
 

A
alto-D

D
 10

5
/2

016 

9HSTFMG*agidib+ 

ISBN 978-952-60-6838-1 (printed) 
ISBN 978-952-60-6839-8 (pdf) 
ISSN-L 1799-4934 
ISSN 1799-4934 (printed) 
ISSN 1799-4942 (pdf) 
 
Aalto University 
School of Electrical Engineering 
Department of Signal Processing and Acoustics 
www.aalto.fi 

BUSINESS + 
ECONOMY 
 
ART + 
DESIGN + 
ARCHITECTURE 
 
SCIENCE + 
TECHNOLOGY 
 
CROSSOVER 
 
DOCTORAL 
DISSERTATIONS 

P
ram

od Jacob M
athecken 

O
F

D
M

 under O
scillator P

hase N
oise 

A
alto

 U
n
ive

rsity 

2016 

Department of Signal Processing and Acoustics 

OFDM under Oscillator 
Phase Noise 
Contributions to Analysis and Estimation Methods 

Pramod Jacob Mathecken 

DOCTORAL 
DISSERTATIONS 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80720024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1










“What an astonishing thing a book is.

It’s a flat object, made from a tree with flexible parts, on which are

imprinted lots of funny dark squiggles.

But one glance at it and you are inside the mind of another person

maybe somebody dead for thousands of years.

Across the millennia, an author is speaking clearly and silently

inside your head. Directly to you.

Writing is perhaps the greatest of human inventions.

Binding together people who never knew each other. Citizens of

distant epochs.

Books break the shackles of time.

A book is proof that humans are capable of working magic.”

Carl Sagan
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1. Introduction

Most modern communication devices consist of two processing units: an

analog front-end; and a digital back-end. The digital unit processes in-

formation like any modern computer would do today, although there are

distinct differences. The main task of the analog unit is to embed/detach

information on/from a carrier signal. This information-bearing carrier

signal is essentially what is transmitted from and received to the com-

munication device, which unfortunately, for us humans, gets corrupted

by the medium (also known as, the channel) through which it travels.

This inevitably leads to corruption of information. In modern communi-

cation systems, the corrupted information is processed by the digital unit

with the aim of recovery. To further strengthen the recovery process, the

digital unit efficiently processes the information before transmission so

that it is robust to the propagation medium. Traditionally, the corrupted

information was corrected by the analog unit, typically, in an all-analog-

communication system. With the advent of digital processing, the func-

tionality of information correction transitioned to the digital part.

Digital processing in modern communication systems involve the fol-

lowing steps: Redundancy removal from information; information repre-

sentation; improving information resilience; and information correction.

The major leaps in modern telecommunication systems have mainly come

from each of these areas. For example, in the latest wireless communi-

cation standard known as ‘long term evolution’ (LTE), a modulation tech-

nique called ‘orthogonal frequency division multiplexing’ (OFDM) is used

for information representation. This technique facilitates a simple chan-

nel correction scheme, thereby, reducing the complexity of the digital pro-

cessing unit. This modulation technique is also a potential contender for

future communication systems as well. Almost all digital processing tech-

niques developed today are done with the aim of combating the effects
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of the propagation medium, while the sole purpose of the analog unit is

the transmission and reception of the information-bearing carrier signal.

These techniques are developed under the assumption of an ideal ana-

log unit that is linear and noise-free. Unfortunately, this is not the case,

and the analog unit itself distorts the information-bearing signal, mainly

due to component imperfections that make up the analog circuitry. This

essentially renders some digital processing techniques developed to com-

bat the effects of channel less useful as they do not take into account the

non-idealities of the analog unit.

There are three major functionalities of the analog unit that contribute

substantially to the analog non-idealities. These are: Power amplification;

up/down frequency conversion; and high-rate sampling. Power amplifiers

typically operate in the non-linear region for reasons of efficiency. How-

ever, this contributes to non-linear distortion of the information-bearing

carrier signal. The up/down frequency conversion refers to the process

of embedding information onto the high-frequency passband carrier sig-

nal. This high-frequency signal is generated using an oscillator device.

Unfortunately, these devices do not produce ideal carrier signals of the

prescribed frequency, rather, there is random fluctuation in the frequency.

Typically, the fluctuation is described in terms of the carrier phase, and

it is popularly known by the name of phase noise. The function of high-

rate sampling is to transition between the analog and digital domains.

These are implemented by devices known as analog-to-digital and digital-

to-analog converters. These devices introduce jitter noise which is random

variations in sampling instants and is closely related with phase noise.

There are two ways to solve the problem of non-linear and noisy ana-

log units: The first route is to design effective analog circuits and use

high-quality devices that make up the analog circuitry. This inevitably in-

creases the cost of the analog unit which maybe justified depending upon

what the circumstances are; The second route is to use digital signal pro-

cessing algorithms to remove the non-idealities. These algorithms can

then be implemented in the digital unit. The downside, however, is added

delay in the system which may be tolerable. In reality, both approaches

for solving the non-ideality problem of the analog unit are being pursued.

Extensive research, in the field of circuit design, is on going to design

low-powered, cost-effective and spectrally pure analog devices. Simul-

taneously, signal processing engineers are making use of the increasing

prowess of the digital unit to develop effective compensation algorithms.
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Introduction

1.1 Motivation, Scope and Objectives of the Thesis

This thesis investigates the problem of having phase noise in communica-

tion systems that employ the OFDM modulation.

The progress of science and especially engineering is generally based

on the philosophy ‘What is not broken need not be fixed’. In line with

this philosophy, the first step is to ascertain how serious of a problem

is phase noise for a communication system employing OFDM. Extensive

analysis has been conducted in the past twenty years on the performance

of OFDM in the presence of phase noise, and the resounding conclusion

is that it causes a significant drop in performance. Most performance

metrics used to evaluate the effect of phase noise on OFDM have been

in terms of signal-to-interference-plus-noise ratios, bit-error rate or the

probability of a bit error. Another significant performance metric that

is typically used in evaluating the efficacy of a communication system is

the data rate or, technically, channel capacity. Evaluating capacities of

linear systems is a well researched problem with off-the-shelf solutions.

However, for non-linear systems like the analog unit in a communication

system, the problem is hard and not so straightforward. One of the mo-

tivations of this thesis is to fill this gap in knowledge, and the associated

objective is to precisely quantify the capacity degradation of an OFDM

radio link impaired by phase noise.

The acknowledgment of performance loss has led researchers to seek

new phase noise estimation and compensation schemes for OFDM. The

literature is abundant with very good phase noise estimation schemes,

and new algorithms still keep rolling out even to this day. The second

objective of this thesis is to develop new signal processing algorithms to

estimate phase noise and then remove it from the OFDM signal. This

thesis contributes to the area of phase noise estimation by first recog-

nizing certain properties of phase noise which are then utilized during

the estimation process. In fact, these properties are well known in the

community. However, this thesis shows a different manifestation of this

property and how that can be utilized mathematically rather than using

an ad-hoc approach. Of course, the study discusses trade-offs in using a

complicated mathematically rigorous approach and a less complex ad-hoc

approach.
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1.2 Contributions of the Thesis

The main contributions of this thesis are in the areas of analysis and

estimation for an OFDM radio link impaired by phase noise. These are

summarized below.

C1. Analytical and closed-form expressions of capacity for an OFDM ra-

dio link under the influence of phase noise are derived. The analysis

is conducted for two types of phase noise processes which occur in free-

running and in phase-locked loop (PLL) based oscillator devices. For

free-running oscillators, the phase noise follows a Wiener process. For

modeling phase noise in PLL devices, the popular ‘linear-time-invariance

in phase-domain’ model is used. The capacity analysis is extended to

also include the effect of carrier frequency offset. Through these analyt-

ical expressions, the objective is to quantify the degradation in channel

capacity while, at the same time, to obtain some qualitative insight.

The realization of the aforementioned contributions is achieved by a

set of other contributions which are chiefly in the area of statistics and

deal with determining probability density functions. These contribu-

tions are summarized next.

– The probability density function (PDF) of a sum of correlated gamma

random variables with the same alpha parameter is derived. The pre-

vious state-of-the-art result is under the assumption of full-rank nor-

malized covariance matrix of these gamma random variables while

this thesis extends the result to the general case of any rank. This

PDF is then applied to determine the average channel capacity for an

OFDM radio link impaired by phase noise.

– The PDF of a sum of correlated gamma and Gaussian random vari-

ables is derived. The resulting distribution has a form similar to the

PDF of sum of correlated gamma random variables. This distribution

is used in the evaluation of average capacity when the OFDM system

is impaired by both phase noise and carrier frequency offset.

– The above result holds for a particular structure of the correlated

gamma and Gaussian random variables. In this thesis, the result is ex-

tended to the generic case, where the resulting PDF can be decoupled

in terms of two independent random variables: one follows a Gaus-

sian distribution, while the second random variable has a distribution

similar to that of a sum of correlated gamma random variables.
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C2. Two novel phase noise estimation schemes are developed in this the-

sis. Both of these schemes make use of specific information about phase

noise during estimation. For example, in the first method, subspace-

based information is utilized in obtaining a phase noise estimate, where

possible subspaces in which the desired quantity may lie are explored.

The second method utilizes the geometry associated with phase noise

in the context of OFDM. Specifically, we refer to the geometry of the

spectral components of the complex exponential of phase noise. This ge-

ometry is described by a set of non-convex quadratic forms that involve

permutation matrices. Equivalently, in the time domain, this property

manifests itself as unit-magnitude time domain samples. This property

is utilized during the estimation step, where we enforce the phase noise

estimates to satisfy this property.

The set of contributions aiding realization of the above are:

– A new linear phase noise spectral model is presented for the purpose of

dimensionality reduction. Dimensionality reduction eases the estima-

tion process since only a few number of components, less than the total

number of dimensions, are to be estimated. The complex exponential

of phase noise are low-pass processes, thereby, their spectral content

is limited to only a few low-frequency components. At the same time,

the complex exponential of phase noise signal has a specific geome-

try which gets destroyed when performing dimensionality reduction.

In this thesis, a novel linear model is developed that performs dimen-

sionality reduction while, at the same time, preserving the geometry.

– The second contribution falls in the area of optimization theory. The

task is to minimize a homogeneous quadratic function subject to non-

convex quadratic equality constraints that involve permutation matri-

ces. To solve this problem, this thesis uses the so-called S-procedure

which was originally developed for inequality constraints. This thesis

provides conditions for the S-procedure to be lossless for equality con-

straints. The S-procedure developed for equality constraints is then

applied to solve the phase noise minimization problem. Specifically, by

using the S-procedure, the minimization problem can be equivalently

solved by solving a convex dual problem which has polynomial-time

computational complexity.
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1.3 Structure of the Thesis

This thesis is organized in three parts.

Chapter 2 is primarily about modeling. The necessary background and

context, associated with this thesis, is first presented. Specifically,

we introduce the direct-conversion transceiver architecture and dis-

cuss the various sources of noise that arise in the analog unit of this

architecture type. We then discuss the principle of OFDM and, in

particular, the relation to its single-carrier counterpart. The second

part of the chapter is on modeling: The input-output relation for a

transmitter receiver pair in the presence of phase noise is described;

Well-known models on phase noise processes for free-running oscil-

lators and phase-locked loop based devices are presented. The mod-

els presented in this chapter serve as the foundation for the rest of

the chapters.

Chapter 3 is primarily about performance analysis of the OFDM radio

link in the presence of phase noise. We first present some state-of-

the-art methods that seek to precisely quantify the signal-to-noise

ratio and the probability of bit and symbol errors. The second part

of the chapter summarizes the contribution of this thesis which is

to evaluate the channel capacity. The goal is to determine closed-

form expressions of the capacity for an OFDM radio-link impaired by

phase noise and frequency selective fading. The analysis is extended

to also include the effect of carrier frequency offset.

Chapter 4 is about estimation in OFDM systems under the influence of

phase noise. The main quantities to be estimated are: the channel;

phase noise; and the transmitted symbols. We first present a generic

classification of estimation methods which fall in the categories of ei-

ther isolated approaches or joint approaches and then review some

of the state-of-art methods which fall in either of them. Finally, the

second part of this chapter summarizes two novel phase noise esti-

mation schemes proposed in this thesis. Specifically, these methods

rely on using information on where the desired phase noise depen-

dent parameter may lie.
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2. Modeling

2.1 Background

The following saying aptly summarizes the field of telecommunications

and, in particular, wireless communications: ‘The only thing constant in

life is change’. We have transitioned through three generations of mo-

bile telecommunications technology and, only very recently, entered the

fourth generation (4G) [1–3]. Research has already begun towards de-

veloping fifth generation (5G) communications technologies with the goal

of a possible standard by the year 2020 [4]. This need for exploring and

researching new communication techniques is mainly driven by an addic-

tive thirst for exorbitant data rates which from the users perspective is

mainly about the variety of services available at their disposal. It has

been forecasted and fortunately recognized that the data rates offered by

the current 4G communication technologies will fall short of the demand

in the coming decade [5–7].

One of the most important requirements imposed on mobile telecom-

munication systems is connectivity, i.e., no matter where and when, the

mobile user can always communicate. One way of satisfying this require-

ment is by having many mobile communication systems with different

technologies coexisting together such that the mobile user can seamlessly

roam between these systems depending upon the requirement. For ex-

ample, today’s commercially available 4G mobile smart phones support

access to both UMTS and GSM networks which are 3G and 2G systems,

respectively. They also come equipped with Bluetooth, FM radio, the ever

useful global positioning system (GPS) and finally, WiFi. All of these com-

munication systems typically operate in different frequency bands and,

in general, employ different communication techniques. The downside of

7
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having together different communication systems is that it places differ-

ent requirements on the hardware of the mobile radio terminal [8]. With

the advent of 4G and upcoming 5G communication systems, extensive re-

search is on going in the field of mobile radio architectures that can handle

multi-standard, multi-mode and multi-band operations [9–11].

One of the most common transceiver hardware architecture in use to-

day is the direct-conversion architecture [9, 12, 13]. A brief survey in [9]

reveals that more than fifty percent of the transceiver architecture litera-

ture was devoted to this type. This architecture is mainly popular for its

integrability and low power consumption which makes it very amenable

for multi-standard, multi-mode and multi-band operations. High integra-

bility and low power consumption essentially imply compact mobile termi-

nals with long battery life. Of course, the direct-conversion architecture is

one among many potential architectures for multi-standard transceivers.

A good overview of these different architectures can be found in [9,14–16].

The hardware of a typical mobile radio device consists of two parts: an

analog part and a digital part. The analog part, from its name, is made

up of electronics that typically process continuous-time signals at radio

frequencies (RF). This analog part is typically referred to in the litera-

ture as the RF front-end. The digital part deals with discrete-time signals

whose main functionality is information processing and representation;

The objective of the analog part is for signal transmission and reception.

Unfortunately, the devices used in the make up of the RF front-end are

non-ideal, whereby they either introduce undesired noise or cause distor-

tion to the transmitted/received signal. These non-idealities are typically

referred to as RF-impairments [17].

This chapter is structured in two parts: The first part of the chapter con-

cerns with the problems encountered at the RF front-end of the mobile ter-

minal. Using the direct-conversion architecture as an example, we briefly

review the main functionalities and associated problems of the analog

unit with a specific focus on frequency conversion achieved by means of

the oscillator device that introduces phase noise. We then discuss orthog-

onal frequency-division multiplexing (OFDM) which can be interpreted

as an information representation technique that is handled in the digital

part of the mobile hardware. OFDM is used in 4G communication tech-

nologies and is a potential candidate for 5G systems as well [18]. The

second part of this chapter is about modeling. Specifically, we model the

communication link employing OFDM that includes phase noise at both

8
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Figure 2.1. Constituents of a direct-conversion transceiver.

the transmitter and receiver ends. This communication model serves as

the foundation for Chapters 3 and 4. The last part of this chapter is ded-

icated to phase noise modeling. The aim here is to briefly review some of

the standard phase noise models that are also used in this thesis.

2.2 Direct-Conversion Transceiver

A direct-conversion transceiver is shown in Fig. 2.1. It does frequency con-

version between RF and baseband frequency directly thereby avoiding an

intermediate frequency (IF) stage typically found in other architectures

like the super-heterodyne and low-IF architectures [9]. The absence of the

IF-stage allows for on-chip integration which in turn results in low power

consumption and compact terminals. This is because filters for image re-

jection and channel selection that accompany the IF-stage typically are

implemented with passive components for improved performance.

In Fig. 2.1, the digital part of the direct-conversion transceiver is the dig-

ital signal processor (DSP), where all the baseband digital algorithms are

implemented. The RF front-end or analog domain consists of three main

functionalities: analog-to-digital/digital-to-analog conversion (ADC/DAC),

frequency conversion between baseband and RF; and, finally, power am-

plification. The amplification of signals is performed by the low noise am-

plifier (LNA) and power amplifier (PA) in the receiver and transmitter, re-

spectively. The frequency conversion is performed by the mixers (shown in

9
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purple color) with aid of an oscillator (shown in blue color) which provides

the reference carrier signal of the prescribed frequency. In practice, the

oscillator is never used in isolation, and it is typically used in a feedback

mechanism like in a phase-locked loop. Without any loss in generality, we

assume an oscillator device feeding the mixers.

The analog front-end of the direct-conversion transceiver is, unfortu-

nately, not ideal and the devices that perform the RF functionalities come

with their own problems. Let us briefly discuss some of these issues.

2.2.1 Phase Noise in Oscillators

Oscillators are devices that produce periodic signals which are useful pri-

marily because they help keep track of time. In this context, they are typi-

cally referred to as clocking signals. One cannot think of any digital device

without any clocking signal involved. In the context of wireless communi-

cations, periodic cosinusoidal signals, produced by an oscillator, are infor-

mation carriers. We build communication systems wherein information

is typically represented in baseband and, for the purpose of transmission,

we embed this information on a high-frequency cosinusoidal signal.

Figure 2.2 shows this information embedding process. The oscillator

(shown in blue color) outputs a cosinusoidal signal of frequency fc. Its cor-

responding frequency spectrum is shown below which consists of two delta

functions centered at fc and −fc respectively. This signal is then mixed,

using a mixer (shown in purple), with the baseband information-bearing

signal whose frequency spectrum is centered around the zero frequency

(shown in green). Mathematically, the mixing process is essentially a

multiplication between the inputs to the mixer which, equivalently in the

frequency domain, is the convolution operation. Thus, the result of the

mixing operation is the translation of baseband frequency content to the

high-frequency passband region centered around fc, as seen in the figure.

The information embedding process shown in Fig. 2.2 is idealistic and, in

reality, the embedding process is flawed mainly due to imperfections of

the oscillator and mixer devices. We shall assume herein that we have an

ideal mixer and focus our attention only on the oscillator device.

Any practical oscillator does not generate pure cosinusoidal signals with

spectrum as shown in Fig. 2.2. In practice, there is spectral spreading

around the carrier frequency fc, as shown in Fig. 2.3. This spectral spread

is mainly attributed to two physical quantities of interest: These are the

so-called phase noise and amplitude noise. We shall assume that ampli-
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Figure 2.2. Information embedding process through mixing. The carrier frequency is
denoted by fc.
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Figure 2.3. Illustration of spectral spreading in an oscillator. The carrier frequency is
denoted by fc.

tude noise is kept tolerable and that phase noise is the sole contributor to

the spectral spread of the oscillator frequency spectrum [19].

Phase noise is the random perturbation in the phase of the cosinusoidal

signals. It arises due to inherent noise present in any physical device such

as the oscillator but it can be kept tolerable by proper choice of oscillator

design [19]. For small spectral spreads, phase noise is slowly varying,

while larger spectral spreads result in fast-varying phase noise processes.

The spectral spread of the oscillator signal essentially distorts the infor-

mation bearing signal because the information bearing signal spectrum is

convolved with the spectrum shown in Fig. 2.3 which results in a distorted

spectrum. In Section 2.3, we shall see how this distortion takes place in

the case of OFDM.
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2.2.2 Jitter in ADC and DAC

ADCs and DACs act as the bridge that connect the analog and digital do-

mains of a communication transceiver. For the ADC, the goal is to convert

the incoming analog signal into a digital signal which is then processed

by the digital signal processor; The reverse operation is performed by the

DAC. Today’s and next-generation communication systems place phenom-

enal challenges on the ADC and DAC, where the mobile transceiver is ex-

pected to work in frequency ranges well over a few gigahertz. One of these

challenges is high sampling rates which are in proportion to the band-

width of the communication signals. Especially, LTE signals are wide-

band and the future 5G communication signals will also see large band-

widths [2, 20]. Another challenge is high resolution of the ADC which is

difficult to obtain at high sampling rates and the last important design

factor is power dissipation. Recent trends in ADC and DAC design have

mainly focused towards achieving low power dissipation which eventually

allows for efficient system-on-chip integration. A comprehensive overview

of ADCs and the trade-offs that exist between the aforementioned design

factors can be found in [21–24].

Hindering the challenges of high sampling rate and resolution, while

lowering the power dissipation, are the various noise sources that creep

into the ADC and DAC. The typical noise sources are jitter noise, quan-

tization noise, thermal noise and non-linearities [21]. Jitter noise, espe-

cially, becomes prominent at high sampling rates and can significantly al-

ter the spectrum of the digitized signal. It refers to random fluctuations in

the sampling instants used to discretize the incoming analog signal. This

noise typically occurs in the sample-and-hold circuitry that is responsi-

ble for the discretization process. It also occurs due to phase noise in the

oscillators that supply the clocking signal to the ADC. This type of fluc-

tuation is typically referred to as clock jitter. The overall jitter noise is a

combination of both these types of jitter, and the end result is randomness

in the sampling instants.

The research community has devoted efforts to study the effects of jitter

noise on the resulting output signals. Many different characterizations

exist with each tackling a particular aspect depending upon the goal [25].

For example, in [26] and [27, 28], the spectrum of the output signal for

an ADC and DAC corrupted by timing jitter are derived, respectively. In

Fig. 2.4, we show an illustration of the output spectrum of an ideal DAC
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Figure 2.4. Illustration of the effect of jitter noise.

and a DAC corrupted with timing jitter. The effect of jitter is to alter the

shape of the desired spectrum while at the same time generate copies of

desired spectrum. A similar effect is seen in the spectrum of the output

signal for an ADC. The reader may refer to [26]; The result, however, is

restricted in the sense that, although the timing jitter is assumed random,

a certain periodic structure for the timing jitter is assumed.

With respect to OFDM, studies have recently been rolling out to analyze

and compensate the effects of jitter noise [29–33]. Specifically, it has been

shown that jitter noise has two effects on OFDM: The first is an additive

noise contribution; and the second is a multiplicative noise contribution

very similar to that of phase noise [30,32]. By treating the additive noise

as extra receiver noise, any phase noise estimation and compensation al-

gorithm can then be applied to remove the multiplicative effect of jitter

noise. See, for example, [32].

2.2.3 IQ-imbalance in Modulation and Demodulation

In direct-conversion transceivers, frequency conversion between RF and

baseband frequency is implemented using a quadrature architecture [12].

For example, in Fig. 2.1, the incoming RF signal is split into two paths,

namely I-branch and Q-branch, where each path is mixed with local os-

cillator signals that have a 90◦ phase difference between them. However,

this is an idealistic scenario, and in practice, the phase difference is never

exactly 90◦, thereby, resulting in some correlation between the local oscil-
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lator signals that feed the mixers. This mismatch in phase difference is

typically referred to as IQ-imbalance or IQ-mismatch. As an example, the

effect of IQ-mismatch on the signal of interest is shown in Fig. 2.5. In the

ideal case of perfect 90◦ phase difference, the desired baseband spectrum

(shown in blue) sits neatly around the zero frequency. However, in the

more practical case of non-zero IQ-imbalance, the desired spectrum expe-

riences interference from its negative half. A good mathematical treat-

ment of the effect shown in Fig. 2.5 can be found in [34].

Negative half Positive half

Spectrum of downconverted signal using QMD

Spectrum of downconverted signal using QMD
with zero IQ-imbalance

with non-zero IQ-imbalance

Negative half interferes with
desired positive half

fLO−fLO

Spectrum of RF signal

Figure 2.5. Illustration of the effect of IQ-imbalance.

The resulting interference and its level of impact depend on the amount

of IQ-mismatch present in the hardware radio transceiver and also on the

type of baseband signal used. It is well known in the scientific community

that OFDM signals are sensitive to IQ-imbalance, and they yield poor per-

formance in the presence of this mismatch [35]. Numerous studies have

been undertaken to characterize this mismatch, and to develop effective

signal processing algorithms to undo the effect of IQ-imbalance. See, for

example, [36,37] for a comprehensive treatment on the subject.
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Figure 2.6. Illustration of the input-output characteristic of a power amplifier.

