2,625 research outputs found

    Simulation and experimental testbed for adaptive video streaming in ad hoc networks

    Full text link
    [EN] This paper presents a performance evaluation of the scalable video streaming over mobile ad hoc networks. In particular, we focus on the rate-adaptive method for streaming scalable video (H.264/SVC). For effective adaptation a new cross-layer routing protocol is introduced. This protocol provides an efficient algorithm for available bandwidth estimation. With this information, the video source adjusts its bit rate during the video transmission according to the network state. We also propose a free simulation framework that supports evaluation studies for scalable video streaming. The simulation experiments performed in this study involve the transmission of SVC streams with Medium Grain Scalability (MGS) as well as temporal scalability over different network scenarios. The results reveal that the rate-adaptive strategy helps avoid or reduce the congestion in MANETs obtaining a better quality in the received videos. Additionally, an actual ad hoc network was implemented using embedded devices (Raspberry Pi) in order to assess the performance of the proposed adaptive transmission mechanism in a real environment. Additional experiments were carried out prior to the implementation with the aim of characterizing the wireless medium and packet loss profile. Finally, the proposed approach shows an important reduction in energy consumption, as the study revealed.This paper was performed with the support of the National Secretary of Higher Education, Science, Technology and Innovation (SENESCYT)–Ecuador Government (scholarship 195-2012) and the Multimedia Communications Group (COMM) belong to the Institute of Telecommunications and Multimedia Applications (iTEAM)-Universitat Politècnica de València.Gonzalez-Martinez, SR.; Castellanos Hernández, WE.; Guzmán Castillo, PF.; Arce Vila, P.; Guerri Cebollada, JC. (2016). Simulation and experimental testbed for adaptive video streaming in ad hoc networks. Ad Hoc Networks. 52:89-105. https://doi.org/10.1016/j.adhoc.2016.07.007S891055

    Experimental Evaluation of Large Scale WiFi Multicast Rate Control

    Full text link
    WiFi multicast to very large groups has gained attention as a solution for multimedia delivery in crowded areas. Yet, most recently proposed schemes do not provide performance guarantees and none have been tested at scale. To address the issue of providing high multicast throughput with performance guarantees, we present the design and experimental evaluation of the Multicast Dynamic Rate Adaptation (MuDRA) algorithm. MuDRA balances fast adaptation to channel conditions and stability, which is essential for multimedia applications. MuDRA relies on feedback from some nodes collected via a light-weight protocol and dynamically adjusts the rate adaptation response time. Our experimental evaluation of MuDRA on the ORBIT testbed with over 150 nodes shows that MuDRA outperforms other schemes and supports high throughput multicast flows to hundreds of receivers while meeting quality requirements. MuDRA can support multiple high quality video streams, where 90% of the nodes report excellent or very good video quality

    Enhancing Video Streaming Quality of DASH over Cloud/Edge Integrated Networks

    Get PDF
    With the advancement of mobile technologies and the popularity of mobile devices, mobile video streaming applications/services have increased considerably in recent years. Dynamic Adaptive Streaming over HTTP (DASH) or MPEG-DASH is one of the most widely used video streaming techniques over the Internet. It adapts video sending bit rate according to available network resources, however, in case of low bandwidth, DASH performs poorly, which will cause video quality degradation and video stalling. Mobile Edge Computing (MEC) or Multi-access Edge Computing, in connection with the backend cloud has been used to reduce latency and overcome some of the video quality degradation problems for mobile video streaming services. However, an end user might be suffering from video quality drop downs when s/he moves out from the coverage of one node to another or when the mobile network condition goes down. To tackle the degradation problems and assure enhanced video streaming quality, a novel follow-me Edge Node Prefetching (ENP) scheme was proposed and developed in the project, by prefetching video segments in advance in the upcoming node used by the end-user. A test bed was set up consisting of a backend cloud (OpenStack), two edge nodes (LXD Containers) and one mobile device, the ENP algorithm was implemented on the cloud server and client sides. Experiments were carried out for the DASH streaming service based on Dash.js from the DASH Industry Forum. Preliminary results show that the ENP scheme can maintain higher video quality and less service migration time when moving from one mobile node to another, when compared to existing approaches, i.e. live migration in Follow-me-Edge and the C-up schemes. The proposed scheme could be useful in smart city applications or providing seamless mobile video streaming services in Cloud/Edge integrated networks.Ibrahim Mohammedamee

