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Abstract—This paper considers the problem of communication
coverage for sustainable data forwarding in wireless senso

networks, where an energy-aware deployment model of relay

nodes (RNs) is proposed. The model used in this paper conside
constrained placement and is different from the existing oe-
tiered and two-tiered models. It supposes two different typs of

typical example is infrastructure monitoring [1], whereSIN-
cated in predetermined sensing locations to collect in&tiom
about the monitored infrastructure and then send the gadher
physical information to BSs via multi-hop routes. The pseci
positions and the number of SNs and BS are known prior to

sensor nodes to be deployed, i) energy rich nodes (ERNs), andthe deployment, and the problem after SNs deployment would

i) energy limited nodes (ELNs). The aim is thus to use only
the ERNs for relaying packets, while ELNs use will be limited
to sensing and transmitting their own readings. A minimum
number of RNs is added if necessary to help ELNs. This
intuitively ensures sustainable coverage and prolongs theetwork
lifetime. The problem is reduced to the traditional problem of
minimum weighted connected dominating set (MWCDS) in a
vertex weighted graph. It is then solved by taking advantageof
the simple form of the weight function, both when deriving exact
and approximate solutions. Optimal solution is derived usig
integer linear programming (ILP), and a heuristic is given for
the approximate solution. Upper bounds for the approximaton
of the heuristic (vs. the optimal solution) and for its runtime
are formally derived. The proposed model and solutions are lao
evaluated by simulation. The proposed model is compared whit
the one-tiered and two-tiered models when using similar sation
to determine RNs positions, i.e., minimum connected domiriang
set (MCDS) calculation. Results demonstrate the proposed odel
considerably improves the network life time compared to the
one-tiered model, and this by adding a lower number of RNs
compared to the two-tiered model. Further, both the heurisic
and the ILP for the MWCDS are evaluated and compared
with a state-of-the-art algorithm. The results show the prposed
heuristic has runtime close to the ILP while clearly reducirg
the runtime compared to both ILP and existing heuristics. The
results also demonstrate scalability of the proposed solign.

I. INTRODUCTION

be to optimaly place RNs [1].

Two models for RNs placement are used in the literature,
one-tiered vs. two-tiered. In the former, any SN can be used
as a relay to forward data, whereas in the latter, an SN
only sends its own data but cannot be utilised as a relay.
Existing solutions may also be categorized into constdiine
vs. unconstrained models. Unconstrained placement permit
to deploy RNs anywhere in the network’s area, which is not
realistic in many scenarios where placement faces physical
constraints that make it possible only in some regions. Ehis
considered in the solutions belonging to constrained phece
category. We consider constrained node placement but with
a different and more general scenario, where two types of
SNs may co-exist, i) energy rich nodes (ERN), and ii) energy
limited nodes (ELN). Only ERN can forward data traffic for
other nodes, while the ELN use is limited to sensing and
sending their own data. A variant of constraint one-tiered
model is obtained when the set representing ELNs is empty,
while a variant of constrained two-tiered model is reflected
when the one representing ERNs is empty. ERNs may be those
nodes equipped with— by abstraction— energy unconstrained
resources such as large energy storage capacity or more
importantly, energy harvesting capabilities. Our conttidn
is to define this new model for minimum RNs addition in
a deployed network and accordingly propose a solution that

Energy awareness is the key element that will enable ¢completely eliminates the use of what we call ELNs for data

design sustainable computer systems and networks in fhewarding, which will thus be ensured by ERNs and the
future. We consider in this paper wireless sensor networédded RNs. Excluding ELNs from data forwarding intuitively
(WSNSs) as a particular category of computer networks wheraproves network efficiency and prolongs the network lifedi
energy represents the main challenge that should be overcammpared to the existing one-tiered model, and allowing the
to achieve sustainability. A wireless sensor network is ta sgse of SNs that are capable of forwarding data will reduce
of wireless sensor nodes (SNs) that are capable to sengngttie cost in terms of the number of added RNs, compared
environment, processing the acquired data, and commenidat the two-tiered model. While energy capacity is the main
through wireless radios. In this paper, we are interestetién motivation for heterogeneity in the proposed model, theefat
particular problem of relay node (RN) addition for efficients general and applies to any other scenarios where nodes’
communication coverage in WSN. In many applications, SNeterogeneity leverages their capacity of forwarding dat,

are first deployed in specific areas for sensing coverage. R®cessing power, memory, etc.

are then deployed to connect the SNs to the base station¥he problem is modeled as a variant of the traditional
(BSs) and/or assure some criteria in the final topology. #inimum connected dominating set (MCDS), proved to be
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NP-hard, reduced to finding the minimum weighted connectgthcement where the RNs can only be placed in a set of
dominating set (MWCDS) in a vertex weighted graph. Optimaiandidate positions, which is more realistic. They addméss
solution is derived using integer linear programming (ILP}he connectivity and the survivability problems and prapos
then a heuristic is given for polynomial time resolution lwit approximation algorithms with a proved polynomial time
bounded approximation. To reduce time complexity, the @mpcomplexity.

form of the weight function is exploited both in the ILP and
the heuristic. An upper bound of the approximation for the

heuristic is derived, as well as for its runtime. Furtheg tr7exhaustion of sensors’ batteries due to the use of any SN for

proposed solutions are evaluated by a thorough smulahﬁta forwarding, regardless of its energy potantiels/Gipa

study where both the heuristic and the ILP are evaluated. 10.
is may structurally damage the network and cause a network
demonstrate the advantage of the proposed model over the one

tiered and the two-tiered models, we compare the propo e::gtition. To address this problem, many solutions havenbee
solutions with, i) the use of traditional MCDS calculatiomda proposed in the two-tiered model, such as [7], [8], [3]’ [91.

. L . 10], [11], [12], [13], [14]. The authors of [9] considered
replacement of all the obtained set by RNs, which is equital th the one-tiered and the two-tiered models and provided
to use a MCDS calculation based solution in the two-tiered apbroximation alaorithm for the one-tier modelpand a
model, and ii) the use of the same method then using the Sﬂgsl P 9

in the set as relays without replacement, which is equi\tale_ff:h ynomial time approximation scheme for the two-tier one.

to use an MCDS calculation based solution in the one-tierﬁge _surV|vab|I|ty problem was mvesu_gated in [10], where
o - . ; e aim was to ensure that each SN is connected to the BS
model. A trivial energy-aware solution is also used in th

comparison, which minimizes the use of ELNs by calculati t%rough two disjoint paths. The connectivity problem was

n .
the shortest paths on the node weighted graph without a%c}i/dressed in [11], where the RNs were assumed to have

RN addition. This gives a clear view on the gain that migq wider communication range than the SNs. In [3], both

. . connectivity and the survivability requirements haeerb
be obtained from the proposed model and solutions, as well . . .
) ; . _considered. In their experimental results, the authorsvedo
as the related cost. But to be fair, we do not claim d|re?h .
. . : } . at the number of added RNs does not exceed twice the
comparison with any particular solution from the literaur . ; : . ;
. : d ... _.number in the optimal solution. Chelli et al. [14] consid&re
given the difference in the model. The proposed heuristic fQ . . .
codﬁstramed node placement in two-tiered model and prapose

MWCDS calculation has also been evaluated and comparée . .
. . a one-step algorithm to construct a connected Steiner-tree
with a state-of-the-art algorithm [2].

