11,084 research outputs found

    Cross-Layer Optimization on Different Data Rates for Efficient Performance in Wireless Sensor Network

    Get PDF
    The traditional protocols used in wireless sensor networks adhere to stringent layering approaches, which decreases the performance of the quality of service (Quality of Service) metrics. As per specifications 802.15.4, wireless sensor networks are inexpensive and energy efficient. It is essential for evaluating the performance of WSNs. Researchers have looked into the fundamental aspects of a single physical layer and the medium access control (MAC) layer protocol using methodologies calculated using several mathematical models or experimental approaches, respectively. In this research, we offer an improved cross-layer analytical model that utilises a thorough combining and interacting of a Markov chain model of the MAC layer's propagation with a model of the PHY layer's propagation. This combination and interaction are described in detail. Various Quality of Service (quality of service) statistics are presented and evaluated, and a cross-layer effectiveness degradation study is conducted under different inputs of multi-parameter vectors. Other parameters, such as Average Wait Time, Reliability, Failure Probability, and Throughput, have been estimated from the simulation results and contrasted with standardised models. The cross-layer model provides a more thorough performance study with various cross-layer parameter sets, some of which comprise distance, power transmission, and offered loads, among other things

    An Energy-Efficient Cross-Layer approach for cloud wireless green communications

    Get PDF
    In wireless sensor networks (WSN), energy consumption is one of the crucial issues. It is very important to conserve energy at each sensor node to prolong a network lifetime. The main challenge in WSN is to develop an energy efficient algorithm to minimize energy consumption during transmitting information from deployed sensors up to the cloud resources. Many researches have been studied the designing of energy efficient technique based on one-layer stack model approach. In this study, we propose Energy-Efficient Cross-Layer (EECL) approach by using the interaction of MAC layer and physical layer information to be exploited by a network layer to achieve energy efficient communication. More precisely, network layer could utilize the MAC layer and physical layer information to establish an energy efficient route path to be used in forwarding data. The proposed EECL approach uses X-MAC protocol in support of duty cycle which introduces short preambles that switches to wake-up/sensing mode only for nodes belonging to routing path while the other nodes set to be in sleep mode. The distance between nodes that influences energy consumption and Bit Error Rate (BER) are set to be the parameters which they are help in indicating the required power for each hop during route path selection in WSN and avoid the rely-hops that suffering from high average BER and with farther distance. We conduct the experiment using Matlab to evaluate the effectiveness of our proposed approach in terms of power consumption and obtained data rate. The results show that our proposed EECL approach outperforms its representatives in the ability of tuning the power utilized in respect with required data rate that could satisfy the desired Quality-of-Service (QoS)

    EETA: An Energy Efficient Transmission Alignment for Wireless Sensor Network Applications

    Get PDF
    Energy conserving MAC protocols performing adaptive duty-cycling mechanism have been widely studied to improve the energy efficiency in Wireless Sensor Networks (WSNs). In particular, several asynchronous Low Power Listening (LPL) MAC protocols such as B-MAC, X-MAC and ContikiMAC transmit a long preamble or consecutive data packets for an efficient rendezvous between senders and receivers. However, the rendezvous results in the challenging problem of unnecessary channel utilization since the senders occupy a large portion of the medium. Furthermore, when a traffic generation time overlaps with other neighbouring nodes, they frequently encounter spatially-correlated contention incurring excessive channel contention. In this paper, we propose a novel traffic distribution scheme called an Energy Efficient Transmission Alignment (EETA), that shifts a traffic generation time of the application layer. By using a MAC layer feedback including contention information, the cross-layer framework determines whether the node delays its transmission or not. EETA is robust from the heavy contending environment due to its traffic distribution feature. We evaluate the performance of EETA through diverse experiments on the TelosB platform. The results show that EETA improves the overall energy efficiency by up to 35%, and reduces the latency by up to 48% compared to the existing scheme

    SCSP : an Energy Efficient Network-MAC Cross-layer design for wireless Sensor Networks

    Get PDF
    held in conjunction with The 34th IEEE Conference on Local Computer Networks - LCN'09International audienceThis article presents SCSP (for ``Sleep Collect and Send Protocol'') for wireless sensor networks, a network-MAC cross layer design that resolves the inherent conflict between energy efficiency and throughput. The protocol uses in its MAC layer a new paradigm that we call ``sleep, collect and send''. The idea of SCSP is that a router sleeps for a given amount of time, wakes up and collects data from its children and other routers and then send them into a burst during a period of time that we call transmission period. In its network layer, the protocol uses a hierarchical tree structure as network architecture and a tree routing protocol. SCSP does not require synchronization between routers and dynamically calculates the sleep and collect periods according to the amount of incoming traffic. The protocol is implemented and simulated in OPNET simulator

