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Abstract—This paper considers the problem of communication
coverage for sustainable data forwarding in wireless sensor
networks, where an energy-aware deployment model of relay
nodes (RNs) is proposed. The model used in this paper considers
constrained placement and is different from the existing one-
tiered and two-tiered models. It supposes two different types of
sensor nodes to be deployed, i) energy rich nodes (ERNs), and
ii) energy limited nodes (ELNs). The aim is thus to use only
the ERNs for relaying packets, while ELNs use will be limited
to sensing and transmitting their own readings. A minimum
number of RNs is added if necessary to help ELNs. This
intuitively ensures sustainable coverage and prolongs thenetwork
lifetime. The problem is reduced to the traditional problem of
minimum weighted connected dominating set (MWCDS) in a
vertex weighted graph. It is then solved by taking advantageof
the simple form of the weight function, both when deriving exact
and approximate solutions. Optimal solution is derived using
integer linear programming (ILP), and a heuristic is given for
the approximate solution. Upper bounds for the approximation
of the heuristic (vs. the optimal solution) and for its runtime
are formally derived. The proposed model and solutions are also
evaluated by simulation. The proposed model is compared with
the one-tiered and two-tiered models when using similar solution
to determine RNs positions, i.e., minimum connected dominating
set (MCDS) calculation. Results demonstrate the proposed model
considerably improves the network life time compared to the
one-tiered model, and this by adding a lower number of RNs
compared to the two-tiered model. Further, both the heuristic
and the ILP for the MWCDS are evaluated and compared
with a state-of-the-art algorithm. The results show the proposed
heuristic has runtime close to the ILP while clearly reducing
the runtime compared to both ILP and existing heuristics. The
results also demonstrate scalability of the proposed solution.

I. I NTRODUCTION

Energy awareness is the key element that will enable to
design sustainable computer systems and networks in the
future. We consider in this paper wireless sensor networks
(WSNs) as a particular category of computer networks where
energy represents the main challenge that should be overcome
to achieve sustainability. A wireless sensor network is a set
of wireless sensor nodes (SNs) that are capable to sensing the
environment, processing the acquired data, and communicate
through wireless radios. In this paper, we are interested inthe
particular problem of relay node (RN) addition for efficient
communication coverage in WSN. In many applications, SNs
are first deployed in specific areas for sensing coverage. RNs
are then deployed to connect the SNs to the base stations
(BSs) and/or assure some criteria in the final topology. A

typical example is infrastructure monitoring [1], where SNs lo-
cated in predetermined sensing locations to collect information
about the monitored infrastructure and then send the gathered
physical information to BSs via multi-hop routes. The precise
positions and the number of SNs and BS are known prior to
the deployment, and the problem after SNs deployment would
be to optimaly place RNs [1].

Two models for RNs placement are used in the literature,
one-tiered vs. two-tiered. In the former, any SN can be used
as a relay to forward data, whereas in the latter, an SN
only sends its own data but cannot be utilised as a relay.
Existing solutions may also be categorized into constrained
vs. unconstrained models. Unconstrained placement permits
to deploy RNs anywhere in the network’s area, which is not
realistic in many scenarios where placement faces physical
constraints that make it possible only in some regions. Thisis
considered in the solutions belonging to constrained placement
category. We consider constrained node placement but with
a different and more general scenario, where two types of
SNs may co-exist, i) energy rich nodes (ERN), and ii) energy
limited nodes (ELN). Only ERN can forward data traffic for
other nodes, while the ELN use is limited to sensing and
sending their own data. A variant of constraint one-tiered
model is obtained when the set representing ELNs is empty,
while a variant of constrained two-tiered model is reflected
when the one representing ERNs is empty. ERNs may be those
nodes equipped with– by abstraction– energy unconstrained
resources such as large energy storage capacity or more
importantly, energy harvesting capabilities. Our contribution
is to define this new model for minimum RNs addition in
a deployed network and accordingly propose a solution that
completely eliminates the use of what we call ELNs for data
forwarding, which will thus be ensured by ERNs and the
added RNs. Excluding ELNs from data forwarding intuitively
improves network efficiency and prolongs the network lifetime
compared to the existing one-tiered model, and allowing the
use of SNs that are capable of forwarding data will reduce
the cost in terms of the number of added RNs, compared
to the two-tiered model. While energy capacity is the main
motivation for heterogeneity in the proposed model, the latter
is general and applies to any other scenarios where nodes’
heterogeneity leverages their capacity of forwarding data, e.g.,
processing power, memory, etc.

The problem is modeled as a variant of the traditional
minimum connected dominating set (MCDS), proved to be
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NP-hard, reduced to finding the minimum weighted connected
dominating set (MWCDS) in a vertex weighted graph. Optimal
solution is derived using integer linear programming (ILP),
then a heuristic is given for polynomial time resolution with
bounded approximation. To reduce time complexity, the simple
form of the weight function is exploited both in the ILP and
the heuristic. An upper bound of the approximation for the
heuristic is derived, as well as for its runtime. Further, the
proposed solutions are evaluated by a thorough simulation
study where both the heuristic and the ILP are evaluated. To
demonstrate the advantage of the proposed model over the one-
tiered and the two-tiered models, we compare the proposed
solutions with, i) the use of traditional MCDS calculation and
replacement of all the obtained set by RNs, which is equivalent
to use a MCDS calculation based solution in the two-tiered
model, and ii) the use of the same method then using the SNs
in the set as relays without replacement, which is equivalent
to use an MCDS calculation based solution in the one-tiered
model. A trivial energy-aware solution is also used in the
comparison, which minimizes the use of ELNs by calculating
the shortest paths on the node weighted graph without any
RN addition. This gives a clear view on the gain that might
be obtained from the proposed model and solutions, as well
as the related cost. But to be fair, we do not claim direct
comparison with any particular solution from the literature
given the difference in the model. The proposed heuristic for
MWCDS calculation has also been evaluated and compared
with a state-of-the-art algorithm [2].

The remainder of the paper is organized as follow: The
related work is presented in Sec. II, then the network model
in Sec. III. The problem is formulated and solved in Sec. IV
using ILP and a heuristic. Upper bounds are derived for the
approximation and the runtime of the proposed heuristic in
Sec. V. A thorough numerical analysis by a simulation study
is presented in Sec. VI, and finally Sec. VII concludes the
paper.

