119 research outputs found

    Impairments in ground moving target indicator (GMTI) radar

    Get PDF
    Radars on multiple distributed airborne or ground based moving platforms are of increasing interest, since they can be deployed in close proximity to the event under investigation and thus offer remarkable sensing opportunities. Ground moving target indicator (GMTI) detects and localizes moving targets in the presence of ground clutter and other interference sources. Space-time adaptive processing (STAP) implemented with antenna arrays has been a classical approach to clutter cancellation in airborne radar. One of the challenges with STAP is that the minimum detectable velocity (MDV) of targets is a function of the baseline of the antenna array: the larger the baseline (i.e., the narrower the beam), the lower the MDV. Unfortunately, increasing the baseline of a uniform linear array (ULA) entails a commensurate increase in the number of elements. An alternative approach to increasing the resolution of a radar, is to use a large, but sparse, random array. The proliferation of relatively inexpensive autonomous sensing vehicles, such as unmanned airborne systems, raises the question whether is it possible to carry out GMTI by distributed airborne platforms. A major obstacle to implementing distributed GMTI is the synchronization of autonomous moving sensors. For range processing, GMTI processing relies on synchronized sampling of the signals received at the array, while STAP processing requires time, frequency and phase synchronization for beamforming and interference cancellation. Distributed sensors have independent oscillators, which are naturally not synchronized and are each subject to different stochastic phase drift. Each sensor has its own local oscillator, unlike a traditional array in which all sensors are connected to the same local oscillator. Even when tuned to the same frequency, phase errors between the sensors will develop over time, due to phase instabilities. These phase errors affect a distributed STAP system. In this dissertation, a distributed STAP application in which sensors are moving autonomously is envisioned. The problems of tracking, detection for our proposed architecture are of important. The first part focuses on developing a direct tracking approach to multiple targets by distributed radar sensors. A challenging scenario of a distributed multi-input multi-output (MIMO) radar system (as shown above), in which relatively simple moving sensors send observations to a fusion center where most of the baseband processing is performed, is presented. The sensors are assumed to maintain time synchronization, but are not phase synchronized. The conventional approach to localization by distributed sensors is to estimate intermediate parameters from the received signals, for example time delay or the angle of arrival. Subsequently, these parameters are used to deduce the location and velocity of the target(s). These classical localization techniques are referred to as indirect localization. Recently, new techniques have been developed capable of estimating target location directly from signal measurements, without an intermediate estimation step. The objective is to develop a direct tracking algorithm for multiple moving targets. It is aimed to develop a direct tracking algorithm of targets state parameters using widely distributed moving sensors for multiple moving targets. Potential candidate for the tracker include Extended Kalman Filter. In the second part of the dissertation,the effect of phase noise on space-time adaptive processing in general, and spatial processing in particular is studied. A power law model is assumed for the phase noise. It is shown that a composite model with several terms is required to properly model the phase noise. It is further shown that the phase noise has almost linear trajectories. The effect of phase noise on spatial processing is analyzed. Simulation results illustrate the effect of phase noise on degrading the performance in terms of beam pattern and receiver operating characteristics. A STAP application, in which spatial processing is performed (together with Doppler processing) over a coherent processing interval, is envisioned

    Software-hardware systems for the Internet-of-Things

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.Cataloged from PDF version of thesis.Includes bibliographical references (pages [187]-201).Although interest in connected devices has surged in recent years, barriers still remain in realizing the dream of the Internet of Things (IoT). The main challenge in delivering IoT systems stems from a huge diversity in their demands and constraints. Some applications work with small sensors and operate using minimal energy and bandwidth. Others use high-data-rate multimedia and virtual reality systems, which require multiple-gigabits-per-second throughput and substantial computing power. While both extremes stress the computation, communications, and energy resources available to the underlying devices, each intrinsically requires different solutions to satisfy its needs. This thesis addresses both bandwidth and energy constraints by developing custom software-hardware systems. To tackle the bandwidth constraint, this thesis introduces three systems. First, it presents AirShare, a synchronized abstraction to the physical layer, which enables the direct implementation of diverse kinds of distributed protocols for loT sensors. This capability results in a much higher throughput in today's IoT networks. Then, it presents Agile-Link and MoVR, new millimeter wave devices and protocols which address two main problems that prevent the adoption of millimeter wave frequencies in today's networks: signal blockage and beam alignment. Lastly, this thesis shows how these systems enable new IoT applications, such as untethered high-quality virtual reality. To tackle the energy constraint, this thesis introduces a VLSI chip, which is capable of performing a million-point Fourier transform in real-time, while consuming 40 times less power than prior fast Fourier transforms. Then, it presents Caraoke, a small, low-cost and low-power sensor, which harvests its energy from solar and enables new smart city applications, such as traffic management and smart parking.by Omid Salehi-Abari.Ph. D