The remainder of the paper is organized as follow: Thtgpology.

related work is presented in Sec. Il, then the network model
in Sec. Ill. The problem is formulated and solved in Sec. IV Compared to the one-tiered model, the two-tiered one has
using ILP and a heuristic. Upper bounds are derived for titlee problem of higher cost in terms of the number of RNs
approximation and the runtime of the proposed heuristic n add. It does not consider and take advantage of possible
Sec. V. A thorough numerical analysis by a simulation studyomogeneity of SNs, particularly in terms of energy capacit
is presented in Sec. VI, and finally Sec. VII concludes thieor example, it is possible to have some SNs endowed with
paper. energy harvesting capacity that allows them to forwarditraf
for others [15] [16]. Neither of the previous models allow to
mimic this feature. While energy harvesting has been récent
considered by the research community and several problems i
Additional RNs placement in deployed WSN has largelgnergy harvesting WSN have been revisited such as stochasti
been treated in the literature. Existing solutions may bildd harvesting modeling [17], [18], [19], and [20], duty cycle
into two models, one-tiered vs. two-tiered [3]. Solutiorfs omanagement [21], [22], and clustering [23], few has beeredon
[4], [5], and [6] are examples of those using the one-tierddr RN placement. To our knowledge, the only works in this
model. The connectivity problem in WSN was addressed aontext are [24], [25]. In the latter, the authors considere
[5], where the authors targeted the deployment of a minimutime scenario where possible potential locations for RNs are
number of RNs such that each SN is connected to a BBnited and known a priori, and every location was supposed
The authors aimed to find a tradeoff between the networdk have a constant energy harvesting potential. The aim of
lifetime and cost. The problem was modelled by a Steinéte authors was to deploy a minimum number of harvesting
tree with a minimum number of Steiner points and boundeshabled RNs in the network while increasing the harvesting
edge-length. The authors of [4] considered the RN probletapability. The authors used the one-tiered model, whdre al
such that a survivability requirement is achieved. The ai®Ns were supposed not to be harvesting-enabled but they
was to determine the location of the minimum number dfave been used to forward packets similarly to the added
RNs such that each SN is connected to a BS through sevd®als. So the consideration of energy harvesting capabitigsd
node-disjoint paths, which provides fault tolerance inecab not eliminate the problem of one-tiered model used by the
node failure. Most works on one-tiered model, including [5kolution. We define a new model in this paper that allows
[4] considered the unconstrained deployment where RNs danreflect nodes’ heterogeneity and thus capacity to forward
be deployed anywhere, which is unrealistic in most cases.data. The proposed model is general and the context of energy
[6], the authors considered the problem of constrained Rirvesting WSN is just an example of application [24].

The limitation of the one-tiered model is the possible fast

II. RELATED WORK



IIl. NETWORK MODEL AND PRELIMINARIES o
A. Network Model and Problem Statement

The network is represented by an undirected unit disk graph,
G = (V,H, E), where the set of vertice§/, represents the
nodes, and the set of edgegu, v) € E iff both v andv are
in the communication range of one another. The grapls
supposed to be initially connected. The 3$étis composed
of two subsets, the set of ERNs, denoted Hy and the
one of ELNs,V \ H. V may include one or several BSs
that may or may not forward packets. This depends on the®
application scenario, although the BSs are generally energ
unconstrained nodes. The proposed solution works in both
cases. For abstraction, if the BSs can be used to forward
packets, they are to be included/ih The proposed solution is
general and applies to any energy model. The only requiremen
is that a node inH should always be able to forward traffic

when requested. This can be ensured when having high energy

sources at those nodes, or when they are endowed with
energy harvesting capability coupled with the use of some
energy storage unites (capacitors, rechargeable battet),
and/or by shaping the network traffic model according to the ,
availability of energy, etc. For instance, in time varyinmgeegy
harvesting models (e.g., using solar energy), the heaw loa
may be performed when the energy source is available (during
day light), and in the absence of energy the SNs activity may
be reduced to a certain degree depending on their energy
storage capacity. Dealing with issues such as SN scheduling
and traffic control is out of the scope of this paper. Nodes
in H are then regarded as energy unconstrained nodes. With
the previous assumption, it is trivially power efficient teeu
only SNs fromH for packet relaying to the BS(s). Therefore,
the problem is to ensure data forwarding only through nodes,
from H, with addition of a limited number of RNs to ensure
communication coverage (connectivity). Sensing is penfx

by all the SNs (both ERNs and ELNSs), and its coverage is,
supposed to be assured a priori in the initial deployment.
Dealing with sensing coverage is another problem and it is
out of the scope of this work. Constrained RNs placement is
considered in this paper, and potential positions of RNs are,
limited to areas near SNs position in the initial deployment
This is more realistic than unconstrained deployment inyman
situations, such as the existence of obstacles, unackessib
areas within the deployment regions, etc. It is also reasena

to assume feasibility of deploying RNs where SNs have
been deployed. Accuracy of all the formulations and analysi
presented hereafter relies on this model and its assunsption

B. Definitions and Notations

A minimum connected dominating set (MCDS) for a
graph,G = (V, E), is a connected dominating set with a

minimum number of vertices, i.68 = argmin |£|. The
. £€CDS(G)
set of all sequences that satisfy this condition is denoted

by MCDS(G). A dominating set with a minimum num-

ber of vertices but which is not necessarily connected,

i.e., S = argmin ||, is called minimum dominating set
¢eDS(G)

(MDS).

A minimum weighted connected dominating set

(MWCDS) for a vertex weighted grapfi = (V, E, W )—

where W is a function that assigns a weight to every

vertex in V— is a connected dominating set with a

minimum cumulative weightS = argmin W (u).

CECDS(G) ¢

The set of all sequences that satisfy this condition is

denoted by MWCDS(G). A dominating set with a

minimum cumulative weight but which is not necessarily

connected, i.e.,S argmin Y W (u), is called
(eDS(G) ot

minimum weighted dominating set (MWDS).

