme (SEHKM) for wireless sensor network is proposed. The scheme supports three types of keys and the big improvement over existing key management schemes is on group key update, which is based on pseudo-random numbers and group Diffie-Hellman. The analysis and evaluation have shown that that SEHKM offers strong security with efficient operation from energy consumption point of view

    Survey: energy efficient protocols using radio scheduling in wireless sensor network

    Get PDF
    An efficient energy management scheme is crucial factor for design and implementation of any sensor network. Almost all sensor networks are structured with numerous small sized, low cost sensor devices which are scattered over the large area. To improvise the network performance by high throughput with minimum energy consumption, an energy efficient radio scheduling MAC protocol is effective solution, since MAC layer has the capability to collaborate with distributed wireless networks. The present survey study provides relevant research work towards radio scheduling mechanism in the design of energy efficient wireless sensor networks (WSNs). The various radio scheduling protocols are exist in the literature, which has some limitations. Therefore, it is require developing a new energy efficient radio scheduling protocol to perform multi tasks with minimum energy consumption (e.g. data transmission). The most of research studies paying more attention towards to enhance the overall network lifetime with the aim of using energy efficient scheduling protocol. In that context, this survey study overviews the different categories of MAC based radio scheduling protocols and those protocols are measured by evaluating their data transmission capability, energy efficiency, and network performance. With the extensive analysis of existing works, many research challenges are stated. Also provides future directions for new WSN design at the end of this survey

    EFFICIENT ROUTING PROTOCOL ALGORITHM FOR WIRELESS SENSOR NETWORKS

    Get PDF
    Recently, different applications of wireless sensor networks (WSNs) in the industry fields using different data transfer protocols has been developed. As the energy of sensor nodes is limited, prolonging network lifetime in WSNs considered a significant occurrence. To develop network permanence, researchers had considered energy consuming in routing protocols of WSNs by using modified Low Energy Adaptive Clustering Hierarchy. This article presents a developed effective transfer protocols for autonomic WSNs. An efficient routing scheme for wireless sensor network regarded as significant components of electronic devices is proposed. An optimal election probability of a node to be cluster head has being presented. In addition, this article uses a Voronoi diagram, which decomposes the nodes into zone around each node. This diagram used in management architecture for WSNs

    Signal processing for distributed nodes in smart networks

    No full text
    With increasing environmental concern for energy conservation and mitigating climate change, next generation smart networks are bound to provide improved performance in terms of security, reliability, and energy efficiency. For instance, future smart networks will work in highly complex and dynamic environments and will have distributed nodes that need to interact with each other and may also interact with an energy provider in order to improve their performance. In this context, advanced signal processing tools such as game theory and distributed transmit beamforming can yield tremendous performance gains in terms of energy efficiency for demand management and signal trans-mission in smart networks. The central theme of this dissertation is the modeling of energy usage behavior of self-seeking distributed nodes in smart networks. The thesis mainly looks into two key areas of smart networks: 1) smart grid networks and 2) wireless sensor networks, and contains: an analytical framework of the economics of electric vehicle charging in smart grids in an energy constrained environment; a study of a consumer-centric energy management scheme for encouraging the consumers in a smart grid to voluntarily take part in energy management; an outage management scheme for efficiently curtailing energy from the consumers in smart grids in the event of a power outage; a comprehensive study of power control of sensors in a wireless sensor network using game theory and distributed transmit beamforming; and finally, an energy aware distributed transmit beamfoming technique for long distance signal transmission in a wireless sensor network. This thesis addresses the challenges of modeling the energy usage behavior of distributed nodes through studying the propriety of energy users in smart networks, 1) by capturing the interactions between the energy users and energy provider in smart grids using non-cooperative Stackelberg and generalized Nash games, and showing that the socially optimal energy management for users can be achieved at the solution of the games, and 2) by studying the power control of sensors in wireless sensor networks, using a non-cooperative Nash game and distributed transmit beamforming that demonstrates significant transmit energy savings for the sensors. To foster energy efficient transmission, the thesis also studies a distributed transmit beamforming technique that does not require any channel state information for long distance signal transmission in sensor networks. The contributions of this dissertation are enhanced by proposing suitable system models and appropriate signal processing techniques. These models and techniques can capture the different cost-benefit tradeoffs that exist in these networks. All the proposed schemes in this dissertation are shown to have significant performance improvement when compared with existing solutions. The work in this thesis demonstrates that modeling power usage behavior of distributed nodes in smart networks is both possible and beneficial for increasing the energy efficiency of these networks