II. RELATED WORK

Additional RNs placement in deployed WSN has largely
been treated in the literature. Existing solutions may be divided
into two models, one-tiered vs. two-tiered [3]. Solutions of
[4], [5], and [6] are examples of those using the one-tiered
model. The connectivity problem in WSN was addressed in
[5], where the authors targeted the deployment of a minimum
number of RNs such that each SN is connected to a BS.
The authors aimed to find a tradeoff between the network
lifetime and cost. The problem was modelled by a Steiner
tree with a minimum number of Steiner points and bounded
edge-length. The authors of [4] considered the RN problem
such that a survivability requirement is achieved. The aim
was to determine the location of the minimum number of
RNs such that each SN is connected to a BS through several
node-disjoint paths, which provides fault tolerance in case of
node failure. Most works on one-tiered model, including [5],
[4] considered the unconstrained deployment where RNs can
be deployed anywhere, which is unrealistic in most cases. In
[6], the authors considered the problem of constrained RN

placement where the RNs can only be placed in a set of
candidate positions, which is more realistic. They addressed
the connectivity and the survivability problems and propose
approximation algorithms with a proved polynomial time
complexity.

The limitation of the one-tiered model is the possible fast
exhaustion of sensors’ batteries due to the use of any SN for
data forwarding, regardless of its energy potantiels/capacity.
This may structurally damage the network and cause a network
partition. To address this problem, many solutions have been
proposed in the two-tiered model, such as [7], [8], [3], [9],
[10], [11], [12], [13], [14]. The authors of [9] considered
both the one-tiered and the two-tiered models and provided
an approximation algorithm for the one-tier model and a
polynomial time approximation scheme for the two-tier one.
The survivability problem was investigated in [10], where
the aim was to ensure that each SN is connected to the BS
through two disjoint paths. The connectivity problem was
addressed in [11], where the RNs were assumed to have
a wider communication range than the SNs. In [3], both
the connectivity and the survivability requirements have been
considered. In their experimental results, the authors showed
that the number of added RNs does not exceed twice the
number in the optimal solution. Chelli et al. [14] considered
constrained node placement in two-tiered model and proposed
a one-step algorithm to construct a connected Steiner-tree
topology.

Compared to the one-tiered model, the two-tiered one has
the problem of higher cost in terms of the number of RNs
to add. It does not consider and take advantage of possible
homogeneity of SNs, particularly in terms of energy capacity.
For example, it is possible to have some SNs endowed with
energy harvesting capacity that allows them to forward traffic
for others [15] [16]. Neither of the previous models allow to
mimic this feature. While energy harvesting has been recently
considered by the research community and several problems in
energy harvesting WSN have been revisited such as stochastic
harvesting modeling [17], [18], [19], and [20], duty cycle
management [21], [22], and clustering [23], few has been done
for RN placement. To our knowledge, the only works in this
context are [24], [25]. In the latter, the authors considered
the scenario where possible potential locations for RNs are
limited and known a priori, and every location was supposed
to have a constant energy harvesting potential. The aim of
the authors was to deploy a minimum number of harvesting
enabled RNs in the network while increasing the harvesting
capability. The authors used the one-tiered model, where all
SNs were supposed not to be harvesting-enabled but they
have been used to forward packets similarly to the added
RNs. So the consideration of energy harvesting capability does
not eliminate the problem of one-tiered model used by the
solution. We define a new model in this paper that allows
to reflect nodes’ heterogeneity and thus capacity to forward
data. The proposed model is general and the context of energy
harvesting WSN is just an example of application [24].
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III. N ETWORK MODEL AND PRELIMINARIES

A. Network Model and Problem Statement

The network is represented by an undirected unit disk graph,
G = (V,H,E), where the set of vertices,V , represents the
nodes, andE the set of edges,(u, v) ∈ E iff both u andv are
in the communication range of one another. The graphG is
supposed to be initially connected. The setV is composed
of two subsets, the set of ERNs, denoted byH , and the
one of ELNs,V \ H . V may include one or several BSs
that may or may not forward packets. This depends on the
application scenario, although the BSs are generally energy
unconstrained nodes. The proposed solution works in both
cases. For abstraction, if the BSs can be used to forward
packets, they are to be included inH . The proposed solution is
general and applies to any energy model. The only requirement
is that a node inH should always be able to forward traffic
when requested. This can be ensured when having high energy
sources at those nodes, or when they are endowed with
energy harvesting capability coupled with the use of some
energy storage unites (capacitors, rechargeable batteries, etc.),
and/or by shaping the network traffic model according to the
availability of energy, etc. For instance, in time varying energy
harvesting models (e.g., using solar energy), the heavy load
may be performed when the energy source is available (during
day light), and in the absence of energy the SNs activity may
be reduced to a certain degree depending on their energy
storage capacity. Dealing with issues such as SN scheduling
and traffic control is out of the scope of this paper. Nodes
in H are then regarded as energy unconstrained nodes. With
the previous assumption, it is trivially power efficient to use
only SNs fromH for packet relaying to the BS(s). Therefore,
the problem is to ensure data forwarding only through nodes
from H , with addition of a limited number of RNs to ensure
communication coverage (connectivity). Sensing is performed
by all the SNs (both ERNs and ELNs), and its coverage is
supposed to be assured a priori in the initial deployment.
Dealing with sensing coverage is another problem and it is
out of the scope of this work. Constrained RNs placement is
considered in this paper, and potential positions of RNs are
limited to areas near SNs position in the initial deployment.
This is more realistic than unconstrained deployment in many
situations, such as the existence of obstacles, unaccessible
areas within the deployment regions, etc. It is also reasonable
to assume feasibility of deploying RNs where SNs have
been deployed. Accuracy of all the formulations and analysis
presented hereafter relies on this model and its assumptions.

B. Definitions and Notations

Concepts used in the problem formulation and resolution
are defined bellow.

• A connected dominating set (CDS) for a graph,G =
(V,E), is a sequence of vertices,S ∈ V , that fulfils: i)
∀u ∈ V \S, ∃v ∈ S, (u, v) ∈ E, ii) the subgraph induced
by S is connected. The set of all sequences that satisfy
the previous conditions is denoted byCDS(G). A set
that fulfils condition (i) but not necessarily condition (ii)
is called dominating set (DS).

• A minimum connected dominating set (MCDS) for a
graph,G = (V,E), is a connected dominating set with a
minimum number of vertices, i.e.S = argmin

ξ∈CDS(G)

|ξ|. The

set of all sequences that satisfy this condition is denoted
by MCDS(G). A dominating set with a minimum num-
ber of vertices but which is not necessarily connected,
i.e., S = argmin

ξ∈DS(G)

|ξ|, is called minimum dominating set

(MDS).
• A minimum weighted connected dominating set

(MWCDS) for a vertex weighted graphG = (V,E,W )–
whereW is a function that assigns a weight to every
vertex in V – is a connected dominating set with a
minimum cumulative weight;S = argmin

ζ∈CDS(G)

∑

u∈ζ

W (u).