2.2.4 Non-linearity of Power Amplifiers

An ideal power amplifier would be linear, i.e., its output is a linearly am-

plified version of its input signal. Unfortunately, this is true only for a

certain power region of the input signal, and if the input signal power ex-

ceeds this region then the output signal power gets saturated to a partic-

ular value, thereby, resulting in phenomena which are broadly classified

as in-band and out-of-band distortion [38, 39]. The out-of-band distortion

essentially leads to interference in neighboring channels.

Maintaining linearity of the power amplifier is a major design crite-

ria especially for the transmitter. A typical power amplifier input-output

characteristic is shown in Fig. 2.6. From the figure, we see that only a sec-

tion of the input-output curve corresponds to a linear region and beyond

this region, the signal power is saturated or compressed to a particular

value. Especially, OFDM signals are known to have high peak-to-average

power ratio (PAPR) which can result in driving the power amplifier to the

saturation region which will result in signal distortion [40]. On the other

hand, there is an inverse relationship between power amplifier efficiency

and PAPR [41,42]. Thus, we see that OFDM signals result in poor power

amplifier efficiency which implies higher heat dissipation and, hence, poor

battery life for the mobile terminal.

There are two possible ways to solve this problem: In the first method,

the power amplifier is operated by employing high back-off which is a
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measure of the region in which the PA operates. A high back-off implies

that the power amplifier is operating in the linear region and, hence, the

non-linear distortion due to saturation is avoided. In the second method,

the power efficiency is improved by using low back-off while the asso-

ciated non-linearity problem is solved by using linearization techniques.

This is done by employing a pre-distorter such that the combined input-

output characteristic of the pre-distorter and PA results in a linearized re-

sponse [42]. Designing a pre-distorter requires accurate modeling of the

PA with well defined models already available in the literature [43, 44].

Development of digital pre-distorters is still an active area of research. A

good overview and extensive literature on the subject can be found in [38].

2.3 OFDM

We now turn our focus towards OFDM which is by far one of the most

popular modulation schemes in use today. It is essentially an informa-

tion representation technique with the principle aim of facilitating sim-

ple baseband transmitter and receiver structures. Specifically, in the re-

ceiver, the necessary functionality of channel equalization for an OFDM

signal is implemented by trivial one-tap filters unlike in single-carrier sys-

tems. OFDM falls under the class of multi-carrier signals and comparison

is typically done with its single-carrier counter part which requires in-

volved filtering for channel equalization [45, 46]. We now illustrate the

basic principle behind OFDM and where it differs from its single-carrier

counterpart.

2.3.1 Principles of OFDM

In a single-carrier system, a set of Nc symbols, denoted by sk, are trans-

mitted using a sinc waveform denoted by s(t). In practice, sinc waveforms

are never used as they extend infinitely in time and, thus, some form of

truncation is always done to the waveform. The symbols are transmitted

at a rate W = 1/T , where T denotes the symbol duration. An illustration

of a single-carrier signal is shown in Fig. 2.7, where three symbols are

transmitted. As seen in Fig. 2.7, the symbols sk are multiplied with time-

shifted versions of the sinc function, however, the symbols are still recov-

erable because, at the zero-crossings, the sinc waveforms do not interfere

with each other. The zero-crossing points are also known as inter-symbol
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interference (ISI) free instances and is shown by the pink dotted lines in

Fig. 2.7. The corresponding frequency response of the sinc waveform is

shown in Fig. 2.8. Thus, for the transmission of each symbol sk, the total

bandwidth used is equal to W Hz.

The drawback of using the single-carrier signal is that when passed

through the channel, the necessary task of channel equalization has high

complexity. This is mainly because the transmitted symbols sk are rep-

resented in the time domain, and after the signal is convolved with the

channel, at the ISI free instances, there is non-zero contribution from the

17



Modeling

T 2T 3T

0

s
3

s
2

s
1 1. The channel is of two taps.

2. Solid lines represent signal passing
through 1st tap channel.
3. Dashed lines represent signal
passing through 2nd tap channel.

ISI
ISI

ISI

x
sc
(t
)

t [s]

Figure 2.9. Single carrier waveform when passed through a two tap channel.

other sinc waveforms. This effect is shown in Fig. 2.9, where the channel

in consideration is a simple two-tap channel. At the ISI-free instances, the

desired symbol sk experiences distortion from the signal passed through

the second tap channel (represented by the dashed line) and also experi-

ences additive interference from neighboring symbols.

In an OFDM signal, the transmitted symbols are represented in the

frequency domain using sinc waveforms as shown in Fig. 2.10. The differ-

ence in comparison to its single-carrier counterpart is that the assigned

bandwidth for each symbol sk is compressed by a factor of Nc, where Nc

is the number of transmitted symbols. In Fig. 2.10, Nc = 3. As with

the single-carrier case, the symbols are still recoverable because of the

ISI-free points in the frequency-domain. Thus, all we need to do at the

receiver side is to sample at these points in the frequency domain.

Embedding the information symbols sk on sinc functions, in the fre-

quency domain, facilitates a simple channel equalizer. Since, the signal

is convolved with a time-domain channel, equivalently, in the frequency

domain, the OFDM frequency response is multiplied with the channel fre-

quency response. This effect is shown in Fig. 2.11. As seen in the figure,

even after the multiplication operation, at the ISI-free points, there is no

interference from neighboring symbols. Thus, at the receiver side, after

sampling at the zero crossings in frequency domain, we can just divide

by the estimate of channel frequency response to obtain estimates of the

transmitted symbols. Essentially, the channel equalizer is a one-tap filter.
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Figure 2.12. Subcarrier assignment of users in OFDMA.

2.3.2 OFDM in LTE-Advanced

In this section, we briefly touch upon some practical applications of OFDM.

OFDM has been used in many communication systems, for example, in

WLAN (wireless local area networks) systems and in DVB and DAB sys-

tems which are digital broadcasting systems for transmission of high qual-

ity video and audio. OFDM is also used in the latest wireless system

known as LTE-Advanced which also encompasses newer and enhanced

technologies like carrier aggregation, co-ordinated multi-point transmis-

sion, relaying, MIMO techniques and heterogeneous networks [2].

In a practical scenario, many mobile users compete for the same and

limited radio resources offered by the wireless network. Thus, the avail-

able bandwidth must be shared between mobile users in a certain man-

ner. In LTE-Advanced, the following channel bandwidths have been spec-

ified: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz and 20 MHz [47]. This offers to

the mobile operator a certain degree of flexibility. A simple illustration

of bandwidth sharing between different users is shown in Fig. 2.12. In

the figure, different users are allocated a subset of OFDM subcarriers.

Such a scheme for example is used in the down-link of LTE-Advanced.

This method of multiplexing users using OFDM is popularly known by

orthogonal frequency division multiple access (OFDMA). Of course, vari-

ous choices exist for mapping of subcarriers to users. For example, the

subcarrier mapping to users in Fig. 2.12, is contiguous in nature. In a

distributed mapping, users are assigned to non-contiguous subcarriers.

To enable efficient distribution and scheduling of physical layer resources

among mobile users, a ‘standard unit’ of resource needs to be defined.

Such a specification of a standard unit in LTE-Advanced is shown in

Fig. 2.13. A ‘physical resource block’ in LTE-Advanced is defined as a

group of twelve subcarriers for one slot of an LTE frame. Typically, one

slot of length 0.5 milliseconds consists of seven OFDM symbols but can

also contain six OFDM symbols [48]. In Fig. 2.13, the group of blocks
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Figure 2.13. A physical resource block (all blocks in red color) in LTE-Advanced. Each
slot of an LTE frame typically consists of seven OFDM symbols.

shown in red color constitute one physical resource block. The base sta-

tion is primarily responsible for scheduling the mobile users by proper

allocation of physical resource blocks. For example, each user may be al-

located dedicated non-overlapping physical resource blocks. On the other

hand, a single physical resource block may be shared between users.

We end this section with a brief comment on the future of OFDM, espe-

cially in the upcoming 5G wireless systems. It has been recognized that

OFDM is not the ideal waveform, and it has its drawbacks. For exam-

ple, in LTE-Advanced itself, in the up-link a modified version of OFDM,

also called single-carrier frequency division multiplexing, is used. Such a

modification is used because OFDM signals have high PAPR which leads

to higher power consumption. Such a situation may not be tolerable for

mobile devices, especially in the smart-phone business which is a fiercely

contested market. This particular drawback and others are encouraging

researchers to seek new multi-carrier waveforms and also to modify the

existing OFDM waveform [49]. For example, constant envelope OFDM is

one such variant of OFDM that seeks to alleviate the high PAPR of con-

ventional OFDM [50].

2.3.3 OFDM System Model with Phase Noise

In this section, the mathematical formulation of a communication link

impaired by both transmit and receive phase noise is presented. The

communication link employs the OFDM modulation scheme. OFDM is

essentially an information representation method, wherein information

symbols are packed using sinc functions in the frequency domain. The

process of embedding information symbols using OFDM is implemented
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Figure 2.14. OFDM system model.

in the DSP of the direct-conversion transceiver of Fig. 2.1, while the ana-

log front-end is responsible for the transmission of the baseband OFDM

signal. In this section, a brief overview of the functionality of an OFDM

modulator and demodulator are presented. We assume that the oscillator

device of the analog front-end is the only source of noise; while the associ-

ated problems from other devices are either negligible in nature because

of high quality devices used or already compensated for. Our aim here is

to present the input-output relation that takes into account phase noise

at the transmitter and receiver, respectively.

Figure 2.14 shows a communication link with an OFDM modulator and

demodulator at the transmitter and receiver, respectively. The Nc × 1

vector s = [s0 s1 . . . sNc−1]
T represents the information to be transmitted

using OFDM. This is done by first performing an inverse discrete Fourier

transform (IDFT) on the sequence sk. With such an operation, the sym-

bols sk are mapped to orthogonal and windowed exponential sinusoidal

signals whose frequency response is given by the sinc function as seen in

Fig. 2.10. The result of the IDFT operation is a time-domain signal. The

cyclic prefix block appends a small amount of redundancy to the OFDM

signal. This is done to counter the effect of ISI between OFDM blocks.

The amount of redundancy, quantified by the length of the cyclic prefix

denoted by Ncp, should typically be greater than the channel impulse re-

sponse length. The resulting discrete signal is then transformed to the

analog domain by the DAC and up-converted to the RF carrier frequency,

denoted by fc, by means of the mixer device and oscillator. The oscillator
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delivers the carrier signal oT(t) = ej(2πfct+θT(t)) whose phase varies ran-

domly because of the phase noise θT(t). The signal is then transmitted

through a bandpass channel denoted by hbp(t).

At the receiver side, the received RF signal is corrupted by additive re-

ceiver noise (not shown in figure) and down-converted to baseband fre-

quency by mixing with the oscillator signal oR(t) = e−j(2πfct−θR(t)), where

θR(t) denotes the receiver phase noise. The inverse operations of the

transmitter side are performed, i.e., analog-to-digital conversion, removal

of cyclic prefix and, finally a discrete Fourier transform (DFT) operation

to obtain the received symbol vector r = [r0 r1 . . . rNc−1]
T. The expression

relating r and s, based on the functional blocks in Fig. 2.14, can be easily

derived and is given by [51,52]

r = VRHVTs+w, (2.1)

where H is a diagonal matrix composed of elements {Hk}Nc−1
k=0 which are

the DFT of h[n], i.e.,

Hk =

Nc−1∑
n=0

h[n]e−j(2πkn)/Nc , k = 0, 1, . . . , Nc − 1. (2.2)

The quantity h[n] is the discretized version of the low-pass equivalent of

the bandpass channel hbp(t) [53]. The vector w denotes the white Gaus-

sian receiver noise with diagonal covariance matrix whose diagonal val-

ues are equal to σ2
w. The unitary matrix Vx, x ∈ {T, R}, is column-wise

circulant with the first column vector δx whose elements are given by

δxk =

Nc−1∑
n=0

ejθx[n]

Nc
e−j(2πkn)/Nc , k = 0, 1, . . . , Nc − 1, (2.3)

where θx[n] is the discretized version of θx(t) which is the continuous-time

phase noise.

Equation 2.3 is nothing but the DFT of the complex exponential of the

phase noise. The reader would come to appreciate (2.1), especially, when

observing its association with that of Fig. 2.14. From Fig. 2.14, at the

transmitter side, after the DAC operation, the time-domain signal gets

multiplied with oscillator signal in the mixer device. This amounts to a

convolution operation in the frequency domain, and the result, in (2.1),

is represented by the quantity VTs, where VT is the circular convolution

matrix. The signal then goes through the channel which in the frequency

domain amounts to multiplication and, thus, we have the term HVTs,

where H is a diagonal matrix. At the receiver side, in the time domain,
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another multiplication operation between the received signal and the os-

cillator signal which in frequency-domain is represented by a convolution

operation and, hence, the result is given by VRHVTs. At this point, we

caution the reader that the aforementioned description is not a detailed

derivation of (2.1) but, rather, to put (2.1) in context with Fig. 2.14.

Some key insights on the behavior of phase noise with respect to OFDM

can be obtained by zooming in on a specific symbol rj whose expression is

given by

rj =
(Nc−1∑

i=0

δRi−jHiδ
T
−i+j

)
sj +

Nc−1∑
k=0,k �=j

(Nc−1∑
i=0

δRi−jHiδ
T
−i+k

)
sk + wj . (2.4)

From (2.4), we see that the desired symbol sj is corrupted by two terms: A

multiplicative distortion term given by
(∑Nc−1

i=0 δRi−jHiδ
T
−i+j

)
, also known

as common phase error (CPE); The second term is known as the inter-

carrier interference (ICI) which is an added noise contribution to sj and is

given by second term in (2.4). In order to appreciate the effect of phase

noise, we need to see how (2.4) reduces when there is no phase noise. In

the absence of the phase noise, we have that Vx = INc , where INc is the

Nc ×Nc identity matrix. Equation (2.1), thus, reduces to r = Hs+w and,

hence, rj = Hjsj + wj ; That is there is no more any CPE or ICI.

2.4 Phase Noise Modeling

Modeling physical phenomena and systems that process them provides

valuable insight and understanding about their behavior. In this section,

we concern ourselves with modeling the phase noise process. Phase noise

modeling (more precisely, we model the oscillators) helps establishes the

relation between certain key oscillator parameters and the phase noise

process itself. Typically, the oscillator device is made up of noisy integrated-

circuit components, and the goal in modeling is to understand or, at the

least, provide a relation between these various noise sources and the re-

sulting phase noise process.

Oscillators are physical and, in most cases, man-made devices that pro-

duce periodic signals. The periodic nature of the oscillator signal provides

for excellent time-keeping which is essential in digital systems. With re-

gard to telecommunications and in addition to providing a time reference,

they are also used for information transmission, i.e., the oscillator signal

acts as an information carrier. In this thesis, we concern ourselves with

only sinusoidal signals generated by an oscillator device. An ideal oscilla-
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tor produces signals of the form

o(t) = ej2πfct, (2.5)

where fc denotes the frequency of the exponential sinusoid. In the con-

text of telecommunications, fc would be the carrier frequency. In (2.5),

we use, for convenience, the complex-representation of a sinusoid rather

than the real-representation which is what oscillator devices physically

produce. Unfortunately, oscillators are physical devices and, thereby, are

prone to inherent noise sources that exist in the components that make

up the oscillator. These noise sources eventually render a noisy version of

o(t) which mathematically is expressed as

o(t) = (1 + a(t))ej(2πfct+θ(t)), (2.6)

where θ(t) denotes phase noise and a(t) denotes the amplitude noise. In

the circuit design community, these also go by the names of PM and AM

referring to the phase and amplitude modulation of the carrier, respec-

tively. It is shown in [54] that if the various noise sources in the oscillator

are small then the amplitude noise is also bounded and small. With this

fact in mind, in the rest of this section and thesis, we ignore the effect of

a(t). Of course, plenty of studies are available that seek to characterize

amplitude noise. We refer the interested reader to [19,55] and [56].

2.4.1 The Power-Law Model

By modeling of phase noise, we imply either a time domain characteriza-

tion of the signal θ(t) or a spectral characterization, for example, through

the power spectral density (PSD). Denote the respective PSD of θ(t) and

o(t) by Sθ(f) and So(f). In the open literature, the popular power-law

model for Sθ(f) is used which generically is given by

Sθ(f) =

4∑
i=0

ci
f i

, (2.7)

where constants ci are generally obtained numerically or using actual

measurement data. The justification for the use of (2.7) is mainly driven

from experimental data on So(f), where various power-law terms domi-

nate certain regions of the spectrum [57, 58]. The relation between So(f)

and Sθ(f) is given by [59]

Sθ(f) ≈ L(f) =
So(fc + f)

Ps
, f � 0, (2.8)
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Figure 2.15. Illustration of the PSD of a practical oscillator.

where L(f) is known as the single-side-band (SSB) phase noise spectrum,

and Ps is the carrier signal power. From (2.8), the equivalence between

So(f) and Sθ(f) is valid only for large frequency offsets from the carrier

frequency. In general, the quantity L(f) is obtained experimentally and,

after using (2.8), the constants ci of the power-law model in (2.7) can be

obtained. In Fig. 2.15, an illustration of the power-law model is shown.

The PSD is typically characterized by a noise floor (white noise process)

for large frequency offsets from the carrier frequency.

The power-law model, in general, predicts well the shape of the spectral

density of So(f) for large frequency offsets. However, as seen from (2.7),

it blows up to infinity for near-carrier frequencies which is impossible as

the oscillator process is always stationary and, thus, has finite-power [54].

A hybrid model that combines a different model for near-carrier frequen-

cies and the power-law model for large frequency offsets is indeed the way

forward to a more accurate description of the phase noise spectral charac-

teristic. Some recent works in these areas can be found in [58,60,61] and

references therein. Nevertheless, the power-law model is extremely useful

for predicting phase noise behavior. In the following sections, we discuss

some general findings on the relation between this power-law character-

istic and the various noise sources that exist in the oscillator device.
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2.4.2 Phase Noise in Free-Running Oscillators

The term free-running refers to the fact that in such oscillators the phase

is allowed to drift, i.e., θ(t) grows unbounded. In most practical situa-

tions, such oscillators are never used in isolation rather they are used in

a feedback loop by means of a PLL which is the subject of the next section.

Free-running oscillators are typically characterized by various sources

of noise that eventually get modulated in a non-linear fashion to render

the undesired phase noise [57, 62]. Some of these noise types are, for ex-

ample, shot noise, thermal noise, burst noise and the so-called 1/f noise.

Shot and thermal noise are best modeled as white noise processes, while

burst and 1/f noise have a colored density spectrum [63]. In [54] and [63],

the effect of these noise sources on θ(t) and the resulting oscillator PSD is

rigorously analyzed. Using nonlinear perturbation analysis and Floquet

theory, it is shown that, asymptotically, θ(t) is a zero-mean Gaussian pro-

cess with variance that generally grows with time. Specifically, as shown

in [54], for white noise sources, θ(t) is a Wiener process whose variance is

given by

σ2
θ(t) = cwt, (2.9)

where the constant cw characterizes the white noise source. The oscillator

PSD for Wiener phase noise follows a Lorentzian and takes the form [54]

So(foff) ∝ f2
c cw

f4
c c

2
w + (foff)

2 , (2.10)

where foff represents the offset from fc. As can been seen from (2.10), the

PSD has finite power at foff = 0 and, in fact, is nearly flat for frequencies

close to fc.

In [63], the above results are extended to also include colored noise

sources. Specifically, the oscillator PSD is given by

So(foff) ∝

⎧⎪⎨
⎪⎩

f2
c (cw+SN(0))

f4
c (cw+SN(0))2+(foff)

2 , fΔ ≈ 0

f2
c

f2
off

(cw + SN(foff)) , foff � 0
(2.11)

In the above equation SN(foff) denotes the spectral density of the colored-

noise source. Typical colored noise models assume the power-law char-

acteristic for SN(foff) and, after using (2.11), for large frequency offsets,

other power-law factors can be obtained. In that sense, (2.11) validates

the use of the empirical power-law model. Using similar methods adopted

in [63], the work in [56] includes the effect of amplitude noise when deter-

mining the oscillator PSD.
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RO PFD LF VCO

Figure 2.16. Basic components constituting a PLL.

2.4.3 Phase Noise in Phase-Locked Loop Based Devices

The (unbounded) phase drift encountered in oscillators may not be accept-

able in many digital applications. To overcome this problem, some form

of feedback mechanism is always employed to keep the oscillator phase

bounded. In that respect, PLLs are widely used, where the oscillator in

question is phase locked to a reference higher quality oscillator. A typical

PLL schematic is shown in Fig. 2.16. The phase of a voltage controlled

oscillator (VCO) is compared with a high-quality reference oscillator (RO)

by means of a phase-frequency detector (PFD). The phase difference is

then low-pass filtered by a loop filter (LF) whose output drives the VCO.

The PLL is said to be locked when the RO frequency and VCO frequency

are equal and the phase difference is constant.

The sources of noise that creep into the PLL-device are the phase noise

from the free-running RO and VCO, noise sources from the PFD and the

loop filters. All these sources of noise and the construction of the PLL de-

vice affect the resulting phase noise seen at the output of the VCO. In [64],

building upon the work of [54] and using non-linear perturbation analy-

sis, the work aims to obtain a time-domain characterization of the phase

noise process in a PLL-device and also determine the PSD of the PLL

output. By assuming white noise sources and the PLL being in locked

condition, the work in [64] demonstrates that the resulting phase noise

in a PLL-device is a Gaussian process and can be expressed as a sum of

the RO Wiener process and one component of a multi-dimensional Orn-

stein–Uhlenbeck process [65]. Closed-form analytical expressions of the

oscillator PSD are also derived which can be found in [64]. Although not

obvious from the derived expressions of the PSD, through examples, it is

seen that, for low frequency offsets from the carrier frequency, the PSD is

equal to the PSD of the free-running RO, while for large offsets, it is equal

to the PSD of the free-running VCO.
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LTI Phase-Domain Model

The mathematical characterization of the PLL used in [64] is based on the

ordinary differential equation (ODE) formulation of the PLL-mechanism.

It is an accurate description of the PLL that takes into account the inher-

ent non-linearities that shape the eventual phase noise process. However,

the resulting characterization requires numerical techniques to compute

the various parameters of the model which can be quite cumbersome.

In the general literature related to phase noise analysis for PLL devices,

a linear time-invariant (LTI) approach is used, where the various noise

sources propagate in the phase domain. Figure 2.17 shows the phase-

domain LTI model for a charge-pump (CP) PLL [66]. A CP-PLL uses a

charge-pump device between the PFD and the LF. It delivers a current

charge rather than voltage to the LF. CP-PLLs are widely used in digi-

tal systems and are a popular choice among various PLL types available.

They are well known for their flexible design allowing to trade between

different design parameters. We refer the reader to [67,68] and references

therein for a better and more detailed treatment.

The second part of Fig. 2.17 shows the corresponding LTI phase-domain

model. The model includes noise sources from the PFD, LF, RO and VCO.

Also represented in the figure is the noise from the frequency dividers.

The loop filter, LF, is typically a low pass filter whose bandwidth can be

controlled by varying the LF resistance Rs and the capacitance C1 and C2.

The LTI system representing the CP device is simply the gain factor of

Ip/2π, where Ip represents the current delivered to the LF. In the second

part of Fig. 2.17, an ideal integrator with transfer function KVCO
s follows

the LF. Such a block is used in the model by recognizing that the frequency

of a VCO is controlled by its input voltage and, thus, its phase is obtained

by performing an integration operation.

Using this LTI phase-domain model, the corresponding transfer func-

tions seen by the various noise sources can be easily derived and is given

by [66]

HPLL
VCO(f) =

ΘPLL
VCO(f)

ΘVCO(f)
=

j2πfN

g(f)
, (2.12)

HPLL
RO (f) =

ΘPLL
RO (f)

ΘRO(f)
=

NIpKVCOHLF(f)

Mg(f)
, (2.13)

HPLL
PFD(f) =

ΘPLL
PFD(f)

ΘPFD(f)
=

2πNKVCOHLF(f)

g(f)
, (2.14)

HLF(f) =
1 + j2πfRsC1

j2πf(C1 + C2 + j2πfRsC1C2)
, (2.15)

where ΘPLL
W (f), W ∈ {VCO,RO,PFD}, denotes the frequency response
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Figure 2.17. Charge-pump PLL and the corresponding LTI phase-domain model.

of the output, θPLLW (t), corresponding to the input θW(t) whose frequency

response is denoted by ΘW(f). The expression for g(f) is given by

g(f) = j2πfN + IpKVCOHLF(f). (2.16)

In deriving the above equations, we assume that the noise sources are

only in the VCO, RO and PFD. By applying bi-linear transformation, we

can transform the continuous-time LTI system to a parallel discrete sys-

tem as shown in Fig. 2.18. In this thesis, we refer to such a system as
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Figure 2.18. The discrete PARMA model.

a discrete parallel auto regressive moving average model (PARMA). The

inputs θW[n] are a discretized version of their continuous-time counter-

parts. These discretized inputs are obtained by passing white Gaussian

noise through suitable input filters. For example, in Fig. 2.18, we assume

that θPFD[n] is white noise, while θRO[n] and θVCO[n] are discrete Wiener

processes which can be obtained by passing white Gaussian noise through

an LTI system with transfer function H(z) = 1
1−z−1 .

