6 research outputs found

    Cogeneration of mechanical, electrical, and software designs for printable robots from structural specifications

    Full text link
    Abstract — Designing and fabricating new robotic systems i

    Foldable Joints for Foldable Robots

    Full text link

    An end-to-end system for designing mechanical structures for print-and-fold robots

    No full text
    This work presents a script-based development environment aimed at allowing users to easily design and create mechanical bodies for folded plastic robots. The origami-inspired fabrication process is inexpensive and widely accessible, and the tools developed in this work allow for open source design sharing and modular reuse. Designs are generated by recursively combining mechanical components - from primitive building blocks, through mechanisms and assemblies, to full robots - in a flexible yet well-defined manner. This process was used to design robotic elements of increasing complexity up to a multi-degree-of-freedom compliant manipulator arm, demonstrating the power of this system. The developed system is extensible, opening avenues for further research ultimately leading to the development of a complete robot compiler.National Science Foundation (U.S.) (Grant 1240383)National Science Foundation (U.S.) (Grant 1138967

    Design and Fabrication of Origami Elements for use in a Folding Robot Structure

    Get PDF
    The aim of the research is to investigate the methodology of the design and fabrication of folding robots that depend on the origami structures. The use of origami structures as a foundation to build reconfigurable and morphing robots that could assist in search and rescue (SAR) tasks are investigated. The design of the origami folding structures divided into three stages: consideration of the geometry of the origami structure, the hinge design, and the actuation system. The result of investigating three origami structures shows the ability to use the unit cell of the origami ball structure as a self-folding element. Furthermore, the novel type of origami structure for manipulation was created according to this result. This novel structure was designed to be a soft manipulation robot arm. Two approaches are used to design and fabricate flexure hinge. The first is by using a 3D printed multi-material technique. By this technique, the hinge printed using soft and solid material at the same time, which is Tango plus flx930 for soft material and Vero for solid material. The soft material act as a flexure hinge. Therefore, three tests were operated for it to calculate the tensile force, fatigue limit, and the required bend force. The second approach is by using acrylic and Kapton materials. Two types of actuation systems were studied: the external actuation system and embedded actuation system. The external actuation system was used for the Origami structure for manipulation, while the embedded actuation system was used for the self-folding structure. The shape memory alloy wires in torsion (TSW) and bending (BSW) was used in an embedded actuation system. A unit cell of origami ball was fabricated as a self-folding element by using three approaches: manually, acrylic, and Kapton and 3D printing. It is actuated by using shape memory alloy wire. Furthermore, an origami structure for manipulation was fabricated and actuated using an external actuation system. This novel type of origami structure provided an excellent bend motion ability
    corecore