14,909 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Knowledge-aided STAP in heterogeneous clutter using a hierarchical bayesian algorithm

    Get PDF
    This paper addresses the problem of estimating the covariance matrix of a primary vector from heterogeneous samples and some prior knowledge, under the framework of knowledge-aided space-time adaptive processing (KA-STAP). More precisely, a Gaussian scenario is considered where the covariance matrix of the secondary data may differ from the one of interest. Additionally, some knowledge on the primary data is supposed to be available and summarized into a prior matrix. Two KA-estimation schemes are presented in a Bayesian framework whereby the minimum mean square error (MMSE) estimates are derived. The first scheme is an extension of a previous work and takes into account the non-homogeneity via an original relation. {In search of simplicity and to reduce the computational load, a second estimation scheme, less complex, is proposed and omits the fact that the environment may be heterogeneous.} Along the estimation process, not only the covariance matrix is estimated but also some parameters representing the degree of \emph{a priori} and/or the degree of heterogeneity. Performance of the two approaches are then compared using STAP synthetic data. STAP filter shapes are analyzed and also compared with a colored loading technique

    Evaluation of algorithms for estimating wheat acreage from multispectral scanner data

    Get PDF
    The author has identified the following significant results. Fourteen different classification algorithms were tested for their ability to estimate the proportion of wheat in an area. For some algorithms, accuracy of classification in field centers was observed. The data base consisted of ground truth and LANDSAT data from 55 sections (1 x 1 mile) from five LACIE intensive test sites in Kansas and Texas. Signatures obtained from training fields selected at random from the ground truth were generally representative of the data distribution patterns. LIMMIX, an algorithm that chooses a pure signature when the data point is close enough to a signature mean and otherwise chooses the best mixture of a pair of signatures, reduced the average absolute error to 6.1% and the bias to 1.0%. QRULE run with a null test achieved a similar reduction
    • …
    corecore