The k-neighborhood of a vertax denoted byVy (v), is

the set of vertices that are at mdst- hop from v, i.e.,

the shortest path separating themwtés no more thark
hops. In particularNy(v) = {v}, andN; (v) stands for
direct neighbors.

The maximum independent set of a graph G, denoted
MIS(G), is the maximum set of vertices that are uncon-
nected. Likewise, we define the MIS in the- hope from

a cental vertexy, say M 1Sy(v), as the maximum set of
vertices that are unconnected in the adjacent subgraph
defined by the k-neighborhood of a vertex

The dominating weight of vertexy, say @(v), is the
minimum weight of vertexv's neighbors, i.e&(v)
min{w(u),u € Ni(v)}.

A multi-graph (or pseudograph) is a graph that may
include multiple edges (parallel edges) between every pair
of vertices, i.e., two vertices may be connected by more
than one edge.

Clustering in a graph: The process of clustering in a
graph is to replace every subset of vertices (following
some criterion) by a single vertex, called a cluster, and
replacing accordingly the appropriate edges as well. The
process is iterative until all the vertices are replaced and
a reduced graph is obtained (called clustered graph). The
term cluster used in the following of the paper is related
to this concept.

IV. PROBLEM FORMULATION AND RESOLUTION

Concepts used in the problem formulation and resolutidh Problem Formulation

are defined bellow.

« A connected dominating set (CDS) for a graph,=
(V,E), is a sequence of vertice$, € V, that fulfils: i)

The problem described in Sec. Ill can be solved in the
model represented by; = (V, H, E), by finding a CDS in
the graphG (S € CDS(G)), with a minimum number of

Vu e V\S,3v € S, (u,v) € E, ii) the subgraph induced vertices fromV \ H. Let us denote this problem 1. Once

by S is connected. The set of all sequences that satisRi is solved, RNs will be added at the positions co-located
the previous conditions is denoted BYDS(G). A set with ELNs of S (if any). This is to substitute them in the
that fulfils condition (i) but not necessarily condition)(ii task of packet forwarding.

is called dominating set/{sS).



Theorem 1:The problemP1 is NP-hard. (or an approximation of it)y. This MWCDS resolution will
be developed later. The ELNs from are denoted;, whose

We refer to the Appendix for the proof of this theorempositions represent the output of the algorithm. The RNs are
To our knowledge, the problen?1 has not been treated inthen to be put in the positions col-located with these ones to
the operational research and graph theory literature. Mexye replace the appropriate SNs in forwarding packets, whilsl€L
since it is very similar to the traditional MCDSP that hasreewill be used only to collect and transmit their own data. With
largely treated, we propose a transformation to some egistithe addition of such RNs, the proposed solution ensures that
variant of MCDSP. This is for the purpose of taking advantagbe network can be connected only though ERNs plus the new
of the existing heuristics from the literature, such as [2§]. RNs.
These heuristics are particularly appropriate to unit digiphs
, for which they achieve better approximation compared td\lgorithm 1: General Solution Framework
solutions for general graphs. Input: G = (V, H, E), Function 7

The graph,G — (V, H, E), of P1 is transformed into Output: The set of positionss;,, where to put the RNs.

a vertex weighted graph(?,,, using the following weight 3 Mt W =5, =0

function: Assign weights to vertices (construéf) using Eqg. (1):
’ RunF(V, E, H, W) to get a MWCDS, say.
£=xNV\ H).

© N oo A W NP

wW:V — {0,1} Yu € ¢ add the position ofs to Sp.
return Sp
Vue HW(u)=0Yoe {V\H},Ww)=1. (1)
The problemP1 then reduces to the search fomenimum-  2) Optimal Resolution with an Integer Linear Program:
weight CDS (5 € MWCDS(Gy)). In the following, the To solve P1, we use Py that helps reducing the number
new problem is denoted b¥2. of variables and thus the search space comparg@2toThe

problem, Py, can be modeled by the following mixed integer
Theorem 2:1f S is a MWCDS for P2 (i.e, S linear program:

€ MWCDS(Gy)), then it is an optimal solution for
P1. min Z X, (2)
i€EV\H
The Appendix is referred for the proof of this theorem.
From this theorem, we realize that solvidgl is equivalent

to solving P2. .
, X X;>1,VieV 3
Theorem 3Let the problemPy; be defined folG(V, H, E) * Z ’ ! ®

as follows: FindS such that, JEN()
. Yo Ri= ) X (4)
S= argmin [{]. iEN(1) iVl
EUHECDS(G)

If S is a solution toPy, thenS U H is a solution toP1. Z Fji— Z Fij=X;,VieV,i#1 (5)

We refer to the Appendix for the proof of this theorem. It JEN (D) JEN(3)
Results from Theorem 3 that solvirdgl (or P2) is equivalent o )
to adding a minimal set, sa§, to H, to construct a solution 0< Fij; <nX;,V(i,j) € E,j#1 (6)
SUH € MCDS(G) (respectivelySUH € MWCDS(Gy,)).
This feature will be useful in the following to reduce thersta Z Y <1+ X(IN(1)] =1) @)
space, both in the optimal solution and the heuristic. ienN(1) N
B. Problem Resolution P <nYy,Vie N(1) (8)

1) General Framework:The proposed general framework

is illustrated by Algorithm 1. This algorithm has as input Fij=0Y(,j)¢ E, orj=1 )
(line 1), i) the communication grapléy = (V, H, E), which
includes the set of verticed/|, the subset of vertices rep- _ .
resenting the ERNsH < V), and the set of edges-j, Xi=1vic (10)

iy F, a function that calculates the MWCDS. The output of The ILP has as input, i) the gragh = (V, H, E), and, ii) a
the algorithm (line2) is the set of positions where the RNsset N (i) for every vertexy;, i.e., the set of adjacent vertices
should be placed to ensure connectivity. The algorithntstafneighboring nodes). The outputs are: i) a vector of bodean
by initiating the setsiV’, and S, to empty set (line 3). The X, which represents the decision variables, iX;, = 1 iff
vertices’ weights are then calculated by applying the fdemuvertex,v; € V, is selected in the MCDS. Variables i¥ are
given in Eq. (1) (line4) and inserted to the s&#. The only for v; € V \ H, while entries forv; € H are fixed a
resulted weighted grapldy,, = (V, E, W), is passed as input priori to 1 (Eq. (10)). ii) The flow matrix of integersF; ;,

to the function,F, in line 5, which produces the MWCDS (v;,v;) € E, as well as iii) the vectol;, for v; € N(1),



which are additive variables used to model the connectasty 1 + ¢ approximation of the MWDS. The result of Theorem

it will be explained hereafter. 3 is used to accelerate the search, and all the vertices which
The objective function, Eq. (2), is to minimize the totahave null weight in the appropriate vicinity are initialljcged

weight of vertices in the selected CDS, to achieve MWCD®p in every iteration (line 3 for £ neighborhood, and liné5