The set of all sequences that satisfy this condition is
denoted byMWCDS(G). A dominating set with a
minimum cumulative weight but which is not necessarily
connected, i.e.,S = argmin

ζ∈DS(G)

∑

u∈ζ

W (u), is called

minimum weighted dominating set (MWDS).
• The k-neighborhood of a vertexv, denoted byNk(v), is

the set of vertices that are at mostk − hop from v, i.e.,
the shortest path separating them tov is no more thank
hops. In particular,N0(v) = {v}, andN1(v) stands for
direct neighbors.

• The maximum independent set of a graph G, denoted
MIS(G), is the maximum set of vertices that are uncon-
nected. Likewise, we define the MIS in thek−hope from
a cental vertex,v, sayMISk(v), as the maximum set of
vertices that are unconnected in the adjacent subgraph
defined by the k-neighborhood of a vertexv.

• The dominating weight of vertex,v, say ω̃(v), is the
minimum weight of vertexv’s neighbors, i.e.ω̃(v) =
min{ω(u), u ∈ N1(v)}.

• A multi-graph (or pseudograph) is a graph that may
include multiple edges (parallel edges) between every pair
of vertices, i.e., two vertices may be connected by more
than one edge.

• Clustering in a graph: The process of clustering in a
graph is to replace every subset of vertices (following
some criterion) by a single vertex, called a cluster, and
replacing accordingly the appropriate edges as well. The
process is iterative until all the vertices are replaced and
a reduced graph is obtained (called clustered graph). The
term cluster used in the following of the paper is related
to this concept.

IV. PROBLEM FORMULATION AND RESOLUTION

A. Problem Formulation

The problem described in Sec. III can be solved in the
model represented by,G = (V,H,E), by finding a CDS in
the graphG (S ∈ CDS(G)), with a minimum number of
vertices fromV \H . Let us denote this problem byP1. Once
P1 is solved, RNs will be added at the positions co-located
with ELNs of S (if any). This is to substitute them in the
task of packet forwarding.
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Theorem 1:The problemP1 is NP-hard.

We refer to the Appendix for the proof of this theorem.
To our knowledge, the problemP1 has not been treated in
the operational research and graph theory literature. However,
since it is very similar to the traditional MCDSP that has been
largely treated, we propose a transformation to some existing
variant of MCDSP. This is for the purpose of taking advantage
of the existing heuristics from the literature, such as [2],[26].
These heuristics are particularly appropriate to unit diskgraphs
, for which they achieve better approximation compared to
solutions for general graphs.

The graph,G = (V,H,E), of P1 is transformed into
a vertex weighted graph,Gw, using the following weight
function:

W : V → {0, 1}

∀u ∈ H,W (u) = 0; ∀v ∈ {V \H},W (v) = 1. (1)

The problemP1 then reduces to the search for aminimum-
weight CDS (S ∈ MWCDS(Gw)). In the following, the
new problem is denoted byP2.

Theorem 2: If S is a MWCDS for P2 (i.e, S
∈ MWCDS(Gw)), then it is an optimal solution for
P1.

The Appendix is referred for the proof of this theorem.
From this theorem, we realize that solvingP1 is equivalent
to solvingP2.

Theorem 3:Let the problemPH be defined forG(V,H,E)
as follows: FindS such that,

S = argmin
ξ∪H∈CDS(G)

|ξ|.

If S is a solution toPH , thenS ∪H is a solution toP1.
We refer to the Appendix for the proof of this theorem. It

Results from Theorem 3 that solvingP1 (or P2) is equivalent
to adding a minimal set, sayS, to H , to construct a solution
S∪H ∈ MCDS(G) (respectivelyS∪H ∈ MWCDS(Gw)).
This feature will be useful in the following to reduce the search
space, both in the optimal solution and the heuristic.

B. Problem Resolution

1) General Framework:The proposed general framework
is illustrated by Algorithm 1. This algorithm has as input
(line 1), i) the communication graph,G = (V,H,E), which
includes the set of vertices (V ), the subset of vertices rep-
resenting the ERNs (H ⊂ V ), and the set of edges (E),
ii) F , a function that calculates the MWCDS. The output of
the algorithm (line2) is the set of positions where the RNs
should be placed to ensure connectivity. The algorithm starts
by initiating the setsW , andSp to empty set (line 3). The
vertices’ weights are then calculated by applying the formula
given in Eq. (1) (line4) and inserted to the setW . The
resulted weighted graph,Gw = (V,E,W ), is passed as input
to the function,F , in line 5, which produces the MWCDS

(or an approximation of it),χ. This MWCDS resolution will
be developed later. The ELNs fromχ are denotedξ, whose
positions represent the output of the algorithm. The RNs are
then to be put in the positions col-located with these ones to
replace the appropriate SNs in forwarding packets, while ELNs
will be used only to collect and transmit their own data. With
the addition of such RNs, the proposed solution ensures that
the network can be connected only though ERNs plus the new
RNs.

Algorithm 1: General Solution Framework
1 Input: G = (V,H,E), FunctionF

2 Output: The set of positions,Sp, where to put the RNs.

3 Init: W = SP = ∅

4 Assign weights to vertices (constructW) using Eq. (1):

5 RunF(V,E,H,W ) to get a MWCDS, sayχ.
6 ξ = χ

⋂
(V \ H).

7 ∀u ∈ ξ add the position ofu to SP .

8 returnSP

2) Optimal Resolution with an Integer Linear Program:
To solve P1, we usePH that helps reducing the number
of variables and thus the search space compared toP2. The
problem,PH , can be modeled by the following mixed integer
linear program:

min
∑

i∈V \H

Xi, (2)

s.t,

Xi +
∑

j∈N (i)

Xj ≥ 1, ∀i ∈ V (3)

∑

i∈N (1)

F1,i =
∑

i∈V,i6=1

Xi (4)

∑

j∈N (i)

Fj,i −
∑

j∈N (i)

Fi,j = Xi, ∀i ∈ V, i 6= 1 (5)

0 ≤ Fi,j ≤ nXj, ∀(i, j) ∈ E, j 6= 1 (6)

∑

i∈N(1)

Yi ≤ 1 +X1(|N(1)| − 1) (7)

F1,i ≤ nYi, ∀i ∈ N(1) (8)

Fi,j = 0, ∀(i, j) /∈ E, or j = 1 (9)

Xi = 1, ∀i ∈ H. (10)

The ILP has as input, i) the graphG = (V,H,E), and, ii) a
setN(i) for every vertex,vi, i.e., the set of adjacent vertices
(neighboring nodes). The outputs are: i) a vector of booleans,
X, which represents the decision variables, i.e.,Xi = 1 iff
vertex,vi ∈ V , is selected in the MCDS. Variables inX are
only for vi ∈ V \ H , while entries forvi ∈ H are fixed a
priori to 1 (Eq. (10)). ii) The flow matrix of integers,Fi,j ,
(vi, vj) ∈ E, as well as iii) the vectorYi, for vi ∈ N(1),
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which are additive variables used to model the connectivityas
it will be explained hereafter.