In Fig. 2.18, we have only considered three noise sources which corre-

spond to three parallel branches in the discrete PARMA model of PLL

phase noise. In general, we can extend the analysis to include other noise

sources which correspond to adding more parallel branches. Assuming L

parallel branches and denoting the overall impulse response of the pth

branch by hp[n], we have its corresponding transfer function given by

Hp(z) =
ap0 + ap1z

−1 + ap2z
−2 + . . .+ apV z

−V

1 + bp1z
−1 + bp2z

−2 + . . .+ bpV z
−V

. (2.17)

With the above transfer function, the PLL phase noise is obtained as

θ[n] =
L∑

p=1

θp[n] =
L∑

p=1

∞∑
j=1

εp[n− j + 1]hp[j], (2.18)

where θp[n] denotes the output of pth parallel filter. The L independent

zero-mean and unit variance white Gaussian inputs to the filters are de-

noted by {εp[n]}Lp=1. The term hp[j] can be obtained recursively as follows:

hp[1] = ap0 ; and hp[j] = ap(j−1)
−∑V

k=1 bpkhp[j − k].
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2.5 Summary

This chapter presented a brief motivation of the problem that this thesis

seeks to address by setting the appropriate background. In particular,

the direct-conversion architecture for the analog back-end unit was pre-

sented. It is an architecture that performs frequency conversion directly

between RF and baseband frequency. It is a popular choice for the analog

back-end unit mainly for its system on-chip integration capability which

is advantageous for its low power consumption and smaller form factor.

The major functionalities associated with this type of architecture are

power amplification, frequency conversion and analog-to-digital/digital-

to-analog conversion, where these functionalities are implemented by the

respective power amplifiers, oscillators and analog-to-digital and digital-

to-analog converters. Unfortunately, these electronic devices, like any

physical system, have their limitations and are prone to noise and, thus,

the functionalities are far from the idealistic scenario. The realistic sce-

nario is the distortion of the transmitted and received signal.

This thesis considers only the problem encountered during frequency

conversion in the analog back-end unit. Specifically, the problem of phase

noise is considered. It is assumed in this thesis that problems related

to power amplification and analog-to-digital/digital-to-analog conversion

are non-existent or somehow taken care of. At this point, the reader is

informed that there is plethora of research that addresses these other

problems of the analog unit. We refer the reader to see the references

pertaining to the relevant sections of this chapter.

The second part of this chapter is primarily about modeling. A linear

model of the communication link under the influence of both transmit and

receive phase noise is presented. The communication link employs the

very effective OFDM modulation scheme which essentially is a technique

of packing information with certain objectives in mind. The basic princi-

ple of OFDM is discussed in this chapter, and its use in practice is also pre-

sented. This linear model of the communication link serves as the founda-

tion to conduct performance analysis and at the same time in developing

phase noise estimation algorithms. Finally, the last part of this chapter is

on phase noise modeling. A brief treatment of the commonly used phase

noise models, especially, those that occur in free-running and PLL-based

oscillators are discussed. These models are standard and widely used in

the research community in general.
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OFDM with Phase Noise

Phase noise destroys the orthogonality between subcarriers of an OFDM

signal thereby resulting in each subcarrier experiencing interference from

its neighboring subcarriers. One can, thus, expect performance degra-

dation compared to the case of a phase noise-free OFDM link. Exten-

sive work, in the past two decades, has been devoted towards quantify-

ing this performance degradation which is the subject of this chapter. In

the first part of this chapter, we review some of the prior work on per-

formance analysis for OFDM systems impaired by phase noise, carrier

frequency offset or both. Typical measures of performance are the signal-

to-interference-plus-noise ratio (SINR), symbol-error probability (SEP),

bit-error probability (BEP) and channel capacity. All of these works, over-

whelmingly, demonstrate a performance drop for an OFDM system im-

paired by either phase noise or frequency offset or both.

The second part of this chapter is devoted towards the contributions

of this thesis in relation to the topics of characterization and analysis.

Specifically, the results of Publications I–IV are briefly reviewed. The

works in Publications I, II and III have a common underlying goal which

is to assess the degradation in channel capacity. In determining the ca-

pacity, interesting characterizations, related to the phase noise process,

are also discovered. For example, for slow-varying phase noise processes,

the PDF of the so-called ICI power can be approximated as a sum of cor-

related gamma random variables. Phase noise affects the channel capac-

ity through this ICI power. The work in Publication IV is mainly about

characterization, where PDF of the spectral components of the complex

exponential of phase noise are the subject of study. It is shown that, for

slow-varying phase noise processes, the spectral components can effec-

tively be represented as the sum of independent Gaussian and gamma-

like distributed random variables.
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3.1 Prior Work on Phase Noise Analysis for OFDM

The performance of communication systems are typically evaluated us-

ing metrics such as signal-to-noise ratios (SNR), BEP, SEP and channel

capacity [69]. Some of the earliest studies investigating the performance

of phase noise impaired OFDM demonstrated performance drops in these

metrics [70–73]. These studies, however, were based on numerical sim-

ulations of the performance metrics and, hence, do not necessarily pro-

vide qualitative insight on the relationship between these metrics and

the undesired phase noise and frequency offset. Effort was, thus, directed

towards determining closed-form analytical expressions of these perfor-

mance metrics.

The works were initially focused on determining the degradation in

SINR and gradually progressed towards determining BEP and SEP. The

general expression for the SINR can be derived from the OFDM system

model impaired by both transmit and receive phase noise of (2.4). Re-

stated here, the system model is given by

rj =
(Nc−1∑

i=0

δRi−jHiδ
T
−i+j

)
sj +

Nc−1∑
k=0,k �=j

(Nc−1∑
i=0

δRi−jHiδ
T
−i+k

)
sk + wj . (3.1)

In the above equation, the desired symbol sj is corrupted by the multi-

plicative distortion term, also known as CPE, and an extra additive noise

term, also known as ICI, which represents the interference from other

symbols sk. By evaluating the average powers of the above terms, the

SINR is given by

¯̄Υj =
Pcpeσ

2
s

Piciσ2
s + σ2

w

, (3.2)

where the average CPE power and ICI power is given by

Pcpe = E

{∣∣∣Nc−1∑
i=0

δRi−jHiδ
T
−i+j

∣∣∣2
}
, (3.3)

Pici =

Nc−1∑
k=0,k �=j

E

{∣∣∣Nc−1∑
i=0

δRi−jHiδ
T
−i+k

∣∣∣2
}

(3.4)

with E {·} denoting the expectation operator. The respective signal and

noise powers are σ2
s = E

{|sj |2} and σ2
w = E

{|wj |2
}

. In the absence of

phase noise, we have Pcpe = 1 and Pici = 0, and (3.2) reduces to

¯̄Υj =
E
{|Hj |2

}
σ2
s

σ2
w

(3.5)

which is the average SNR per subcarrier without phase noise.
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Much effort in the general literature has been devoted towards evaluat-

ing meaningful expressions for Pcpe and Pici. One of the earliest works

in doing so was in [74], where the authors derive closed-form expres-

sions assuming an additive white Gaussian noise (AWGN) channel, i.e.,

{Hk}Nc−1
k=0 = 1 while also including the effect of carrier frequency offset.

This work was extended to multipath channels in [75], however, the mul-

tipath channel was a two-tap channel impulse response with equal am-

plitude. In [76], a second-order approximation of the complex exponential

of the phase noise is used in arriving at approximations for Pcpe and Pici.

A more accurate representation of Pcpe and Pici, for Wiener phase noise,

is derived in [77]. Equation (3.2) can be interpreted as the SINR with-

out CPE compensation. In [78], the authors extend the SINR analysis to

receivers that perform CPE compensation and also receivers with differ-

ential signaling.

The average SINR in (3.2) can be used to obtain the metrics of BEP

and SEP (equivalently bit-error rate (BER) and symbol-error rate (SER)).

Such an approach, for example, has been utilized in the works of [74, 76,

77]. However, this may not necessarily yield the exact BEP or SEP. In gen-

eral, for any given signal constellation and in the absence of phase noise,

the BEP and SEP depend upon the set SNR, where the receiver noise

is assumed to be white Gaussian [69]. By using the SINR expression of

(3.2) in these Gaussian-based expressions of BEP, approximate BEP and

SEP can be obtained for a phase noise impaired OFDM system. Another

approach is to assume that the ICI term in (3.1) is Gaussian and derive,

from first principles, the BEP and SEP for various signal constellations

as done in [79] and [80].

The Gaussian assumption for the ICI term no doubt renders tractable

and neat mathematical expressions of BEP and SEP. The assumption,

however, is questioned in [78], where the authors investigated the cases

where one can use the SINR of (3.2) in the Gaussian-based BEP or SEP

expressions. It was speculated that for slow-varying phase noise processes

the ICI term is not Gaussian while, for fast-varying ones, it is indeed

Gaussian. In [81], a semi-analytical approach is used to determine the

SEP for BPSK, QPSK and 16-QAM constellations without any Gaussian

assumption for the ICI term. The work is based on using the Beaulieu

series-based expansion for SEP derived for an OFDM system impaired

by frequency offset of [82]. In what can be regarded as seminal work, the

authors in [52,83] investigate the Gaussian hypothesis for the ICI term in
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(3.1), however, under the assumption of an AWGN channel. The authors

derive the asymptotic PDF of the ICI term and show that, for slow-varying

phase noise processes, it exhibits much thicker tails than the Gaussian-

based PDF assumption.

The review of prior work, performed in this section, is mainly focused

towards phase noise analysis for OFDM. By no means is this review com-

plete. In fact, numerous works are available that study the joint ef-

fects (or some combination of it) of various RF-impairments in general.

These include phase noise, jitter noise, frequency offset, IQ-imbalance

and power amplifier non-linearities. The reader may refer to some works

of [38,39,84–91] and references therein.

3.2 Contributions to Phase Noise Analysis for OFDM

This thesis presents new results derived in Publications I–IV on charac-

terization and closed-form analytical expressions of channel capacity for

OFDM systems impaired by phase noise and carrier frequency offset in

multi-path fading channels. Starting with Publication I, the channel ca-

pacity is derived assuming a Wiener phase noise model, while in Publica-

tion II, the analysis is extended to PPL-based phase noise processes which

is modeled using a discrete PARMA model. These results are extended in

Publication III to also include the effect of carrier frequency offset.

In addition to the final objective of determining the channel capacity,

some new characterization of the phase noise variables are also discov-

ered. For example, in Publications I and II, it is shown that, for slow-

varying phase noise processes, the PDF of the so-called ICI power is a

sum of correlated gamma random variables. In earlier literature, only

second-order statistics of this ICI power were available. Results on its

distribution when including carrier frequency offset are derived in Publi-

cation III. The derived ICI power PDF can also be used, for example, to

obtain the capacity of the OFDM system impaired by both phase noise and

IQ-imbalance as done in [92]. In Publication IV, for slow-varying phase

noise processes, the PDF of the real and imaginary parts of the spectral

components of the complex exponential of phase noise are derived. It is

shown that they can effectively be represented as a sum of two indepen-

dent random variables: The first is a stronger Gaussian random variable;

and the second is a weaker gamma-like random variable.

36



Characterization and Analysis of OFDM with Phase Noise

3.3 Characterization and Analysis

We now summarize the works presented in Publications I–IV. Specifically,

this summary is about the common underlying methodology adopted in

these works. The specifics related to each of these works are mentioned

at the appropriate places.

3.3.1 The Instantaneous SINR

Equation (3.2) is an estimate of the average SINR, where the expectations

of the numerator terms and denominator terms are desired. As can be

seen from (3.2), the numerator and denominator involve the same phase

noise and channel variables. Thus, strictly speaking, (3.2) is not an accu-

rate physical description of the average SINR. In order to obtain a more

rigorous formulation, a conditional SINR must first be evaluated, where

the channel and phase noise variables are conditioned on a fixed realiza-

tion. This conditional SINR is given by

Υj =

∣∣∣∑Nc−1
i=0 δRi−jHiδ

T
−i+j

∣∣∣2σ2
s∑Nc−1

k=0,k �=j

∣∣∣∑Nc−1
i=0 δRi−jHiδT−i+k

∣∣∣2σ2
s + σ2

w

. (3.6)

From (3.6), we see that the SINR, for any jth subcarrier, depends on a par-

ticular realization of the channel through Hi and the phase noise through

δXi . For different realizations of the channel and phase noise, we get dif-

ferent realizations of Υj and, thus, we see that the SINR can be described

as a random variable.

An accurate approximation to (3.6) can be found based on the following

assumptions: First, the oscillator PSD 3-dB bandwidth, denoted by f3dB,

is much smaller than the subcarrier spacing which is denoted by fsub; and

second, the channel coherence bandwidth is much larger than fsub. For

example, oscillator PSD 3-dB bandwidth are in the range of a few hun-

dreds of Hertz which is much smaller than the 15 kHz subcarrier spacing

specified for LTE [47,93,94]. On the other hand, the coherence bandwidth

of wireless channels are in the order of several hundreds of kilo Hertz. In

Publications I and II, these assumptions are used to arrive at a simpler

expression for (3.6) and is given by

Υj ≈ |δ0|2|Hj |2σ2
s

|Hj |2
(∑Nc−1

k=1 |δk|2
)
σ2
s + σ2

w

=
1− Y

Y + σ2
w

σ2
sGj

. (3.7)

The random variables Y and Gj characterize the phase noise and channel
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respectively and are given as follows:

Y =

Nc−1∑
k=1

|δk|2; Gj = |Hj |2, (3.8)

where the coefficient δk denotes the DFT of the combined transmit and

receiver phase noise, i.e.,

δk =
1

Nc

Nc−1∑
n=0

ej(θ
T [n]+θR[n])e−j(2πkn)/Nc . (3.9)

Equation (3.7) is useful compared to (3.6) in the following ways: It is

simpler as it is characterized by only two independent random variables

Y and Gj ; It provides some insight on the relation between Υj and phase

noise. In the absence of phase noise, we have δ0 = 1 and δk = 0 for k > 0

which implies Y = 0 and, hence,

Υj =
|Hj |2 σ2

s

σ2
w

(3.10)

which is the SNR of an OFDM radio link without phase noise. However,

in the presence of phase noise, we have Y > 0 which results in a reduction

from the phase noise-free case. In this thesis, we refer to the random

variable Y as the ‘ICI power’.

The SINR in (3.7) depends on particular realizations of the independent

random variables Y and Gj . Thus, Υj in (3.7) is also a random variable,

and any statistical measure based on it will require knowledge of the dis-

tributions of Y and Gj . The random variable Gj characterizes the channel,

and its distribution is well defined assuming a complex Gaussian channel.

The distribution of Y , however, is not obvious at cursory glance and, in or-

der to determine the distribution, the characterization of Y in terms of

known well-defined elements is required. In Publications I and II, such a

characterization is sort after using which the distribution of Y is derived.

3.3.2 Characterization of ICI Power

The characterization of the ICI power is first investigated in Publication

I for the Wiener phase noise process, and in Publication II, the result is

extended to the discrete PARMA phase noise model for PLL-based phase

noise processes. Using Taylor series approximation, the ICI power is ex-

pressed as a sum of correlated gamma random variables and is given by

Y ≈
Nc−1∑
l=1

Nc−l∑
i=1

Zil, (3.11)
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where

Zil =
1

N2
c

(
Δθ[i, l]

)2
, (3.12)

Δθ[i, l] = θ[i+ l − 1]− θ[l − 1]. (3.13)

The combined transmit and receive phase noise process is

θ[n] = θT [n] + θR[n]. (3.14)

Typically, θ[n] is characterized as a zero-mean Gaussian process. For ex-

ample, for a discrete Wiener phase noise process, we have

θ[n] =
n∑

i=1

ε(i), (3.15)

where the i.i.d. ε(i) are zero-mean Gaussian with some variance. This

implies that Δθ[i, l] is also zero-mean Gaussian distributed and, hence,

Zil follows a gamma distribution with parameters α = 1
2 and β = βil

which is a function of the variance of Δθ[i, l]. Thus, we see that Y can be

characterized by the sum of correlated gamma random variables.

3.3.3 PDF of Sum of Gamma Variates

The gamma random variables in (3.11) have a nice structure in the sense

that the α parameter for all of them is the same and is equal to 1
2 . This

arises due to the assumption that θ[n] is zero-mean Gaussian. All the

more, the random variables Zil are correlated. This is because Δθ[i, l] is

constructed from a set of Nc random variables {θ[n]}Nc−1
n=0 which in turn

can be described using a finite set of independent Gaussian random vari-

ables. In Publication I, the PDF of a sum of correlated gamma random

variables is derived using the Moschopoulos technique [95]. The PDF de-

rived in Publication I is a generalization of the result of [96] which is

applicable only for full-rank covariance matrix of the gamma variables.

In (3.11), the gamma variables have a rank-deficient covariance matrix.

The following theorem summarizes the result.

Theorem 3.3.1. Let {Zn}Nn=1 be a set of N correlated gamma variates

(Zn ∼ G(α, βn)) with normalized covariance matrix Mz of any rank R ≤ N .

Then, the PDF of Y =
∑N

n=1 Zn is given as

pY (y) =
R∏

n=1

(
λ1

λn

)α ∞∑
k=0

⎛
⎝ ζky

Rα+k−1e
−y
λ1

λRα+k
1 Γ(Rα+ k)

⎞
⎠ , (3.16)
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where {λn}Rn=1 are the ordered eigenvalues of the matrix PBPTΔ with λ1

being the minimum. The P and Δ matrices are obtained from eigenvalue

decomposition of Mx which is related to Mz as

(Mx)ij =
√
(Mz)ij , i, j = 1, 2, . . . , N, (3.17)

Mx = CΣCT, Σ =

⎡
⎣ΔR×R 0

0 0

⎤
⎦ , (3.18)

C =
[
c1 c2 . . . cR Ω1 Ω2 . . . ΩN−R

]
, (3.19)

P = [c1 c2 . . . cR]
T, B = diag(β1 β2 . . . βN ). (3.20)

The weights ζk, k = 0, 1, 2, . . ., are given as

ζ0 = 1, ζk+1 =
α

k + 1

k+1∑
i=1

( R∑
j=1

(1− λ1

λj
)i
)
ζk+1−i. (3.21)

Proof. See Publication I.

A careful observation of (3.16) provides a nice interpretation of the PDF

of Y : Firstly, we note that the parenthesis term in (3.16) represents a

gamma distributed PDF; and thus, the PDF of Y is expressed as a weighted

sum of gamma distributed PDFs with weights ζk.

PDF of ICI Power under the Wiener Model

Theorem 3.3.1 can be used to determine the PDF of Y in (3.11). In Pub-

lication I, the parameters of the PDF of (3.16) for a Wiener phase noise

model are derived. Of interest and importance is to relate the behavior of

the PDF with the ratio ρ = f3dB
fsub

which is a measure of the level of inter-

carrier interference. The behavior of the PDF in (3.16) is mainly dictated

by the parameters R and λ1 which is the smallest eigenvalue. In Pub-

lication I, for a Wiener phase noise model, it is shown that R = Nc − 1

and

λ1 ∝ 4πf3dBNc

fsub
= 4πρNc, (3.22)

where ρ = f3dB
fsub

. From (3.22), we see that λ1 increases linearly with ρ and,

thus, we can expect a broadening in the PDF of Y . This is illustrated

in Fig. 3.1, where we plot the PDF of Y for different values of Nc while

keeping the system bandwidth and f3dB fixed. Since, the bandwidth is

kept constant, varying Nc implies varying fsub, and hence, ρ also varies.
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Figure 3.1. PDF of the ICI power for different values of Nc. The bandwidth of the OFDM
system is set to 625 kHz and f3dB = 200 Hz.

PDF of ICI Power under the PARMA Model

For modeling phase noise in PLL-based devices, a discrete PARMA model

is used which consists of a set of parallel auto-regressive-moving average

filters. The resulting phase noise is given by

θ[n] =

L∑
p=1

θp[n] =
L∑

p=1

∞∑
j=1

εp[n− j + 1]hp[j], (3.23)

where θp[n] is the output from the pth parallel filter (with impulse re-

sponse hp[n]) corresponding to zero-mean, unit-variance white Gaussian

inputs denoted by εp[n]. We refer the reader to Chapter 2.4.3, where

the relation between the filter coefficients and PLL device parameters is

given. Utilizing this model, the expression for the gamma variables Zil

can be derived and is given by

Zil ∼ G
⎛
⎝1/2,

2

N2
c

L∑
p=1

σ2
ηilp

⎞
⎠ , (3.24)

where the variance σ2
ηilp

is given by

σ2
ηilp

=
i∑

j=1

h2p[j] +

Np∑
j=1

(hp[i+ j]− hp[j])
2 . (3.25)

Since the diagonal matrix B, defined in (3.20), is composed of elements

βil =
2

N2
c

L∑
p=1

σ2
ηilp

(3.26)
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Figure 3.2. Comparison between simulated and analytical PDF plots of Y for different
subcarrier spacings fsub and phase noise PSD bandwidths obtained by vary-
ing the loop filter resistance Rs. The solid lines represent the analytical PDF
while the marker lines represent the simulated histograms. The OFDM sys-
tem bandwidth is 9.14 MHz. The PARMA filter parameters are given in Pub-
lication II.

and λ1 is the eigenvalue of PBPTΔ, we have that

λ1 ∝ σ2
ηilp
. (3.27)

In Fig. 3.2, we plot the PDF of the ICI power for a PARMA phase noise

model. The PARMA filter coefficients are obtained assuming a charge-

pump PLL device. Such a device is shown in Fig. 2.17. The filter coeffi-

cients are obtained as described in Chapter 2.4.3. The phase noise band-

width is controlled by varying the loop filter resistance Rs of the charge-

pump PLL. An increase in Rs causes the PDF to spread over higher values

of magnitude as seen in the figure. This behavior can also be explained us-

ing the PDF expression of (3.16). Firstly, the second term in (3.25) can be

interpreted as the correlation between the impulse response coefficients

of the pth parallel filter hp[j]. Thus, for fast-varying phase noise processes

(large values of Rs), we can expect less correlation between the coefficients

of hp[j] and, thus, the second term is large which essentially results in a

large value for λ1 in (3.27). This effectively renders the PDF of Y towards

higher values of magnitude.

Second-Order Statistics of ICI Power: The mean and variance of

the ICI power can derived analytically using the PDF of (3.16). The mean
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is evaluated as follows:

Ȳ = E {Y } =

∫ ∞

0
ypY (y)dy

= K

∞∑
k=0

ζk

∫ ∞

0

yRα+ke
−y
λ1

λRα+k
1 Γ(Rα+ k)

dy, (3.28)

where K =
∏R

n=1

(
λ1
λn

)α
. The integral above is of the form [97],

∫ ∞

0
xv−1e−μxdx = μ−vΓ(v). (3.29)

Applying (3.29) in (3.28), the final result for the mean is given by

Ȳ = Kλ1

( ∞∑
k=0

ζk
Γ(Rα+ k + 1)

Γ(Rα+ k)

)
. (3.30)

The variance of the ICI power is given by

σ2
Y = E

[
(y − Ȳ )2

]
= E

[
y2
]− Ȳ 2,

=

∫ ∞

0
y2pY (y)dy − Ȳ 2. (3.31)

Substituting the PDF of Y in (3.31) and making use of (3.29), we obtain

σ2
Y = Kλ2

1

( ∞∑
k=0

ζk
Γ(Rα+ k + 2)

Γ(Rα+ k)

)
− Ȳ 2. (3.32)

From (3.30) and (3.32), we see that the mean and variance depends

on the phase noise process through λ1 which is in direct proportion to

the level of phase noise. For fast-varying phase noise processes λ1 takes

higher values of magnitude which consequently imply larger values for

the mean and variance of the ICI power.

3.3.4 Average Capacity

Channel capacity is a measure of the number of bits that can be transmit-

ted through the channel with a very small error probability. In addition

to SINR, SEP and BEP, channel capacity is a standard performance met-

ric used in assessing the performance of a communication system. For an

AWGN channel, the channel capacity is a function of the SNR or SINR in

our case and is given by

Cj = log2(1 + Υj), (3.33)

where Υj is the SINR seen by the jth subcarrier.