The constraint represented by Eq. (3) is to guarantee ttierei for & 4+ 2 neighborhood) instead of performing an exhaustive

v; is in the CDS K; = 1), or it has an edge towards someearch among akk neighbors and: + 2 neighbors. Those with

vertex in the CDS (at least one of the teris should equal non-null weight (V. (v) N (V' \ H), and (i42(v) N (V' \ H))

1). Constraints represented by Eq. (4) throughout Eqg. (8) aare added progressively if necessarily to construct thalloc

for medeling the connectivity requirements. The principleo  MWDS with a minimum addition. The local MWDS is added

generate a flow, only from an arbitrary vertex The amount to y;, and the loop continues by selecting another pivotal

of this flow is the exact amount to cover the CDS (Eq. (4)), i.evertex until covering the seV. At that point (termination

it should bed " X; if v; is out of the setX; =0), or> X;—1 of the while loop), x1 will represent an approximation of

if it belongs to the CDS (one of the dominating vertices). IMWDS, but whose elements are not necessary connected.

the former casey; inevitably would have at least one edge The second part of the algorithm (from liré to line 26)

towards a dominating vertex. The generated fellow travéérse is similar to the solution used in [26] to connect the resiilte

dominating vertices and at every one, a single unit of the flaspproximation of the MWDS and construct an approximation

fades (Eq. (5)). Eq. (6) verifies that every flow is bounded lyf the MWCDS. Although the solution of [26] uses a different

0 andn, and that no flow goes to the dominated vertices. Thigoproach to calculate a MWDS, the connection algorithm

is as the termf; ; vanishes whenX; = 0. Note here that a proposed by the authors is general and connects any DS. To

more strict upper bound that would reduce the search spaedculate the connector set, the connected parts i, are

is Y X instead ofn, but this would make the inequalitiesdetermined, then every connected part is clustereg. iAfter

non-linear. Also note that the latter condition, combindthw clustering, an auxiliary multiple grapt; = (V, E, W), is

Eq. (4) whenX; = 0, ensures no flow will be generated fromconstructed from¢7, as follows: i) The vertices are the clusters

vertices out of the CDS. (c;). i) Between every couple of vertice§;, ¢;) € V2, and
Constraints represented by Eq. (7) and Eqg. (8) are usedfdo every path,p € G, of length not exceeding three hops,

limit the number of neighbors to which node can transfer an edge between, and¢; is added. The resulted graph is a

its flow. A binary vector,Y, is added to the outputs suchmultiple graph with possible multiple edges between a o®upl

thatY; = 1 iff flow is permitted from nodey;, to node,v;. of vertices. Note that every patlp, includes only vertices

Constraint of Eq. (8) ensures that flow can only be transfierréhat do not belong toy;, and which will be possibly used

from nodev; to v; if Y; = 1, while Eq. (7) forces; to be set to connect vertices of;. A minimum spanning tree of! is

to 1 for only one neighboring nodey,;, in case,y; ¢ CDS. then calculated) is then constructed from vertices i that

Otherwise, it is bounded by the number of's neighbors. form every single edge in the calculated spanning tggeis

Finally, conditions expressed by Eqg. (9) are to ensure the flaugmented with\ to construct the connected

travels only through existing edges, and no flow entgrs

and Eg. (10) to seK entries tol for nodes inH (constants).

Note that the latter conditions (Eqg. (9) and Eq 10) are just

to reduce the number of the ILP variables, and they do ngt Approximation

represent constraints to be verified by the ILP solver. S o
3) Heuristic: The previous ILP represents the optimal An upper bound for the approximation of the heuristic (vs.

resolution for the functior¥. It can only be used in limited the optimum) is derived in the following. As the heuristic is

scenarios. Given that the problem is NP-hard, a polynomig@mMposed of two parts, the approximation of each one is first
time heuristic is needed as a general and scalable solutig@ffen: i-€., i) finding a MWDS X;), and , ii) connecting it

In the following, we propose a heuristic for the functidh (adding A). The approximation of the whole algorithm will
based on [2] and [26] while considering the particularity df’€n be deduced. o

the problem, as illustrated by Algorithm 2. The principal of Theorem 4:The set, x;, computed by the heuristicF,

[2] is used to find an approximation of the minimum Weighteaat_'Sf'eS5W(X) < (1 + €)W(xop), Where W(xop) is the
dominating set (MWDS), say,. This starts by initializing Weight of the MWCDS(G).

x1 to @ (line 3), which is progressively augmented by adding

local dominating verticesDj,», of k + 2 — neighborhood, Proof: The principle of the first part of the algorithm (lirse
from a pivotal vertexv (the loop from line4 to line 20). throughout0) is to build an approximation of the MWD&,

If there is a vertex with all direct neighbors i \ #, then as the union of the partial MWDS of mutually node-disjoint
it is selectegl ag, othe_rwisev is chosen arbitrary (lines sets, for the setsdVy, 2, Ni,s2, - Ni, 42, SayU Diiva,
throughout line9). The inner loop (repeat loop) searches for =

local dominating set for thé + 2 vicinity from v (M12(v)), wherek; is the final value of: in the iterationi, andr is the
and it increase¢ until the condition in linel7 is fulfilled. total number iterations. These partial MWDS are obviously
The condition states that the weight of the local dominatingpde-disjoint. From the stop condition at every iteratidn o
set for N2 is no more than the one fdy;,, when multiplied the inner loop (line 17), at the exit of the while loop (line)20
by the factor { + €). It is actually this condition that ensuresthe following is fulfilled:

V. ANALYSIS AND DISCUSSIONS



Algorithm 2: Algorithm describing a Heuristic foF
1: Input: G = (V,H,E,W)
2: Output: A connected dominating sef, which is an approximation of the
MWCDS.
Cnit x =x1=A=0
Look up for a Dominating Set x1
: while V' # 0 do
: if 3u e V,o(u) =1 then

w

4
5
6: v=u
7 else
8: Chose arbitrary vertex
9

10

W(xi) < (1+ W)

X1 < Wi(xop), @Sxop should be connected in addition to
being a MWDS. Consequently, Eq. (15) yield8,(x1) < (1+
€)W (Xop)- O

Theorem 5:W(A\) < 4W (xop), Where is the set of ver-
tices added to connegt; in the second part of the algorithm
(from line 21).