    PIYAS-Proceeding to Intelligent Service Oriented Memory Allocation for Flash Based Data Centric Sensor Devices in Wireless Sensor Networks

    Get PDF
    Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS). This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks

    A Lightweight Authentication and Key Management Scheme for Wireless Sensor Networks

    Get PDF
    Security problem is one of the most popular research fields in wireless sensor networks for both the application requirement and the resource-constrained essence. An effective and lightweight Authentication and Key Management Scheme (AKMS) is proposed in this paper to solve the problem of malicious nodes occurring in the process of networking and to offer a high level of security with low cost. For the condition that the mobile sensor nodes need to be authenticated, the keys in AKMS will be dynamically generated and adopted for security protection. Even when the keys are being compromised or captured, the attackers can neither use the previous keys nor misuse the authenticated nodes to cheat. Simulation results show that the proposed scheme provides more efficient security with less energy consumption for wireless sensor networks especially with mobile sensors

    Energy-Efficiency Analysis of a Distributed Queuing Medium Access Control Protocol for Biomedical Wireless Sensor Networks in Saturation Conditions

    Get PDF
    The aging population and the high quality of life expectations in our society lead to the need of more efficient and affordable healthcare solutions. For this reason, this paper aims for the optimization of Medium Access Control (MAC) protocols for biomedical wireless sensor networks or wireless Body Sensor Networks (BSNs). The hereby presented schemes always have in mind the efficient management of channel resources and the overall minimization of sensors’ energy consumption in order to prolong sensors’ battery life. The fact that the IEEE 802.15.4 MAC does not fully satisfy BSN requirements highlights the need for the design of new scalable MAC solutions, which guarantee low-power consumption to the maximum number of body sensors in high density areas (i.e., in saturation conditions). In order to emphasize IEEE 802.15.4 MAC limitations, this article presents a detailed overview of this de facto standard for Wireless Sensor Networks (WSNs), which serves as a link for the introduction and initial description of our here proposed Distributed Queuing (DQ) MAC protocol for BSN scenarios. Within this framework, an extensive DQ MAC energy-consumption analysis in saturation conditions is presented to be able to evaluate its performance in relation to IEEE 802.5.4 MAC in highly dense BSNs. The obtained results show that the proposed scheme outperforms IEEE 802.15.4 MAC in average energy consumption per information bit, thus providing a better overall performance that scales appropriately to BSNs under high traffic conditions. These benefits are obtained by eliminating back-off periods and collisions in data packet transmissions, while minimizing the control overhead