The objective function, Eq. (2), is to minimize the total
weight of vertices in the selected CDS, to achieve MWCDS.
The constraint represented by Eq. (3) is to guarantee that either
vi is in the CDS (Xi = 1), or it has an edge towards some
vertex in the CDS (at least one of the termsXj should equal
1). Constraints represented by Eq. (4) throughout Eq. (8) are
for medeling the connectivity requirements. The principleis to
generate a flow, only from an arbitrary vertexv1. The amount
of this flow is the exact amount to cover the CDS (Eq. (4)), i.e.,
it should be

∑
Xi if v1 is out of the set (X1 = 0), or

∑
Xi−1

if it belongs to the CDS (one of the dominating vertices). In
the former case,v1 inevitably would have at least one edge
towards a dominating vertex. The generated fellow traversethe
dominating vertices and at every one, a single unit of the flow
fades (Eq. (5)). Eq. (6) verifies that every flow is bounded by
0 andn, and that no flow goes to the dominated vertices. This
is as the termFi,j vanishes whenXi = 0. Note here that a
more strict upper bound that would reduce the search space
is

∑
Xi instead ofn, but this would make the inequalities

non-linear. Also note that the latter condition, combined with
Eq. (4) whenXi = 0, ensures no flow will be generated from
vertices out of the CDS.

Constraints represented by Eq. (7) and Eq. (8) are used to
limit the number of neighbors to which nodev1 can transfer
its flow. A binary vector,Y , is added to the outputs such
that Yi = 1 iff flow is permitted from node,v1, to node,vi.
Constraint of Eq. (8) ensures that flow can only be transferred
from nodev1 to vj if Yj = 1, while Eq. (7) forcesYj to be set
to 1 for only one neighboring node,vj , in case,v1 /∈ CDS.
Otherwise, it is bounded by the number ofv1’s neighbors.
Finally, conditions expressed by Eq. (9) are to ensure the flow
travels only through existing edges, and no flow entersv1,
and Eq. (10) to setX entries to1 for nodes inH (constants).
Note that the latter conditions (Eq. (9) and Eq 10) are just
to reduce the number of the ILP variables, and they do not
represent constraints to be verified by the ILP solver.

3) Heuristic: The previous ILP represents the optimal
resolution for the functionF . It can only be used in limited
scenarios. Given that the problem is NP-hard, a polynomial-
time heuristic is needed as a general and scalable solution.
In the following, we propose a heuristic for the functionF
based on [2] and [26] while considering the particularity of
the problem, as illustrated by Algorithm 2. The principal of
[2] is used to find an approximation of the minimum weighted
dominating set (MWDS), sayχ1. This starts by initializing
χ1 to ∅ (line 3), which is progressively augmented by adding
local dominating vertices,Dk+2, of k + 2 − neighborhood,
from a pivotal vertexv (the loop from line4 to line 20).
If there is a vertex with all direct neighbors inV \ H , then
it is selected asv, otherwisev is chosen arbitrary (lines5
throughout line9). The inner loop (repeat loop) searches for
local dominating set for thek+2 vicinity from v (Nk+2(v)),
and it increasesk until the condition in line17 is fulfilled.
The condition states that the weight of the local dominating
set forNk+2 is no more than the one forNk when multiplied
by the factor (1 + ǫ). It is actually this condition that ensures

1 + ǫ approximation of the MWDS. The result of Theorem
3 is used to accelerate the search, and all the vertices which
have null weight in the appropriate vicinity are initially picked
up in every iteration (line13 for k neighborhood, and line15
for k + 2 neighborhood) instead of performing an exhaustive
search among allk neighbors andk+2 neighbors. Those with
non-null weight (Nk(v)∩ (V \H), and (Nk+2(v)∩ (V \H))
are added progressively if necessarily to construct the local
MWDS with a minimum addition. The local MWDS is added
to χ1, and the loop continues by selecting another pivotal
vertex until covering the setV . At that point (termination
of the while loop), χ1 will represent an approximation of
MWDS, but whose elements are not necessary connected.

The second part of the algorithm (from line21 to line 26)
is similar to the solution used in [26] to connect the resulted
approximation of the MWDS and construct an approximation
of the MWCDS. Although the solution of [26] uses a different
approach to calculate a MWDS, the connection algorithm
proposed by the authors is general and connects any DS. To
calculate the connector set,λ, the connected parts inχ1 are
determined, then every connected part is clustered inci. After
clustering, an auxiliary multiple graph,̂G = (V̂ , Ê, Ŵ ), is
constructed from,G, as follows: i) The vertices are the clusters
(ci). ii) Between every couple of vertices,(ci, cj) ∈ V̂ 2, and
for every path,p ∈ G, of length not exceeding three hops,
an edge betweenci and cj is added. The resulted graph is a
multiple graph with possible multiple edges between a couple
of vertices. Note that every path,p, includes only vertices
that do not belong toχ1, and which will be possibly used
to connect vertices ofχ1. A minimum spanning tree of̂G is
then calculated.λ is then constructed from vertices inG that
form every single edge in the calculated spanning tree.χ1 is
augmented withλ to construct the connectedχ.

V. A NALYSIS AND DISCUSSIONS

A. Approximation

An upper bound for the approximation of the heuristic (vs.
the optimum) is derived in the following. As the heuristic is
composed of two parts, the approximation of each one is first
given, i.e., i) finding a MWDS (χ1), and , ii) connecting it
(addingλ). The approximation of the whole algorithm will
then be deduced.

Theorem 4:The set,χ1, computed by the heuristic,F ,
satisfies:W (χ) ≤ (1 + ǫ)W (χop), where W (χop) is the
weight of theMWCDS(G).

Proof: The principle of the first part of the algorithm (line3
throughout20) is to build an approximation of the MWDS,χ1,
as the union of the partial MWDS of mutually node-disjoint

sets, for the setsNk1+2, Nk2+2, · · · , Nkr+2, say
r⋃

i=1

Dki+2,

whereki is the final value ofk in the iterationi, andr is the
total number iterations. These partial MWDS are obviously
node-disjoint. From the stop condition at every iteration of
the inner loop (line 17), at the exit of the while loop (line 20)
the following is fulfilled:
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Algorithm 2: Algorithm describing a Heuristic forF
1: Input: G = (V,H,E,W )

2: Output: A connected dominating set,χ, which is an approximation of the
MWCDS.

