145 research outputs found

    Message and time efficient multi-broadcast schemes

    Full text link
    We consider message and time efficient broadcasting and multi-broadcasting in wireless ad-hoc networks, where a subset of nodes, each with a unique rumor, wish to broadcast their rumors to all destinations while minimizing the total number of transmissions and total time until all rumors arrive to their destination. Under centralized settings, we introduce a novel approximation algorithm that provides almost optimal results with respect to the number of transmissions and total time, separately. Later on, we show how to efficiently implement this algorithm under distributed settings, where the nodes have only local information about their surroundings. In addition, we show multiple approximation techniques based on the network collision detection capabilities and explain how to calibrate the algorithms' parameters to produce optimal results for time and messages.Comment: In Proceedings FOMC 2013, arXiv:1310.459

    Constructing Reliable Virtual Backbones in Probabilistic Wireless Sensor Networks

    Get PDF
    Most existing algorithms used for constructing virtual backbones are based on the ideal deterministic network model (DNM) in which any pair of nodes is either fully connected or completely disconnected. Different from DNM, the probabilistic network model (PNM), which presumes that there is a probability to connect and communicate between any pair of nodes, is more suitable to the practice in many real applications. In this paper, we propose a new algorithm to construct reliable virtual backbone in probabilistic wireless sensor networks. In the algorithm, we firstly introduce Effective Degree of Delivery Probability (EDDP) to indicate the reliable degree of nodes to transfer data successfully, and then exclude those nodes with zero EDDP from the candidate dominator set to construct a reliable connected dominating set (CDS). Moreover, each dominatee selects the neighbor dominator with the maximum delivery probability to transfer data. Through simulations, we demonstrate that our proposed algorithm can remarkably prolong the network lifetime compared with existing typical algorithms

    Adaptive Scatter Search to Solve the Minimum Connected Dominating Set Problem for Efficient Management of Wireless Networks

    Get PDF
    An efficient routing using a virtual backbone (VB) network is one of the most significant improvements in the wireless sensor network (WSN). One promising method for selecting this subset of network nodes is by finding the minimum connected dominating set (MCDS), where the searching space for finding a route is restricted to nodes in this MCDS. Thus, finding MCDS in a WSN provides a flexible low-cost solution for the problem of event monitoring, particularly in places with limited or dangerous access to humans as is the case for most WSN deployments. In this paper, we proposed an adaptive scatter search (ASS-MCDS) algorithm that finds the near-optimal solution to this problem. The proposed method invokes a composite fitness function that aims to maximize the solution coverness and connectivity and minimize its cardinality. Moreover, the ASS-MCDS methods modified the scatter search framework through new local search and solution update procedures that maintain the search objectives. We tested the performance of our proposed algorithm using different benchmark-test-graph sets available in the literature. Experiments results show that our proposed algorithm gave good results in terms of solution quality

    Energy-Aware Constrained Relay Node Deployment for Sustainable Wireless Sensor Networks

    Get PDF
    © 2016 IEEE. This paper considers the problem of communication coverage for sustainable data forwarding in wireless sensor networks, where an energy-aware deployment model of relay nodes (RNs) is proposed. The model used in this paper considers constrained placement and is different from the existing one-tiered and two-tiered models. It supposes two different types of sensor nodes to be deployed, i) energy rich nodes (ERNs), and ii) energy limited nodes (ELNs). The aim is thus to use only the ERNs for relaying packets, while ELN's use will be limited to sensing and transmitting their own readings. A minimum number of RNs is added if necessary to help ELNs. This intuitively ensures sustainable coverage and prolongs the network lifetime. The problem is reduced to the traditional problem of minimum weighted connected dominating set (MWCDS) in a vertex weighted graph. It is then solved by taking advantage of the simple form of the weight function, both when deriving exact and approximate solutions. Optimal solution is derived using integer linear programming (ILP), and a heuristic is given for the approximate solution. Upper bounds for the approximation of the heuristic (versus the optimal solution) and for its runtime are formally derived. The proposed model and solutions are also evaluated by simulation. The proposed model is compared with the one-tiered and two-tiered models when using similar solution to determine RNs positions, i.e., minimum connected dominating set (MCDS) calculation. Results demonstrate the proposed model considerably improves the network life time compared to the one-tiered model, and this by adding a lower number of RNs compared to the two-tiered model. Further, both the heuristic and the ILP for the MWCDS are evaluated and compared with a state-of-the-art algorithm. The results show the proposed heuristic has runtime close to the ILP while clearly reducing the runtime compared to both ILP and existing heuristics. The results also demonstrate scalability of the proposed solution