    Doctor of Philosophy

    Get PDF
    dissertationLow-cost wireless embedded systems can make radio channel measurements for the purposes of radio localization, synchronization, and breathing monitoring. Most of those systems measure the radio channel via the received signal strength indicator (RSSI), which is widely available on inexpensive radio transceivers. However, the use of standard RSSI imposes multiple limitations on the accuracy and reliability of such systems; moreover, higher accuracy is only accessible with very high-cost systems, both in bandwidth and device costs. On the other hand, wireless devices also rely on synchronized notion of time to coordinate tasks (transmit, receive, sleep, etc.), especially in time-based localization systems. Existing solutions use multiple message exchanges to estimate time offset and clock skew, which further increases channel utilization. In this dissertation, the design of the systems that use RSSI for device-free localization, device-based localization, and breathing monitoring applications are evaluated. Next, the design and evaluation of novel wireless embedded systems are introduced to enable more fine-grained radio signal measurements to the application. I design and study the effect of increasing the resolution of RSSI beyond the typical 1 dB step size, which is the current standard, with a couple of example applications: breathing monitoring and gesture recognition. Lastly, the Stitch architecture is then proposed to allow the frequency and time synchronization of multiple nodes' clocks. The prototype platform, Chronos, implements radio frequency synchronization (RFS), which accesses complex baseband samples from a low-power low-cost narrowband radio, estimates the carrier frequency offset, and iteratively drives the difference between two nodes' main local oscillators (LO) to less than 3 parts per billion (ppb). An optimized time synchronization and ranging protocols (EffToF) is designed and implemented to achieve the same timing accuracy as the state-of-the-art but with 59% less utilization of the UWB channel. Based on this dissertation, I could foresee Stitch and RFS further improving the robustness of communications infrastructure to GPS jamming, allow exploration of applications such as distributed beamforming and MIMO, and enable new highly-synchronous wireless sensing and actuation systems

    Enhancing spectrum utilization through cooperation and cognition in wireless systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2013.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections."February 2013." Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 201-217).We have seen a proliferation of wireless technologies and devices in recent years. The resulting explosion of wireless demand has put immense pressure on available spectrum. Improving spectrum utilization is therefore necessary to enable wireless networks to keep up with burgeoning demand. This dissertation presents a cognitive and cooperative wireless architecture that significantly enhances spectrum utilization. Specifically, it introduces four new systems that embody a cross-layer design for cognition and cooperation. The first system, SWIFT, is a cognitive cross technology solution that enables wideband devices to exploit higher layer network semantics to adaptively sense which portions of the spectrum are occupied by unknown narrowband devices, and weave the remaining unoccupied spectrum bands into a single high-throughput wideband link. Second, FARA is a cooperative system that enables multi-channel wireless solutions like 802.11 to dynamically use all available channels for all devices in a performance-aware manner by using information from the physical layer and allocating to each link the frequency bands that show the highest performance for that link. SourceSync, the third system, enables wireless nodes in last-hop and wireless mesh networks to cooperatively transmit synchronously in order to exploit channel diversity and increase reliability. Finally, MegaMIMO enables wireless throughput to scale linearly with the number of transmitters by enabling multiple wireless transmitters to transmit simultaneously in the same frequency bands to multiple wireless receivers without interfering with each other. The systems in this dissertation demonstrate the practicality of cognitive and cooperative wireless systems to enable spectrum sharing. Further, as part of these systems, we design several novel primitives - adaptive spectrum sensing, time alignment, frequency synchronization, and distributed phase-coherent transmission, that can serve as fundamental building blocks for wireless cognition and cooperation. Finally, we have implemented all four systems described in this dissertation, and evaluated them in wireless testbeds, demonstrating large gains in practice.by Hariharan Shankar Rahul.Ph.D

    Phase Noise and Wideband Transmission in Massive MIMO

    Full text link

    Key Exchange at the Physical Layer

    Get PDF
    Establishing a secret communication between two parties requires both legal parties to share a private key. One problem consists of finding a way to establish a shared secret key without the availability of a secure channel. One method uses the reciprocity and multipath interference properties of the wireless channel for this purpose. We analyze this technique in the following three aspects: vulnerabilities and attacks, improvements to the protocol and experimental validation

    OFDM under Oscillator Phase Noise : Contributions to Analysis and Estimation Methods