    Unified clustering and communication protocol for wireless sensor networks

    Get PDF
    In this paper we present an energy-efficient cross layer protocol for providing application specific reservations in wireless senor networks called the “Unified Clustering and Communication Protocol ” (UCCP). Our modular cross layered framework satisfies three wireless sensor network requirements, namely, the QoS requirement of heterogeneous applications, energy aware clustering and data forwarding by relay sensor nodes. Our unified design approach is motivated by providing an integrated and viable solution for self organization and end-to-end communication is wireless sensor networks. Dynamic QoS based reservation guarantees are provided using a reservation-based TDMA approach. Our novel energy-efficient clustering approach employs a multi-objective optimization technique based on OR (operations research) practices. We adopt a simple hierarchy in which relay nodes forward data messages from cluster head to the sink, thus eliminating the overheads needed to maintain a routing protocol. Simulation results demonstrate that UCCP provides an energy-efficient and scalable solution to meet the application specific QoS demands in resource constrained sensor nodes. Index Terms — wireless sensor networks, unified communication, optimization, clustering and quality of service

    A Collision Avoidance Based Energy Efficient Medium Access Control Protocol for Clustered Underwater Wireless Sensor Networks

    Get PDF
    Underwater Wireless Sensor Networks (UWSNs) are typically deployed in energy constrained environments where recharging energy sources and replacing batteries are not viable. This makes energy efficiency in UWSNs a crucial directive to be followed during Medium Access Control (MAC) design. Multiplexing and scheduling based protocols are not ideal for UWSNs because of their strict synchronization requirements, longer latencies and constrained bandwidth.This paper presents the development and simulation analysis of a novel cross-layer communication based MAC protocol called Energy Efficient Collision Avoidance (EECA) MAC protocol. EECA-MAC protocol works on the principle of adaptive power control, controlling the transmission power based on the signal strength at the receiver. EECA-MAC enhances the conventional 4-way handshake to reduce carrier sensing by implementing an enhanced Request to Send (RTS) and Clear to Send (CTS) handshake and an improved back-off algorithm.Simulation analysis shows that the measures taken to achieve energy efficiency have a direct effect on the number of packet retransmissions. Compared to the Medium Access with Collision Avoidance (MACA) protocol, EECA-MAC shows a 40% reduction in the number of packets that are delivered after retransmissions. This reduction, coupled with the reduced signal interference, results in a 16% drop in the energy utilized by the nodes for data transmission

    Cooperative Medium Access Mechanisms and Service-oriented Routing in Multi-hop Wireless Networks

    Get PDF
    Doktorgradsavhandling i informasjons- og kommunikasjonsteknologi, Universitetet i Agder, Grimstad, 2011Multi-hop wireless networks have been regarded as a promising path towards future wireless communication landscape. In the past decade, most related work has been performed in the context of mobile ad hoc networks. In very recent years, however, much effort has been shifted to more static networks such as wireless mesh networks and wireless sensor networks. While significant progress has been achieved through these years, both theoretically and experimentally, challenges still exist in various aspects of these networks. For instance, how to use multi-hop networks as a means for providing broadband Internet services with reliability and balanced load remains as a challenging task. As the number of end-users is increasing rapidly and more and more users are enjoying multimedia services, how to provide Quality of Service (QoS) with user satisfaction in such networks remains also as a hot topic. Meanwhile, another direction which has recently attracted lots of efforts in the international research community is the introduction of cooperative communications. Cooperative communications based on relaying nodes are capable of improving network performance in terms of increased spectral and power efficiency, extended network coverage, balanced QoS, infrastructure-less deployment, etc. Cooperation may happen at different communication layers, at the physical layer where the received signal is retransmitted and at the MAC and routing layers where a packet is forwarded to the next hop in a coordinated manner towards the destination, respectively. However, without joint consideration and design of physical layer, MAC layer and network layer, the benefit of cooperative communication cannot be exploited to the maximum extent. In addition, how to extend one-hop cooperative communication into multi-hop wireless network scenarios remains as an almost un-chartered research frontier. In this dissertation, we enhance the state of the art technologies in the field of multi-hop wireless networks from a layered perspective. While efficient scheduling mechanisms are proposed at the MAC layer, elaborate routing protocols are devised at the network layer. More specifically, by taking into account of cross layer design we cope with network congestion problems in wireless mesh networks mainly at the network layer. In order to further improve the performance of cooperative wireless networks, we propose a contention-based cooperative MAC protocol in the presence of multiple relay nodes. Since a large majority of existing cooperative MAC protocols are designed based on widely-used IEEE 802.11 MAC protocol which exhibits inherent design constraint when applied in multi-hop wireless networks, it is imperative to develop a novel cooperative MAC protocol which is appropriate for multi-hop network scenarios. Next, we propose a TDMA-based MAC protocol supporting cooperative communications in static multi-hop wireless networks. Furthermore, a cooperative lifetime maximization MAC protocol is proposed to cope with the energy hole problem in wireless sensor networks