(15)

end it We refer to [26] for the proof of this theorem, where a
11:  repeat similar solution is used to connect the MWDS (but a different
1= b= ’“j(/l(v) o function is used for calculating the dominating set). Ndiat t
. k = k
14: add progressively td; a minimum number of non-null weight vertice$he 4 approximation of that solution has been proven for any
(u € Ni(v) N (V \ H)); until Dy, dominates\y, (v)
15: D = Nasa(v) 1 (B dominating set as input.
16: add progressively tdj, 2 a minimum number of non-null weight

vertices ¢ € Ni42(v) N (V \ H)); until Dy, 4o dominatesNy 42 (v)

170 untl > W) < (1+e¢) Y W(w)

u€Dp 4o u€ED

18: X1 = X1 U Dgy2

19: V:V\Nk+2(v)

20: end while
Connect the setx1

21: Determine the connected componentsyin, cluster them and denote every
clusterc; R o

22: Construct an auxiliary graptG: = {V, B, W} from G as follows:

23: ‘A/ = {C.L}

24: For every pathp € G, of length3 or less that connects a vertex fram to
another one front;, add an edgeg, to E, and setiW (e) = W (p)

25: Compute a minimum spanning tréd ST of (X

26: For every edgee € M ST, add the vertices that forra to A

27 x =x1 U

) Vie {1, ,r} (11)

> W) <

U€EDy, 42

1+e) > W

u€ Dy,

The summation of all inequalities defined by 11 yields,

)< A+0> Y W(u)

i=1 u€Dy,
(12)

D=2 >, W

=1 ue Dy +2

From Theorem 4 and Theorem 5, the following corollary
is obtained:

Corollary 1: W(x) < (54 ¢)W(xop), i.€., the proposed
heuristic provides a MWCDS witli5 + €) approximation in
the worst case.

B. Runtime

In the following, upper bounds for the number of steps
required to run the different parts of the proposed hegrate
derived. This serves just for the worst case analysis in thgt m
pessimistic scenarios by ignoring all factors that may help
reduce the runtime, e.g., the number of ERNS, etc. Averaged
and thorough analysis will be investigated by simulatiothie
next section.

1) Calculation ofy; (while loop): The most time consum-
ing step in this loop is the exhaustive search for the local
dominating sets (repeat loop), which trivially increasathw
k. Now we derive an upper bound far, say k4., which
represents the upper bound of the number of iterations in the
repeat loop. Within the loop, the following condition halds

Let x1 be an optimal solution for the minimum weighted

dominating set problemyfy € MWDS(G)). On the one
On the
,r}, Dy, is the optimal dominating
its weight does not exceed that of any other

hand,v; € {1,--- ,r}, X1 N N, +1 dominates\y,.
other handy; € {1,---
set in N, i.e.,
dominating set (includingi; N N, +1). Consequently,

Y Y wmsy ¥

Wu).  (13)
1=1 u€ Dy, i=1 ue(X1NNk; +1)
Since 1 = U(S{l N Ne2), W) =
=1
> > W(u). Therefore,
1=1 ue(X1NNk, +2)
Z Z W(u) < W(x1). (14)

=1 u€(X1NNk; +1)

From Eq. (12), Eq. (13), Eq. (14), it results,

I+e) > W< > W(u),Vk <kpa  (16)
u€ Dy, UE Dy 42
This vyields,
1+ea@) < > W
u€ Do

(I+¢) Z W(u) <

u€e Doy

> W)

u€Dy

(1+¢) Z W(u) <

u€ Dy,

> W)

uEDp 4o

wherev is the vertex selected at the beginning of the while
loop.



By transitivity we get,(1+¢) %(:) Z W(u),i.e., MISi(v) (its upper bound). Still in the worst case, the latter

€Dy 42 is expressed by its upper bound given in [27],
1+ )/ +e)aw) < W (u). Consequently,
DM |MISk(v)| = (2k + 1) (23)
(V(1+e) < Y W (17)  Every iteration of the repeat loop consists in an exhaustive
u€Dp 42 search for theM DS for vertices i) Ni(v) \ Ni_1(v), and
Given the weight function that we used (zero/one weightd), Ni+2(v) \ Ni11(v) that are not dominated by the current
the We|ght 0ka+2 can be bounded by calculatedM DS. This is as theM DS for Ni_1, andeH
have already been calculated in the previous step, whidh wil
Z W (u) < |MISkia(v)]. (18) be extended with the obtained partief DS. The search for

the MDS consists in looking up for the DS with one vertex
) PP (using all possible combinations). Otherwise, with twotioes
From Eg. (17) and Eq. (18), and given thiaw) * is either (ysing all possible combinations), etc. The number of steps

UEDy 42

1 or 0, the following is obtained, are then respectively given b§; = (1\{1) + (1\;1) e (lell)
Sy = N2 + N +-- whereN; = |N.(v)\ Ni_1(v)],
(V(L+ 6))k < |M1Sp42(v)]- (19) Ny :( 1|])Vk+(2(2)) \ Nk(+l1() )|, 11 (resp. 52), (re)gresent(s)![he
According to [27],|M1S}| can be bounded by2k + 1)? size of the firstM DS found for Ny (resp. N3). In the
(in unit disk graphs). Using this in Eq. (19), it yields, worst case/;, resp.ls, is the difference between the max-
imum independent set§M 1Sy (v)| — |MISk_1(v)|, resp.
(V(1+€)F < (2k +5)2. (20) |MISki2(v)| — |[MISk+1(v)|, which represent trivial limits

to the partialDS5.
As both sides of the pervious inequality are positive, it is Eq. (23) yieldsl, = 8k, andl, = 8(k + 2).
equivalent to, Let us denote the degree Gfby A. The maximum number
s . of vertices inNy(v) is no more thar@A+1)|MISk(v)|. Using
(V1 +e€)" < (2k +5). (21)  the bound of the binomial sunfi; < I; (% 1), as well as the

Let us definef(k) by, f(k) = (2k +5) — (v/(1 + 6))’6, bound ofi;, we obtain,S; < 8k% This yields,