    Get PDF
    Most modern transmitters and receivers involve an analog front-end unit and a digital back-end unit. The digital back-end is responsible for information processing which involves thefollowing: redundancy removal from information; information representation; improvinginformation resilience; and information correction. The analog front-end is responsible forinformation transmission and reception. The information processing algorithms developedand implemented in the digital back-end assume a linear and noiseless analog front-end which,in reality, is not the case. This renders some of the information processing algorithms to be lesseffective in practice. The focus of this thesis is on orthogonal frequency-division multiplexing(OFDM) systems under the influence of oscillator phase noise. OFDM is an efficientinformation representation technique used in many communication systems. On the otherhand, phase noise is one type of undesired noise that occurs in the oscillator device used in theanalog front-end. It arises due to the imperfect task of frequency conversion, performed by theoscillator device, between baseband and radio frequency.  This thesis contributes to the areas of analysis and estimation in OFDM systems under theinfluence of oscillator phase noise. With regard to analysis, this thesis contributes by derivingthe channel capacity assuming a Gaussian input alphabet. The aim here is to show bothquantitatively and qualitatively the degradation in performance of the OFDM system in thepresence of phase noise. The analysis is conducted for phase noise processes that occur in bothfree-running and phase-locked loop based oscillators and also extended to include the effect ofcarrier frequency offset. With regard to estimation, two new phase noise estimation algorithmsare proposed in this thesis. In particular, these algorithms restrict the search space to a specific subset, where the desired phase noise parameter of interest is shown to lie. For example, in the first estimation method, possible subspaces in which the desired phase noise spectral vector may lie are used in the estimation step. In the second method, the geometry of the desired phase noise spectral vector is used in the estimation step. Specifically, this geometry corresponds to a non-convex set described by a set of quadratic forms that involve permutation matrices. By restricting the search space to this set, the accuracy of phase noise estimation can be improved

    GigaHertz Symposium 2010

    Get PDF

    Engineering limit cycle systems:adaptive frequency oscillators and applications to adaptive locomotion control of compliant robots

    Get PDF
    In this thesis, we present a dynamical systems approach to adaptive controllers for locomotion control. The approach is based on a rigorous mathematical framework using nonlinear dynamical systems and is inspired by theories of self-organization. Nonlinear dynamical systems such as coupled oscillators are an interesting approach for the on-line generation of trajectories for robots with many degrees of freedom (e.g. legged locomotion). However, designing a nonlinear dynamical system to satisfy a given specification and goal is not an easy task, and, hitherto no methodology exists to approach this problem in a unified way. Nature presents us with satisfactory solutions for the coordination of many degrees of freedom. One central feature observed in biological subjects is the ability of the neural systems to exploit natural dynamics of the body to achieve efficient locomotion. In order to be able to exploit the body properties, adaptive mechanisms must be at work. Recent work has pointed out the importance of the mechanical system for efficient locomotion. Even more interestingly, such well suited mechanical systems do not need complicated control. Yet, in robotics, in most approaches, adaptive mechanisms are either missing or they are not based on a rigorous framework, i.e. they are based on heuristics and ad-hoc approaches. Over the last three decades there has been enormous progress in describing movement coordination with the help of Synergetic approaches. This has led to the formulation of a theoretical framework: the theory of dynamic patterns. This framework is mathematically rigorous and at the same time fully operational. However, it does not provide any guidelines for synthetic approaches as needed for the engineering of robots with many degrees of freedom, nor does it directly help to explain adaptive systems. We will show how we can extend the theoretical framework to build adaptive systems. For this purpose, we propose the use of multi-scale dynamical systems. The basic idea behind multi-scale dynamical systems is that a given dynamical system gets extended by additional slow dynamics of its parameters, i.e. some of the parameters become state variables. The advantages of the framework of multi-scale dynamical systems for adaptive controllers are 1) fully dynamic description, 2) no separation of learning algorithm and learning substrate, 3) no separation of learning trials or time windows, 4) mathematically rigorous, 5) low dimensional systems. However, in order to fully exploit the framework important questions have to be solved. Most importantly, methodologies for designing the feedback loops have to be found and important theoretical questions about stability and convergence properties of the devised systems have to be answered. In order to tackle this challenge, we first introduce an engineering view on designing nonlinear dynamical systems and especially oscillators. We will highlight the important differences and freedom that this engineering view introduces as opposed to a modeling one. We then apply this approach by first proposing a very simple adaptive toy-system, consisting of a dynamical system coupled to a spring-mass system. Due to its spring-mass dynamics, this system contains clear natural dynamics in the form of resonant frequencies. We propose a prototype adaptive multi-scale system, the adaptive frequency oscillator, which is able to adapt its intrinsic frequency to the resonant frequency of the body dynamics. After a small sidetrack to show that we can use adaptive frequency oscillators also for other applications than for adaptive controllers, namely for frequency analysis, we then come back to further investigation of the adaptive controller. We apply the same controller concept to a simple spring-mass hopper system. The spring-mass system consists of a body with two legs attached by rotational joints. The legs contain spring-damper elements. Finally, we present results of the implementation of the controller on a real robot, the experimental robot PUPPY II. This robot is a under-actuated robot with spring dynamics in the knee joints. It will be shown, that due to the appropriate simplification and concentration on relevant features in the toy-system the controller concepts works without a fundamental change on all systems from the toy system up to the real robot
    corecore