3: Init: χ = χ1 = λ = ∅

Look up for a Dominating Set χ1

4: while V 6= ∅ do
5: if ∃u ∈ V, ω̃(u) = 1 then
6: v = u

7: else
8: Chose arbitrary vertexv
9: end if

10: k = −1
11: repeat
12: k = k + 1
13: Dk = Nk(v) ∩ (H)
14: add progressively toDk a minimum number of non-null weight vertices

(u ∈ Nk(v) ∩ (V \ H)); until Dk dominatesNk(v)
15: Dk+2 = Nk+2(v) ∩ (H)
16: add progressively toDk+2 a minimum number of non-null weight

vertices (u ∈ Nk+2(v) ∩ (V \ H)); until Dk+2 dominatesNk+2(v)

17: until
∑

u∈Dk+2

W (u) ≤ (1 + ǫ)
∑

u∈Dk

W (u)

18: χ1 = χ1 ∪ Dk+2

19: V = V \ Nk+2(v)
20: end while

Connect the setχ1

21: Determine the connected components inχ1, cluster them and denote every
clusterci

22: Construct an auxiliary graph,̂G = {V̂ , Ê, Ŵ} from G as follows:
23: V̂ = {ci}
24: For every path,p ∈ G, of length3 or less that connects a vertex fromci to

another one fromcj , add an edge,e, to Ê, and setŴ (e) = W (p)
25: Compute a minimum spanning treeMST of Ĝ
26: For every edgee ∈ MST , add the vertices that forme to λ

27: χ = χ1 ∪ λ

∑

u∈Dki+2

W (u) ≤ (1 + ǫ)
∑

u∈Dki

W (u), ∀i ∈ {1, · · · , r}. (11)

The summation of all inequalities defined by 11 yields,

W (χ1) =
r∑

i=1

∑

u∈Dki+2

W (u) ≤ (1 + ǫ)
r∑

i=1

∑

u∈Dki

W (u).

(12)
Let χ̃1 be an optimal solution for the minimum weighted

dominating set problem (̃χ1 ∈ MWDS(G)). On the one
hand,∀i ∈ {1, · · · , r}, χ̃1 ∩ Nki+1 dominatesNki

. On the
other hand,∀i ∈ {1, · · · , r}, Dki

is the optimal dominating
set inNki

, i.e., its weight does not exceed that of any other
dominating set (including̃χ1 ∩Nki+1). Consequently,

r∑

i=1

∑

u∈Dki

W (u) ≤
r∑

i=1

∑

u∈(χ̃1∩Nki+1)

W (u). (13)

Since χ̃1 =

r⋃

i=1

(χ̃1 ∩ Nki+2), W (χ̃1) =

r∑

i=1

∑

u∈(χ̃1∩Nki+2)

W (u). Therefore,

r∑

i=1

∑

u∈(χ̃1∩Nki+1)

W (u) ≤ W (χ̃1). (14)

From Eq. (12), Eq. (13), Eq. (14), it results,

W (χ1) ≤ (1 + ǫ)W (χ̃1). (15)

χ̃1 ≤ W (χop), asχop should be connected in addition to
being a MWDS. Consequently, Eq. (15) yields,W (χ1) ≤ (1+
ǫ)W (χop). �

Theorem 5:W (λ) ≤ 4W (χop), whereλ is the set of ver-
tices added to connectχ1 in the second part of the algorithm
(from line 21).

We refer to [26] for the proof of this theorem, where a
similar solution is used to connect the MWDS (but a different
function is used for calculating the dominating set). Note that
the 4 approximation of that solution has been proven for any
dominating set as input.

From Theorem 4 and Theorem 5, the following corollary
is obtained:

Corollary 1: W (χ) ≤ (5 + ǫ)W (χop), i.e., the proposed
heuristic provides a MWCDS with(5 + ǫ) approximation in
the worst case.

B. Runtime

In the following, upper bounds for the number of steps
required to run the different parts of the proposed heuristic are
derived. This serves just for the worst case analysis in the most
pessimistic scenarios by ignoring all factors that may helpto
reduce the runtime, e.g., the number of ERNs, etc. Averaged
and thorough analysis will be investigated by simulation inthe
next section.

1) Calculation ofχ1 (while loop): The most time consum-
ing step in this loop is the exhaustive search for the local
dominating sets (repeat loop), which trivially increases with
k. Now we derive an upper bound fork, say kmax, which
represents the upper bound of the number of iterations in the
repeat loop. Within the loop, the following condition holds,

(1 + ǫ)
∑

u∈Dk

W (u) <
∑

u∈Dk+2

W (u), ∀k ≤ kmax. (16)

This yields,

(1 + ǫ)ω̃(v) <
∑

u∈D2

W (u),

(1 + ǫ)
∑

u∈D2

W (u) <
∑

u∈D4

W (u),

...

(1 + ǫ)
∑

u∈Dk

W (u) <
∑

u∈Dk+2

W (u),

wherev is the vertex selected at the beginning of the while
loop.
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By transitivity we get,(1+ǫ)
k+2
2 ω̃(v) <

∑

u∈Dk+2

W (u), i.e.,

(1 + ǫ)(
√

(1 + ǫ))kω̃(v) <
∑

u∈Dk+2

W (u). Consequently,

(
√

(1 + ǫ))kω̃(v) <
∑

u∈Dk+2

W (u). (17)

Given the weight function that we used (zero/one weights),
the weight ofDk+2 can be bounded by:

∑

u∈Dk+2

W (u) ≤ |MISk+2(v)|. (18)

From Eq. (17) and Eq. (18), and given thatω̃(v) 1 is either
1 or 0, the following is obtained,

(
√

(1 + ǫ))k < |MISk+2(v)|. (19)

According to [27],|MISk| can be bounded by,(2k + 1)2

(in unit disk graphs). Using this in Eq. (19), it yields,

(
√

(1 + ǫ))k < (2k + 5)2. (20)

As both sides of the pervious inequality are positive, it is
equivalent to,

( 4
√

(1 + ǫ))k < (2k + 5). (21)

Let us definef(k) by, f(k) = (2k + 5) − ( 4
√
(1 + ǫ))k.