The capacity in (3.33) is applicable only under certain assumptions: The

total additive noise must be Gaussian. In our case, the additive noise
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given in (3.1), is the ICI plus the receiver Gaussian noise. As shown

in [83], for slow-varying phase noise processes, the ICI is not Gaussian,

thereby, the effective noise is non-Gaussian in general. Thus, in a strict

information-theoretic sense, Cj is not the average capacity. However, it

is the mutual-information assuming a Gaussian input alphabet for the

transmitted symbols sj . This is seen as follows: For a fixed realization of

the channel and phase noise, the ICI plus receiver noise is Gaussian dis-

tributed. The SINR for this realization is given by Υj of (3.7) and, thus,

the capacity for this Gaussian alphabet is obtained using (3.33). Such an

approach of evaluating the channel capacity was also utilized in [98] for

an OFDM link impaired by IQ-imbalance and in [92] for an OFDM link

impaired by IQ-imbalance and phase noise. We shall, thus, refer to Cj of

(3.33) as the capacity of (3.1) assuming a Gaussian input alphabet.

In Publications I and II, closed-form expressions of the average capacity

are derived. It is obtained as follows: First Cj is averaged over the PDF of

Y in (3.16), and the result is given by

C̄j = log2 (1 + γj)−K
∞∑
k=0

ζk log2 (1 + bkγj) , (3.34)

where γj =
gjσ

2
s

σ2
w

denotes the instantaneous signal-to-noise ratio (SNR)

with gj being the realization of the random variable Gj = |Hj |2 and

bk =
Γ(R/2 + k + 1)λ1

Γ(R/2 + k)
. (3.35)

The parameters K and ζk are defined in (3.16). Equation (3.34) is the ca-

pacity for a given realization of the channel gj and has a nice interpreta-

tion: The first term represents the capacity without phase noise while the

second term arises because of phase noise. Without any phase noise, the

second term is zero since λ1 = 0. However, in the presence of phase noise,

we have a non-zero contribution from the second term, and the overall

effect is a net-reduction from the phase noise-free case.

The average capacity, denoted by ¯̄Cj , is obtained by averaging C̄j over

the PDF of gj . Assuming a Rayleigh fading channel which implies that gj
is exponentially distributed, the final expression for the average capacity,

derived in Publications I and II, is given by

¯̄Cj = log2(e)

[
e

1
γ̄j E1

( 1

γ̄j

)
−K

∞∑
k=0

ζke
1

bkγ̄j E1

( 1

bkγ̄j

)]
, (3.36)

where E1(·) is the exponential integral function of order one and γ̄j =
ḡjσ

2
s

σ2
w

is the average SNR with ḡj = E {gj}. Similar to (3.34), the first term
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Figure 3.3. Capacity plots of C̄j and ¯̄Cj for different phase noise PSD bandwidths obtained
by varying the loop filter resistance Rs in the PARMA phase noise model.
The markers and solid/dashed lines represent the simulations and analytical
plots, respectively. The PARMA filter parameters are given in Publication II.

in (3.36) is the average capacity for a Rayleigh fading channel without

phase noise, while due to phase noise, we have the non-zero second term in

(3.36), and the result is a net-reduction from the Rayleigh fading capacity.

Figure 3.3 shows plots of the capacities of (3.34) and (3.36). The OFDM

bandwidth is 9.14 MHz with Nc = 4096. Channel is Rayleigh faded with 50

taps of exponential power delay profile with coherence bandwidth set to

400 kHz. The phase noise process used to generate these figures is of the

discrete PARMA type. The phase noise bandwidth is controlled by varying

the loop filter resistance Rs, and it increases with increase in Rs. As seen

from Fig. 3.3, the presence of phase noise causes a reduction in the capac-

ity when compared to the fixed channel case or Rayleigh fading case. This

behavior of the capacity in (3.34) and (3.36) w.r.t. phase noise is through

the parameter λ1. In general, λ1 is directly proportional to the phase noise

bandwidth (see Section 3.3.3). As this bandwidth increases, for example

in the PARMA model by varying Rs, λ1 increases and, hence, the second

terms in (3.34) and (3.36) increase, thereby, resulting in a larger reduction

from the fixed channel and Rayleigh fading capacities.

Equations (3.34) and (3.36) represents the capacity for a particular (j)th

subcarrier. The net throughput of the system is obtained by summing

the capacities over all subcarriers and dividing the result over the OFDM

symbol duration which is (Nc+Ncp)Ts, where Ncp is the cyclic prefix length
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Figure 3.4. Net throughput plots of (3.37) for different phase noise PSD bandwidths ob-
tained by varying the loop filter resistance Rs. The markers and solid/dashed
lines represent the simulations and analytical plots, respectively. The
PARMA filter parameters are given in Publication II.

and Ts is the sampling period. For the fixed channel case, we consider the

realization wherein {γj}Nc−1
j=0 are equal and, for the fading case, {γ̄j}Nc−1

j=0

are set to the same average SNR. The net throughput is given by

C̄ =

Nc−1∑
j=0

C̄j
(Nc +Ncp)Ts

= ηFsC̄j , ¯̄C =

Nc−1∑
j=0

¯̄Cj
(Nc +Ncp)Ts

= ηFs
¯̄Cj , (3.37)

where Fs = 1/Ts is sampling frequency and η = Nc/(Nc+Ncp) is a measure

of the loss in efficiency due to cyclic prefix.

Figure 3.4 shows the net throughput as a function of Nc for a fixed Ncp =

64. In the absence of phase noise, ¯̄C and C̄ (shown by the black curves)

increase with Nc and saturates to a particular value for Nc � 1. This

is because η → 1 for Nc � Ncp, i.e., the efficiency can be improved by

choosing a large value of Nc in comparison with Ncp. However, in the

presence of phase noise, we see that there is an optimal Nc for which C̄
and ¯̄C are maximum. This can be explained as follows: For a fixed phase

noise bandwidth, we know that C̄j and ¯̄Cj decrease when Nc is increased.

Thus, we have two conflicting scenarios, where C̄ and ¯̄C increase with η

and decrease with C̄j and ¯̄Cj , simultaneously. Thus, we could expect C̄ and
¯̄C to increase with Nc up to a maximum as long as fsub is large enough to

cause the ICI to be small. Beyond this maximum, if fsub is decreased then

the resulting ICI causes C̄j and ¯̄Cj to decrease much faster compared with

the increase in η as evidenced in Fig. 3.4.
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3.4 Characterization and Analysis Including Frequency Offset

The work in Publication III extends the analysis of Publications I and II

to include the effect of carrier frequency offset. In this section, we sum-

marize the results of Publication III.

The goal is to obtain analytical expressions of average capacity when the

OFDM radio link is perturbed by both phase noise and carrier frequency

offset. The starting point is the instantaneous SINR which is given by

Υj =
1− Y

Y + σ2
w

σ2
sGj

, (3.38)

where Y =
∑Nc−1

k=1 |δk|2 is the ICI power and Gj = |Hj |2. The coefficients

δk denote the DFT of the combined transmitter and receiver phase noise

along with frequency offset and is given by

δk =
1

Nc

Nc−1∑
n=0

ej(θ[n]+2π
fΔ
Nc

n)e−j(2πkn)/Nc , (3.39)

where θ[n] = θT [n] + θR[n] and fΔ = foff
fsub

; foff denotes the frequency offset.

From the definition of fΔ, it is the normalized carrier frequency offset,

where the normalization is w.r.t. fsub. The SINR expression of (3.38) is

of the exact same form as (3.7) which is the SINR with only phase noise.

These are, however, different because now Y also incorporates informa-

tion about the frequency offset.

3.4.1 Characterization of ICI Power

A suitable characterization of the ICI power is desired such that it facili-

tates evaluation of its PDF. Assuming a slow-varying phase noise process,

such a characterization can be obtained using a Taylor series approxima-

tion and is given by

Y ≈ d+ xT (a+Bx) , (3.40)

where x is an Nc(Nc − 1)/2 dimensional Gaussian random vector with

elements Δθ[i, l] = θ[i + l − 1] − θ[l − 1] whose variance σ2[i, l] = iσ2 for

i = 1, 2, . . . , Nc−l and l = 1, 2, . . . , Nc−1. The respective diagonal elements

of the diagonal matrix B and the elements of the column vector a are
cos(φi)
N2

c
and 2 sin(φi)

N2
c

for i = 1, 2, . . . , Nc − l and l = 1, 2, . . . , Nc − 1, where

φi =
(
2π fΔ

Nc
i
)

. The constant d is given by

d = 1− 1

Nc

[
1 +

2

Nc

Nc−1∑
l=1

Nc−l∑
i=1

cos(φi)

]
. (3.41)
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From (3.40), we see that the ICI power is given by the sum of Gaussian

and gamma distributed random variables. In the absence of frequency

offset, we have a = 0 and B is the identity matrix, and thus, Y reduces to

(3.11) whose PDF is given by (3.16).

3.4.2 PDF of Sum of Gamma and Gaussian Variates; Type I

The ICI power of (3.40) is given as a sum of correlated gamma and Gaus-

sian distributed random variables. The diagonal elements of the diagonal

matrix B take the form of cos (φi) which depending upon the value of the

fΔ can result in a positive, negative or zero value. Enforcing the restric-

tion fΔ ≤ 1
4 ensures that B is of full rank with positive diagonal values.

With this assumption for the matrix B, the PDF of Y can be derived on

similar lines, as done for Theorem 3.3.1, by using the Moschopoulos tech-

nique, however, with some modifications [95]. We now have the following

theorem1:

Theorem 3.4.1. Let Y = d+ xT (a+Bx). Assume the diagonal matrix B

to be of full rank with positive diagonal elements. Denote by Mx, of rank

R, as the covariance matrix of the N -dimensional Gaussian random vector

x. The PDF of Y is given by

pY (y) = K
∞∑
k=0

ζk(y − μ)
R
2
+k−1e

−(y−μ)
λ1

λ
R
2
+k

1 Γ(R2 + k)
U(y − μ), (3.42)

where U(y) is the unit step function. The coefficients ζk are obtained recur-

sively as follows:

ζ0 = 1, ζk+1 =
0.5

k + 1

k+1∑
i=1

⎡
⎣ R∑
j=1

(1− λ1/λj)
i

(
1 +

ibj(λ1/λj)

(1− λ1/λj)

)⎤⎦ ζk+1−i,

(3.43)

where {λi}Ri=1 are the ordered non-zero eigenvalues (λ1 being the minimum)

of the matrix 2Δ1/2PBPTΔ1/2 with eigenvalue decomposition VΛVT. The

vector c =
(
VTΔ1/2Pa

)
whose elements are denoted by ci, and bi = c2i /λ

2
i .

The constant K = KpKc: Kp =
∏R

i=1

(
λ1
λi

) 1
2 ; and Kc = e−

1
2

∑R
i=1 bi . The

delay factor μ = d − τ , where τ = 1
2

∑R
i=1 biλi and P =

[
IR 0R×(N−R)

]
CT.

The matrix C is obtained from Mx = CΣCT which is an eigendecompo-

sition of Mx. The matrix Δ is diagonal whose elements are the non-zero

eigenvalues of Mx.
1In Publication IV, a general result on the PDF of Y = xT (a+Bx) is derived,
where the restrictions of full-rank B and positive diagonal elements are removed.
This general case is referred to as Type II and is summarized in Theorem 3.5.1.
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Proof. A short version of the proof is given in Publication III. An elaborate

version is given in Appendix A.

In Fig. 3.5, we plot some PDF curves of the ICI power under the influ-

ence of carrier frequency offset and phase noise. The phase noise model

used to generate these curves is the Wiener model. We consider slow and

fast varying phase noise cases shown, respectively, by Figs. 3.5a and 3.5b.

First, we observe that there is good agreement between analytical PDF

of the ICI power of (3.42) and the simulated PDF shown by the marker

lines. From Fig. 3.5a, for the slow varying case, we observe that the ICI

power is more sensitive to the frequency offset demonstrated by the PDF

getting broader and shifting to higher values of magnitude while, for the

fast-varying case, the PDF is predominantly dictated by phase noise and

seems insensitive to frequency offset. This behavior of the ICI power can

also be inferred analytically using (3.42) whose behavior is mainly dic-

tated by the parameter λ1. We shall defer this analysis to the next section

on average capacity, where we shall see a similar pattern.

3.4.3 Average Capacity

The average capacity is derived on similar lines as done for the phase

noise-only case. The instantaneous capacity is given by Cj = log2 (1 + Υj)

which depends on the independent random variables Y and Gj . The av-

erage capacity is obtained by sequentially averaging Cj over the distri-

butions of Y and Gj . Assuming a Rayleigh fading channel, the average

capacity is derived in Publication III, and the final expression is given by

¯̄Cj = log2(e)

[
e

1
γ̄j E1

( 1

γ̄j

)
−K

∞∑
k=0

ζke
1

rkγ̄j E1

( 1

rkγ̄j

)]
, (3.44)

where E1(·) is the exponential integral function of order one, γ̄j =
ḡjσ

2
s

σ2
w

denotes the average SNR and

rk = μ+
Γ(R/2 + k + 1)λ1

Γ(R/2 + k)
. (3.45)

The first term in (3.44) represents the impairment-free channel capac-

ity in a Rayleigh fading channel, while the second term results from the

presence of phase noise and frequency offset, and the overall result is a

reduction from the impairment-free case. The dependence of ¯̄Cj on phase

noise and frequency offset is mainly through the parameter λ1. An in-

crease in the phase noise bandwidth and frequency offset value causes an

increases in λ1 which results in a reduction of the capacity.
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(a) Slow-varying phase noise case: f3dB = 10 Hz.
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(b) Fast-varying phase noise case: f3dB = 200 Hz.

Figure 3.5. Comparison between analytical and simulated PDFs of Y . The markers and
solid lines represent the simulations and analytical plots, respectively. Sys-
tem bandwidth is 9.14 MHz with Nc = 2048 and fsub = 4.5 kHz.

Figure 3.6 shows average capacity plots as a function of the average

SNR. The average capacity in the absence of phase noise and frequency

offset is also shown for the purpose of comparison which is given by the

black solid curve. This corresponds to the first term in (3.44). A general

conclusion that can be made from the figure is that there is a net re-

duction of the average capacity in presence of phase noise and frequency
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Figure 3.6. Comparison between simulated and analytical capacity plots of ¯̄Cj as a func-
tion of γ̄j for different phase noise 3dB bandwidths f3dB and carrier fre-
quency offsets foff . The markers and solid/dashed lines represent the sim-
ulations and analytical plots, respectively. System bandwidth is 9.14 MHz
with Nc = 2048 and fsub = 4.5 kHz. Channel is Rayleigh fading with 50 taps
following an exponential power-delay profile of coherence bandwidth 400 kHz.

offset. This behavior can be analyzed analytically using (3.44) which is

dependent upon the parameter λ1. In Publication III, for a Wiener phase

noise process, it is shown that λ1 ∝ f3dB. Thus, for a fixed value of the fre-

quency offset, as f3dB increases, so does λ1 which causes the second term

in (3.44) to increase.

Figure 3.7 shows the sensitivity of the capacity to phase noise and fre-

quency offset. Specifically, in Fig. 3.7a, ¯̄Cj is plotted as a function of f3dB
for different values of foff . As seen from the figure, for small values of f3dB,

the capacity is more sensitive to frequency offset when compared to the

case with high values of f3dB. This behavior can also be seen in Fig. 3.7b

where, for f3dB = 400 Hz, ¯̄Cj is practically insensitive to the carrier fre-

quency offset.

The insensitivity of the capacity to frequency offset at high values of f3dB
can also be inferred analytically. The diagonal matrix B is composed of

Nc − 1 basic elements cos(φi)
N2

c
for i = 1, 2, . . . , Nc − 1, where φi = 2π fΔ

Nc
i. The

parameter λ1 is the smallest eigenvalue of the matrix 2Δ1/2PBPTΔ1/2.

Thus, in addition to λ1 ∝ f3dB, we also have that λ1 ∝ cos
(

foff
fsub

)
. However,

fast-varying phase noise processes, the linear dependency of λ1 on f3dB

has a larger effect than the non-linear dependency on foff through the

cosine function whose range is limited between minus one and plus one.
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(a) Average capacity as a function of phase noise 3dB bandwidth for γ̄j =

20 dB.
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(b) Average capacity as a function of frequency offset for γ̄j = 20 dB.

Figure 3.7. Sensitivity of average capacity to phase noise and frequency offset. The
markers and solid lines represent the simulations and analytical plots, re-
spectively.

Thus, λ1 and, hence, ¯̄Cj in (3.44) , are practically insensitive with respect

to changes in the frequency offset and their behavior is mainly dictated

by phase noise.
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3.5 Characterization of Phase Noise Spectral Components

In the previous sections, characterization of the ICI power in terms of a

sum of gamma random variables facilitated in evaluation of the average

capacity. In this section, we seek a similar characterization of the com-

ponents of δ in terms of well-defined elements. In this thesis, we refer

to components of δ as ‘phase noise spectral components’. Such a charac-

terization is useful from the perspective of phase noise estimation, where

one way of removing phase noise is to first estimate δ and then perform

compensation.

In Publication IV, the PDF of the real and imaginary parts of δk are

derived which is then used in deriving Bayesian minimum mean square

error (MMSE) estimates. Although such an approach of estimating each

component separately is inefficient, the characterization and the resulting

PDF nevertheless point towards some interesting aspects.

3.5.1 Taylor Series Approximation of Spectral Components

The components δk are given by

δk =
1

Nc

Nc−1∑
n=0

ejθ[n]e−j(2πkn)/Nc , (3.46)

where θ[n] represents the phase noise. We can also include the effect of

carrier frequency offset, however, without any loss in generality, we only

consider phase noise. Taking the real and imaginary parts of (3.46), and

performing a second-order Taylor-series expansion while assuming that

the phase noise process is slow-varying, we arrive at

δrk ≈ drk − xT (ark +Br
k)x, δik ≈ dik + xT

(
aik −Bi

k

)
x, (3.47)

where the respective δrk and δik are the real and imaginary parts of δk; and

x = [θ[0], θ[1], . . . , θ[Nc − 1]]T. The vectors ark and aik are given by

ark =
1

Nc

[
0, sin

(−2πk

Nc

)
, sin

(−4πk

Nc

)
, . . . , sin

(−2πk(Nc − 1)

Nc

)]T
;

(3.48)

aik =
1

Nc

[
1, cos

(−2πk

Nc

)
, cos

(−4πk

Nc

)
, . . . , cos

(−2πk(Nc − 1)

Nc

)]T
.

(3.49)

The matrices Br
k = 1

2 diag
(
aik
)

and Bi
k = 1

2 diag (a
r
k). The constants

drk =

Nc−1∑
l=0

ailk; d
i
k =

Nc−1∑
l=0

arlk. (3.50)
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From (3.47), we see that, for slow-varying phase noise processes, the real

and imaginary parts of δk are given by the sum of Gaussian and gamma

random variables, where x is assumed to be Gaussian distributed.

3.5.2 PDF of Sum of Gamma and Gaussian Variates; Type II

In Publication III, the PDF of Y = d + xT (a+Bx) is derived under the

assumption of full-rank diagonal B matrix with positive diagonal values.

The result is also summarized in Theorem 3.4.1 of Section 3.4.2. However,

the theorem is not applicable to (3.47) since the diagonal matrices Br
k and

Bi
k are rank deficient as well as harboring negative diagonal values. A

similar approach to that used in Theorem 3.4.1 can be used to derive the

PDF, but it must be modified to incorporate aspects of negativity and rank

deficiency. The following theorem summarizes the general case:

Theorem 3.5.1. Let Y = xT (a+Bx), where x is an N -dimensional zero

mean Gaussian random vector with covariance matrix Mx of rank Rx, a is

a column vector and B is a real diagonal matrix of any rank. The PDF of

Y can be equivalently expressed as a convolution of a Gaussian distributed

PDF and a weighted sum of gamma distributed PDFs as shown below

PY (y + τ) = PG(y) � PN (y),

= K

⎡
⎣ ∞∑
k=0

∞∑
j=0

ηkζj

(
Rk∑
l=1

Akj
l G(y; l, β1)U(y) +

Lj∑
m=1

Ãkj
mG(−y;m, |γ1|)U(−y)

)⎤⎦

�

⎡
⎣ 1√

2πσ2
N
e
−y2

2σ2
N

⎤
⎦ , (3.51)

where � denotes linear convolution. The term G(y; k, θ) denotes a gamma

distribution with shape parameter k and scale parameter θ. The step func-

tion is denoted by U(y). The parameters βi and γi are the R positive and

L negative eigenvalues of the matrix 2Δ1/2PBPTΔ1/2. β1 is the minimum

among βi, while γ1 is the maximum among γi. The P and Δ matrices are

obtained from the eigenvalue decomposition of Mx as follows:

Mx = C

⎛
⎝Δ 0

0 0

⎞
⎠CT; (3.52)

P =
[
IRx 0Rx×(N−Rx)

]
CT, (3.53)

where the Rx×Rx Δ matrix is diagonal and consists of the non-zero eigen-

values of Mx. The coefficients in (3.51) are given as follows:

Rk =
R

2
+ k, Lj =

L

2
+ j, η0 = 1, ζ0 = 1; (3.54)
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ηk+1 =
0.5

k + 1

k+1∑
i=1

⎛
⎝ R∑

j=1

Y(i, β1, βj , uj)
⎞
⎠ ηk+1−i; (3.55)

ζk+1 =
0.5

k + 1

k+1∑
i=1

⎛
⎝ L∑

j=1

Y(i, γ1, γj , vj)
⎞
⎠ ζk+1−i; (3.56)

Y(i, x, y, r) =
(
1− x

y

)i [
1 +

ir
y
x − 1

]
; (3.57)

Akj
l =

(Rk + Lj − l − 1)!( 1
β1

+ 1
|γ1|)

−(Rk+Lj−l)

β
(Rk−l)
1 |γ1|Lj (Rk − l)!(Lj − 1)!

; (3.58)

Ãkj
m =

(Rk + Lj −m− 1)!( 1
β1

+ 1
|γ1|)

−(Rk+Lj−m)

β
(Rk)
1 |γ1|(Lj−m)(Lj −m)!(Rk − 1)!

. (3.59)

The constant K is given by

K = Kc

R∏
i=1

(
β1
βi

) 1
2

L∏
i=1

(
γ1
γi

) 1
2

, (3.60)

where Kc = e−
1
2(

∑R
i=1 uj+

∑L
i=1 vj). The elements uj and vj are obtained

as follows: Denote the eigendecomposition of 2Δ1/2PBPTΔ1/2 by VΛVT,

where λi are the diagonal values of Λ. Denote the respective R, L and Z
as the index of positive, negative and zero eigenvalues of 2Δ1/2PBPTΔ1/2.

Define the vector c = VTΔ1/2Pa whose elements are denoted by ck. We have

τ =
1

2

(∑
k∈R

(
c2k
λk

)
+
∑
k∈L

(
c2k
λk

))
, (3.61)

uj = (c2k/λ
2
k) for k ∈ R, j = 1, 2, . . . , R, (3.62)

vj = (c2l /λ
2
l ) for l ∈ L, j = 1, 2, . . . , L. (3.63)

Finally, the variance of the Gaussian distribution PN (y) is given by σ2
N =∑

k∈Z c2k.

Proof. For a short-version of the proof, see Publication IV. For the com-

plete version, see Appendix A.2.

Figures 3.8 and 3.9 show the PDF of the linear and quadratic terms that

comprise the real and imaginary parts of δk. The analytical PDFs are ob-

tained by making use of (3.51). For example, the PDF of xTark is obtained

by setting B = 0 in Theorem 3.5.1. Similarly, PDF of xTBr
kx is obtained

by setting the vector a = 0. From Figs. 3.8 and 3.9, for the set phase noise

bandwidth, we see good agreement between the PDF predicted by (3.51)

and the simulated PDF. Also observed from the figure is that the linear

Gaussian terms comprising both δrk and δik is the stronger component com-

pared to the quadratic and gamma-like distributed terms.
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(a) PDF of the linear and quadratic terms constitut-

ing the real part of δk for f3dB/fsub = 0.06.
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(b) PDF of the linear and quadratic terms constitut-

ing the real part of δk for f3dB/fsub = 0.01.

Figure 3.8. Comparison between analytical and simulated PDFs of the Gaussian and
gamma variables of (3.47) for k = 2 and k = 3 with Nc = 16. Dashed lines
are the analytical curves, while markers represent the simulated PDF. The
Wiener phase noise 3-dB bandwidth and OFDM subcarrier spacing are de-
noted by f3dB and fsub, respectively.
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(a) PDF of the linear and quadratic terms constitut-

ing the imaginary part of δk for f3dB/fsub = 0.06.
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(b) PDF of the linear and quadratic terms constitut-

ing the imaginary part of δk for f3dB/fsub = 0.01.