Satisfying the inequality defined by Eq. (21) is equivalent t sk

determine the interval of values &f, for which f(k) > 0. H(SkA+i)
kmaz 1S thus the maximum value that satisfies such a i
condition, which can be determined by studying the vanatio 51 < W (24)

of f(k). The derivative off (k) vanishes at a single point,

8 Similarly, the following bound forS; may be derived,
say ko, ko = 410g1+€(1(17+)), wherelog, , . denotes the
n €
logarithm of basel + e. From ko, the derivative of f(k) S(2) 8(k 4+ DA + g
becomes negative. The two limits 6fk) whenk — +oco (res. H (8(k +2)A +1)
whenk — —o0) are—co. f(k) is then positive in a single and Sy < =1 Sk 115! . (25)

limited interval includingk,, where f (k) is the pick value of
f(k). Consequently, we conclude that the maximum value of The total cost of every iteration of the while loop in the
k (in which f(k) is positive) is the one that makes it vanistworst case is then bounded by,

during its drop at the intervakg, +oo[. That is,k,,... satisfies,

8k 8(k+2)
o [BkA+1) IT Bk+2)A+4)
4 i=1 i=1 . .
2k +5) = (YA + ), > T T , which is
k=
s.t., 3 bountljed by:
k> 4log, (———). (22)
1+ (ln(l + E)) Skwnaz 8(kmafﬂ+2)
The resolution of the previous equation givés,,..., a very H (8kmaz A + 1) (8(kmaz +2)A +1)
relaxed upper bound th&t may reach in any iteration of thek i=1 L=t
loop. Note that it only depends anand not the problem size ™" (8kmaz — 1)! (8kmaz + 15)!

(VD
Giving the (0, 1) weight function, every search stops at the
first DS found and there is no need to continue the exploratio
(contrary to general weight heuristics). Therefore, thesivo .
case is when the dominating set for evéYy(v), say Dy, is

(26)
"The number of iterations is tr|V|aIIW|/|Nkmw+2| which
is bounded by\V|/((A + 1)(2kmas + 5)%). The final bound
of the number of steps is then obtained by multiplying this
Iremember that(v) denotes the dominating weight of vertex, i.e., the number by the bound in Eq. (26), which is,
minimum weight of vertexv’s neighbors



kmaz| V| and applies to any scenarios where nodes’ heterogeneity
(A +1)(2kmaz + 5)? leverages their capacity of forwarding data, e.g., prdngss
power, memory, etc. Typical example of environments with
heterogeneous energy capacity is when SNs are endowed with

8k}mam 8(k37nam+2) . agege . . .

H (Skmaw + 1) (8(kmaz + 2)A +7) energy harvesting capabilities. The solution ideally &l

F 4t e to environments with uniform harvesting potentials, sush a
(8kmaw — 1) + (Skmas + 15)! - solar harvesting in open space areas (e.g., military and bor

der surveillance in a desert), etc., where a node can either

be energy harvesting enabled or energy harvesting disabled
(27) with no differentiation between harvesting capabilitiesen

Given that the variable terms in Eq. (27) drfeand A, and the energy is available (temporal variation is not consider
the right side of the product is dominated by the second tefmare). Although considering general environments witlcgpa

(.e. nf;’imw(;)(s(lmg‘umﬂ)), the asymptotic order is;  variant harvesting potentials is out of the scop of the arre
mas e work, the proposed solution can easily be extended to such
0 (|V|A8’“m“+15) (28) environments. First, the weight function should be updated
(8kmaz +15)1 ) A normalized weight in the interval0,1] may be used,

which represents a very relaxed asymptotic polynomiyhere_w(u) = 1 for a node with a maximurm harvestlng
bound related to the varialbé®| and A (note thatk is a Potential, andj¥’(u) = 0, for a node with no harvesting poten-
constant) mae tial/capability. If the maximum harvesting potential isnd¢ed

2) Calculation ofA (Connectingy): In the worst casey is by, M H P, and the harvesting potential of a nodeis denoted

composed of totally unconnected components, which resu?t% HP(u) (HP(u) € [0, MHP]), then a trivial normalized

in a maximum number of clusters (i.dx| = |V|). This is ncton would be:W(u) = (MHP — HP(u))/MHP. A

the case when the resulted dominating set is an indepenotgr[l?shmd’ sayr, should be Qefme_d for the use of SNs in
set, which is bounded by2D + 1)2, where D denotes the relaying traffic. Only nodes with weights lower than thatloé t

network diameter (the longest path between any two vertic%%rmahzed threshold weight, i.8V; = (MHP —r)/MHP,

in G). The calculation of the connected components (g can then be used as relays. The #etis then redefined as

can be performed i®(|E|). The construction of an auxiliary ;;go?ﬁrzg n(zg?s g‘:hey;é?hatﬁ dlox\l:urritgt?ftéoellggotnh; Sr:;;/ebe
graph using paths of length not exceeding three hops (g ed. RNs are simply placed at positions of nodes with a

or two intermediate nodes) can be achieved by exploring alf" : ’
the one-hop and two-hop edges from every This needs weight higher thariV’, in the resulted MWCDS.

(A% + A3)|V| steps, i.e., less tham\? + A3)(2D + 1)2.

The computation of the minimum spanning tree in graphs
with integer weights can be achieved @(|E|). More Pre-  The proposed solution and model for minimum RN addition
cisely, in less than4|E| [28]. |E| can be bounded by, (MRA) are evaluated by simulation. Both the exact solution
(A+A2)|V|2/2, which is bounded byA+A2)(2D+1)*/2.  (ILP) and the heuristic algorithm are evaluated, denotedMR
That is,4| | is bounded by2(A 4+ A2)(2D+1)%. Finally, the ILP and MRA-heuristic, respectively. They are compared to
task represented in ling can be performed imV| steps (the i) the use of MCDS-based solution in the one-tiered model
number of edges in the spanning tree), i.e., less thah+1)2.  (MCDS-1Tiered), which consists in the use of traditional
By summing all the previous bounds, the number of total stepCDS calculation (without weights) then using the SNs in the
required to calculate is then bounded by, set as relays without replacement, ii) MCDS-based solition
the two-tiered model (MCDS-2Tiered), i.e., MCDS calcidati
then replacement of all the obtained nodes in the set by
dedicated RNs, and finally iii) a trivial energy-aware (TEA)

V1. NUMERICAL ANALYSIS

|E|+(2(A+A*) (2D +1)* + A+ A% +1)(2D+1)%. (29)

The asymptotic order of this equation is TEA simply calculates the shortest paths on the node wedghte
graph, where weight is assigned to ERNs and weiglit
O(|E| + A2D* + A*D?), (30) to ELNSs, similarly to the proposed model but without RNs

_ ~addition. The comparison metrics includg, the network

which represents a general term of a relaxed polynomial Ugetime, defined as the time to first battery drain oiiy, the

per bound with three variables\( D, and|E[). As particular cost in terms of the number of RNs added, @i the run-
cases, i) in dense networks, the third term of the sum in Egme. We used NetworkX[29] environment to implement the
(30) dominates the second one, which yieldi§E|+ A°D?),  network simulator, and CPLEXto solve the ILP. To measure
whereas ii) in scattered networks, the second one dominaigsse performance metrics, the following parameters haee b

the third and the first ones, which yield¥A*D?). varied: i) number of nodes, ii) the percentage of ERNs, and
iii) the average network degree. For every generated tgyolo
C. Application and Possible Extensions a single node is randomly picked up as a BS, and every other

While energy capacity is the main motivation for hetero- 2pgps:/metworkx.lanl.gov
geneity in the proposed model, the proposed model is gener&iww.ibm.com/software/products/en/ibmilogcpleoptibtu



node periodically generates and transmits a packet to the BS 10000
in every cycle. Parameters 6fC2420 “ radio have been used
to measure energy consumption. Every point in the following 1000 e
plots is the average of extensive repetitions with différen 100 .
random generated graphs, and the error bars are preseted wi
95% confidence interval.