    CDS-MIP: CDS-based Multiple Itineraries Planning for mobile agents in wireless sensor network

    Get PDF
    using multi agents in the wireless sensor networks (WSNs) for aggregating data has gained significant attention. Planning the optimal itinerary of the mobile agent is an essential step before the process of data gathering. Many approaches have been proposed to solve the problem of planning MAs itineraries, but all of those approaches are assuming that the MAs visit all SNs and large number of intermediate nodes. This assumption imposed a burden; the size of agent increases with the increase in the visited SNs, therefore consume more energy and spend more time in its migration. None of those proposed approaches takes into account the significant role that the connected dominating nodes play as virtual infrastructure in such wireless sensor networks WSNs. This article introduces a novel energy-efficient itinerary planning algorithmic approach based on the minimum connected dominating sets (CDSs) for multi-agents dedicated in data gathering process. In our proposed approach, instead of planning the itineraries over all sensor nodes SNs, we plan the itineraries among subsets of the MCDS in each cluster. Thus, no need to move the agent in all the SNs, and the intermediate nodes (if any) in each itinerary will be few. Simulation results have demonstrated that our approach is more efficient than other approaches in terms of overall energy consumption and task execution time

    A Performance Comparison of Virtual Backbone Formation Algorithms for Wireless Mesh Networks

    Get PDF
    Currently wireless networks are dominant by star topology paradigm. Its natural the evolution is towards wireless mesh multi-hop networks. This article compares the performance of several algorithms for virtual backbone formation in ad hoc mesh networks both theoretically and through simulations. Firstly, an overview of the algorithms is given. Next, the results of the algorithm simulations made with the program Dominating Set Simulation Suite (DSSS) are described and interpreted. We have been extended the simulator to simulate the Mobile Backbone Network Topology Synthesis Algorithm. The results show that this algorithm has the best combination of performance characteristics among the compared algorithms

    Distributed Symmetry Breaking in Hypergraphs

    Full text link
    Fundamental local symmetry breaking problems such as Maximal Independent Set (MIS) and coloring have been recognized as important by the community, and studied extensively in (standard) graphs. In particular, fast (i.e., logarithmic run time) randomized algorithms are well-established for MIS and Δ+1\Delta +1-coloring in both the LOCAL and CONGEST distributed computing models. On the other hand, comparatively much less is known on the complexity of distributed symmetry breaking in {\em hypergraphs}. In particular, a key question is whether a fast (randomized) algorithm for MIS exists for hypergraphs. In this paper, we study the distributed complexity of symmetry breaking in hypergraphs by presenting distributed randomized algorithms for a variety of fundamental problems under a natural distributed computing model for hypergraphs. We first show that MIS in hypergraphs (of arbitrary dimension) can be solved in O(log⁥2n)O(\log^2 n) rounds (nn is the number of nodes of the hypergraph) in the LOCAL model. We then present a key result of this paper --- an O(Δϔpolylog(n))O(\Delta^{\epsilon}\text{polylog}(n))-round hypergraph MIS algorithm in the CONGEST model where Δ\Delta is the maximum node degree of the hypergraph and Ï”>0\epsilon > 0 is any arbitrarily small constant. To demonstrate the usefulness of hypergraph MIS, we present applications of our hypergraph algorithm to solving problems in (standard) graphs. In particular, the hypergraph MIS yields fast distributed algorithms for the {\em balanced minimal dominating set} problem (left open in Harris et al. [ICALP 2013]) and the {\em minimal connected dominating set problem}. We also present distributed algorithms for coloring, maximal matching, and maximal clique in hypergraphs.Comment: Changes from the previous version: More references adde

    Introducing Connected Dominating Set as Selection Feature of Cluster Heads in Hierarchical Protocols of Wireless Sensor Networks

    Get PDF
    It has been found that almost all routing protocols do suffer from efficiency of its operation regarding data transfer from one point to another. To overcome this process algorithm regarding the choice of nodes as cluster heads has to be done with utmost care. Failing of this leads to unnecessary dissipation of energy such as generating excess ‘Hello’ messages and less useful data transfer. In this communication we show that the introduction of connected dominating set as one of the metric regarding the choice of cluster head leads to better data transfer and energy consumption. Moreover we implemented this concept in LEACH protocol and found acceptable improvement in the performance parameters of the protocol
    • 

    corecore