Figure 3.9. Comparison between analytical and simulated PDFs of the Gaussian and
gamma variables of (3.47) for k = 2 and k = 3 with Nc = 16. Dashed lines
are the analytical curves, while markers represent the simulated PDF. The
Wiener phase noise 3-dB bandwidth and OFDM subcarrier spacing are de-
noted by f3dB and fsub, respectively.
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3.6 Discussion

This chapter provides novel results on characterization and performance

analysis of OFDM in the presence of both transmitter and receiver phase

noise. Specifically, the aim of this chapter is to ascertain, both quantita-

tively and qualitatively, the degradation in capacity assuming a Gaussian

input alphabet. Restricting the input to be drawn from a Gaussian dis-

tribution simplifies the analysis and highlights the degradation from the

phase noise free case. In that sense, the capacity expressions presented

in this chapter are not representative of the channel capacity in a strict

information-theoretic sense.

The gaining popularity of OFDM in past two decades is positively corre-

lated with studies, mainly by the research community, demonstrating the

sensitivity of OFDM to phase noise and RF-impairments in general. All

of these studies demonstrated degradation in the SINR, BEP and SEP in

the presence of phase noise, where the overall progression of these studies

was towards obtaining more accurate analytical expressions of the afore-

mentioned performance metrics, thus, enabling the system designer as

the oracle of reliable performance prediction. Channel capacity is another

useful performance metric that indicates the data rate of the communica-

tion system. Prior to the work in Publications I, II and III, no studies on

capacity of OFDM systems impaired by phase noise were available in the

open literature. One of the objectives of this thesis is to fill this void.

The capacity expressions derived in this chapter can be beneficial to the

RF system design engineer, where a cause-effect type of relationship be-

tween the designed oscillator or PLL-based device parameters and chan-

nel capacity can be seen.The capacity derived depends on the phase noise

processes through the so-called ICI power which captures the total inter-

ference power caused by phase noise. The PDF of this ICI power for any

Gaussian phase noise process is derived in this thesis and shown in this

chapter to be a sum of gamma distributed random variables. The parame-

ters of this PDF take on different values depending upon the type of phase

noise process and the set phase noise level. Models for phase noise in free-

running oscillators and PLL-based devices are well-established, wherein

the model parameters relate in some non-linear fashion with the circuit

design parameters. With these models in place, the ICI power PDF pa-

rameters can be numerically computed using which the capacity can be

ascertained.
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4. Estimation in OFDM Systems under
Phase Noise

Phase noise estimation has become a necessary functionality that must

be performed in order to obtain reliable estimates of the transmitted sym-

bols. In order to perform phase noise estimation, reliable channel esti-

mates are also desired. In certain cases, depending upon the OFDM sys-

tem parameters and phase noise level, the channel estimation step may

completely ignore the contribution of phase noise while, in other cases,

the estimation process must incorporate the effect of phase noise.

In the first part of this chapter, we review some of the state-of-the-art

methods for estimation in OFDM systems impaired by phase noise. Two

approaches are typically used: Isolated estimation and Joint estimation.

In the isolated approach, channel estimation, phase noise estimation and

symbol estimation are separate functional blocks where each one per-

forms the desired functionality while assuming that the dependent pa-

rameters can be obtained from the others. Such an approach may not

be statistically optimal. In the joint approach, phase noise estimation or

some knowledge of it is combined with channel estimation and symbol

estimation such that they yield statistically optimal joint estimates.

The second part of this chapter summarizes the contributions of this the-

sis related to phase noise estimation. Specifically, two new phase noise es-

timation schemes proposed in Publications V and VI are reviewed. Before

proceeding, we would like to remind the reader that there is extensive

work on estimation in single-carrier systems impaired by phase noise.

With the emergence of massive MIMO (multiple-input multiple-output),

there is renewed interest for phase noise estimation with the principal

aim of seeking algorithms with reduced computational complexity. Some

recent works can be found in [99–103] and references therein.
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4.1 State-of-the-Art Estimation Schemes for OFDM

Most methods for phase noise estimation in OFDM fall in either cate-

gories of isolated or joint estimation. Both these approaches in a sense

have a historical footprint wherein, initially, the methods developed were

isolated estimation approaches while, only very recently, joint estimation

approaches have become very popular.

Consider the OFDM system model impaired by only receiver phase noise

which is given by (see Chapter 2.3.3 for details)

r = VHs+w, (4.1)

where the matrix V is column-wise circulant with the first column vector

δ given by

δk =

Nc−1∑
n=0

ejθ[n]

Nc
e−j(2πkn)/Nc , k = 0, 1, . . . , Nc − 1, (4.2)

where θ[n] denotes the receiver phase noise. Here, the unknowns are the

channel matrix described by H, the phase noise matrix V and the desired

transmitted symbol vector s. The unknowns can equivalently be described

in terms of their time-domain counterparts.

Typically, to estimate the channel, a preamble symbol is used, where

the symbol vector s is known to the receiver. In this thesis, we refer to

this phase of transmission as the pilot phase. The data phase consists of

regular transmission of symbols, and the task of the receiver is to recover

s using the estimate of the channel obtained from the pilot phase. Such a

transmission method is based on the assumption of a quasi-static fading

channel, where the channel is assumed to be static for a certain length of

the data phase. During both pilot and data phases, we have phase noise

present in the radio link and, depending upon its severity, it can result in

poor channel and symbol estimates.

The presence of phase noise necessitates estimating it or, at the very

least, incorporating the information during channel and symbol estima-

tion. By estimation of phase noise, we mean either estimating the spectral

vector δ or its time-domain equivalent or the actual phase noise realiza-

tion itself, i.e., θ[n]. Most approaches used in the general literature, re-

lated to phase noise estimation, fall in either category of isolated or joint

approach. The basic ideology of these approaches is shown in Fig. 4.1. As

seen in the figure, for all the approaches, channel estimation is performed

in the preamble phase. These channel estimates are used in the data-

phase for phase noise and symbol estimation. In the isolated approach,
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phase noise is estimated independently of the channel estimation step

and symbol estimation step while, in the fully-joint approach, phase noise

is incorporated during channel and symbol estimation. In between these

extremes is a semi-joint approach where phase noise is incorporated only

for the channel estimation step, while the symbol estimation step ignores

any kind of phase noise knowledge.

In isolated estimation approaches, the channel is estimated using meth-

ods that assume there is no phase noise present in the system. Depend-

ing upon the level of phase noise, poor channel estimates can be obtained

which effectively will result in poor symbol estimates. The fully-joint and

semi-joint approaches seek to alleviate this problem by taking phase noise

into consideration during channel estimation. Such a joint approach will

yield reliable channel estimates. Similarly, performing independently the

phase noise estimation and symbol estimation steps, as done in the iso-

lated and semi-joint approaches, may not necessarily be optimal in a sta-

tistical sense. Optimally statistical estimates can be obtained by jointly

estimating the unknown parameters as done in the fully-joint approach.

The way this is done is by using Bayesian inference techniques which are a

set of methods that naturally allow for estimation of multiple parameters

while ensuring some form of statistical optimality [104].

With this general classification in mind, we are now ready to review

some of the state-of-the-art methods on isolated and joint approaches to

phase noise estimation. The subject of phase noise estimation comes un-

der the broader class of synchronization which includes also carrier fre-

quency offset and timing offset [105]. Traditional signal processing meth-

ods for synchronization were mainly developed for single-carrier systems.

These works have been extended to OFDM systems with some studies dat-

ing back to over twenty years ago [106]. However, the major explosion in

phase noise estimation algorithms for OFDM has mainly coincided with

the start of the new millennium. We shall, thus, mainly focus our atten-

tion on works developed since this period.

4.1.1 Separate Phase Noise and Symbol Estimation

In this section, we focus on phase noise estimation using the isolated ap-

proach wherein phase noise is first estimated and removed before per-

forming symbol estimation/detection. Typically in these approaches, full

channel knowledge is either assumed or some estimate of it is already

available.
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Figure 4.1. Isolated and joint phase noise estimation approaches. The respective rpilot

and rdata vectors denote the received OFDM symbol vector of (4.1) during the
preamble phase and data phase.

Basis expansion approach of [107]

A very simple yet efficient method, based on exploiting the low-pass na-

ture of phase noise processes, is explored in [107]. To understand the

principle, consider (4.1). The maximum likelihood (ML) estimate of s in

(4.1), assuming additive white Gaussian noise, is given by

ŝ = Ĥ−1V†r

= Ĥ−1F diag
(
F†r

)
φ∗

= Dφ∗, (4.3)
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where F is the Nc ×Nc DFT matrix,

D = Ĥ−1F diag
(
F†r

)
(4.4)

and diag (x) denotes a diagonal matrix with x forming the main diagonal.

The vector φ =
[
ejθ[0], ejθ[1], . . . , ejθ[Nc−1]

]T with φ∗ denoting the vector

whose elements are the conjugate of the elements of φ. In arriving at

(4.3), we used the fact that V = F diag (φ)F†. The matrix Ĥ denotes our

estimate of H. We see that an estimate of φ∗ can be obtained if we knew

the left-hand-side of (4.3).

In general, we do have access to certain components of s in the form

of pilot symbols. Let sK denote the P × 1 vector of pilot symbols, where

K is the set of pilot indices. Using this symbol vector, an estimate of φ∗

can be obtained as follows: In general, phase noise processes vary slowly

over time effectively rendering them to be low pass in nature. Thus, the

vector φ∗ can be modeled using few basis vectors as φ∗ = Bβ, where the

Nc × N matrix B represents the basis set, and β represents the vector of

associated weights. In [107], the authors propose to use a discrete Fourier

basis set and a discrete cosine basis set. Assuming sufficient number of

pilot symbols, i.e., P > N , the least-squares estimate of β is obtained

as [108]

β̂ = argmin
β

‖sK −DKBβ‖2

=
(
B†D†

KDKB
)−1

B†D†
KsK, (4.5)

where DK is the matrix obtained after picking the rows of D that are

indexed by the set K.

Using (4.5), the estimate of φ∗ is given by φ̂∗ = Bβ̂. We finally obtain our

estimate of the transmitted symbols by using φ̂∗ in (4.3). By estimating

φ∗ separately, and assuming an already available channel estimate Ĥ,

we see that this phase noise estimation method falls under the isolated

approach.

Basis expansion approach of [109] and [110]

The low pass nature of the phase noise process is also exploited in the

works of [109] and [110] and in a manner similar to that of [107], i.e., φ is

expressed using few basis vectors. Specifically, the DFT basis set is used

in [109] and [110]. Expressing (4.1) in terms of the spectral vector δ = Fφ,

we have

r = Aδ +w, (4.6)
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where the first row of A is given by [H0s0, H1s1, . . . , HNc−1sNc−1], and the

kth row is obtained by circularly left-shifting the first row k − 1 times.

Since φ is typically a low-pass process, it suffices to estimate only a few

components of δ as follows:

r = Ãδ + v +w, (4.7)

where δ =
[
δ0, δ1, . . . , δN/2−1, δNc−N/2, δNc−(N/2+1), . . . , δNc−1

]T comprises

of the low frequency components of φ. The Nc × N matrix Ã is obtained

from A by picking out the N columns corresponding to the elements of δ.

The vector v corresponds to the unestimated part of δ.

In [109], the authors derive the ML estimate (MLE) and linear MMSE

estimate of δ based on the linear model of (4.6) while, in [110], the authors

derive the MMSE estimate of δ using the model of (4.7). The derived es-

timators require knowledge of the matrices A and Ã which are composed

of the channel frequency responses Hj and the transmitted symbols sj .

It is assumed that channel estimates and tentative decisions on sj are

available which are then used to form the required matrices and, finally

to obtain a phase noise estimate. Using this estimate, the received sig-

nal is cleaned by removing the phase noise and, after performing channel

equalization and symbol detection, the new symbol estimates are used to

update Ã and the phase noise estimate. This process is repeated for a

certain number of times.

Data-aided-based CPE estimation of [77] and [111]

The impact of phase noise on each component of s can be seen by explicitly

writing out the equation for each element of r. This is given as

rj = (δ0Hj) sj +

Nc−1∑
k=0,k �=j

(δk−jHk) sk + wj , (4.8)

where Hj are the diagonal elements of the diagonal matrix H. As can be

seen in (4.8), the desired symbol sj is corrupted by the rotational compo-

nent δ0Hj which is the CPE, and the added additive noise is represented

by the second term in (4.8) which is the ICI.

The basic ideology in [77] and [111] is to treat the ICI as added receiver

noise and to estimate δ0 while assuming knowledge of Hj . In [77], a least-

squares estimator using pilot symbols is used to arrive at an estimate of

δ0. The drawback of the least-squares approach is that it simply treats

the ICI as added noise and does not utilize any a-priori information. The

method works well only at high SNR regions, i.e., when the ICI power is
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low. In [111], the MLE of δ0 is derived where the assumption of ICI plus

the receiver noise begin additive white Gaussian is used. Effectively, the

MLE makes use of second-order information on the ICI term in the form

of its variance.

The CPE-based approaches of [77] and [111] are attractive for the sim-

plicity of implementing the estimators. The ease of implementation mainly

comes from the fact that only one component of the vector δ needs to be es-

timated. These methods, however, work well only for slow-varying phase

noise processes.

Blind CPE estimation of [112]

A blind method for CPE estimation is proposed in [112], where the OFDM

link is impaired by frequency offset. Such an approach can also be applied

for the phase noise scenario, however, only for very low phase noise levels.

The basic idea is to utilize the fact that the outermost points of an M-QAM

constellation resemble that of a QPSK constellation. In Fig. 4.2, a scat-

ter plot of the equalized symbols, i.e., zj = rj/Hj is shown. Focusing on

points outside the circle, we see that they resemble a rotated QPSK con-

stellation. Taking the average of these outermost points will yield points

on the rotated axis using which one can determine the CPE.

The advantage of such a method is that it does not require any knowl-

edge of pilot symbols nor does it use a decision-directed approach. The

disadvantage, however, is that it can only be applied for very small phase

noise levels and works well to remove carrier frequency offset.

Power series-based estimation of [113]

In [113], the authors address the problem of phase noise estimation using

a power series model for the phase noise process. Thus, the estimation

step boils down to estimating the parameters of the power series model.

The authors also propose a linear MMSE based channel estimator taking

into account the effect of phase noise. This is discussed in Section 4.1.2.

Consider the OFDM system model given by (4.1) which can be expressed

in terms of the channel frequency response Hj as

rm = SmH̃+ vm +w, (4.9)

where the superscript refers to the m-th OFDM symbol. The channel vec-

tor with CPE is H̃ = δm0 [H0 H1 . . . HNc−1]
T and Sm is a diagonal matrix

with elements smj . The vector vm denotes the ICI vector, and the goal here

is to estimate this vector assuming an estimate of H̃ and Sm is available.
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Figure 4.2. Scatter plot of the equalized symbols zj = rj/Hj . Symbol constellation used
is 16-QAM. The Wiener phase noise 3-dB bandwidth is set to 100 Hz with
Nc = 2048 and bandwidth equal to 30 MHz. The SNR is set to 30 dB.

This is done using a parametric model, where vm is characterized using

a certain number of parameters. The parametric model used is the power

series model for the phase noise realization, θm[n], i.e.,

θm[n] =

p∑
i=0

λm
i ni, (4.10)

where λm
i are the parameters for the m-th OFDM symbol. By using the

small phase noise approximation, i.e., ejθm[n] ≈ 1+jθm[n] for θm[n] ≈ 0, the

vector vm can then be expressed in terms of λm
i as done in [113]. Finally,

the ML estimate of these parameters is then derived.

Linear interpolation approach of [114]

Two simple yet extremely effective schemes for phase noise estimation

are proposed in [114]. The motivation for these methods were mainly to

improve the basis expansion approach of [110]. These methods, however,

can be applied to improve any other phase noise estimation scheme that

relies on block-based processing which is processing of OFDM symbols

block-by-block. Phase noise processes are continuous in nature, and the
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use of block-based processing for estimation of the phase noise realization

results in discontinuities at the borders of consecutive OFDM symbols.

To improve phase noise estimates at symbol transitions, the method in

[114] interpolates between phase noise estimates of consecutive OFDM

symbols. Such an interpolator is given by [115]

θ̂m[Nc −W + n] = θ̂m[Nc −W ] + n
(θ̂m+1[W ]− θ̂m[Nc −W ])

2W
, (4.11)

θ̂m+1[n] = θ̂m[Nc −W ] + (W + n)
(θ̂m+1[W ]− θ̂m[Nc −W ])

2W
, (4.12)

where W is the number of samples on each side of border, and θ̂m, θ̂m+1

are the phase noise estimates of the mth and (m + 1)th OFDM symbol,

respectively. In [114], these phase noise estimates are obtained using the

basis expansion approach of [110]. In [114], this interpolation approach is

given the name linear interpolation tail estimation. The second method,

known by the name linear interpolation CPE estimation, interpolates be-

tween the CPE estimates of current and consecutive OFDM symbol to

obtain phase noise estimates for the entire OFDM symbol length.

Low-pass filtering approach of [116] and [117]

Another effective phase noise estimation scheme based on low pass filter-

ing is proposed in [116]. We briefly summarize the approach. Consider

the time domain OFDM signal model of (4.1) which is given by

y = F†r = diag(φ)F†Hs+ F†w

= diag
(
F†Hs

)
φ+ F†w

= diag (x)φ+ n, (4.13)

where φ =
[
ejθ[0], ejθ[1], . . . , ejθ[Nc−1]

]T, x = F†Hs and n = F†w . Assuming

knowledge of H and s, we then perform

Φ = diag (x∗)y = diag
(|x|2)φ+ diag (x∗)n, (4.14)

where x∗ is the conjugate of x, and |x|2 is the vector whose elements are

the squared-magnitude values of the elements of x. The factor diag
(|x|2)

can be interpreted as a scaling factor that gives a larger weight to high

SNR phase noise samples and a lower weight to low SNR samples. The

next master-stroke step is the low pass filtering of the vector Φ by recog-

nizing that φ is in general a low pass process, and its components always

have unit magnitude. This entails the following operations to yield an

estimate of θ[n]

θ̂[n] = arg (LP {Φ[n]}) , (4.15)
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where Φ[n] denote the components of Φ, LP{·} is the low-pass filtering

operation.

4.1.2 Channel Estimation Including Phase Noise

In the previous section, we discussed phase noise estimation schemes to

enable effective symbol estimation and detection. The estimation schemes,

however, require knowledge of the channel. Initial studies on phase noise

estimation for OFDM assumed that channel estimates could be obtained

using traditional approaches, for example, interpolation between scat-

tered pilots. These approaches do not take phase noise into account, and

channel estimates obtained using these approaches will deteriorate as the

levels of phase noise increase. This observation has led to works dedicated

to channel estimation in the presence of phase noise. Let us now review

some of these works.

The MAP-based joint estimator of [118]

In [118], using a preamble OFDM symbol, a joint channel, phase noise

and frequency offset estimator based on the maximum a-posteriori proba-

bility (MAP) criteria is proposed. Consider the time-domain OFDM signal

model which is given by

y = diag (ε) diag(φ)F†SFth+ n, (4.16)

where ε =
[
1, ej2πε/Nc , . . . , ej2π(Nc−1)ε/Nc

]T with ε denoting the normalized

carrier frequency offset, h = [h[0], h[1], . . . , h[L− 1]]T whose elements are

the IDFT of Hj , φ =
[
ejθ[0], ejθ[1], . . . , ejθ[Nc−1]

]T, S = diag (s), and finally n

denotes the receiver white noise. The MAP estimator seeks those param-

eter values that maximizes the a-posterior probability [104], i.e.,
(
ĥ, θ̂, ε̂

)
= argmax

h,θ,ε
p (h,θ, ε|y) , (4.17)

where θ = [θ[0], θ[1], . . . , θ[Nc − 1]]T. Maximizing the above function is

equivalent to minimizing the negative log-likelihood which is given by

L (h,θ, ε) = − log p (y|h,θ, ε)− log p (θ) , (4.18)

where we used the Bayes rule p(x|y) ∝ p(y|x)p(x) in the above equation,

and we treat h and ε as deterministic quantities, while θ is assumed to be

drawn from a prior distribution that is usually Gaussian. Using (4.16), it

can be easily seen that the conditional distribution in (4.18) is also Gaus-

sian. Deriving closed-form analytical expressions for the estimators by
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minimizing (4.18) is perhaps analytically intractable. Suboptimal esti-

mates can be obtained by minimizing L w.r.t. a certain parameter while

fixing other parameters and then performing forward substitution to ob-

tain a reduced likelihood function that depends only on the fixed param-

eters. The process is then repeated until we have a likelihood function

only in one variable. We now show that such an approach always yields

suboptimal estimates.

Let h�, ε� and θ� denote the global minimizers to L. We then have that

L (h�,θ�, ε�) ≤ L (h,θ, ε) . (4.19)

Fixing ε and θ, we minimize L w.r.t. h. Let h� be the minimizer. We then

must have

L (h�,θ�, ε�, ) ≤ L (h�,θ, ε) ≤ L (h,θ, ε) . (4.20)

Let θ� be the minimizer to L (h�,θ, ε), where the minimization is done

w.r.t. θ while keeping ε fixed which again leads to

L (h�,θ�, ε�) ≤ L (h�,θ�, ε) ≤ L (h�,θ, ε) ≤ L (h,θ, ε) . (4.21)

Let ε� be the minimizer to L (h�,θ�, ε) which finally leads to the inequality

L (h�,θ�, ε�) ≤ L (h�,θ�, ε�) . (4.22)

Closed-form expressions for L (h�,θ, ε) and L (h�,θ�, ε) and the estima-

tors h� and θ� are derived in [118]. The estimator ε� is obtained numeri-

cally using an exhaustive search over L (h�,θ�, ε).

The ML-based joint estimator of [119]

In [119], the authors utilize the same approach as [118], i.e., forward and

backward substitution. There are, however, distinct differences. Firstly,

the estimation is performed in the frequency domain, and joint ML esti-

mates are derived unlike in [118] which seeks MAP estimates. Thus, no

a-priori information on the phase noise process is used in [119]. Rather

than estimating the phase noise process itself, the spectral components of

the complex exponential of the phase noise process plus frequency offset

are estimated. Hence, separate frequency offset and phase noise estima-

tion steps are not needed. What now follows is a brief summary of the

approach.

Consider the frequency-domain OFDM system model impaired by re-

ceiver phase noise:

r = VSFth+w, (4.23)
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where S is diagonal with preamble sj , and h = [h[0], h[1], . . . , h[L− 1]]T is

the channel impulse response vector. The unknowns in the above equation

are h and δ which is used to form the unitary circulant V matrix. The ML

estimate is obtained by minimizing the negative log-likelihood as follows

L(h, δ) = argmin
δ,h

log p(r|h, δ). (4.24)

As done in [118], a channel estimate is obtained by minimizing L(h, δ)
only w.r.t. h. Using the fact that p(r|h, δ) is Gaussian, the channel esti-

mate can be easily derived to obtain

ĥML =
(
F†
tS

†SFt

)−1
F†
tS

†V†r. (4.25)

By substituting (4.25) back into L(h, δ) and utilizing V†V = INc , we obtain

the likelihood function in terms of δ which is given by

L(δ) = δ†Mδ, (4.26)

where M =
(
R†R−R†PrR

)T is Hermitian and R is a column-wise circu-

lant matrix with its first column vector being r. The orthogonal projection

matrix is given by Pr = SFtB
−1F†

tS
† with B = F†

tS
†SFt.

From (4.25), we see that the channel estimate requires knowledge of

the matrix V. This is obtained by minimizing the quadratic likelihood

function L(δ) whose estimate is then used to form an estimate of V. We

now focus our attention on minimizing L(δ). Since L(δ) is a homogeneous

quadratic cost function, the minimizer is the trivial null vector of zeros.

In order to obtain a sensible estimate, a constraint needs to be enforced.

In [119], the authors propose to use a linear constraint. Specifically, the

minimization problem is given by

Minimize L(δ) = δ†Mδ (4.27)

such that
1

2

(
δ†e1 + e†1δ

)
= 1, (4.28)

where the Nc×1 vector e1 = [1, 0, . . . , 0]T. The constraint in (4.28) requires

that the minimizer to L(δ) has maximum correlation with e1. Ideally,

when no phase noise is present, we have δ = e1. In practice, phase noise is

always present, however, if the phase noise process is slowly varying then

there is strong correlation between δ and e1, and, thus, the constraint in

(4.28) is applicable.

The MMSE channel estimator of [113]

In [113], in addition to phase noise estimation, the authors also address

the problem of channel estimation in the presence of phase noise. By
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treating the ICI term as added receiver noise with known second-order

statistics, a linear MMSE channel estimator is derived. Let us briefly

describe the method.