Before comparison, the parametgrof the proposed heuris-
tic is first investigated. Note that this parameter presents
trade-off between the cost (quality of the obtained sohg)o
and the runtime. High values tend to accelerate the seaich bu

10 et

L ,»g/ |

gt
=

MRA-Heuristic for e=0.1 —&—

MRA-Heuristic for £=0.5 —o—
MRA-Heuristic for e=1 :--3--+
MRA-Heuristic for e=1.5 —x—
) MRA-ILP

A

Run time (seconds)

for a lower quality (higher cost), while lower values have th P 20 ™ pos w0 12 140
opposite impact. This trade-off is analyzed hereafterr ati- Number of network nodes (IV])
ants of the heuristic with different values ©{0.1, 0.5, 1, 1.5), Fig. 2: Runtime vs. number of nodes

as well as the exact solution (ILP), are compared in Fig. 1 and
Fig. 2. Fig. 1 shows that the costs smoothly increase as the
number of nodes grows, and that the low values i@duce the

cost. The difference between all the variants and the optimu
represented by the ILP also rises smoothly. However, Fig 2 _ sxto?
shows large difference between the heuristic’s variantstihe S ax10?
ILP in terms of runtime (note the log scale). The runtime of e ]
. . . £ MRA, MCDS-2Tiered —<—
the latter grows exponentially, as well as its memory footpr : 3x10° mepsaTaEA T
This makes it impossible to simulate scenarios with high £
number of nodes. The impact efhere is reversed compared % 20
to the cost, where lower values efneed higher runtime, but .
the difference between the variants is still relatively Bma Kﬁq
the following, ¢ is set t00.5, as a balance between optimality 0 0 50 100 150 200 250 300 380 400 450 500
(added RNs) and runtime. Number of network nodes (|V])
Fig. 3: Network lifetime vs. number of nodes
80
70 %
2 & = o .
z = the same network life time, plots of TEA and MCDS-2Tiered
? % /fﬁ e have the same shape in all figures with minor and insignificant
g 40 % o fluctuating difference that is due to different selectiomedfys
E % e amongst candidate SNs. The increase in number of nodes
7 2 ,gfé//‘ MRA-Houristic for sco.1 s | raises the relaying load, notably for ELN. This explains the
° LT MRA-Heuristic for e=0.5 < | dramatic drop of the network lifetime for TEA and MCDS-
MRA-Heurlstic for e=1.5 +—x— 2Tiered in Fig. 3, from t).8 x 10° to about0.95 = 107. Both
%% 4 e s 10 120 10 solutions are affected by the increase of the load due to the
Number of network nodes (|V) inevitable use of ELNs for relaying (routing) data, whileth
Fig. 1: Cost vs. number of nodes use of RNs addition eliminates this problem and keeps the

network lifetime at5.4 * 10°. This represents a reduction at
i . . a ratio ranging from aboud times to more500 times. The
The network lifetime in terms of number of cycles is .
- : : . increase of ELNs percentage raises the use of such nodes,
presented in Fig. 3, Fig. 4, and Fig. 5. All the figures showh. h iustif he d f lifeti in Fig. 4. H h
large difference between solutions using RNs addition (MRW \c J?S?‘Ies the krog of lifetime n Fig. I OWEVer, the
and MCDS-2Tiered) and those based on the one-tiered mo@r W of the network degree gives more alternatives when

(VDS Luered, TEA): I th fomer soons. the energy e 19,1 TSt P n TEA (esp e oD
consumption that affects the network lifetime is that fa@mnts- ' P

" , . o ow of the lifetime with this parameter in Fig 5. Note the
mitting the nodes’ own readings. This is as only ERNs arﬁ%%e difference between the two categories of solutions for

dedicated RNs— which are energy unconstrained nodes— ar | f ELN in Eig. 4 | | f K
used to forward traffic. Therefore, the lifetime becomesyonﬁllg vaiues o n 9. (resp. oW velues o networ
: ' e . . degree), where the ratio is more thabD times.
proportional to the network traffic in the simulated sceosyi This i i th K lifeti
which explains its invariance in all the plots for MRA and IS improvement in the network lifetime comes at a cost

MCDS-2Tiered. This also explains the same performance %tf addringTF‘I;'Xs az I&rgéesmf'lq in dFig. 6, Fig. 7, an:jj .Figr; 8.
ILP and heuristic versions of MRA (presented with a sing| ote that an -1Tiered are not presented in these

lot in every figure). While MRA and MCDS-2Tiered exhibit/9ures as they have no cost with this respect (does not add
plotin every figure) ! ! X! IRNs as long as connectivity can be ensured by SNs). Fig. 6