    Enhanced group-based wireless ad-hoc sensor network protocol

    Full text link
    [EN] Communication is the major energy consumption source in wireless ad-hoc sensor networks. Thus, an efficient tradeoff between the energy cost of the communication and network's performance is a key challenge in conceiving a wireless ad-hoc sensor network. In this article, we propose an improved group-based architecture for wireless ad-hoc sensor networks. An optimized group forming procedure and an efficient communication operation are introduced. In order to validate the proposed approach, we suggest a group-based strategy to monitor pharmaceutical drugs during transportation. Real measurements of temperature and vibration were performed to validate the effectiveness of our approach.Khedher, M.; Lloret, J.; Douik, A. (2016). Enhanced group-based wireless ad-hoc sensor network protocol. International Journal of Distributed Sensor Networks. 12(7):1-18. https://doi.org/10.1177/1550147716659427S118127Dargie, W., & Poellabauer, C. (2010). Fundamentals of Wireless Sensor Networks. doi:10.1002/9780470666388Singh, S. P., & Sharma, S. C. (2015). A Survey on Cluster Based Routing Protocols in Wireless Sensor Networks. Procedia Computer Science, 45, 687-695. doi:10.1016/j.procs.2015.03.133Liao, Y., Qi, H., & Li, W. (2013). Load-Balanced Clustering Algorithm With Distributed Self-Organization for Wireless Sensor Networks. IEEE Sensors Journal, 13(5), 1498-1506. doi:10.1109/jsen.2012.2227704Peng, I.-H., & Chen, Y.-W. (2013). Energy consumption bounds analysis and its applications for grid based wireless sensor networks. Journal of Network and Computer Applications, 36(1), 444-451. doi:10.1016/j.jnca.2012.04.014Lloret, J., Garcia, M., Tomás, J., & Boronat, F. (2008). GBP-WAHSN: A Group-Based Protocol for Large Wireless Ad Hoc and Sensor Networks. Journal of Computer Science and Technology, 23(3), 461-480. doi:10.1007/s11390-008-9147-6Lloret, J., García, M., Boronat, F., & Tomás, J. (s. f.). MANET Protocols Performance in Group-based Networks. IFIP International Federation for Information Processing, 161-172. doi:10.1007/978-0-387-84839-6_13Lloret, J., Garcia, M., & Tomas, J. (s. f.). Improving Mobile and Ad-hoc Networks performance using Group-Based Topologies. Wireless Sensor and Actor Networks II, 209-220. doi:10.1007/978-0-387-09441-0_18Lloret, J., Palau, C., Boronat, F., & Tomas, J. (2008). Improving networks using group-based topologies. Computer Communications, 31(14), 3438-3450. doi:10.1016/j.comcom.2008.05.030Garcia, M., Sendra, S., Lloret, J., & Canovas, A. (2011). Saving energy and improving communications using cooperative group-based Wireless Sensor Networks. Telecommunication Systems, 52(4), 2489-2502. doi:10.1007/s11235-011-9568-3Garcia, M., & Lloret, J. (2009). A Cooperative Group-Based Sensor Network for Environmental Monitoring. Cooperative Design, Visualization, and Engineering, 276-279. doi:10.1007/978-3-642-04265-2_41Shaikh, R. A., Jameel, H., d’ Auriol, B. J., Heejo Lee, Sungyoung Lee, & Young-Jae Song. (2009). Group-Based Trust Management Scheme for Clustered Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 20(11), 1698-1712. doi:10.1109/tpds.2008.258Chen, Y.-S., Hsu, C.-S., & Lee, H.-K. (2014). An Enhanced Group Mobility Protocol for 6LoWPAN-Based Wireless Body Area Networks. IEEE Sensors Journal, 14(3), 797-807. doi:10.1109/jsen.2013.2287895Yao-Chung Chang, Zhi-Sheng Lin, & Jiann-Liang Chen. (2006). Cluster based self-organization management protocols for wireless sensor networks. IEEE Transactions on Consumer Electronics, 52(1), 75-80. doi:10.1109/tce.2006.1605028Fazio, P., De Rango, F., Sottile, C., & Santamaria, A. F. (2013). Routing Optimization in Vehicular Networks: A New Approach Based on Multiobjective Metrics and Minimum Spanning Tree. International Journal of Distributed Sensor Networks, 9(11), 598675. doi:10.1155/2013/598675Saravanan, M., & Madheswaran, M. (2014). A Hybrid Optimized Weighted Minimum Spanning Tree for the Shortest Intrapath Selection in Wireless Sensor Network. Mathematical Problems in Engineering, 2014, 1-8. doi:10.1155/2014/71342
    • …
    corecore