Equation (4.1) can be expressed in terms of Hj as

rm = SmH̃+ vm +w, (4.29)

where H̃ = δm0 [H0 H1 . . . HNc−1]
T, Sm is diagonal with elements smj , vm is

the ICI vector, and the superscript refers to the mth OFDM symbol. If the

channel is quasi-static, i.e., it does not change for a few OFDM symbols

then previous OFDM symbols can also be used in the estimation of H̃ as

follows: Using previous symbol decisions, Ŝm−k, form the vector

y =
[
(ym)T ,

(
ym−1

)T
, . . . ,

(
ym−K

)T]T (4.30)

where ym−k =
(
Ŝm−k

)−1
rm−k, k = 1, 2, . . . ,K. For the mth OFDM sym-

bol, ym =
(
Sm
p

)−1
rmp where Sm

p is diagonal comprising of the pilot symbols

for the mth OFDM symbol, and rmp is the received signal vector corre-

sponding to the pilot symbols. The linear MMSE estimate of H̃ is

ˆ̃H = CH̃yC
−1
yyy. (4.31)

Closed-form expressions for the cross-covariance and covariance matrices

in the above equation are derived and can be found in [113].

Monte Carlo-based EM channel estimation of [120] and [121]

In [120] and [121], the expectation maximization (EM) algorithm is used

to estimate the channel in the presence of phase noise and carrier fre-

quency offset. In [120], the estimation is performed for a generic multi-

carrier system while, in [121], the results are derived for OFDM [122]. In

addition to estimating the channel, the work in [121] estimates the re-

ceiver noise variance, while the work in [120] goes a step further to also

estimate the 3-dB bandwidth of phase noise. These parameters are es-

timated as part of the EM framework. To implement the EM-algorithm,

Monte Carlo methods are used in [120] and [121] which are numerical

methods for obtaining probability density functions. We now summarize

the ideology of [120] and [121] using OFDM as an example.

Consider the time-domain OFDM system model impaired by phase noise

and frequency offset:

y = diag (ε) diag(φ)G [INc INc ]

⎛
⎝xd

xp

⎞
⎠+ n, (4.32)
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where ε =
[
1, ej2πε/Nc , . . . , ej2π(Nc−1)ε/Nc

]T with ε denoting the normalized

carrier frequency offset, and φ =
[
ejθ[0], ejθ[1], . . . , ejθ[Nc−1]

]T. The channel

matrix G is circulant with h = [h[0], h[1], . . . , h[L− 1]]T. The vectors xd =

F†sd and xp = F†sp represent the data portions and pilot portions of the

OFDM signal, where the transmitted symbol vector s = sd+sp. The vector

n is white Gaussian with variance σ2
n.

In [120], a Wiener process is assumed for θ[n], i.e.,

θ[n] = θ[n− 1] + ν[n], (4.33)

where ν[n] ∼ N
(
0, 2π f3dB

fsubNc

)
with f3dB and fsub denoting, respectively,

the phase noise 3-dB bandwidth and OFDM subcarrier spacing. In most

works, it is assumed that f3dB is known while, in [120], this parameter is

assumed unknown and estimated.

Denote the parameter vector to be estimated by Γ =
[
hT, ε, f3dB, σ

2
n

]T.

These parameters are estimated using the EM algorithm which is an it-

erative method of obtaining ML estimates in the presence of hidden vari-

ables [123]. In this case, the vector z =
[
xT
d , θ

T
]T is treated as the hidden

variable, where θ = [θ[0], θ[1], . . . , θ[Nc − 1]]T. Random parameters that

are not directly observable are generally treated as hidden variables. The

EM algorithm iterates between an expectation step (E-step) and a maxi-

mization step (M-step). Specifically, these steps are

E-step: L (Γ,Γi) =

∫
p (z|y,Γi) log p (z,y|Γ) dz (4.34)

M-step: Γi+1 = argmax
Γ

L (Γ,Γi) . (4.35)

In general, closed-form expressions for the E-step and M-step are not

easily available, where, typically, the difficulty is the non-Gaussianity of

the posterior PDF of the hidden variable z, i.e., p (z|y,Γi) . Expressing the

PDF in terms of xd and θ, we have

p (z|y,Γi) ∝ p (xd|y,θ,Γi) p (θ|y,Γi) (4.36)

∝ p (y|xd,θ,Γi) p (xd) p (θ|y,Γi) , (4.37)

where we have used the fact that xd and θ are independent of each other.

The difficulty is because of non-Gaussianity of p (θ|y,Γi) ∝ p (y|θ,Γi) p (θ)

which is due to the non-linear relationship between y and θ, where the

non-linear function is the complex exponential function. Since p (xd) and

p (y|xd,θ,Γi) are Gaussian, and y is linear in xd, their product can be

represented using a Gaussian distribution.
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Typically, direct computation of p (z|y,Γi) can be challenging from the

point of view of computational complexity because the dimensionality of

the hidden variables z and observation vector y can be large. Less com-

plex approaches are recursive methods of obtaining the joint PDF; this is

neatly summarized in the following equation [104]

p (z0:k|y0:k) ∝ p (yk|z0:k, y0:k−1) p (z0:k|y0:k−1) (4.38)

∝ p (yk|zk) p (zk|z0:k−1, y0:k−1) p (z0:k−1|y0:k−1) (4.39)

∝ p (yk|zk) p (zk|z0:k−1) p (z0:k−1|y0:k−1) , (4.40)

where x0:k denote elements x0, x1, . . . , xk. In arriving at (4.40), we made

use of the so-called Markov property [104]. From (4.40), we see that the

joint posterior-i PDF at iteration k can be obtained from joint posteriori

PDF at iteration k−1 assuming a certain measurement model represented

by p (yk|zk) and a state-space model represented by p (zk|z0:k−1).

Similar to the direct approach, the recursive computation is hindered

by the non-Gaussianity of p (θ0:k|y0:k). In cases where the posteriori PDF

is Gaussian, Kalman filters can be applied to recursively obtain the pos-

teriori PDF. In non-Gaussian cases, linearization techniques such as the

extended Kalman filter and statistically linearized filters can be applied

[104]. The last resort is to numerically evaluate p (θ0:k|y0:k) by drawing

samples that are representative of the distribution. Such methods are

referred to as Monte Carlo methods with particle filtering being a popu-

lar technique. An excellent, precise and concise treatment of this subject

can be found in [104, 120]. To summarize, the work in [120], computes

EM-estimates using (4.34), where the posteriori PDFs are computed us-

ing recursive Monte Carlo methods.

The EM-based joint estimator of [124]

Another EM-based joint estimation of channel, phase noise and frequency

offset is proposed in [124]. It mainly aims to address the shortcomings

of [118] which is its high computational complexity. Rather than obtain

MAP estimates, the goal here is, using the EM algorithm, to obtain ML

estimates of channel and frequency offset while treating phase noise as

the hidden variable. We briefly summarize the approach.

The time-domain OFDM system model in consideration is given by

y = diag (ε) diag(φ)F†SFth+ n, (4.41)

where ε =
[
1, ej2πε/Nc , . . . , ej2π(Nc−1)ε/Nc

]T with ε denoting the normalized

carrier frequency offset, h = [h[0], h[1], . . . , h[L− 1]]T whose elements are
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the IDFT of Hj , φ =
[
ejθ[0], ejθ[1], . . . , ejθ[Nc−1]

]T, S = diag (s), and finally

n denotes the receiver white noise. Let Γ =
[
hT, ε

]T denote the param-

eter vector to be estimated and θ = [θ[0], θ[1], . . . , θ[Nc − 1]]T denotes the

hidden variable. The E-step and M-step are given as follows

E-step: L (Γ,Γi) =

∫
p (θ|y,Γi) log p (θ,y|Γ) dθ (4.42)

M-step: Γi+1 = argmax
Γ

L (Γ,Γi) . (4.43)

Ideally, with complete knowledge of θ, the term log p (θ,y|Γ) in (4.42)

represents the likelihood function. However, we do not know θ and obtain

knowledge of it using the a-posteri PDF given by p (θ|y,Γi) in (4.42). This

a-posteri PDF of θ is obtained using the extended Kalman filter [104]. The

usage of a Kalman filter implicitly assumes a Gaussian a-posteri PDF.

In [124], the authors obtain hard estimate of θ using this a-posteriori

PDF, i.e.,

θ̂ = argmax
θ

p (θ|y,Γi) . (4.44)

The above estimator is a MAP estimator and, for a Gaussian distribution,

it is also the MMSE estimator. With this estimate of θ available, the cost

function to be maximized is modified to

L̃ (Γ,Γi) = log p
(
θ̂,y|Γ

)
. (4.45)

Comparing the above equation with (4.42), we see that the averaging op-

eration in (4.42) is replaced by a point-density estimate which is the MAP

or MMSE estimate of the a-posteriori Gaussian density.

4.1.3 Joint Phase Noise and Symbol Estimation

In this section, we review some state-of-the-art methods for joint phase

noise and symbol estimation during the data phase of transmission. In

Section 4.1.1, we reviewed some estimation schemes where phase noise

estimation and symbol estimation/detection are performed independently

of each other. This implies that such approaches do not necessarily deliver

statistically optimal phase noise and symbol estimates. Statistically op-

timal estimates can be obtained by performing simultaneous phase noise

and symbol estimation using Bayesian inference methods.

The variational inference approach of [125]

In [125], the authors address the problem of joint symbol and phase noise

estimation using variational inference. It is an approximation to Bayesian
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inference, and a good overview of the subject can be found in [126, 127].

We now briefly summarize the approach of [125].

Consider the received time-domain OFDM signal in the presence of phase

noise which is given by

y = diag
(
F†Hs

)
φ+ n (4.46)

≈ diag
(
F†Hs

)
(1+ jθ) + n, (4.47)

where φ =
[
ejθ[0], ejθ[1], . . . , ejθ[Nc−1]

]T and θ = [θ[0], θ[1], . . . , θ[Nc − 1]]T.

In the second step, we have used the small angle approximation, i.e., ejθ ≈
(1 + jθ) which is reasonable for a slow varying phase noise process.

The statistically optimal estimates are obtained from the a-posteriori

density of s which is given by

p (s|y) =
∫

p (s,θ|y) dθ (4.48)

∝
∫

p (y|s,θ) p (s) p (θ) dθ (4.49)

= p (s)

∫
p (y|s,θ) p (θ) dθ, (4.50)

where p (s,θ|y) is the joint a-posteriori density of s and θ, and in arriving

at (4.50), we use the fact that s and θ are independent of each other.

The are two major difficulties in the evaluation of p (s|y). The first diffi-

culty has to do with p (s) which is discrete in nature because of the discrete

nature of s. For example, each component of s is typically drawn from an

M-QAM constellation. Thus, to obtain the MAP-estimate of s, we need

to compare MNc values of p (s|y) which clearly has exponential complex-

ity. To reduce the complexity, p (s) is generally assumed to be drawn from

some continuous distribution. The second difficulty is in the evaluation

of the integral in (4.50). A resulting closed-form expression, assuming

a Gaussian density for θ, can be obtained. However, this expression in

terms of the variable s is highly complicated and its manipulation, for ex-

ample to obtain MAP or MMSE estimates, is mathematically intractable.

To alleviate the aforementioned problems, an approximation to p (s,θ|y)
is sought such that the resulting expression can be easily manipulated.

Denote q (s,θ|y) to be our approximation, where the function q is cho-

sen from a particular family. Furthermore, if we assume that q (s,θ|y) =
q (s|y) q (θ|y), we readily have an approximation to p (s|y). Thus, the fol-

lowing question is which members from the family, with the chosen fac-

torization, yield the best approximation to p (s,θ|y). Such an approach of

approximation is known as variational inference which is used in [125].
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We briefly summarize the ideology. Consider the log-likelihood function of

(4.48) which is given by

L(s) = log

∫
p (s,θ|y) dθ (4.51)

∝ log

∫
q (s,θ|y) p (s,θ,y)

q (s,θ|y) dθ (4.52)

≥
∫

q (s,θ|y) log p (s,θ,y)

q (s,θ|y) dθ (4.53)

≥ −
∫

q (s,θ|y) log q (s,θ|y)
p (s,θ,y)

dθ, (4.54)

where we used that p (s,θ|y) ∝ p (s,θ,y). In the above equations, the

distribution q (s,θ|y) represents our approximation of p (s,θ|y). In the

last step, we have made use of the fact that the logarithm is a concave

function. The MAP estimate is obtained by maximizing L(s) and, after

observing (4.54), a suboptimal estimate is obtained by first maximizing

the lower bound w.r.t. q. The optimal function q (s,θ|y) that maximizes

the lower bound is indeed q� = p (s, θ|y). However, as stated earlier, the

distribution p (s, θ|y) poses various difficulties. By restricting q (s,θ|y) to a

certain family of distributions, we seek among that family the maximizer

to the lower bound in (4.54).

Maximizing the lower bound in (4.54) w.r.t. q is equivalent to minimizing

K (q) =

∫
s,θ

q (s,θ|y) log q (s,θ|y)
p (s,θ,y)

dsdθ, (4.55)

which is the Kullback-Leibler divergence between q (s,θ|y) and p (s,θ|y).
Assuming q (s,θ|y) = q (s|y) q (θ|y), we can now obtain these distributions

by minimizing (4.55). As an example, assume that q comes from the Gaus-

sian family, i.e.,
q (s|y) = CN (ms,Cs) , (4.56)

q (θ|y) = N (mθ,Cθ) , (4.57)

where CN denotes complex Gaussian distribution and ms, mθ, Cs and

Cθ denote the parameters of the distributions that need to optimized.

Minimizing (4.55) w.r.t. q essentially transforms to minimizing w.r.t. the

parameters in (4.56) and (4.57). In [125], closed-form expressions for

ms,mθ,Cs and Cθ are derived by minimizing K (q) w.r.t. these parame-

ters. The MAP estimates can then be derived from the obtained distribu-

tions. The Gaussian family is of course the easiest choice to work with.

The authors also consider point densities which essentially lead to obtain-

ing hard estimates.
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4.2 Contributions to Phase Noise Estimation in OFDM

In this thesis, two novel phase noise estimation schemes are developed in

Publications V and VI. The work in Publication VI falls in the category

of joint channel and phase noise estimation, where the goal is to obtain

accurate channel estimates in the presence of phase noise. It is an im-

provement to the original method proposed in [119] which is summarized

in Section 4.1.2 under the title “The ML-based joint estimator of [119]”.

This improvement is achieved through the use of a subspace-based ap-

proach, where possible subspaces in which the phase noise spectral vector

may lie are exploited during phase noise estimation.

The second phase noise estimation method, proposed in Publication V,

can be viewed as an isolated approach, where the goal is to obtain ac-

curate phase noise estimates after which phase noise is removed, and

then symbol estimation/detection is performed. The work builds upon the

work of [119], where a phase noise estimate is obtained by minimizing

a homogeneous quadratic cost function subject to linear constraints. In

Publication V, a geometry-based approach is used, where it is shown that

the phase noise spectral vector always adheres to a specific type of geom-

etry which mathematically is described by a set of non-convex quadratic

equations. The work demonstrates that better phase noise estimates can

be obtained by restricting the search space to this non-convex set rather

than the convex set described by the linear constraints. The geometry-

based method of Publication V uses a decision-directed approach. This

research work is continued in [128], where the phase noise geometry is

used in developing pilot-based approaches which generally are advanta-

geous of low computational complexity and, hence, low latency.

The following sections summarize the ideology of the works of Publica-

tions V and VI. We begin with the subspace-based approach.

4.3 Subspace-based Phase Noise Estimation of Publication VI

In [119], a ML-based joint channel and phase noise estimator using a

preamble symbol is derived, see Section 4.1.2 under the title “The ML-

based joint estimator of [119]” for details. The channel and phase noise

estimators are given by

ĥML =
(
F†
tS

†SFt

)−1
F†
tS

†V†r, (4.58)
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where the matrix V is unitary circulant with the first column vector δ. An

estimate of δ is obtained by solving the following optimization problem:

Minimize L(δ) = δ†Mδ such that δ ∈ Ω, (4.59)

where Ω is some constraint set. The Hermitian positive-definite matrix

M is given by

M = RT
(
INc −PT

r

)
R∗, (4.60)

where R is a column-wise circulant matrix with the first column vector r.

The L-dimensional orthogonal projection matrix Pr = SFtB
−1F†

tS
† with

B = F†
tS

†SFt.

In [119], the authors propose to use the constraint set given by

Ω =

{
δ
∣∣∣ 1
2

(
δ†e1 + e†1δ

)
= 1

}
, (4.61)

where the Nc × 1 vector e1 = [1, 0, . . . , 0]T. Depending upon the level of

phase noise, the constraint set in (4.61) may not necessarily be optimal,

i.e., the true phase noise spectral vector may not lie in this set. For exam-

ple, in the absence of phase noise, we have that δ = e1. Thus, for slow-

varying phase noise processes, we can expect strong correlation between

δ and e1 which justifies the use of (4.61). However, it is not applicable for

moderately varying or fast-varying phase noise processes.

Irrespective of the rate at which phase noise varies, in Publication VI,

possible subspaces in which the vector δ may lie are explored. The follow-

ing proposition, originally derived in Publication VI, paves the way for a

subspace-based approach.

Proposition 4.3.1. Denote the null space of M by N (M). Then at infinite

SNR, δ ∈ N (M).

Proof. See Publication VI.

Proposition 4.3.1 invites for a few remarks. Firstly, the proposition re-

veals to us about where to look for δ when minimizing L(δ). Secondly,

the proposition is also applicable at high SNRs, i.e., we can expect δ to

be close to the null space of M. Finally, it is useful to know in how big a

space does δ lie in, i.e., the dimensionality of N (M). From (4.60), we can

see that, in general, R∗ is a full-rank matrix, and since
(
INc −PT

r

)
has

rank Nc − L, we must have the rank of M also equal to Nc − L and, thus,

the dimensionality of N (M) is equal to L which is number of channel taps.
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4.3.1 Subspace-based Minimization Schemes

Before we proceed, we digress to spare a thought about whether we need

to estimate all the components of δ when minimizing L(δ). In general,

oscillators are designed such that there is tolerable amount of spectral

spreading of the RF-carrier signal. This essentially implies that most of

the power of the vector δ is confined to only a few of its (low frequency)

components. Based on this observation, we can reduce the minimization

of L(δ) to only N variables, where N 	 Nc.

Denote δ as the N × 1 vector that comprises the N components of δ. We

model the relation between the vectors as

δ =

⎛
⎜⎜⎜⎝

IN
2

0N
2
×N

2

0(Nc−N)×N
2

0(Nc−N)×N
2

0N
2
×N

2
IN

2

⎞
⎟⎟⎟⎠ δ = Lδ. (4.62)

From the above model, we see that we only keep the top and bottom part

of δ which corresponds to positive and negative low frequencies centered

around zero, while the high-frequency components are set to a value of

zero. With this model in place, we can reduce the complexity of mini-

mizing L(δ) from Nc unknowns to only N unknowns. The transformed

likelihood function is obtained by substituting (4.62) in L(δ) to obtain

L(δ) = δ†M̃δ, (4.63)

where M̃ = L†ML. We are now ready to discuss the subspace-based

schemes.

NsPM: Nullspace-based Phase Noise Minimization

We would like use the information that, at infinite SNR, δ ∈ N (M) when

minimizing (4.63). Let N denote the matrix whose columns span N (M).

Since we model δ by (4.62), requiring δ ∈ N (M) implies requiring δ ∈
span(L†N) (we use the fact that L†L = IN ), where span(X) denotes span

of the columns of the matrix X. Thus, the optimization problem can be

framed as follows:

Minimize L(δ) = δ†M̃δ

such that δ†δ = 1, δ ∈ span(L†N). (4.64)

In (4.64), we have enforced a unit-norm constraint on δ. Using Parseval’s

theorem, it can be easily shown that the norm of δ is one, and since we

assume most of the power is in δ then the unit-norm constraint in (4.64)
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is reasonable. Writing δ = L†Nα, the above problem expressed in terms

of α is given by

Minimize C(α) = α†
(
N†LM̃L†N

)
α

such that α†
(
N†LL†N

)
α = 1. (4.65)

The optimization problem (4.65) can be solved as follows: Let N†LL†N =

WW† be the Cholesky decomposition. Then writing γ = W†α, the mini-

mization problem simplifies to

Minimize C(γ) = γ†Qγ such that γ†γ = 1, (4.66)

where Q = (W−1)N†LM̃L†N(W†)−1. The minimum value for the above

problem is equal to the smallest eigenvalue of Q, and if the eigenvalues

are distinct then the minimizer corresponds to the eigenvector associated

with the smallest eigenvalue.

CvPM: Covariance-based Phase Noise Minimization

Subspace information about δ can also be obtained from its covariance

matrix. It is shown in [129, Appendix C] that a random vector x will

always be drawn from the space spanned by the eigenvectors of its co-

variance matrix. Let Cδ denote the covariance matrix of δ. Closed-form

expressions of Cδ for Wiener and PLL-type phase noise processes can be

found in [110]. Using the model in (4.62), the covariance matrix of δ is

Cδ = L†CδL. With these definitions in place, we can frame the following

covariance based optimization problem:

Minimize L(δ) = δ†M̃δ, s.t δ†δ = 1, δ ∈ span(U), (4.67)

where N × N unitary matrix U contains the eigenvectors of Cδ. Making

a variable change by writing δ = Uα and noting that U†U = IN , we have

Minimize L(α) = α†(U†M̃U)α, s.t α†α = 1. (4.68)

The minimizer is equal to the eigenvector associated with the smallest

eigenvalue of (U†M̃U).

CoPM: Correlation-based Phase Noise Minimization of [119]

We now compare the minimization scheme proposed in [119] with the

subspace-based approaches. Specifically, the optimization problem con-

sidered in [119] is given by

Minimize L(δ) = δ†M̃δ s.t
1

2

(
δ†L†e1 + e†1Lδ

)
= 1, (4.69)
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where e1 = [1, 0, . . . , 0]T is a Nc × 1 column vector. As previously men-

tioned, the constraint in (4.69) requires that the minimizer have maxi-

mum correlation with the vector e1. In the absence of phase noise, the

actual phase noise spectral vector δ = Le1. For very small phase noise

levels, we can expect δ to be very close to Le1 and, thus, the constraint

in (4.69) is applicable in this case. However, for fast-varying phase noise

processes, the correlation between δ and Le gets weaker and, thereby,

using the constraint in (4.69) will yield poor phase noise estimates. The

minimizer to (4.69) can be easily derived and is given by

δ =
M̃−1Le1

e†1
(
L†M̃−1L

)
e1

. (4.70)

4.3.2 Numerical Results

Let us now present some numerical results on the subspace-based phase

noise estimation schemes. A detailed discussion on these results can

be found Publication VI. Specifically, we compare the performance of

the NsPM, CvPM and CoPM schemes, wherein the performance metric

used is the mean-square-error (MSE). The MSE is obtained by calculat-

ing the error between the estimate obtained from solving the minimiza-

tion schemes in the previous section and the true vector phase noise spec-

tral vector. The results are then averaged over many realizations of the

preamble OFDM symbol. The channel MSE is evaluated by calculating

the error between ĥML of (4.58) and the true channel vector h. As can be

seen from (4.58), the channel estimate requires knowledge of δ through

the V matrix. Once an estimate of δ is obtained, the columns of V are

formed by circularly shifting δ. Thus, we see that the channel MSE is in

direct correspondence with the phase noise MSE.

The system parameters used in the simulations are as follows: The num-

ber of subcarriers Nc = 512, subcarrier spacing fsub = 15 kHz and band-

width is equal to 7.7 MHz. For phase noise estimation, we estimate a

total of N = 7 components of δ while the rest are set to a value of zero.

The symbol constellation is 16-QAM. The channel is Rayleigh fading with

exponential power delay profile and number of taps (L) set to four, i.e.,

L = 4. The quantity ρ = f3dB
fsub

denotes the normalized phase noise 3-dB

bandwidth.

Figure 4.3 shows phase noise and channel MSE plots for the NsPM,

CvPM and CoPM schemes. The first observation from these plots is that

81



Estimation in OFDM Systems under Phase Noise

10 12 14 16 18 20 22 24 26 28 30

M
S

E

10-4

10-3

10-2

CoPM
CvPM
NsPM

SNR [dB]

Figure 4.3. Phase noise and channel MSE as a function of the signal-to-noise ratio. The
phase noise MSE curves are shown by the solid lines while the dashed lines
are the channel MSE curves. The value of ρ = 0.02.
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Figure 4.4. Phase noise and channel MSE as a function of the ratio ρ = f3dB

fsub
. The phase

noise MSE curves are shown by the solid lines while the dashed lines are the
channel MSE curves. The SNR is set to 30 dB.

the subspace-based approaches yield superior MSE performance compared

to the CoPM scheme of [119]. Among the subspace-based methods, CvPM

performs best. This is expected as second order statistical information is

used in the form of the eigenspace of the covariance matrix of δ which is
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applicable at any SNR. The NsPM scheme works on the premise that δ

always lie in the null space of M which is true only at infinite SNR. Thus,

at low and medium SNRs, we can expect inferior performance when com-

pared to CvPM as witnessed in the figure. At higher SNRs, however, the

MSE values of NsPM are similar to that of CvPM.