Satisfying the inequality defined by Eq. (21) is equivalent to
determine the interval of values ofk, for which f(k) ≥ 0.
kmax is thus the maximum value that satisfies such a
condition, which can be determined by studying the variation
of f(k). The derivative off(k) vanishes at a single point,

say k0, k0 = 4 log1+ǫ(
8

ln(1 + ǫ)
), wherelog1+ǫ denotes the

logarithm of base1 + ǫ. From k0, the derivative off(k)
becomes negative. The two limits off(k) whenk → +∞ (res.
whenk → −∞) are−∞. f(k) is then positive in a single and
limited interval includingk0, wheref(k0) is the pick value of
f(k). Consequently, we conclude that the maximum value of
k (in which f(k) is positive) is the one that makes it vanish
during its drop at the interval[k0,+∞[. That is,kmax satisfies,

(2k + 5) = ( 4
√
(1 + ǫ))k,

s.t.,

k > 4 log1+ǫ(
8

ln(1 + ǫ)
). (22)

The resolution of the previous equation gives,Kmax, a very
relaxed upper bound thatk may reach in any iteration of the
loop. Note that it only depends onǫ, and not the problem size
(|V |).

Giving the(0, 1) weight function, every search stops at the
first DS found and there is no need to continue the exploration
(contrary to general weight heuristics). Therefore, the worst
case is when the dominating set for everyNk(v), sayDk, is

1remember that̃ω(v) denotes the dominating weight of vertex,v, i.e., the
minimum weight of vertexv’s neighbors

MISk(v) (its upper bound). Still in the worst case, the latter
is expressed by its upper bound given in [27],

|MISk(v)| = (2k + 1)2. (23)

Every iteration of the repeat loop consists in an exhaustive
search for theMDS for vertices i)Nk(v) \ Nk−1(v), and
ii) Nk+2(v) \Nk+1(v) that are not dominated by the current
calculatedMDS. This is as theMDS for Nk−1, andNk+1

have already been calculated in the previous step, which will
be extended with the obtained partialMDS. The search for
the MDS consists in looking up for the DS with one vertex
(using all possible combinations). Otherwise, with two vertices
(using all possible combinations), etc. The number of steps
are then respectively given byS1 =

(
N1

1

)
+

(
N1

2

)
+ · · ·

(
N1

l1

)
,

S2 =
(
N2

1

)
+
(
N2

2

)
+ · · ·

(
N2

l2

)
, whereN1 = |Nk(v)\Nk−1(v)|,

N2 = |Nk+2(v) \ Nk+1(v)|, l1 (resp. l2), represents the
size of the firstMDS found for N1 (resp. N2). In the
worst case,l1, resp. l2, is the difference between the max-
imum independent sets,|MISk(v)| − |MISk−1(v)|, resp.
|MISk+2(v)| − |MISk+1(v)|, which represent trivial limits
to the partialDS.

Eq. (23) yieldsl1 = 8k, andl2 = 8(k + 2).
Let us denote the degree ofG by ∆. The maximum number

of vertices inNk(v) is no more than(∆+1)|MISk(v)|. Using
the bound of the binomial sum,S1 ≤ l1

(
N1

l1

)
, as well as the

bound ofl1, we obtain,S1 ≤ 8k (8k(∆+1))!
(8k)!(8k∆)! . This yields,

S1 ≤

8k∏

i=1

(8k∆+ i)

(8k − 1)!
. (24)

Similarly, the following bound forS2 may be derived,

S2 ≤

8(k+2)∏

i=1

(8(k + 2)∆+ i)

(8k + 15)!
. (25)

The total cost of every iteration of the while loop in the
worst case is then bounded by,

kmax∑

k=1

8k∏

i=1

(8k∆+ i)

(8k − 1)!
+

8(k+2)∏

i=1

(8(k + 2)∆ + i)

(8k + 15)!
, which is

bounded by:

kmax




8kmax∏

i=1

(8kmax∆+ i)

(8kmax − 1)!
+

8(kmax+2)∏

i=1

(8(kmax + 2)∆ + i)

(8kmax + 15)!




.

(26)
The number of iterations is trivially|V |/|Nkmax+2|, which

is bounded by|V |/((∆ + 1)(2kmax + 5)2). The final bound
of the number of steps is then obtained by multiplying this
number by the bound in Eq. (26), which is,
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kmax|V |

(∆ + 1)(2kmax + 5)2
×




8kmax∏

i=1

(8kmax∆+ i)

(8kmax − 1)!
+

8(kmax+2)∏

i=1

(8(kmax + 2)∆+ i)

(8kmax + 15)!




.

(27)
Given that the variable terms in Eq. (27) areV and∆, and

the right side of the product is dominated by the second term

(i.e.,
∏8(kmax+2)

i=1 (8(kmax+2)∆+i)

(8kmax+15)! ), the asymptotic order is:

O

(
|V |∆8kmax+15

(8kmax + 15)!

)
, (28)

which represents a very relaxed asymptotic polynomial
bound related to the varialbes|V | and∆ (note thatkmax is a
constant).

2) Calculation ofλ (Connectingχ): In the worst case,χ is
composed of totally unconnected components, which results
in a maximum number of clusters (i.e.,|χ| = |V̂ |). This is
the case when the resulted dominating set is an independent
set, which is bounded by(2D + 1)2, whereD denotes the
network diameter (the longest path between any two vertices
in G). The calculation of the connected components (line21)
can be performed inO(|E|). The construction of an auxiliary
graph using paths of length not exceeding three hops (one
or two intermediate nodes) can be achieved by exploring all
the one-hop and two-hop edges from everyci. This needs
(∆2 +∆3)|V̂ | steps, i.e., less than(∆2 +∆3)(2D + 1)2.

The computation of the minimum spanning tree in graphs
with integer weights can be achieved inO(|Ê|). More Pre-
cisely, in less than4|Ê| [28]. |Ê| can be bounded by,
(∆+∆2)|V̂ |2/2, which is bounded by,(∆+∆2)(2D+1)4/2.
That is,4|Ê| is bounded by,2(∆+∆2)(2D+1)4. Finally, the
task represented in line26 can be performed in|V̂ | steps (the
number of edges in the spanning tree), i.e., less than(2D+1)2.
By summing all the previous bounds, the number of total steps
required to calculateλ is then bounded by,

|E|+(2(∆+∆2)(2D+1)2+∆2+∆3+1)(2D+1)2. (29)

The asymptotic order of this equation is

O(|E|+∆2D4 +∆3D2), (30)

which represents a general term of a relaxed polynomial up-
per bound with three variables (∆, D, and|E|). As particular
cases, i) in dense networks, the third term of the sum in Eq.
(30) dominates the second one, which yieldsO(|E|+∆3D2),
whereas ii) in scattered networks, the second one dominates
the third and the first ones, which yieldsO(∆2D4).