    Enhanced priority-based adaptive energy-aware mechanisms for wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSN) continues to find its use in our lives. However, research has shown that it has barely attained an optimal performance, particularly in the aspects of data heterogeneity, data prioritization, data routing, and energy efficiency, all of which affects its operational lifetime. The IEEE 802.15.4 protocol standard, which manages data forwarding across the Data Link Layer (DLL) does not address the impact of heterogeneous data and node Battery-Level (BL) which is an indicator for node battery life. Likewise, mechanisms proposed in the literature – TCP-CSMA/CA, QWL-RPL and SSRA have not proffered optimal solution as they encourage excessive computational overhead which results in shortened operational lifetime. These problems are inherited on the Network Layer (NL) where data routing is implemented. Mitigating these challenges, this research presents an Enhanced Priority-based Adaptive Energy-Aware Mechanisms (EPAEAM) for Wireless Sensor Networks. The first mechanism is the Optimized Backoff Mechanism for Prioritized Data (OBMPD) in Wireless Sensor Networks. This mechanism proposed the Class of Service Traffic Priority-based Medium Access Control (CSTP-MAC). The CSTP-MAC is implemented on the DLL. In this mechanism, unique backoff period expressions compute backoff periods according to the class and priority of the heterogeneous data. This approach improved network performances which enhanced network lifetime. The second mechanism is the Shortest Path Priority-Based Objective Function (SPPB-OF) for Wireless Sensor Networks. SPPB-OF is implemented across the NL. SPPB-OF implements a unique shortest path computation algorithm to generate energy-efficient shortest path between the source and destination nodes. The third mechanism is the Cross-Layer Energy-Efficient Priority-based Data Path (CL-EEPDP) for Wireless Sensor Networks. CL-EEPDP is implemented across the DLL and NL with considerations for node battery-level. A unique mathematical expression, Node Battery-Level Estimator (NBLE) is used to estimate the BL of neighbouring nodes. The knowledge of the BL together with the priority of data are used to decide an energy-efficient next-hop node. Benchmarking the EPAEAM with related mechanisms - TCP-CSMA/CA, QWL-RPL and SSRA, results show that EPAEAM achieved improved network performance with a packet delivery ratio (PDR) of 95.4%, and power-saving of 90.4%. In conclusion, the EPAEAM mechanism proved to be a viable energy-efficient solution for a multi-hop heterogeneous data WSN deployment with support for extended operational lifetime. The limitations and scope of these mechanisms are that their application is restricted to the data-link and network layers, moreover, only two classes of data are considered, that is; High Priority Data (HPD) and Low Priority Data (LPD)

    A Cross-Layer Approach for Minimizing Interference and Latency of Medium Access in Wireless Sensor Networks

    Full text link
    In low power wireless sensor networks, MAC protocols usually employ periodic sleep/wake schedule to reduce idle listening time. Even though this mechanism is simple and efficient, it results in high end-to-end latency and low throughput. On the other hand, the previously proposed CSMA/CA-based MAC protocols have tried to reduce inter-node interference at the cost of increased latency and lower network capacity. In this paper we propose IAMAC, a CSMA/CA sleep/wake MAC protocol that minimizes inter-node interference, while also reduces per-hop delay through cross-layer interactions with the network layer. Furthermore, we show that IAMAC can be integrated into the SP architecture to perform its inter-layer interactions. Through simulation, we have extensively evaluated the performance of IAMAC in terms of different performance metrics. Simulation results confirm that IAMAC reduces energy consumption per node and leads to higher network lifetime compared to S-MAC and Adaptive S-MAC, while it also provides lower latency than S-MAC. Throughout our evaluations we have considered IAMAC in conjunction with two error recovery methods, i.e., ARQ and Seda. It is shown that using Seda as the error recovery mechanism of IAMAC results in higher throughput and lifetime compared to ARQ.Comment: 17 pages, 16 figure

    A Cross-Layer Approach to Minimize the Energy Consumption in Wireless Sensor Networks

    Get PDF
    Energy efficiency represents one of the primary challenges in the development of wireless sensor networks (WSNs). Since communication is the most power consuming operation for a node, many current energy-efficient protocols are based on duty cycling mechanisms. However, most of these solutions are expensive from both the computational and the memory resources point of view and; therefore, they result in being hardly implementable on resources constrained devices, such as sensor nodes. This suggests to combine new communication protocols with hardware solutions able to further reduce the nodes' power consumption. In this work, a cross-layer solution, based on the combined use of a duty-cycling protocol and a new kind of active wake-up circuit, is presented and validated by using a test bed approach. The resulting solution significantly reduces idle listening periods by awakening the node only when a communication is detected. Specifically, an MAC scheduler manages the awakenings of a commercial power detector connected to the sensor node, and, if an actual communication is detected, it enables the radio transceiver. The effectiveness of the proposed cross-layer protocol has been thoroughly evaluated by means of tests carried out in an outdoor environment
    • …
    corecore