In Fig. 4.4, we investigate the behavior of the estimations schemes by

increasing the normalized 3-dB bandwidth, i.e., the parameter ρ. A small

value of ρ effectively implies a small level of phase noise experienced by

the OFDM receiver and vice versa. As seen from the figure, the subspace

schemes demonstrate superior MSE performance compared to CoPM. This

is expected because, the subspace-based schemes utilize subspace infor-

mation which does not depend upon the set phase noise level. On the

other hand CoPM requires maximum correlation with the vector e1 which

is true only for slow-varying phase noise processes.

4.4 Geometry-based Phase Noise Estimation of Publication V

The work in Publication VI demonstrated the use of subspace information

when minimizing the cost function L(δ). In Publication V, information

on the geometry of δ is utilized when minimizing L(δ). The rest of this

section is a summary of the work originally described in Publication V. In

this thesis, we refer to δ as the ‘phase noise spectral vector’.

4.4.1 Geometry of the Phase Noise Spectral Vector

The vector δ is the DFT of φ = 1
Nc

[
ejθ[0], ejθ[1], . . . , ejθ[Nc−1]

]T whose ele-

ments always have constant magnitude. Thus, one can suspect that this

constant magnitude property in the time domain must appear in some

equivalent form in the frequency domain also. Consider the equation:(
ejθ[n]

Nc

)(
e−jθ[n]

Nc

)
=

1

N2
c

. (4.71)

Taking the Nc-point DFT on both sides of (4.71), and using the fact that

Nc-point DFT
[
ejθ[n]

Nc

]
= δk implies DFT

[
e−jθ[n]

Nc

]
= δ∗−k and DFT [x[n]y[n]] =

1
Nc

Xk ∗� Yk, where ∗� denotes circular convolution, we arrive at

Nc−1∑
k=0

δkδ
∗
k+l = Λl, l = 0, 1, 2, . . . , Nc − 1, (4.72)
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where Λl is the Kronecker delta function, i.e., Λ0 = 1 and Λl = 0 for l > 0.

We can express (4.72) more compactly as

δ†Plδ = Λl, l = 0, 1, . . . , Nc − 1, (4.73)

where Pl = (P1)
l is a permutation matrix defined by the Nc × Nc matrix

P1. The first column of P1 is given by the Nc × 1 vector [0, 1, 0, . . . , 0]T and

the jth column is obtained by circularly shifting the vector j − 1 times to

the bottom. For l = 0, we get the unit-norm property of δ, where P0 = INc

is the identity matrix.

4.4.2 Geometry-preserving Dimensionality Reduction

In Section 4.3.1, in order to reduce the complexity when minimizing L(δ),
a linear model is used to describe δ using a transformation matrix L and

a smaller N -dimensional vector δ. These are related as

δ =

⎛
⎜⎜⎜⎝

IN
2

0N
2
×N

2

0(Nc−N)×N
2

0(Nc−N)×N
2

0N
2
×N

2
IN

2

⎞
⎟⎟⎟⎠ δ = Lδ. (4.74)

At the same time, we would also like to utilize the geometry of δ when

minimizing L(δ). Using (4.74) in (4.73), the minimization problem is

framed as

Minimize L(δ) = δ†
(
L†ML

)
δ

s.t δ†
(
L†PlL

)
δ = Λl, l = 0, 1, . . . , Nc − 1. (4.75)

One advantage of solving the above optimization problem is that the num-

ber of unknowns is reduced from Nc to N . However, the number of con-

straints, which is still equal to Nc, can cause the complexity to be very

high. For example, OFDM systems with Nc = 8192 subcarriers, solving

(4.75) can be computationally high even if N is much less than Nc.

In conclusion, using (4.74) in tandem with (4.73) may not render a fea-

sible and practical optimization problem from the point of view of compu-

tational complexity. To achieve a less complex minimization scheme that

also utilizes the phase noise geometry requires modifying the linear model

to incorporate this knowledge of phase noise geometry. This is the topic of

the next subsection.

Phase Noise Geometry Preserving Transformation (PPT)

We would like to model δ using a linear model, i.e.,

δ = Tδ, (4.76)
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where the Nc×N matrix T represents the transformation from the smaller

N -dimensional space to the bigger Nc-dimensional space. At the same

time, we would like δ in (4.76) to satisfy (4.73). The ideology of this mod-

eling is that all information about δ can be equivalently acquired from its

smaller subset δ. In line with this, we can think of δ acquiring its geometry

from δ which is a N -dimensional phase noise spectral vector that satisfies

the phase noise geometry in the smaller space. The N -dimensional equiv-

alent of (4.73) is given by

δ†P̃lδ = Λ̃l, l = 0, 1, . . . , N − 1, (4.77)

where P̃l and Λ̃l are the N -dimensional equivalents of Pl and Λl respec-

tively. Thus, when moving from N -dimensional to the Nc-dimensional

space, the matrix T is chosen such that the phase noise geometry is also

preserved in the Nc-dimensional space. Given that δ satisfies (4.77), not

all transformation matrices T allow δ in (4.76) to satisfy (4.73). In Pub-

lication V, this problem is investigated, and it is shown that there exists

transformation matrices that preserve this geometry and also closed-form

expressions for the columns of such matrices are given. Such transforma-

tion matrices are referred to as phase noise geometry preserving transfor-

mations (PPTs). The generic form of a PPT is given by

T = FT̃F̃†, (4.78)

where the respective matrices F and F̃ are the Nc × Nc and N × N DFT

matrices. The columns t̃i of the Nc × N matrix T̃ must satisfy, for all

l = 1, 2, . . . , Nc − 1,

T̃†T̃ = IN , t̃†iDlt̃j = 0 for i �= j,
N−1∑
i=0

t̃†iDlt̃i = 0, (4.79)

where the Nc × Nc diagonal matrix Dl = F†PlF and comprises of the

eigenvalues of the permutation matrix Pl.

The Piecewise Constant PPT (PC-PPT)

We now present one simple example of a PPT. The general form of PPTs

in (4.78) renders a nice interpretation. The transformation δ = FT̃F̃†δ

can be viewed as interpolation of the smaller N -dimensional signal F̃†δ to

a higher Nc-dimensional vector. The interpolation is performed by the T̃

matrix. The result of the interpolation is then transformed to the Fourier

domain by the F matrix. Phase noise processes in general are lowpass

processes and, thus, such an interpretation is valid. One of the simplest
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interpolators is to simply repeat the elements of the time-domain vector,

i.e.,

TPC =

√
Nc

N
F

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0

0 1
. . . ...

... . . . . . . ...

0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

F̃†, (4.80)

where 1 is a column vector of length Nc
N with all elements equal to one,

and 0 denotes the vector with all elements equal to zero. It can be easily

verified that the above matrix indeed satisfies the conditions in (4.79) and,

hence, is a PPT.

4.4.3 Geometry-based Minimization Schemes

In this section, we review some phase noise optimization problems orig-

inally proposed in Publication V. We begin with the optimal approach

where we explicitly impose the geometry of δ when minimizing L (δ).

Later on, sub-optimal schemes, however of lower computational complex-

ity, are reviewed.

Phase Noise Constraints (PNC)

We minimize L(δ) using the linear model in (4.76) and impose (4.77) as

constraints. Specifically, the optimization problem is given by

(S) : Minimize L(δ) = δ†M̃δ

s.t δ†δ = 1, δ†P̃lδ = 0, l = 1, 2, . . . ,K − 1, (4.81)

where M̃ = T†MT. In the above problem, the number of constraints are

parametrized by K. This allows flexibility in choosing the number of con-

straints. Note that it is sufficient that K ≤ N+1
2 , since

(
δ†P̃lδ

)†
= 0† im-

plies δ†P̃N−lδ = 0 after using P̃†
l = P̃N−l. In general, the quadratic form

δ†P̃lδ yields complex values as the eigenvalues of P̃l, l > 0 are complex-

valued. Thus, the constraint in (4.81) can be expressed in terms of its real

an imaginary parts as

(S) : Minimize L(δ) = δ†M̃δ

s.t δ†δ = 1, δ†P̃R
l δ = 0, δ†P̃I

l δ = 0, l = 1, 2, . . . ,K − 1, (4.82)

where P̃R
l =

P̃l+P̃†l
2 and P̃I

l =
j(P̃†l−P̃l)

2 represent the real and imaginary

parts of P̃l.

Problems such as that of (S) come under the subject of optimization

theory [130]. Important questions such as existence of global minimum
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and solvability of the problem in polynomial time are addressed using

optimization theory. In Publication V, it is shown that the global mini-

mum can be obtained by equivalently solving the convex dual problem to

(S) [130]. Convex problems are guaranteed to yield global solutions in

polynomial time.

The rest of this subsection is a digression to optimization theory, where

we try to highlight how the optimal solution of (4.82) can be attained. In

going through this part, the curious reader will be introduced to the won-

derful topic called S-procedure. Of course, the reader may skip this part

and proceed directly to the subsection on ‘Suboptimal Schemes’ without

any loss in continuity.

Optimality of (S): In the language of optimization theory, (S) is re-

ferred to as the primal problem which is a non-convex program [130]: The

cost function is a convex function because M̃ is a positive-definite Hermi-

tian matrix. However, the constraint functions are non-convex because

P̃R
l and P̃I

l are indefinite matrices. In general, if (S) is a convex program

then every local minimum is also a global minimum which eases the task

in finding the global solution. All the more, convex programs can be solved

in polynomial time using interior-point algorithms [131]. These nice prop-

erties, however, are not necessarily satisfied by non-convex problems. A

suboptimal solution to (S) can be obtained by solving the so-called dual

problem. The corresponding dual problem to (S) can be easily derived and

is given by [130]

(DS) : Maximize λ

s.t M̃− λIN +
K−1∑
l=1

αlP̃
R
l + βlP̃

I
l  0, (4.83)

where optimization is done over the variables λ, αl and βl. The dual prob-

lem (DS) is always a convex program and yields a solution that is always

less than or equal to the optimal value of the primal problem. The dif-

ference in value of the solution of (S) and (DS) is called the duality gap.

When the duality gap is zero, also known as strong duality, it implies solv-

ing the convex dual problem is equivalent to solving the original primal

problem. Hence, with zero-duality gap, even when (S) is non-convex, the

optimal solution is still attained by solving the convex dual problem.

In Publication V, it is shown that the strong duality holds between (S)
and (DS). We now shed some light on how this might be possible. First,
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we define the following:

s0(δ) =

⎛
⎝δ

1

⎞
⎠

†⎛
⎝M̃

−γ

⎞
⎠
⎛
⎝δ

1

⎞
⎠, s1(δ) =

⎛
⎝δ

1

⎞
⎠

†⎛
⎝IN

−1

⎞
⎠
⎛
⎝δ

1

⎞
⎠; (4.84)

ul(δ) =

⎛
⎝δ

1

⎞
⎠

†⎛
⎝P̃R

l

0

⎞
⎠
⎛
⎝δ

1

⎞
⎠, vl(δ) =

⎛
⎝δ

1

⎞
⎠

†⎛
⎝P̃I

l

0

⎞
⎠
⎛
⎝δ

1

⎞
⎠, (4.85)

where δ ∈ CN . Define the sets

Π =
{(

s0(δ), s1(δ), u1(δ), . . . , uK−1(δ), v1(δ), . . . , vK−1(δ)
)T

: δ ∈ CN
}
,

(4.86)

N =

{(
g,0T2(K−1)+1

)T
s.t g < 0

}
, (4.87)

where 02(K−1)+1 is the 2(K − 1) + 1 × 1 vector of zeros. The optimization

problem (S) can be reformulated as

(S) : Maximize γ s.t δ†M̃δ ≥ γ for all δ ∈ Υ, (4.88)

where Υ is the feasible set of (4.82), i.e., Υ = {δ | δ†δ = 1, δ†P̃R
l δ =

0, δ†P̃I
l δ = 0, l = 1, 2, . . . ,K − 1}. The constraint in (4.88) is the same

as saying s0(δ) ≥ 0 whenever s1(δ) = 0, ui(δ) = 0 and vi(δ) = 0 for all

i = 1, 2, . . . ,K − 1. Equivalently, when expressed in terms of the sets Π

and N , it implies Π ∩ N = ∅, where ∅ denotes the empty set. Thus, the

optimization problem can be rewritten as

(S) : Maximize γ such that Π ∩N = ∅. (4.89)

By introducing an auxiliary variable, the dual problem in (4.83) can be

rewritten as

(DS) : Maximize γ( )
M̃− λIN +

∑K−1
l=1 αlP̃

R
l + βlP̃

I
l

λ− γ
 0, (4.90)

where γ is the auxiliary variable. Comparing (4.89) and (4.90), we see

that (S) is exactly the same as (DS) if the condition Π∩N = ∅ in (4.89) is

equivalent to the matrix inequality in (4.90), and hence, solving either the

dual or primal problem will always yield the same value. In the following

paragraphs, we show that this equivalence is indeed true. The key to this

revelation is the S-procedure.

88



Estimation in OFDM Systems under Phase Noise

S-procedure: The S-procedure is a method wherein a set of quadratic

constraints are replaced by a linear matrix inequality (LMI) [132]. For

example, in (4.88), we have a set of quadratic constraints while the con-

straint in (4.90) is a LMI. To precisely describe it, we first define the fol-

lowing:

σ0(x) = x†

⎛
⎝M̃

−γ

⎞
⎠x, σ1(x) = x†

⎛
⎝IN

−1

⎞
⎠x; (4.91)

ψl(x) = x†

⎛
⎝P̃R

l

0

⎞
⎠x, υl(x) = x†

⎛
⎝P̃I

l

0

⎞
⎠x, (4.92)

where x ∈ CN+1, l = 1, 2, . . . ,K − 1 and the above matrices are block-

diagonal. Define the set

Y =
{(

σ0(x), σ1(x), ψ1(x), . . . , ψK−1(x) υ1(x), . . . , υK−1(x)
)T

: x ∈ CN+1
}
.

(4.93)

Consider the following two statements:

• S1: σ0(x) ≥ 0 whenever σ1(x) = 0, ψl(x) = 0, υl(x) = 0 for all l =

1, 2, . . . ,K − 1. Another way of stating it is Y ∩ N = ∅, where N is

defined in (4.87).

• S2: There exists constants λ, αl and βl such that
( )
M̃− λIN +

∑K−1
l=1 αlP̃

R
l + βlP̃

I
l

λ− γ
 0. (4.94)

We now ask the following question: Are the statements S1 and S2 equiva-

lent ? It can inferred that S2 implies S1. This is seen as follows: Equation

(4.94) implies, for all x ∈ CN+1, we have

x†(M̃

−γ

)
x− λx†(IN

−1

)
x+

K−1∑
l=1

αlx
†(P̃

R
l

0

)
x+

K−1∑
l=1

βlx
†(P̃

I
l

0

)
x ≥ 0

(4.95)

σ0(x)− λσ1(x)+
K−1∑
l=1

αlψl(x) + βlυl(x) ≥ 0 (4.96)

aTy ≥ 0,y ∈ Y, (4.97)

where the 2K × 1 column vector a = [1, −λ, α1, . . . , αK−1, β1, . . . , βK−1]
T.

Equation (4.97) implies that all points of the set Y always lie on one side

of the hyperplane determined by the vector a. Now, for points in the set
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N defined in (4.87), we have

aTy = g < 0, y ∈ N , (4.98)

where the inequality follows since g < 0 as defined in (4.87). The above

equation in conjunction with (4.97) imply that Y ∩ N = ∅.

As we have seen in the previous paragraph, the statement S2 invokes

the existence of the statement S1. Unfortunately, S1 does not necessarily

imply S2, and only in certain cases and depending upon the problem at

hand, the implication may follow. We say that the S-procedure is loss-

less when S1 implies S2, where S2 implies S1 is always understood to be

true. In [133], Yakobovich provided conditions on when the S-procedure

is lossless for the case with quadratic inequality constraints. In our case,

in the statement S1, we have quadratic equality constraints. An excellent

summary of the S-procedure for inequality constraints is given in [134].

In Publication V, for quadratic forms with equality constraints, condi-

tions for the S-procedure to be lossless are derived. We refer the reader

to Publication V for the details. The following theorem summarizes the

result before which we need the regularity condition.

Define the vector

w(x) =
(
σ1(x), ψ1(x), . . . , ψK−1(x), υ1(x), . . . , υK−1(x)

)T
. (4.99)

We form a matrix using w(x) as

W = [w(x1) w(x2) w(x3) . . .w(xM )] , (4.100)

for some {xi}Mi=1.

Regularity condition. There exists vectors {xi}Mi=1 �= 0, where M >

(2(K − 1) + 1) and constants {pi}Mi=1 > 0 such that

rank
(
W
)
= (2(K − 1) + 1), (4.101)

M∑
i=1

piw(xi) = 0(2(K−1)+1). (4.102)

Remark 4.4.1. The regularity condition implies that there does not exist

any hyperplane passing through the origin such that all points {w(xi)}Mi=1

lie on one side of the hyperplane. This is seen as follows: For any non-

zero ã ∈ R(2(K−1)+1), taking the inner product w.r.t. ã on both sides of

(4.102), we have
∑M

i=1 pi(ã
Tw(xi)) = 0 which implies that ãTw(xi) ≥ 0 or

ãTw(xi) ≤ 0 for all i = 1, 2, . . . ,M is not possible since {pi}Mi=1 > 0. The

special case of ãTw(xi) = 0 for all i = 1, 2, . . . ,M implies rank (W) <
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(2(K − 1) + 1) which contradicts with (4.101). Hence, for any ã, we must

have

ãTw(xi) < 0, ãTw(xj) > 0 for some i and j, i �= j. (4.103)

The above regularity condition essentially requires a certain structure

for our set Y. This condition is necessary to prove the losslessness of the

S-procedure. We now have the following theorem:

Theorem 4.4.1. Assume Y satisfies the regularity condition. Denote cov (X)

as the convex hull (smallest convex set enclosing X) of the set X. If Y∩N =

∅ implies cov (Y) ∩N = ∅ then the S-procedure is lossless.1

Proof. See Publication V.

The regularity condition is necessary for the S-procedure to be lossless.

In Publication V, it is shown that Y indeed satisfies the regularity condi-

tion. Thus, Theorem 4.4.1 can be applied to the set Y. Furthermore, for

the S-procedure to be lossless, Theorem 4.4.1 states that Y ∩ N = ∅ must

imply cov (Y) ∩N = ∅. We now have the following lemma:

Lemma 4.4.1. Y ∩ N = ∅ =⇒ cov (Y) ∩N = ∅.

Proof. See Publication V.

With these facts in place, we are now ready to prove strong duality be-

tween (S) and (DS).

Remark 4.4.2. Since x ∈ CN+1 and δ ∈ CN , we have that Π ⊆ Y.

Proposition 4.4.1. Strong duality holds between (S) and (DS) and the

optimal value is attained.

Proof. The primal problem (S) and its dual (DS) are given by (4.89) and

(4.90) respectively. From Remark 4.4.2, we have Π ⊆ Y and after using

Lemma 4.4.1 and Theorem 4.4.1, we have that Π ∩N = ∅ is equivalent to

the matrix inequality in (4.90), i.e., the primal and dual problem are the

same.

Solving (S): Proposition 4.4.1 states that the optimal value of (S) and

(DS) are the same, and we would like to find a δ in the constraint set that

1The result is not just limited to the quadratic forms that describe Y, and it is
applicable in general to any quadratic form.
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attains this value. At this point δpc, the first-order Karush-Kuhn-Tucker

conditions must be satisfied, i.e., there exists multipliers α∗
l and β∗

l s.t(
M̃+

K−1∑
l=1

α∗
l P̃

R
l + β∗

l P̃
I
l

)
δpc = λ∗δpc. (4.104)

The above equation indicates that the minimizer of (S) is an eigenvector

of
(
M̃+

∑K−1
l=1 α∗

l P̃
R
l + β∗

l P̃
I
l

)
with the eigenvalue equal to the optimal

value of λ∗. Thus, the goal is to find λ∗, α∗
l and β∗

l by solving (DS) using

which we find δpc from (4.104). The multipliers are obtained by forming

the dual to (DS) and solving both in tandem. The dual to (DS) is given

by [135]

(DDS) : Minimize TR
(
M̃Z

)
s.t TR (Z) = 1,

TR
(
P̃R

l Z
)
= 0, TR

(
P̃I

lZ
)
= 0, Z  0, (4.105)

where the matrix Z is the optimization variable and TR(·) denotes trace

of a matrix. The problem (DS) and its dual (DDS) are semidefinite pro-

grams (SDP) which are nonlinear convex programs over the cone of pos-

itive semidefinite matrices [135]. In general, semidefinite programming

solves for the multipliers in (DS) and the matrix Z in (DDS) simultane-

ously using interior-point methods specific for semidefinite programming.

For a classic treatment on these methods, see [131,135,136].

Suboptimal schemes

The PNC scheme delivers an estimate of δ using (4.104), where the mul-

tipliers λ∗, α∗
l and β∗

l are obtained by solving the semidefinite program of

(4.105) [135]. In general, the computational complexity in solving an SDP

can be high especially if N is large [136]. In this section, we seek optimiza-

tion problems that have lesser complexity while at the same time ensuring

that estimates satisfy the phase noise geometry. A suboptimal solution

can be obtained by recognizing that the phase noise spectral geometry of

(4.77) manifests itself as constant-magnitude time-domain samples. Such

an approach is shown in Fig. 4.5, where the optimization problem (AH) is

given by

(AH) : Minimize L(δ) = δ†M̃δ s.t δ ∈ Ω, (4.106)

where Ω is some constraint set that δ must belong to. After obtaining the

solution to (AH), we apply an inverse N -point DFT operation, normalize

the time-domain samples to have unit-magnitude and finally get back to

the frequency domain to obtain our modified solution which satisfies the
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Solve AH
x̃ = F̃†δ

Force
δ = F̃x̃

to obtain δ |x̃[n]| = 1

Figure 4.5. A suboptimal approach to force δ to satisfy (4.77). Then δ = Tδ will also
satisfy (4.73) when T is chosen as a PPT. If T is not chosen as a PPT then we
forcefully normalize the magnitude of the time-domain samples of F†δ.

phase noise geometry. The added computational complexity is two DFT

operations and another set of linear operations to forcefully normalize the

magnitude of the time-domain samples.

The advantage of the suboptimal approach in Fig. 4.5 is that it allows us

to choose a computationally less intensive optimization problem by proper

choice of the constraint set Ω in AH, while at the same time ensure that

the resulting estimate satisfies the phase noise geometry at the cost of

slightly increased complexity. In the following, we consider possible con-

straint sets for Ω other than the phase noise constraints, and after obtain-

ing our estimate δ, we perform the operations in Fig. 4.5.

Unit-norm Constraint (UNC): Rather than impose all the constraints

in (4.77), we consider only the unit-norm constraint. Specifically, the op-

timization problem is given by

(U) : Minimize L(δ) = δ†M̃δ s.t δ†δ = 1. (4.107)

The minimum value of the above problem is the minimum eigenvalue of

M̃ with the associated eigenvectors as the minimizers. If the eigenvalues

are distinct then the minimizer is unique.

Linear Constraint (LC): In general, linear constraints are beneficial

because they yield computationally less intensive optimization problems

compared to second and higher-order constraints. In [119], the authors

make use of a linear constraint when minimizing the cost function L(δ) =
δ†
(
L†M̃L

)
δ, where L is given in (4.74). We can generalize the problem

by choosing different transformation matrices. Specifically, the problem

is given by

(P) : Minimize L(δ) = δ†M̃δ s.t
1

2

(
δ†ẽ1 + ẽ†1δ

)
= 1, (4.108)

where M̃ = T†MT and ẽ1 = [1 0, . . . , 0]T is an N × 1 column vector. Af-

ter solving (P), we must perform the operations in Fig. 4.5 so that the

resulting vector satisfies the phase noise geometry. These operations are

not done in [119]. It is easily seen that (P) is a convex program. In fact,
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Table 4.1. Phase noise estimation complexity for each iteration of the decision-directed
scheme in Table 4.2.

Constraint used Computations-per-iteration

PNC O
(
N4.5

)
UNC O

(
N3
)
+O (N log(N))

LC O
(
N3
)
+O (N log(N))

for such a problem, a closed-form solution exists. At the optimal solution

δlc, the first-order Karush-Kuhn-Tucker condition must be satisfied and

is given by

M̃δlc +
λ

2
ẽ1 = 0 implying δlc = −λ

2
M̃−1ẽ1. (4.109)

The Lagrange multiplier λ is obtained by substituting δlc in the linear

constraint and solving to obtain λ = − 2

ẽ†1M̃−1ẽ1
.

Computational Complexity of PNC, UNC and LC

In Publication V, the computational complexity of PNC, UNC and LC are

studied. The overall, general case complexity for these schemes is shown

in Table 4.1. From Table 4.1, we see that PNC has the highest compu-

tational complexity. This arises mainly because a semidefinite program

needs to be solved to arrive at a phase noise estimate using the PNC

scheme. In general, although convex in nature, semidefinite programs

have a higher computational complexity and are solved using interior-

point methods. See, for example, [131, 135, 136], where these methods

and their complexity are described in detail.