“https://inst.eecs.berkeley.eduls150/Documents/CC2420.pdf shows that the inevitable increase of the cost vs. the number
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(Polynomial Time Approximation Scheme) that uses a state-
of nodes is smooth and confirms scalability. The cost of thg-the-art heuristic for MWCDS calculation [2] (on whicheth
heuristic version of MRA does not exce&d nodes for a proposed heuristic is based). However, PTAS-heuristics doe
network of 500 nodes. The ILP cost is even a bit lower buhot take advantage of the particularity of the problem (\tsy
it was not possible to assess it for scenarios beydsdl in the search of the set. Comparison with PTAS-heuristic
nodes. More importantly, MRA has considerable lower coallows to asses the runtime performance of the proposed
than MCDS-2Tiered. The difference grows with the numbejeuristic. Note that the cost of PTAS-heuristic (not présen
of nodes, and MRA provides up 0% reduction for large in the previous figures) is the same as MRA-heuristic. Fig. 9
scales. In Fig. 7, the increase in the percentage of ELNRows exponential increase of ILP for networks with number
inevitably affects MRA, but not MCDS-2Tiered that selectsf nodes beyondi0, while the increase for both heuristics
all nodes in the CDS without making any distinction betweemains smooth and polynomial. However, the figure confirms
SNs. However, it is important to mention that the cost ahat the difference between the heuristics increases With t
MRA remains reasonable even for high percentage of ELNumber of nodes, and that the increase in MRA-heuristic is
and the difference with MCDS-2Tiered is always high. Fasmoother than PTAS-heuristic. For example, MRA-heuristic
instance, forr0% of ELN, it was below16 nodes (out of the runtime does not exceethsec for 500 nodes, while PTAS-
150 nodes set in this scenario) for MRA-heuristic, and belloweuristic runtime exceed$0sec. Fig. 10 shows that the
12 nodes for the ILP, while it ranges betwed? and 35 for  heuristics are unaffected by the increase of the percemtage
MCDS-2Tiered. This represent a reduction of more thé% ELNs and its runtime remains bellowsec, contrary to the
for MRA-heuristic over MCDS-2Tiered and up ©0% for |LP. MRA-heuristic still exhibits the lowest runtime. Fiiha
MRA-ILP. The growth of the network degree helps reducingig. 11 also confirms the lowest runtime for MRA-heuristic
the number of dominators when calculating the MCDS, whidhat was bellow sec, and highest for MRA-ILP. The decrease
explains the drop of all plots in Fig. 8. Large differencvith the rise of the network degree for PTAS-Heuristic is
between both versions of MRA and MCDS-2Tiered can Hgstified by the fact that the increase in connectivity (rartw
remarked from the figure. degree) accelerates the finding of dominators as their nisnbe

Contrary to the MRA-heuristic, the reduction of the codtecomes lower with this increase (Fig. 8). MRA-heuristic
in ILP comes at a very important increase in the runtime, asmpensates the time needed in case of low degrees by taking
shown in Fig. 9, Fig. 10, and Fig. 11. Theses figures platlvantage of the particularity of the problem for acceletat
the runtime of MRA-ILP, MRA-heuristic, and PTAS-heuristicche dominating set construction, which explains its steady
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performance that is almost unaffected by the degree. The VII. CONCLUSION

fluctuation of ILP for network degrees betweénand 8 il i
. Lo Stainability in wireless sensor networks (WSN) has been
is due to the optimization methods used by CPLEX whe inabifty In Wi ( )

. . . . tbnsidered in this paper from the perspective of energy-@awa
searching optimal solution. We realized that many branahes communication coverage. A general environment has been

>(considered, where two types of sensor nodes (SNs), energy
But for degrees betweef and 8, a Io_t of branches hff’lve rich nodes (ERNSs) vs. energy limited nodes (ELNs) may be
be_er_1 explorgd before.convergen(.:e ('t was not poss!ble otgployed. Upon deployment, the proposed solution aims at
eliminate t_helr explqrat|9n), which justifies the |.ncrea"1-§b.|s limiting the use of ELN to data reading, and ensuring coverag
glso explains thg slight Increase after degréeFinally, it S via ERNSs, with addition of a minimum number of relay nodes
important to notice large difference between MRA-heUIIStI(RNS) for coverage. This is completely different from theepu

and MRA-ILP. one-tiered and two-tiered models used in the literaturee Th
" o - problem has been reduced to finding the minimum weighted
¢ A unste e connected dominating set (MWCDS) in a vertex weighted
10 | MRAILR —em graph. An integer linear program (ILP) has been derived as
10 ‘J an optimal solution for the problem in terms of the number
g 120 ; of RNs to be added. Given the exponential computation com-
g 1o J plexity of ILP solvers, a heuristic has been proposed. Upper
£ = | /{/ bounds for the approximation of the heuristic to the optimum
i w “ > as well as for its runtime, have been formally derived.
a0 P The proposed model and solutions have been compared
20 ’ — by simulation with the use of traditional MCDS calculation
0 — gt el and replacement of all the obtained set by RNs, which is
2 * 190 200 300 400 %00 equivalent to use an MCDS calculation based solution in the

Number of network nodes (|V|)

two-tiered model (MCDS-2Tiered), as well as to the MCDS
calculation then using the SNs in the set as relays without
replacement, which is equivalent to use an MCDS calculation
based solution in the one-tiered model (MCDS-1Tiered). A
trivial energy-aware solution is also used in the compariso

Fig. 9: Runtime vs. number of nodes

#ﬁéﬂiﬁﬂiﬂ‘i?; (TEA), which minimizes the use of ELNs by calculating
® MRAALP A the shortest paths on the node weighted graph without any
5 RN addition. The proposed heuristic for MWCDS calculation

has also been evaluated and compared with a state-ofithe-ar

algorithm. The comparison has been performed with respect

Run time (seconds)

8 to energy efficiency (network lifetime), the cost (hnumber of
Py SIS G - added RNs), and the runtime.
, 1 Results of extensive simulations confirm effectivenessef t
e 1 proposed solution, both when using the ILP and the heuristic
° P P " p Py 70 The proposed solution considerably prolongs the network
Percentage of ELNs ((V-H)%) lifetime to the order of more thaB00 times compared to

TEA and MCDS-2Tiered in large scale networks and scenarios
with high number of ELNs. The improvement in the network
lifetime has an inevitable cost of adding a reasonable numbe

Fig. 10: Runtime vs. percentage of ELNs
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of RNs that was lower than the number added by MCD$t5] S. Sudevalayam and P. Kulkarni, “Energy harvestingssemodes:
2Tiered, where the reduction in cost compared to the latter Survey and implications,JEEE Commu. Surveys and Tutoriaiel. 13,

was at the order o10% for large scale networks. The resultg; g
confirm considerable reduction in runtime for the proposed

heuristic vs. a state-of-the-art polynomial time appraadion
scheme (PTAS), which exceedg@% in large scale networks,
as well as its scalability, contrary to the ILP. This is at tost

of adding a higher but a reasonable number of RNs compaf&¥]

to ILP.
The proposed solution supposes that the ERNs have enough N. Michelusi and M. Zorzi, “Optimal random multiaccess energy
capacity of energy (e.g. by harvesting or access to high harvesting wireless sensor networks,"|EEE ICC Workshops2013.

capacity storage) to keep their batteries alive all the tim
Although technologies are evolving, it is early to techilica [21]
fulfill this assumption for high data rate applications, lsuc

as those involving video/images transmissions. Relaxig t

assumption represents a perspective. This will be tackied fij22]
in the particular scenario of energy harvesting envirorisien
by considering limited harvesting capacities as well as SPas)

tialy/temporaly variable capacities at harvesting nodes.
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