    Understanding user experience of mobile video: Framework, measurement, and optimization

    Get PDF
    Since users have become the focus of product/service design in last decade, the term User eXperience (UX) has been frequently used in the field of Human-Computer-Interaction (HCI). Research on UX facilitates a better understanding of the various aspects of the user’s interaction with the product or service. Mobile video, as a new and promising service and research field, has attracted great attention. Due to the significance of UX in the success of mobile video (Jordan, 2002), many researchers have centered on this area, examining users’ expectations, motivations, requirements, and usage context. As a result, many influencing factors have been explored (Buchinger, Kriglstein, Brandt & Hlavacs, 2011; Buchinger, Kriglstein & Hlavacs, 2009). However, a general framework for specific mobile video service is lacking for structuring such a great number of factors. To measure user experience of multimedia services such as mobile video, quality of experience (QoE) has recently become a prominent concept. In contrast to the traditionally used concept quality of service (QoS), QoE not only involves objectively measuring the delivered service but also takes into account user’s needs and desires when using the service, emphasizing the user’s overall acceptability on the service. Many QoE metrics are able to estimate the user perceived quality or acceptability of mobile video, but may be not enough accurate for the overall UX prediction due to the complexity of UX. Only a few frameworks of QoE have addressed more aspects of UX for mobile multimedia applications but need be transformed into practical measures. The challenge of optimizing UX remains adaptations to the resource constrains (e.g., network conditions, mobile device capabilities, and heterogeneous usage contexts) as well as meeting complicated user requirements (e.g., usage purposes and personal preferences). In this chapter, we investigate the existing important UX frameworks, compare their similarities and discuss some important features that fit in the mobile video service. Based on the previous research, we propose a simple UX framework for mobile video application by mapping a variety of influencing factors of UX upon a typical mobile video delivery system. Each component and its factors are explored with comprehensive literature reviews. The proposed framework may benefit in user-centred design of mobile video through taking a complete consideration of UX influences and in improvement of mobile videoservice quality by adjusting the values of certain factors to produce a positive user experience. It may also facilitate relative research in the way of locating important issues to study, clarifying research scopes, and setting up proper study procedures. We then review a great deal of research on UX measurement, including QoE metrics and QoE frameworks of mobile multimedia. Finally, we discuss how to achieve an optimal quality of user experience by focusing on the issues of various aspects of UX of mobile video. In the conclusion, we suggest some open issues for future study

    A QoE adaptive management system for high definition video streaming over wireless networks

    Full text link
    [EN] The development of the smart devices had led to demanding high-quality streaming videos over wireless communications. In Multimedia technology, the Ultra-High Definition (UHD) video quality has an important role due to the smart devices that are capable of capturing and processing high-quality video content. Since delivery of the high-quality video stream over the wireless networks adds challenges to the end-users, the network behaviors 'factors such as delay of arriving packets, delay variation between packets, and packet loss, are impacted on the Quality of Experience (QoE). Moreover, the characteristics of the video and the devices are other impacts, which influenced by the QoE. In this research work, the influence of the involved parameters is studied based on characteristics of the video, wireless channel capacity, and receivers' aspects, which collapse the QoE. Then, the impact of the aforementioned parameters on both subjective and objective QoE is studied. A smart algorithm for video stream services is proposed to optimize assessing and managing the QoE of clients (end-users). The proposed algorithm includes two approaches: first, using the machine-learning model to predict QoE. Second, according to the QoE prediction, the algorithm manages the video quality of the end-users by offering better video quality. As a result, the proposed algorithm which based on the least absolute shrinkage and selection operator (LASSO) regression is outperformed previously proposed methods for predicting and managing QoE of streaming video over wireless networks.This work has been partially supported by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" with in the Project under Grant TIN2017-84802-C2-1-P. This study has been partially done in the computer science departments at the (University of Sulaimani and Halabja).Taha, M.; Canovas, A.; Lloret, J.; Ali, A. (2021). A QoE adaptive management system for high definition video streaming over wireless networks. Telecommunication Systems. 77(1):63-81. https://doi.org/10.1007/s11235-020-00741-2638177
    • …
    corecore