For the LC scheme, we need to solve (4.109) which is nothing but solving

a system of linear equations and, in general, the complexity is O(N3). The

added complexity of O (N log(N)) comes from performing the operations

in Fig. 4.5. The main computational complexity considered in Fig. 4.5

are the DFT and IDFT operations. This is assuming that T is chosen as

PPT. If set to some other transformation matrix then the complexity is

O (Nc log(Nc)).

For the UNC scheme, the eigenvector associated with the minimum

eigenvalue of the matrix M̃ needs to be determined. In general, this re-

quires O(N3) operations, and after performing the operations in Fig. 4.5,

we have the total amount as shown in Table 4.1. See, for example, [137]

for an excellent treatise on eigenvalue algorithms.
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Table 4.2. Decision-directed scheme.

Initialization step

(i) Choose a particular transformation matrix T.

(ii) Estimate channel: Ĥp =
rp
sp

, where p is pilot subcarrier index.

(iii) Interpolate Ĥp to obtain Ĥj , j = 0, 1, . . . , Nc − 1.

(iv) Set zj =
rj

Ĥj
, j = 0, 1, . . . , Nc − 1.

(v) ŝ = Decode (z).

(vi) Form S = diag(ŝ), B = F†
tS

†SFt and Pr = SFtB
−1F†

tS
†.

(vii) Form M = RTR∗ −RTPT
r R

∗ and then M̃ = T†MT.

(viii) Set loop variable to number of iterations.

Decision-feedback step

for i = 1 to loop

Phase noise estimation step:

(i) Solve optimization problems in Section 4.4.3 to obtain δ.

(ii) Set δ = Tδ.

Channel estimation step:

(i) Form the V matrix using δ.

(ii) ĥML =
(
F†
tS

†SFt

)−1
F†
tS

†V†r.

Phase noise compensation step

(i) Remove phase noise by performing z = V†r.

Channel equalization step

(i) Zero-forcing equalization: y =
(
diag

(
FtĥML

))−1
z.

Symbol detection step

(i) ŝ = Decode (y).

(ii) Form S = diag (ŝ), B = F†
tS

†SFt and Pr = SFtB
−1F†

tS
†.

(iii) Form M = RTR∗ −RTPT
r R

∗ and then M̃ = T†MT.

end

Numerical Results

Let us now present some numerical results on the geometry-based phase

noise minimization schemes originally reported in Publication V. In Pub-

lication V, a decision-directed scheme is used for estimating phase noise

and channel. Such a scheme is shown in Table 4.2. In Table 4.2, at the

symbol detection step, the operation Decode (·) includes the steps of sym-

bol constellation demodulation and channel decoding. Estimates of sj are

obtained by performing sequentially: phase noise and channel estimation;
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phase noise removal or compensation; channel equalization; and, finally,

symbol detection. The phase noise and channel estimation step requires

knowledge of the S matrix which comprises of the transmitted symbols

sj , which we do not know. Instead estimates of sj can be used to form

S as seen in Table 4.2. The obtained phase noise and channel estimates

are then used to obtain new estimates of sj . These new estimates are then

used to improve the phase noise and channel estimates, thereby, resulting

in a decision-directed feedback scheme.

We now compare the impact of phase noise estimation schemes on the

decision-directed scheme of Table 4.2. The phase noise estimation step

is implemented using PNC, UNC and LC schemes. The simulations are

run with the following system parameters: The number of subcarriers

Nc = 512, subcarrier spacing fsub = 15 kHz and bandwidth is 7.7 MHz.

Phase noise is modeled as a Wiener process with the oscillator PSD 3-dB

bandwidth f3dB = 300 Hz. The length of the vector δ is set to a value

of seven, i.e., N = 7. The percentage of scattered pilots is set to 8% and

symbol constellation is 16-QAM. The channel is Rayleigh fading with 10

exponentially decaying taps, and coherence bandwidth is set to 800 kHz.

A 1/2-rate convolutional encoder [133, 171] with constraint length of 7 is

used for channel encoding. For channel decoding, a soft-decision Viterbi

decoder of decoding depth equal to five times the constraint length is used.

Figure 4.6 shows the coded BER plots of the decision-directed scheme of

Table 4.2. The curve corresponding to the case of perfect phase noise and

channel knowledge serves as a benchmark in judging the performance of

the phase noise estimation schemes. From the figure, PNC offers the low-

est coded BER for the decision-directed scheme with UNC performing the

second best and LC performing the worst. Although PNC provides for

the lowest BER compared to others, its computational complexity can be

quite high. Thus, depending upon the system design requirement, UNC

and LC maybe better alternatives from the point of view of computational

complexity. See Section 4.4.3 for a discussion on the complexity. Figure 4.7

demonstrates the reduction in the coded BER as the number of iterations

in the decision-directed scheme are increased. This reduction in BER jus-

tifies the efficacy of using a decision-directed scheme from the point of

view of performance. The decision-directed scheme will yield a low BER

provided that most of the initial estimates of the transmitted symbols are

correct. For such a situation to happen, the phase noise process must be

slow-varying in nature otherwise the initial estimates will be poor, and
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Figure 4.6. Comparison of average coded BER vs. SNR for the proposed schemes. The
number of iterations in the decision-directed scheme is set to a value of 5.
The matrix T used is the piecewise constant PPT of (4.80).
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Figure 4.7. Coded BER as a function of the number of iterations in the decision-directed
scheme. SNR is set to 30 dB, f3dB = 300 Hz, fsub = 15 kHz and, hence,
ρ = f3dB

fsub
= 0.02. The matrix T is set as the PC-PPT of (4.80).

the decision-directed scheme will not converge to a lower BER. For the

simulations, the value of ρ = 0.02 which, from a system design point of

view, is quite high. Even for this value of ρ, the decision-directed scheme

converges well.
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4.5 Discussion

This chapter presents an overview and classification of some of the state-

of-the-art phase noise estimation algorithms for OFDM. By no means is

this overview comprehensive or complete, and the reader is encouraged

to see the references cited in this chapter for a more complete picture. In

addition, this chapter also presents the two novel phase noise estimation

algorithms of Publications V and VI, respectively.

Estimation schemes in OFDM, in the context of phase noise, can be clas-

sified into three types: Isolated estimation; Semi-joint estimation; and

Fully-joint estimation. The goal here is to estimate channel, phase noise

and the transmitted symbols. In isolated approaches, these three quan-

tities are estimated independently of each other while assuming knowl-

edge of the other. For example, for phase noise estimation, it is assumed

that a channel estimate and symbols estimate is readily available which

is used in estimating the phase noise. The symbol estimates are either

tentative decisions on transmitted symbols or are the pilot symbols them-

selves. Most phase noise estimation algorithms initially developed fall

into the isolated category, where channel estimates were obtained using

methods assuming no phase noise in the system. For slow-varying phase

noise processes, such an approach is acceptable, however, for fast-varying

processes, the performance will be inferior.

Poor channel estimates resulting from ignoring phase noise results in

poor symbol estimates, thereby, yielding a poor BER performance. This

recognition has led to joint channel and phase noise estimation algorithms,

where the primary focus is to obtain reliable channel estimates while tak-

ing the effect of phase noise into account. To do so, most algorithms make

use of the pilot phase of transmission, where all the transmitted symbols

are known a-priori at the receiver side. In applications with no dedicated

pilot phase transmission, tentative decisions on the transmitted symbols

can be used. A semi-joint estimation scheme would use the channel esti-

mate obtained using the joint approach to estimate the phase noise and

transmitted symbols during the data phase of transmission, wherein the

phase noise and symbol estimation steps are performed independently.

To obtain statistically optimal channel, phase noise and symbol esti-

mates, a fully-joint approach must be used; During the pilot phase, a joint

channel and phase noise estimation algorithm is used; and during the

data phase, a joint phase noise and symbol estimation algorithm is used.
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Joint approaches, in general, are computationally more complex simply

because a larger number of parameters are estimated. A fully-joint ap-

proach will incur delay into the system which may not be tolerable in

low-latency wireless applications. In contrast, isolated approaches may

be preferred, where separate and computationally less intensive channel,

phase noise and symbol estimation algorithms are used such that overall

complexity is less than when using a fully-joint approach.

The work in Publication VI contributes to the area of joint channel and

phase noise estimation, where the goal is to obtain reliable channel esti-

mates. It improves the method, originally proposed in [119], by choosing

subspaces that always contain the desired phase noise vector. The phase

noise estimate obtained in [119] is reasonable only for slow-varying phase

noise processes, however, the method breaks down for fast-varying phase

noise processes. On the other hand, the work in Publication VI utilizes

subspace information that does not depend upon the nature of the phase

noise process. Such a scheme is, hence, also useful at moderate to fast-

varying phase noise processes as well as slow-varying ones.

The work in Publication V can be used in an isolated approach or a

joint approach where the objective is to obtain optimal channel estimates

in the presence of phase noise. The phase noise estimation step utilizes

information on the geometry of the spectral components of the complex

exponential of the phase noise process. Such an estimate is obtained by

solving a quadratic cost function subject to quadratic equality constraints

that involve permutation matrices. The complexity of solving such an al-

gorithm can be high depending upon the dimensionality of the estimated

phase noise vector. In order to reduce the complexity, the work in Publica-

tion V also proposes suboptimal schemes that achieve the same objective

of satisfying the phase noise geometry.
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5. Conclusion

OFDM has become a popular choice for modulation and is widely used

in many communication systems, especially in wireless systems. For ex-

ample, in the latest fourth-generation of wireless systems, it is used in

the downlink. It is also a contender for the upcoming fifth-generation

wireless systems as well. It facilitates simple implementation of the base-

band modulator and demodulator and, most importantly, it trivializes the

task of channel equalization. It, however, has its drawbacks and, by far,

the most important being its sensitivity to RF-impairments. This thesis

contributes to the field of analysis and estimation for OFDM systems im-

paired by phase noise which forms one type of RF-impairment.

5.1 Contributions in OFDM under Oscillator Phase Noise

With regard to performance analysis, this thesis contributes by providing

new closed-form analytical expressions of capacity for OFDM systems im-

paired by phase noise. The capacity analysis is also extended to include

the effect of carrier frequency offset. The resulting expressions provide

quantitative as well as qualitative insight on the relationship between

the phase noise process and capacity. Through these expressions, a clear

degradation in capacity of the OFDM system in the presence of phase

noise is seen. Fortunately, this degradation can be controlled either by

proper choice of oscillator design, or by adjusting the OFDM system pa-

rameters, or by performing phase noise estimation and compensation.

This thesis also makes two new contributions to the field of phase noise

estimation in OFDM. Specifically, two novel aspects about the desired

phase noise parameter are used during the estimation step. In the first

contribution, subspace-based information is used, i.e., possible subspaces

in which the desired phase noise spectral vector may lie are explored. This
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subspace-based approach avoids the need to make assumptions about the

nature of the phase noise process which is generally used in the litera-

ture. For example, phase noise processes are assumed to be slow-varying

in nature which is, no doubt, a reasonable assumption. For moderate

or fast-varying phase noise processes, the proposed subspace-based ap-

proach will perform better compared to algorithms specifically designed

with the slow-varying assumption.

In the second contribution, information on the geometry of the desired

phase noise spectral vector is used in the estimation step. The goal is to

estimate the spectral vector of the complex exponential of the phase noise

process. It is shown in this thesis that this spectral vector is always drawn

from a non-convex set which can be expressed using a set of quadratic

forms that involve permutation matrices. This geometry is nothing but

a frequency domain manifestation of the constant magnitude property of

the complex exponential function. The constant magnitude property is a

well-known fact but its equivalent frequency domain manifestation has

not been observed and utilized in the research community.

5.2 Contributions in Applied Statistics and Optimization Theory

This thesis also presents some new fundamental results in the fields of

applied statistics and optimization theory. These results are application

independent and can be applied wherever suitable. As an example, per-

taining to the field of statistics, the PDF of a sum of correlated gamma

random variables with a normalized covariance matrix of any rank is de-

rived. The state-of-the-art result was limited to the full-rank case as de-

rived in [96]. The framework, based on the work done by Moschopoulos

in [95], naturally allows to extend the result to deriving the PDF of a sum

of correlated gamma and Gaussian distributed random variables.

This thesis also contributes to the field of optimization theory and pro-

vides some new results on the losslessness of the S-procedure that involve

equality constraints. The S-procedure is a method of replacing a set of

quadratic equalities or inequalities with a linear-matrix-inequality. Con-

ditions for the S-procedure to be lossless for the case of quadratic inequal-

ities is well-established and used extensively. This thesis fills the void by

providing conditions for the S-procedure to be lossless for any number of

quadratic equality constraints.
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5.3 Directions of Future Work

We end this chapter with a brief treatise on possible research directions

related to OFDM and phase noise. The next-generation of wireless sys-

tems, namely 5G, have set forth gigantic goals on data rate, latency and

spectral efficiency to name a few. For example, peak data rates are ex-

pected to deliver three orders of magnitude more than the current 4G sys-

tems [138]. The key physical layer technologies that promise to deliver

such massive data rates are primarily: massive MIMO, millimeter wave

communications and heterogeneous networks [4]. In the context of phase

noise, there is abundant research that shows a performance degradation

for MIMO systems corrupted by phase noise, for example, when perform-

ing beamforming [139]. The effect of phase noise on MIMO systems serves

as an indicator of what to expect with regard to massive MIMO systems

that employ hundreds of antennas at the base station. This indeed marks

the beginning of a new research area dedicated to analyzing and address-

ing the effects of phase noise and RF-impairments, in general, on massive

MIMO systems. Some new studies on the topic can be found in [140]

and [141].

An important aspect to delivering high data rates is the notion of spec-

tral efficiency which is intrinsically linked to the underlying waveform

and symbol constellation. For example, in LTE, the OFDM waveform is

used. It is a popular contender for the upcoming 5G systems, however,

alternatives are being sought after [142]. Two main reasons for seeking

alternatives are: low spectral efficiency of OFDM; and stringent synchro-

nization requirements [143]. By synchronization, we refer to timing and

frequency synchronization. For example, in a multi-user uplink scenar-

ios, the base station needs to estimate the timing and frequency offset of

all the users it services in order to avoid inter-block and multi-user inter-

ference. This stringent requirement arises fundamentally because of the

susceptibility of OFDM to timing and frequency offset. Frequency offset

can be viewed as a deterministic version of phase noise. Alternative multi-

carrier waveforms, such as the filter bank multi-carrier, are more robust

to synchronization errors compared to OFDM and also have higher spec-

tral efficiency [144]. The impact of phase noise on these waveforms is not

well-known, and we envisage a new research field dedicated to this area.
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A. Appendix

A.1 Proof of Theorem 3.4.1

In order to derive the PDF, we first form the moment generating function

(MGF) of Y and simplify the resulting expression. We then obtain the

PDF after applying an inverse Laplace transform. The MGF of Y can be

obtained on similar lines as done in Publication I to obtain

MY (s) =

∫ ∞

−∞
esdes(Pa)Tye−

1
2
yT[Δ−1−s2PBPT]ydy

(2π)
R
2 |Δ| 12

, (1.1)

where P =
[
IR×R 0R×(N−R)

]
CT. The matrix C is obtained from Mx =

CΣCT which is an eigendecomposition of Mx. The matrix Δ is diagonal

whose elements are the non-zero eigenvalues of Mx. The integral in (1.1)

can be solved by using the result from [145] to obtain

MY (s) = esd
R∏
i=1

e
1
2 [s(V

TΔ1/2Pa)T(I−sΛ)−1(VTΔ1/2Pa)s]

(1− sλi)
1
2

= esd
R∏
i=1

e
s2c2i /2

1−sλi

(1− sλi)
1
2

(1.2)

= Kce
sde−sτ

R∏
i=1

e
bi/2

1−sλi

(1− sλi)
1
2

, (1.3)

where VΛVT is the eigenvalue decomposition of 2Δ1/2PBPTΔ1/2 with

{λi}Ri=1 being the ordered non-zero eigenvalues (λ1 is the minimum). The

vector c =
(
VTΔ1/2Pa

)
whose elements are denoted by ci. The terms

bi = c2i /λ
2
i , τ = 1

2

∑R
i=1 biλi and Kc = e−

1
2

∑R
i=1 bi . The final step of (1.3) is

obtained by applying partial fraction expansion on the exponential term

in (1.2).

We now use an original idea proposed in [95] that equivalently expresses
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the product term in (1.3) as a summation term. First, we rewrite

1− sλi = (1− sλ1)
λi

λ1

[
1−

(
1− λ1/λi

1− sλ1

)]
. (1.4)

Taking the natural logarithm on both sides of (1.3) and, after using (1.4),

we have

ln (MY (s)) = ln
(
Kce

sde−sτ
)
+ ln

(
(1− sλ1)

−R/2Kp

)
+

1

2

R∑
i=1

bi

[
1−

(
1−λ1/λi

1−sλ1

)]−1

(1− sλ1)
λi
λ1

− 1

2

R∑
i=1

ln

(
1−

(
1− λ1/λi

1− sλ1

))
, (1.5)

where Kp =
∏R

i=1

(
λ1
λi

) 1
2 . Using the expansions ln (1 + x) =

∑∞
k=1(−1)k+1 xk

k

and (1 + x)−1 =
∑∞

k=1(−1)k−1xk−1, (1.5) simplifies to [97]

ln (MY (s)) = ln
(
Kce

sde−sτ
)
+ ln

(
(1− sλ1)

−R/2Kp

)
+

1

2

R∑
i=1

bi

(1− sλ1)
λi
λ1

( ∞∑
k=1

(
1− λ1/λi

1− sλ1

)k−1
)

+
1

2

R∑
i=1

( ∞∑
k=1

(
1− λ1/λi

1− sλ1

)k 1

k

)
,

= ln
(
Kce

sde−sτ
)
+ ln

(
(1− sλ1)

−R/2Kp

)
+

∞∑
k=1

zk (1− sλ1)
−k , (1.6)

where the coefficient zk is given by the following equation:

zk =
1

2

R∑
i=1

(
bi (1− λ1/λi)

k−1

λi
λ1

+
(1− λ1/λi)

k

k

)
. (1.7)

Taking the inverse logarithm on both sides of (1.6), we have

MY (s) = Kesde−sτ (1− sλ1)
−R/2 e

∑∞
k=1 zk(1−sλ1)

−k

, (1.8)

where K = KcKp. In [95], it is shown that the exponential term contain-

ing the summation series can be equivalently expressed using a summa-

tion series, i.e., e
∑∞

k=1 zk(1−sλ1)
−k

=
∑∞

k=0 ζk (1− sλ1)
−k, where the coeffi-

cients ζk and zk are related by

ζ0 = 1, ζk+1 =
1

k + 1

k+1∑
i=1

iziζk+1−i, k = 0, 1, . . . (1.9)

=
0.5

k + 1

k+1∑
i=1

⎡
⎣ R∑
j=1

(1− λ1/λj)
i

(
1 +

ibj(λ1/λj)

(1− λ1/λj)

)⎤⎦ ζk+1−i.

Using this equivalent representation, the MGF of Y is given by

MY (s) = Kesde−sτ
∞∑
k=0

ζk

(1− sλ1)
(R/2+k)

, (1.10)

and after taking the inverse Laplace transform of MY (−s), we obtain the

PDF of Y as given in (3.42).
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A.2 Proof of Theorem 3.5.1

The theorem can be proved on similar lines as done in Section A.1 with

minor modifications that take into account aspects of negativity of the

eigenvalues as well as rank deficiency. Using the approach in Publication

I, the MGF of Y = xT (a+Bx) is simplified to

MY (s) =

∫ ∞

−∞

es(Pa)Tye−
1
2
yT[Δ−1−s2PBPT]ydy

(2π)
R
2 |Δ| 12

. (1.11)

The integral in the above equation has a closed-form expression and the

resulting expression is given by [145]

MY (s) =

(
R+L+Z∏

i=1

(1− sλi)
− 1

2

)
e

1
2 [s(V

TΔ1/2Pa)T(I−sΛ)−1(VTΔ1/2Pa)s]

=

⎡
⎢⎣∏
i∈R

e
1
2

s2c2i
1−sλi

(1− sλi)
1
2

⎤
⎥⎦
⎡
⎢⎣∏
i∈L

e
1
2

s2c2i
1−sλi

(1− sλi)
1
2

⎤
⎥⎦ e

1
2
s2

∑
i∈Z c2i , (1.12)

where λi denotes the eigenvalues of 2Δ1/2PBPTΔ1/2 with R number of

positive eigenvalues, L number of negative eigenvalues and Z number of

zero eigenvalues. The eigendecomposition of 2Δ1/2PBPTΔ1/2 is given by

VΛVT. The index sets R, L and Z correspond to the positive, negative

and zero eigenvalues. The elements ci are the components of the vector

c = VTΔ1/2Pa.

Applying partial fraction expansion on the exponents inside the paran-

thesis of (1.12), we have

MY (s) = Kce
−sτ

⎡
⎣ R∏
i=1

e
ui/2

1−sβi

(1− sβi)
1
2

⎤
⎦
⎡
⎣ L∏
i=1

e
vi/2

1−sγi

(1− sγi)
1
2

⎤
⎦[e 1

2
s2

∑
i∈Z c2i

]
, (1.13)

where ui = (c2k/λ
2
k), k ∈ R, vi = (c2k/λ

2
k), k ∈ L, and the constant Kc =

e−
1
2(

∑R
i=1 ui+

∑L
i=1 vi). The delay parameter τ = 1

2

(∑
k∈R(

c2k
λk
) +

∑
k∈L

(
c2k
λk

))
.

In (1.13), we denote βi = λk, k ∈ R, where i = 1, 2, . . . , R and γi = λk, k ∈
L, where i = 1, 2, . . . , L. Equation (1.13) is a generalized version of (1.3)

which only assumes 2Δ1/2PBPTΔ1/2 to be of full-rank with only positive

eigenvalues. In contrast, the first parenthesis term represents the pos-

itive contribution of the eigenvalues, the second parenthesis term repre-

sents the negative contribution, and the third parenthesis results because

of the rank deficiency. Note that the third parenthesis term represents the

MGF of a Gaussian distributed random variable.

By using (1.4) and the approach following it, the first and second paran-
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thesis terms can be effectively represented by⎡
⎣ R∏
i=1

e
ui/2

1−sβi

(1− sβi)
1
2

⎤
⎦ =

R∏
i=1

(
β1
βi

) 1
2

∞∑
k=1

ηk

(1− sβ1)
(R/2+k)

, (1.14)

⎡
⎣ L∏
i=1

e
vi/2

1−sγi

(1− sγi)
1
2

⎤
⎦ =

L∏
i=1

(
γ1
γi

) 1
2

∞∑
k=1

ζk

(1 + s|γ1|)(L/2+k)
, (1.15)

where β1 and γ1 are the minimum and maximum amoung βi and γi, re-

spectively and |γ1| denotes the absolute value of γ1. The coefficients ηk

and ζk are given by

η0 = 1, ηk =
0.5

k + 1

k+1∑
i=1

⎡
⎣ R∑
j=1

(1− β1/βj)
i

(
1 +

iuj
((βj/β1)− 1)

)⎤⎦ ηk+1−i,

(1.16)

ζ0 = 1, ζk =
0.5

k + 1

k+1∑
i=1

⎡
⎣ L∑
j=1

(1− γ1/γj)
i

(
1 +

ivj
((γj/γ1)− 1)

)⎤⎦ ζk+1−i.

(1.17)

Taking the product of (1.14) and (1.15), we have⎡
⎣ R∏
i=1

e
ui/2

1−sβi

(1− sβi)
1
2

⎤
⎦
⎡
⎣ L∏
i=1

e
vi/2

1−sγi

(1− sγi)
1
2

⎤
⎦

=

R∏
i=1

(
β1
βi

) 1
2

L∏
i=1

(
γ1
γi

) 1
2

∞∑
k=1

∞∑
j=1

ηkζj

(1− sβ1)
(R/2+k) (1 + s|γ1|)(L/2+k)

, (1.18)

=
R∏
i=1

(
β1
βi

) 1
2

L∏
i=1

(
γ1
γi

) 1
2

∞∑
k=1

∞∑
j=1

ηkζj

(
Rk∑
l=1

Akj
l

(1− sβ1)l
+

Lk∑
l=1

Ãkj
l

(1 + s|γ1|)l
)
,

(1.19)

where the coefficients Akj
l and Ãkj

l are given in (3.55) and are obtained

by applying a partial fraction decomposition in (1.18) to arrive at (1.19).

Substituting (1.19) in (1.13) and taking the inverse Laplace transform of

MY (−s), we obtain the PDF of Y as shown in (3.51).
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