C. Application and Possible Extensions

While energy capacity is the main motivation for hetero-
geneity in the proposed model, the proposed model is general

and applies to any scenarios where nodes’ heterogeneity
leverages their capacity of forwarding data, e.g., processing
power, memory, etc. Typical example of environments with
heterogeneous energy capacity is when SNs are endowed with
energy harvesting capabilities. The solution ideally applies
to environments with uniform harvesting potentials, such as
solar harvesting in open space areas (e.g., military and bor-
der surveillance in a desert), etc., where a node can either
be energy harvesting enabled or energy harvesting disabled,
with no differentiation between harvesting capabilities when
the energy is available (temporal variation is not consider
here). Although considering general environments with spacial
variant harvesting potentials is out of the scop of the current
work, the proposed solution can easily be extended to such
environments. First, the weight function should be updated.
A normalized weight in the interval[0, 1] may be used,
where W (u) = 1 for a node with a maximum harvesting
potential, and,W (u) = 0, for a node with no harvesting poten-
tial/capability. If the maximum harvesting potential is denoted
by,MHP , and the harvesting potential of a node,u, is denoted
by, HP (u) (HP (u) ∈ [0,MHP ]), then a trivial normalized
function would be:W (u) = (MHP − HP (u))/MHP . A
threshold, sayτ , should be defined for the use of SNs in
relaying traffic. Only nodes with weights lower than that of the
normalized threshold weight, i.e,Wt = (MHP − τ)/MHP ,
can then be used as relays. The setH is then redefined as
the set of nodes with weights lower thanWt, and the same
algorithms (both for exact and heuristic solutions) may be
used. RNs are simply placed at positions of nodes with a
weight higher thanWt in the resulted MWCDS.

VI. N UMERICAL ANALYSIS

The proposed solution and model for minimum RN addition
(MRA) are evaluated by simulation. Both the exact solution
(ILP) and the heuristic algorithm are evaluated, denoted MRA-
ILP and MRA-heuristic, respectively. They are compared to
i) the use of MCDS-based solution in the one-tiered model
(MCDS-1Tiered), which consists in the use of traditional
MCDS calculation (without weights) then using the SNs in the
set as relays without replacement, ii) MCDS-based solutionin
the two-tiered model (MCDS-2Tiered), i.e., MCDS calculation
then replacement of all the obtained nodes in the set by
dedicated RNs, and finally iii) a trivial energy-aware (TEA).
TEA simply calculates the shortest paths on the node weighted
graph, where weight0 is assigned to ERNs and weight1
to ELNs, similarly to the proposed model but without RNs
addition. The comparison metrics include,i) the network
lifetime, defined as the time to first battery drain out,ii) the
cost in terms of the number of RNs added, andiii) the run-
time. We used NetworkX2 [29] environment to implement the
network simulator, and CPLEX3 to solve the ILP. To measure
these performance metrics, the following parameters have been
varied: i) number of nodes, ii) the percentage of ERNs, and
iii) the average network degree. For every generated topology,
a single node is randomly picked up as a BS, and every other

2https://networkx.lanl.gov
3www.ibm.com/software/products/en/ibmilogcpleoptistud
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node periodically generates and transmits a packet to the BS
in every cycle. Parameters ofCC2420 4 radio have been used
to measure energy consumption. Every point in the following
plots is the average of extensive repetitions with different
random generated graphs, and the error bars are presented with
95% confidence interval.

Before comparison, the parameter,ǫ, of the proposed heuris-
tic is first investigated. Note that this parameter presentsa
trade-off between the cost (quality of the obtained solutions)
and the runtime. High values tend to accelerate the search but
for a lower quality (higher cost), while lower values have the
opposite impact. This trade-off is analyzed hereafter. Four vari-
ants of the heuristic with different values ofǫ (0.1, 0.5, 1, 1.5),
as well as the exact solution (ILP), are compared in Fig. 1 and
Fig. 2. Fig. 1 shows that the costs smoothly increase as the
number of nodes grows, and that the low values ofǫ reduce the
cost. The difference between all the variants and the optimum
represented by the ILP also rises smoothly. However, Fig 2
shows large difference between the heuristic’s variants and the
ILP in terms of runtime (note the log scale). The runtime of
the latter grows exponentially, as well as its memory footprint.
This makes it impossible to simulate scenarios with high
number of nodes. The impact ofǫ here is reversed compared
to the cost, where lower values ofǫ need higher runtime, but
the difference between the variants is still relatively small. In
the following,ǫ is set to0.5, as a balance between optimality
(added RNs) and runtime.
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Fig. 1: Cost vs. number of nodes

The network lifetime in terms of number of cycles is
presented in Fig. 3, Fig. 4, and Fig. 5. All the figures show
large difference between solutions using RNs addition (MRA
and MCDS-2Tiered) and those based on the one-tiered model
(MCDS-1tiered, TEA). In the former solutions, the energy
consumption that affects the network lifetime is that for trans-
mitting the nodes’ own readings. This is as only ERNs and
dedicated RNs– which are energy unconstrained nodes– are
used to forward traffic. Therefore, the lifetime becomes only
proportional to the network traffic in the simulated scenarios,
which explains its invariance in all the plots for MRA and
MCDS-2Tiered. This also explains the same performance of
ILP and heuristic versions of MRA (presented with a single
plot in every figure). While MRA and MCDS-2Tiered exhibit

4https://inst.eecs.berkeley.edu/∼cs150/Documents/CC2420.pdf
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the same network life time, plots of TEA and MCDS-2Tiered
have the same shape in all figures with minor and insignificant
fluctuating difference that is due to different selection ofrelays
amongst candidate SNs. The increase in number of nodes
raises the relaying load, notably for ELN. This explains the
dramatic drop of the network lifetime for TEA and MCDS-
2Tiered in Fig. 3, from to0.8 ∗ 109 to about0.95 ∗ 107. Both
solutions are affected by the increase of the load due to the
inevitable use of ELNs for relaying (routing) data, while the
use of RNs addition eliminates this problem and keeps the
network lifetime at5.4 ∗ 109. This represents a reduction at
a ratio ranging from about5 times to more500 times. The
increase of ELNs percentage raises the use of such nodes,
which justifies the drop of lifetime in Fig. 4. However, the
grow of the network degree gives more alternatives when
computing the shortest paths in TEA (resp. the MCDS in
MCDS-1Tiered) and reduces the ELN use, which explains the
grow of the lifetime with this parameter in Fig 5. Note the
huge difference between the two categories of solutions for
high values of ELN in Fig. 4 (resp. low values of network
degree), where the ratio is more than500 times.

This improvement in the network lifetime comes at a cost
of adding RNs as presented in Fig. 6, Fig. 7, and Fig. 8.
Note that TEA and MCDS-1Tiered are not presented in these
figures as they have no cost with this respect (does not add
RNs as long as connectivity can be ensured by SNs). Fig. 6
shows that the inevitable increase of the cost vs. the number
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Fig. 5: Network lifetime vs. network degree

of nodes is smooth and confirms scalability. The cost of the
heuristic version of MRA does not exceed68 nodes for a
network of 500 nodes. The ILP cost is even a bit lower but
it was not possible to assess it for scenarios beyond150
nodes. More importantly, MRA has considerable lower cost
than MCDS-2Tiered. The difference grows with the number
of nodes, and MRA provides up to40% reduction for large
scales. In Fig. 7, the increase in the percentage of ELNs
inevitably affects MRA, but not MCDS-2Tiered that selects
all nodes in the CDS without making any distinction between
SNs. However, it is important to mention that the cost of
MRA remains reasonable even for high percentage of ELN,
and the difference with MCDS-2Tiered is always high. For
instance, for70% of ELN, it was below16 nodes (out of the
150 nodes set in this scenario) for MRA-heuristic, and bellow
12 nodes for the ILP, while it ranges between32 and35 for
MCDS-2Tiered. This represent a reduction of more than50%
for MRA-heuristic over MCDS-2Tiered and up to60% for
MRA-ILP. The growth of the network degree helps reducing
the number of dominators when calculating the MCDS, which
explains the drop of all plots in Fig. 8. Large difference
between both versions of MRA and MCDS-2Tiered can be
remarked from the figure.

Contrary to the MRA-heuristic, the reduction of the cost
in ILP comes at a very important increase in the runtime, as
shown in Fig. 9, Fig. 10, and Fig. 11. Theses figures plot
the runtime of MRA-ILP, MRA-heuristic, and PTAS-heuristic
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Fig. 6: Cost vs. number of nodes
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(Polynomial Time Approximation Scheme) that uses a state-
of-the-art heuristic for MWCDS calculation [2] (on which the
proposed heuristic is based). However, PTAS-heuristic does
not take advantage of the particularity of the problem (weights)
in the search of the set. Comparison with PTAS-heuristic
allows to asses the runtime performance of the proposed
heuristic. Note that the cost of PTAS-heuristic (not presented
in the previous figures) is the same as MRA-heuristic. Fig. 9
shows exponential increase of ILP for networks with number
of nodes beyond50, while the increase for both heuristics
remains smooth and polynomial. However, the figure confirms
that the difference between the heuristics increases with the
number of nodes, and that the increase in MRA-heuristic is
smoother than PTAS-heuristic. For example, MRA-heuristic
runtime does not exceed40sec for 500 nodes, while PTAS-
heuristic runtime exceeds90sec. Fig. 10 shows that the
heuristics are unaffected by the increase of the percentageof
ELNs and its runtime remains bellow1sec, contrary to the
ILP. MRA-heuristic still exhibits the lowest runtime. Finally,
Fig. 11 also confirms the lowest runtime for MRA-heuristic
that was bellow1sec, and highest for MRA-ILP. The decrease
with the rise of the network degree for PTAS-Heuristic is
justified by the fact that the increase in connectivity (network
degree) accelerates the finding of dominators as their numbers
becomes lower with this increase (Fig. 8). MRA-heuristic
compensates the time needed in case of low degrees by taking
advantage of the particularity of the problem for accelerating
the dominating set construction, which explains its steady
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performance that is almost unaffected by the degree. The
fluctuation of ILP for network degrees between5 and 8
is due to the optimization methods used by CPLEX when
searching optimal solution. We realized that many branchesare
eliminated during the exploration of the solutions by CPLEX.
But for degrees between5 and 8, a lot of branches have
been explored before convergence (it was not possible to
eliminate their exploration), which justifies the increase. This
also explains the slight increase after degree16. Finally, it is
important to notice large difference between MRA-heuristic
and MRA-ILP.
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Fig. 9: Runtime vs. number of nodes
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VII. C ONCLUSION

Stainability in wireless sensor networks (WSN) has been
considered in this paper from the perspective of energy-aware
communication coverage. A general environment has been
considered, where two types of sensor nodes (SNs), energy
rich nodes (ERNs) vs. energy limited nodes (ELNs) may be
deployed. Upon deployment, the proposed solution aims at
limiting the use of ELN to data reading, and ensuring coverage
via ERNs, with addition of a minimum number of relay nodes
(RNs) for coverage. This is completely different from the pure
one-tiered and two-tiered models used in the literature. The
problem has been reduced to finding the minimum weighted
connected dominating set (MWCDS) in a vertex weighted
graph. An integer linear program (ILP) has been derived as
an optimal solution for the problem in terms of the number
of RNs to be added. Given the exponential computation com-
plexity of ILP solvers, a heuristic has been proposed. Upper
bounds for the approximation of the heuristic to the optimum,
as well as for its runtime, have been formally derived.

The proposed model and solutions have been compared
by simulation with the use of traditional MCDS calculation
and replacement of all the obtained set by RNs, which is
equivalent to use an MCDS calculation based solution in the
two-tiered model (MCDS-2Tiered), as well as to the MCDS
calculation then using the SNs in the set as relays without
replacement, which is equivalent to use an MCDS calculation
based solution in the one-tiered model (MCDS-1Tiered). A
trivial energy-aware solution is also used in the comparison
(TEA), which minimizes the use of ELNs by calculating
the shortest paths on the node weighted graph without any
RN addition. The proposed heuristic for MWCDS calculation
has also been evaluated and compared with a state-of-the-art
algorithm. The comparison has been performed with respect
to energy efficiency (network lifetime), the cost (number of
added RNs), and the runtime.

Results of extensive simulations confirm effectiveness of the
proposed solution, both when using the ILP and the heuristic.
The proposed solution considerably prolongs the network
lifetime to the order of more than500 times compared to
TEA and MCDS-2Tiered in large scale networks and scenarios
with high number of ELNs. The improvement in the network
lifetime has an inevitable cost of adding a reasonable number



12

of RNs that was lower than the number added by MCDS-
2Tiered, where the reduction in cost compared to the latter
was at the order of40% for large scale networks. The results
confirm considerable reduction in runtime for the proposed
heuristic vs. a state-of-the-art polynomial time approximation
scheme (PTAS), which exceeded50% in large scale networks,
as well as its scalability, contrary to the ILP. This is at thecost
of adding a higher but a reasonable number of RNs compared
to ILP.

The proposed solution supposes that the ERNs have enough
capacity of energy (e.g. by harvesting or access to high
capacity storage) to keep their batteries alive all the time.
Although technologies are evolving, it is early to technically
fulfill this assumption for high data rate applications, such
as those involving video/images transmissions. Relaxing this
assumption represents a perspective. This will be tackled first
in the particular scenario of energy harvesting environments
by considering limited harvesting capacities as well as spa-
tialy/temporaly variable capacities at harvesting nodes.
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